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Real-time detection of an aircraft deep stall and recovery
procedure

Sébastien Kolb∗, Olivier Montagnier†, Laurent Hétru‡ and Thierry M. Faure§
Air Force Research Center (CReA), French Air Force Academy, Salon-de-Provence, France

I. Nomenclature
c = main wing chord m

CL = lift aerodynamic coefficient -
CD = drag aerodynamic coefficient -
Cm = pitching moment aerodynamic coefficient -
Iy = moment of inertia about the y-axis kg m2

m = mass kg
q = pitch rate rad/s
S = reference main wing area m2

T = thrust N
U = input vector -
V = airspeed m/s
X = state vector -
α = angle-of-attack °
γ = flight-path-angle °
δe = elevator deflection angle °
δf = flap deflection angle °
δT = thrust throttle -
δsm = static margin %
λ = eigenvalue -
ρ = air density kg/m3

ζ = damping -

II. Introduction

Deep stall is a kind of stall affecting aircraft longitudinal dynamics. It corresponds to a stable equilibrium at high
angle-of-attack (AoA) for which the pitch control surface is almost or totally ineffective [1, 2]. Deep stall is a

hazardous aircraft loss-of-control which implies an established stall flight with high descent velocities and no easy
recovery procedure. In the history of aeronautics, several aircraft have encountered this type of stall leading to crashes,
more especially during flight tests (e.g. Javelin Gloster, BAC 1-11, Canadair Regional Jet 600 [3], etc.).

The existence of this equilibrium depends on aircraft design factors and on some peculiar flight conditions. Taylor
and Ray [4, 5] have studied several aircraft designs in a wind tunnel to identify geometrical factors promoting deep stall
risk. They noticed that T-tail or aft mounted engines are critical factors. The flight of the T-tail inside the separated
wake of the stalled main wing is generally considered as an explanation of the phenomenon [4–7]. Byrnes et al. [8]
have studied the impact of T-tail position and surface, and swept wing angle on the aircraft aerodynamics and flight
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dynamics. In these experiments, deep stall equilibrium occurs for T-tail and classical small tail configurations but only
in the case of swept main wings. Swept wings induce pitch-up effect after stall leading to deep stall equilibrium [9, 10].

Nevertheless, in the last decade, several aircraft (e.g. Airbus A400M, Comac ARJ21, Beechcraft 1900, Bombardier
CRJ1000, etc.) and also small unmanned aerial vehicle (UAV) have been designed with a T-tail and sometimes with aft
mounted engines. In general, the normal laws of aircraft are protected from high AoA (AoA protection) as in the case of
the C-17A [11]. Other airplanes have a stick pusher or a stick shaker to prevent such dangerous situations. In spite of
everything, some flights involve high AoA like flight tests for a new aircraft which necessarily reach the stall or post stall
regions. For an aircraft potentially presenting a deep stall risk, a “deep stall recovery system” (rocket, parachute, etc.) is
generally implemented to get out from deep stall equilibrium if necessary [12]. But this kind of device can be fatal if
it is activated at the wrong time instant. Another case concerns peculiar system failures involving alternate law (or
secondary law) where AoA protection is switched off as in the flight crash AF447 Rio-Paris. The final report on the
accident [13] states that the AoA had reached 40°. Lastly, in normal flight conditions, some inertial and aerodynamic
aircraft configurations, possibly combined, can also lead to deep stall entry such as bad aft center balance, overload,
unexpected high-lift devices use.

Therefore, in accordance with Goman [14], it is interesting to know as soon as possible the precursory signs of
deep stall entry in order to implement a warning for this kind of untypical situation follow-up and an automatic or
manual procedure to escape from this hazardous phenomenon. Recently, several works have concerned the analysis of
deep stall dynamics applying bifurcation theory [15–20], others have concerned the analysis of deep stall landing for
UAV [21–23] but none concern the real-time detection of deep stall and recovery procedure. On the other hand, due to
the development of more and more autonomous aircraft, many recent works concern the loss-of-control prevention,
detection and recovery [24–26]. Deep stall studies are generally carried out with the assumption of longitudinal flight
and such hypothesis is adopted hereafter. However, an asymmetric phenomenon like the roll off instability could exist.
In fact, pilots try first to find a solution keeping the longitudinal flight and hesitate to escape from a crash thanks to a
lateral procedure with the risk of spin.

