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Equations of motion

" denotes an instantaneous variable

v Mass conservation (continuity)
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v" Momentum conservation
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v' Energy conservation
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Temperature variations directly affect the terms in red.



Boussinesq approximation

v' Assuming that the temperature differences are not too large, the Boussinesq
approximation can be applied:

> Density variations can be neglected (p* = po)

> Except in the buoyancy term p*g;.

v' Additional simplification: in this case, it is standard to also assume that u, k
and C, are independent of the temperature

ou;
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v" Remark: for low Mach number flows, the heat source due to viscous dissipation
2us7;57; is neglected.



Linear Boussinesq approximation

v Density variations in the buoyancy term are linear in the temperature

* * * * * . 18*
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po 0T
ou;
8xi =0
ou;  Ouiu 1 9p”* ’uy .
RSt By (T* — T,
Bt 89@ Po 83:1 +l/8$ja$]’ ﬁg ( 0)
ors  ouwT 9°T"

ot ox; -« Ox;0x;

v" Remark: the hydrostatic pressure is contained in p* :
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The different flow regimes
Forced, mixed, natural convection

Forced convection

()

Natural

. . convection
Mixed convection



Richardson number

v Relative weight of the buoyant term compared to the convective term:
Richardson number

ou;  Oujuj 1 ap* %u;
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v' The time scale of convective phenomenas: ol ~ Juhitl; = Teonv = el
ot 8$] Uref
v" Time scale of buoyancy phenomena: G ~ Bg; (T* —To) = Touo = Uret
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v When the Richardson number is small