The aim of the present study is to propose a real-time identification of deep stall entry as soon as possible and find
the ad-hoc way out without knowing the aircraft aerodynamic above the stall angle. The proposed algorithm must be
simple and robust because it cannot obviously be tested on a real airplane (unless on a small UAV or an aircraft designed
for that purpose [27]). To avoid a false detection in normal flight condition, it would be only triggered when the aircraft
would be in alternate law or in flight test phase below the stall angle. Therefore, this study concerns an actual existing
aircraft but not the conception parameters involved during the design phase. In order to reach this goal, the first step
is to analyze the path towards the deep stall equilibrium and the second is to identify the dynamical features of the
phenomenon. The first part of the paper is about the implementation of a realistic model of a deep stall prone aircraft.
The second part concerns the analysis of the aircraft model behavior applying dynamical system theory in order to have
time evolution of the physical variables and modes properties near the equilibrium points. The following part proposes
the real-time deep stall detection algorithm. Finally, the real-time detection is successfully applied and some recovery
procedures are evaluated.

III. Aircraft model

A. Governing equations
As it is considered classically, it is assumed here that aircraft motion is longitudinal during deep stall phenomenon.

In the longitudinal plane, the earth, aerodynamic and aircraft frames of reference are denoted (x0, z0), (xa, za) and
(xb, zb), respectively. In consequence, the nonlinear governing equations of the aircraft are in the aerodynamic frame for
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the forces and the aircraft frame for the moment (see the nomenclature for the list of the symbol definitions):

ÛV = −
ρV2S
2m

CD(α, q, δe, δf ) +
T(ρ, δT )

m
cosα − g sin γ (1)

Ûγ =
ρVS
2m

CL(α, q, δe, δf ) +
T(ρ, δT )

mV
sinα −

g

V
cos γ (2)

Ûα = q −
ρVS
2m

CL(α, q, δe, δf ) −
T(ρ, δT )

mV
sinα +

g

V
cos γ (3)

Ûq =
ρV2Sc

2Iy
Cm(α, q, δe, δf ) (4)

Ûh = V sin γ (5)

where it is assumed that thrust does not create any moment and is aligned with the xb direction.
This mathematical model of longitudinal flight dynamics can be rewritten in the state space form:

ÛX = f (X,U) (6)

where the state vector X and the control vector U are:

X = (V, γ, α, q, h) ; U =
(
δe, δT , δf

)
(7)

Hereafter, computation of Eqs. 1-5 is called full model and computation of only Eqs. 3-4 is called reduced model.

B. Aerodynamic coefficients
For the deep stall study, it is necessary to find realistic aerodynamic coefficients at very high AoA of a deep stall

prone aircraft. These data are easier to find for a fighter aircraft in literature [14, 28] than for a transport aircraft.
Nevertheless, the Learjet 23 D is a good candidate, because it was a well known deep stall prone aircraft and because
Soderman and Aiken have obtained the static aerodynamic coefficients during full scale wind-tunnel tests [29]. In
consequence, all static coefficients CL , CD and Cmst at ic (for q = 0) were digitized hereafter. These experimental
measurements have been interpolated with spline functions in the experimental data range and extrapolated linearly
outside the bounds. Figures 1a and 1b give the lift CL and drag CD coefficients for a large range of AoA, respectively
without flaps (δf = 0°) and with full flaps (δf = 40°) configurations and extreme elevator deflection angle values. Figure
1c gives Cmst at ic for the same configurations at wing quarter chord.

The static part of the pitching moment allows to determine the AoA values at equilibrium (Fig. 1c). From the
flight dynamics point of view, deep stall occurs when there exists a stable equilibrium at high AoA for a given elevator
deflection angle, center of gravity and configuration (flaps up/down, etc). A longitudinal equilibrium requires, among
others, a zero pitching moment and is statically stable when the α-slope of the pitching moment coefficient is negative
(i.e. ∂Cm/∂α < 0) [30].

Moreover, the loss of tail efficiency in deep stall also affects the pitch rate derivative of the pitching moment
coefficient (∂Cm/∂q ). Indeed the lift of the horizontal tail creates normally an opposite moment to the aircraft pitch
motion, followed by a modification of the local AoA of the tail versus that of the wing. But this effect is reduced
with the degraded aerodynamics of the horizontal tail, when it is inside the separated wake of the stalled main wing.
Here, a simple continuous piecewise linear function is proposed for the pitch rate derivative inspired from the model of
Montgomery and Moul [31] and whose absolute value is reduced in the deep stall conditions:

∂Cm

∂q
=

Cmq c

V
where Cmq =


−9.4 α < [20◦, 50◦]
0.61 × (α − 20) − 9.4 α ∈ [20◦, 35◦]
−0.61 × (α − 35) − 0.25 α ∈ [35◦, 50◦]

(8)

It should be noticed that recent experimental studies on SUPRA aircraft project showed that the Cmq increase could
be higher than the one proposed in Montgomery and Moul [32, 33]. The overall aircraft pitching moment takes the
following form with its diverse contributions, that is to say the quarter chord pitching moment Cmstatic , the static margin
δsm and the pitch damping Cmq :

Cm

(
α, q, δe, δf

)
= Cmstatic

(
α, δe, δf

)
+ CL(α, δe, δf )δsm +

c
V

Cmq (α)q (9)
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Figure 1 Interpolated static aerodynamic model from the NASA full scale Learjet 23D wind tunnel tests for
various elevator commands and two flap configurations [29] : a) CL , b) CD , c) Cmst at ic at wing quarter chord
(“o” markers corresponds to NASA experimental measurements) d) Cm for q = 0 and δsm = −10%.

with

δsm =
xcg − xac

c
(10)

where xcg and xac are the algebraic position of the center of gravity and the wing aerodynamic center as in [29]. With
this definition, the static margin is negative for an aft center of gravity. The aircraft pitching moment is given for q = 0
and δsm = −10% in Fig. 1d.

Thrust in Newtons is defined using the following expression:

T = 26243.2(
ρ

1.225
)0.7δT

where δT ∈ [0, 1]. The other aircraft data are: m = 4 536 kg, Iy = 33940.7 kg m2, c = 2.14 m and S = 21.48 m2

[29, 34]. The thrust contribution on the aircraft pitching moment is neglected hereafter. It can be noted that for a T-tail
aircraft with engines on the rear fuselage, the moment is significantly smaller than in a conventional setup where the
engines are placed under the wings. Finally, it is assumed as usual that ∂CL/∂q = ∂CD/∂q = 0.
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IV. Analysis of aircraft model behavior
In this part, characteristics properties of the aircraft dynamics near deep stall are identified in order to predict the

convergence of its trajectory in a phase portrait toward a low or a high AoA equilibrium.

A. General aircraft dynamics
An aircraft may meet deep stall for several ranges of elevator deflection angles in a given configuration (static

margin, flaps, etc.). For such critical cases, there are three equilibria for one fixed elevator deflection angle δe. They
correspond to the AoA for which the overall pitching moment is equal to zero (Cm (α, δe) = 0 on Fig. 1c for δsm = 0%
and on Fig. 1d for δsm = −10%). These equilibria are: the classical low AoA equilibrium, an unstable equilibrium at
medium AoA (called saddle point) and the stable equilibrium at high AoA associated to deep stall. These points are
marked by color dots for δf = 40° and δe = 0° in Fig. 1d.
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Figure 2 Phase portrait comparison of the two models for flight dynamics computation of the Learjet 23D
model: a) reducedmodel, b) fullmodel and basin of attraction of the reducedmodel (flaps down δf = 40°, δe = 0°,
δT = 0.4 and δsm = −10% with initial conditions V0 = 71 m/s, γ0 = 0°, α0 = 0°, 5°, 10°, 13°, 20°, 23°, 30°, 45°, 48°,
q0 = 0 rad/s and h0 = 6000 m).

Figure 2a and 2b show the phase portrait of the Learjet 23D, typical of a deep stall prone aircraft, computed with the
reduced model and the full model, respectively. A stable manifold can be computed with the reduced model (thick black
curve in Fig. 2a), it starts from the saddle point and delimits the basin of attraction of the equilibrium at high AoA. Note
that the stable manifold is computed using a backward time integration starting from a point in the neighborhood of
the saddle point. Two types of behaviors can be distinguished in Fig 2a. First, when the airplane converges towards a
stable equilibrium point, the distance between two angles-of-attack for which Ûα = 0 becomes more and more reduced.
Secondly, in the neighborhood of the saddle point, all the trajectories are attracted by this equilibrium and then repelled
from it. The trajectories remaining at the right of the saddle point equilibrium stay in the basin of attraction as shown
by several authors [14, 31, 35]. Other trajectories (outside the basin of attraction) converge towards the low AoA
equilibrium. Another simple remark never pointed out in previous studies, to the best of our knowledge, is the way of
convergence toward a stable equilibrium. Figure 2a shows a fast convergence of the short-period mode to the low AoA
in only one cycle while the convergence to the high AoA is slow and takes many cycles. Slow convergence can be
considered like an opportunity allowing sufficient time to initiate the recovery procedure. This difference is explained
by the large difference in damping for the two cases that will be explained and quantified in part IV.C.

Another point is that the reduced model computations are carried out with the hypotheses of constant slope and
velocity. For the low AoA equilibrium, the slope is necessarily null, corresponding to the light green basin of attraction.
On the contrary, for the high AoA equilibrium, the aircraft gets a very negative slope. For the studied configuration, the
airplane is on a -33° slope and its velocity is decreased to 63 m/s. These conditions give a new stable line (dotted black
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in Fig. 2a) and a new basin of attraction. It can be noticed that both basins of attraction are very close. Finally the slope
has little influence on the airplane behavior. Hereafter, only the basin of attraction for a slope equal to zero is considered
since this is the one indicating whether or not the airplane is entering in deep stall. A second point is that the basin of
attraction can be plotted only for the reduced model, because only the planar case insures that the trajectories are not
crossing each others [31, 36]. This is what Fig. 2b shows, where the full model is considered. Then, it can be noticed
that the basins of attraction previously computed provide a blurred criterion for the convergence or divergence toward
the high AoA equilibrium.

Fig. 3 presents an airplane at low AoA equilibrium whose pilot applies a pitch-up command during 1s followed by
a return to δe = 0. In this realistic airplane flight with a change on pilot command, the basin of attraction computed
with the reduced model provides a good estimate of the final equilibrium for both the reduced and full calculations. In
addition, the basin of attraction for a full pitch-down command is plotted in the figures (in light red), showing that there
is no possible recovery of the airplane after one cycle.
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Figure 3 Phase portrait comparison of two various model for flight dynamics computation of the Learjet 23D
model starting from equilibrium and applying various pitch nose-up command during 1s: a) reduced model
with basin of attraction, b) full model with reduced model basin of attraction (flaps down δf = 40°, δT = 0.4
and δsm = −10% with initial conditions δeinit = {−3,−5,−7,−9,−11,−13,−15}°, V0 = 71 m/s, γ0 = 0°, α0 = 7.45°,
q0 = 0 rad/s and h0 = 6000 m).

Figure 4 presents the bifurcation diagram corresponding to the AoA at equilibrium as a function of the elevator
position δe. It shows two limit points (LP), also called saddle-node bifurcations or fold bifurcation, at δe = −10° and
δe = 5° delimiting three zones [36]. For an elevator deflection angle below −10° and above 5°, there is only one stable
equilibrium. For an elevator deflection angle between −10° and 5°, there are three equilibria, two stable ones and an
unstable one. Near an elevator deflection angle of δe:: − 10° in a stabilized situation at low AoA, a pitch-up command
can produce a jump to the stable branch at high AoA which will not be so easy to recover from since a reverse pitch-down
command may change the equilibrium state value, but the aircraft may remain at high AoA. There is a phenomenon
which looks like an hysteresis. It is a hazardous situation and as long as the aircraft is on the stable branch at low AoA,
the pilot may expect and foresee the happening of change of AoA leading to deep stall.

B. Effect of altitude, velocity, flaps and pitch damper
The basins of attraction for diverse configurations of the Learjet 23 D are now compared.
Figure 5a shows the basin of attraction with flaps up for various altitudes between 3000 m and 10000 m. The

deep stall basin of attraction is rather limited. The altitude has little influence on its extension around the high AoA
equilibrium point. However, the branch at the left top corner is influenced by the altitude. It means that the AoA for
which the aircraft can enter into the basin of attraction (Fig. 3) is lower at high altitude (h = 10000 m). Figure 5b
shows the basin of attraction with flaps down for the same altitudes but for a slightly lower speed corresponding to
the maximum speed the flaps down configuration can bear. Larger basins of attraction are observed, showing that this
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Figure 4 Example of a bifurcation diagram (α, δe) of the Learjet 23D model (flaps up δf = 0°, δsm = −10%).

configuration is more deep stall prone. As a consequence, it is advisable to retract the flaps when a situation prone to
deep stall is detected for this type of T-tail aircraft.

Figure 5c shows the basin of attraction with flaps up for various velocities between 80 m/s and 160 m/s at h = 6000 m.
The velocity has little influence on the basin of attraction except for 80 m/s which corresponds to the region of the
reversed command of the power curve.

Effects of pitch damping on the aircraft behavior have been widely studied in the past by Thomas and Collingbourne
[35]. Figure 5d shows the basin of attraction with pitch damper for various altitudes between 3000 m and 10000 m and
a velocity of 80 m/s. The basin of attraction is larger when the pitch damper is engaged (comparison with Fig. 5b).
Thus, it can be advised to switch off the pitch damper when a situation prone to deep stall is detected. This effect can be
explained by the design of a pitch damper: a component of elevator deflection angle δe which is added to the pilot action
and proportional to the pitch rate q. It produces more pitch damping which is translated mathematically into a more
negative derivative of the pitching moment coefficient with respect to the dimensionless pitch rate Cmq . Moreover, since
the oscillations are less damped out and the divergence of the vector field is lower when the pitch damper is switched off,
the aircraft is less likely to converge towards the deep stall equilibrium and since the damping of the movement is lower,
the pilot has a little more time available to react.

C. Short-period mode properties at low and high AoA
The relatively fast motion observed in Fig. 2a corresponds to short-period modes. These modes are classically

assumed decoupled with phugoid modes at low AoA [30, 37] but also here at high AoA [38]. Note that the simulations
of the reduced model seem quite close to the ones of the full model (Fig. 3).

By linearizing the dynamics of the lift and pitch equations near a low AoA equilibrium for a fixed airspeed Ve,
altitude and angle-of-attack αe, analytical expressions of the pulsation ωspm and of the damping ζspm can be obtained
classically for the short-period mode [30, 37]:

ω2
spm = −

V2
e ρcS
2Iy

[(
ρSVe

2m
CLα +

T
mVe

)
c

Ve
Cmq + Cmα

]
(11)

2ζspmωspm =
ρSVe

2m
CLα −

c2ρSVe

2Iy
Cmq +

T
mVe

(12)

where CLα , Cmα and Cmq = (Ve/c) × ∂Cm/∂q are computed for the values: α = αe, q = 0, δe and δf . It can be shown
that a quasi-similar expression can be obtained in the case of high AoA [38]:
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Figure 5 Comparison of the basins of attraction for different configurations of the Learjet 23D model (δsm =
−10%, γ0 = 0°, q0 = 0 rad/s): a) flaps up for various altitude h for V = 100 m/s b) flaps down for various altitude
h for V = 80 m/s, c) flaps up for various velocities V for h = 6000 m, d) flaps down with pitch damper for various
altitude h for V = 80 m/s.
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Table 1 Short-period mode approximation for the Learjet 23D at low and high AoA (flaps down δf = 40°,
δsm = 0%).

Parameters Units Low AoA High AoA
αe deg 4.4 34.2
δe deg -3 -3
δT - 0.48 1
Ve m/s 78.3 64.9
h km 4 4
λ - −0.789 ± 1.39i −0.0762 ± 1.69i
ωspm rad/s 1.60 1.69
ζspm - 0.49 0.045

ω2
spm = −

V2
e ρcS
2Iy

[(
ρSVe

2m
CLα +

T
mVe

cosαe
)

c
Ve

Cmq + Cmα

]
(13)

2ζspmωspm =
ρSVe

2m
CLα −

c2ρSVe

2Iy
Cmq +

T
mVe

cosαe (14)

but the values of derivatives CLα , Cmq are very different because they are measured near αe which is very large in this
case.

Table 1 shows an example of short-period mode computation for the Learjet 23 D with the Eqs. 11-14. This
numerical application shows clearly that the damping of the short-period mode is far smaller at high AoA than at low
AoA (approximately 10 times smaller). This phenomena can be explained by the fact that in stall, the lift curve slope
CLα is lower (see for example the slope of CL between 15° and 40° vs. the slope at origin on Fig. 1a which is largely
reduced or even negative). Moreover, the absolute value of the pitching moment coefficient derivative (

��Cmq

��) is also
clearly reduced (see Cmq definition in the part III.B). On the other hand, the pulsation is quite the same at low or high
AoA and cannot be used as a discriminant condition to find the type of equilibrium. Note also that the period of the
short-period mode at high AoA is approximately equal to 4 s allowing to confirm that the convergence to the deep stall
equilibrium is relatively slow and the order of magnitude is around one minute (see Fig. 2a).

V. Real-time deep stall detection
Previous main remarks are now used to propose a fast detection algorithm of deep stall without knowing the aircraft

aerodynamics at medium and high AoA. The fast detection permits, among others, to have a sufficient level of energy to
go out from deep stall and to react as early as possible, as far as possible from the deep stall equilibrium. The main
idea of this algorithm is to predict the evolution of the aircraft trajectory in the (α, Ûα) phase portrait using the relative
positions of the extrema.

Some assumptions should be made before describing the method. Firstly, it is assumed that α and Ûα (or q) are
measured in real-time with sufficient confidence up to very high AoA. Even if the data are noisy, it is also assumed that
a standard filter allows to obtain sufficiently smooth estimation of these data. Secondly, the aircraft is assumed free and
in a quasi longitudinal flight (quasi-symmetric aircraft motions in the vertical plane). Free means that the pilot makes
no supplementary action to the pitch command during detection.

To avoid a false detection in normal flight condition, the algorithm is started only when α exceeds αstall but a
different choice can be made. Starting from the stall angle, Fig. 6 shows two typical trajectories. The first one converges
to a low AoA and the second one to a high AoA. As it was said before, in the two cases, the aircraft is repelled from the
saddle point equilibrium. On the figures, α is incrementally denoted αi (i ∈ N∗) when Ûα = 0 and αdj ( j ∈ N∗) when
d Ûα/dα = 0. From a mathematical point of view, the main difference between the portraits of Figs. 6a and 6b is the
number of αdj between two successive αi (α1 and α2 in the figures). Consequently, the case of the convergence to a low
AoA (Fig 6a) can be easily eliminated with the condition max( j) = 1. In the second case (Fig 6b) and if αd1 ∈]α2, α1[,
aircraft begins to describe a spiral trajectory typical of deep stall. Another step is then necessary to confirm this spiral
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trajectory and the convergence into a high AoA. The analysis of what happens between α2 and α3 can confirm this fact.
If there is again only one αdj (αd2 in Fig. 6b) i.e. max( j) = 2 and αd2 ∈]α2, α3[ and also α3 ∈]α2, α1[, the detection
of a high AoA equilibrium is more and more probable. Then, an approximation of the AoA at equilibrium and the
damping value of the short-period mode can be computed with the mean and the half-cycle turning points approximation
formulae:

αe =
αd1 + αd2

2
(15)

ζspm =
1

2π
ln

(
α1 − α2

α3 − α2

)
(16)

Finally, the detection is considered true if αe � αstall and ζspm � ζLAoA
spm . The identification algorithm is

summarized in Fig. 7. Note that the algorithm distinguishes different extrema order if α1 > α2 or α1 < α2. Another
remark is that the algorithm is written with the (α, Ûα) state values but it could also have been done with the (α, q) system.
The last comment is that other kinds of trajectories in the (α, Ûα) portrait can be found in the literature [35, 39]. However,
it has been checked that any other trajectory than spiral is rejected by the present simple algorithm.
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Figure 6 Definition of αi and αdj for typical paths in the phase portrait at high AoA of the Learjet 23D
model: a) convergence towards an equilibrium at low AoA, b) convergence towards an equilibrium at high AoA.
(reduced model, flaps down δf = 40°, δe = 0°, δT = 1 and δsm = −10% with initial conditions V0 = 72 m/s,
γ0 = 0°, α0 = 44°, 46°, q0 = 0 rad/s and h0 = 10 000 m).

VI. Application of the real-time detection algorithm and recovery procedure
In this section, the prediction algorithm is applied on the aircraft model and recovery is performed with a full

pitch-down command applied manually or automatically.
In the past, Thomas and Collingbourne [35] carried out a large numerical study to identify the entry and exit

maneuvers for a deep stall prone aircraft and noticed a strong influence of initial conditions. Figure 8 shows two kinds
of pilot’s reaction for an airplane in the deep stall basin of attraction. In Fig. 8a, the pilot is supposed to understand the
airplane deep stall after 40 s and applies a full pitch down command of δe = 15°. This is corresponding to an estimated
reaction time necessary to understand this unusual flight situation. He does not succeed in going out from the deep
stall equilibrium because, after 40s, the position in the phase portrait is completely inside the rose basin of attraction
corresponding to δe = 15°. The aircraft reaches a new deep stall equilibrium with a little lower AoA. In Fig. 8b, the
pilot is warned of a fore-coming deep stall by the algorithm (starting from the initial point of the simulation) after
approximately 5 s and reacts 5 s later by applying a large pitch-down command of δe = 15° during 5 more seconds
and then release the command. This pilot succeeds in going out from deep stall and reaches a low AoA. This example
shows the usefulness of being aware of the dangerous situation as early as possible but it is not sufficient. The next two
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Figure 7 Real-time algorithm for deep stall prediction.

examples in Fig. 9 show that the time instant when the pitch-down command is applied is as well as important. In the
first case (Fig. 9a), the pilot applies the command just after that the AoA reaches the first turning point α4, that is to say
when both α and Ûα decrease. In this case, the pilot succeeds in going out from deep stall. In the second case (Fig. 9b),
the pilot applies the command just after that the AoA reaches the second turning point α5, that is when both α and Ûα
increase. The pilot does not succeed in coming back to a low AoA even if the command is maintained during 10 s.

The last example shows that, in order to avoid the basin of attraction (δe = 15°) where deep stall recovery is
impossible, it is better to apply a pitch-down command when both α and Ûα decrease. In order to justify this statement, a
simplified model for the short-period mode is written in the following form (ignoring the term with CLα ):

Ûα = q (17)

Ûq =
ρV2Sc

2Iy

(
Cmst at ic (α, δe) +

c
2V

Cmq (α) q
)

(18)

with Cmq (α) < 0 and dCmst at ic /dδe < 0. When applying a pitch-down command (δe > 0), the variation of the pitching
moment is negative ∆Cmst at ic (α, δe) < 0. Thus the pitch rate derivative Ûq is more negative and the pitch rate decreases
even more. In order to be in a situation where the AoA reduces much more and such that it flies easier towards lower
AoA, it is necessary that both derivatives of AoA and of pitch rate are negative, which means that both variables α and q
decrease. This case is shown in Fig. 9a.

This part demonstrates the interest of the detection algorithm but also that the choice of the time instant when the
pitch-down command is applied is fundamental to recover the aircraft. Because it is not possible to expect the pilot to
apply the command at the right time instant, it can be concluded that the success of the recovery necessitates to automate
this last step. It consists simply in applying the larger pitch-down command when α3 or α4 is reached, depending on the
order of αi and until αstall threshold is crossed. The basic recovery algorithm is summarized in Fig. 10.
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Figure 8 Comparison of pilot’s correcting action near deep stall equilibrium: a) without algorithm detection
leading to a failed recovery, b) with algorithm detection leading to a successful recovery (full model, flaps down
δf = 40°, δe = 0°, δT = 0.4 and δsm = 0% with initial conditions V0 = 100 m/s, γ0 = 0°, α0 = 37.5°, q0 = 0 rad/s
and h0 = 6000 m).
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Figure 9 Pitch-down maneuvers for recovery after deep stall detection: a) maneuver after α4 leading to a
successful recovery, b) maneuver after α5 leading to a failed recovery (full model, flaps down δf = 40°, δe = 0°,
δT = 0.4 and δsm = 0% with initial conditions V0 = 100 m/s, γ0 = 0°, α0 = 37.5°, q0 = 0 rad/s and h0 = 6000 m).

Figure 10 Real-time algorithm for recovery from deep stall.
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In order to validate the detection and recovery algorithm for different initial conditions, simulations have been done
for three aircraft configurations (aft CG and flap up, neutral CG and flap down, aft CG and flap down) with the reduced
model or the full model in Fig. 11. The procedure is the same as in Fig. 3 but the detection and recovery algorithms are
now applied. Both models (reduced and full) provide similar behaviors. Simulations show that there exist three kind of
situation for the detection algorithms:

• Figs. 11a-11b. With flap up and a static margin of -10%, Cm curve has only one equilibrium at low AoA for full
pitch down (Fig. 1d, black dotted line, δe = 15◦). In this case, even if the aircraft goes into deep stall, the tail
command is sufficiently effective to recover at any time. This is shown with the basin of attraction which disappear
for higher command than δe = 5◦ (a small basin of attraction is plotted for δe = 5◦). Then, the algorithm is always
efficient and the time instant for applying recovery procedure has no influence on the success of the procedure.

• Figs. 11c-11d. With flap down and a static margin of 0%, Cm curve has a deep stall equilibrium for full pitch
down (Fig. 1c, red dotted line, δe = 15◦). In this case, when the aircraft goes into deep stall, the tail command
can be ineffective to recover. The basin of attraction exists for δe = 15◦ but is much smaller than the case where
δe = 0◦. The algorithm is always efficient. The time instant for applying recovery procedure is important because
the trajectory of the aircraft in the phase portrait can cross the basin of attraction for δe = 15◦. In this case, it
seems to be adapted to apply the full pitch-down command far from this new basin.

• Figs. 11e-11f. With flap down and a static margin of -10%, Cm curve has a deep stall equilibrium for full
pitch-down (Fig. 1d, red dotted line, δe = 15◦) and a large part of this curve is above the abscissa axis. In this
case, when the aircraft goes into deep stall, the tail command can be highly ineffective to recover. The basin of
attraction for δe = 15◦ is very large. After approximately one cycle the aircraft is in this new basin of attraction
and a full pitch-down command is ineffective. The algorithm is efficient for only two cases (orange and gray
curves). It can be noticed that the time instant for applying recovery procedure is necessarily at the right of the
basin of attraction for δe = 15◦.

In the last two cases, it is always possible to recover from deep stall by retracting the flaps to return to the first situation
(Figs. 11a-11b). But retracting flaps is not always possible in particular during hazardous situations.
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Figure 11 Automatic detection and recovery of the Learjet 23D model for various configurations and static
margins (γ0 = 0°, q0 = 0 rad.s−1 , h0 = 6000 m): a-b) flaps up, δsm = −10%, δT = 0.4, V0 = 83 m.s−1,
α0 = 8.1°, δeinit = {−6,−6.5, . . . − 10.5}°, c-d) flaps down, δsm = 0%, δT = 0.48, V0 = 78.3 m.s−1, α0 = 4.8°,
δeinit = {−12,−12.3, . . . − 14.7}°, e-f) flaps down, δsm = −10%, δT = 0.42, V0 = 71 m.s−1, α0 = 7.45°, δeinit =

{−3,−5, . . . − 15}°.
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VII. Conclusion
This study about the loss-of-control of an airplane in deep stall shows that a recovery could be possible in real-time

using a simple algorithm for detection and recovery. To reach this goal, the first part is concerned with the analysis of
deep stall in a flight dynamics point of view in order to obtain its main properties. This was done with a Learjet 23D
aircraft model and non linear dynamic analysis. This analysis pointed out that the manner to reach a low or a high
angle-of-attack (AoA) equilibrium is largely different. In the two cases, it is observed a short-period mode with quasi
the same pulsation but with a ten times smaller damping for the high AoA equilibrium. It results a characteristically
spiral trajectory in the phase portrait. Using that fact, an algorithm is proposed to reject the trajectories which do not
have this form. Two criteria are then used to confirm the convergence toward a deep stall equilibrium. The first one is
a comparison between αstall and the estimated value of the AoA for this equilibrium, which should be greater. The
second one is a comparison between the usual short-period mode damping at low AoA and the estimated value at this
moment which should be largely smaller. Using this algorithm, several cases of recovery are studied. Recovery is very
effective when the pitch command is applied at the correct time instant that is when both α and Ûα decrease. It is then
proposed to fully automate the recovery procedure by applying the larger pitch-down command at the right time instant
with a second very basic algorithm.
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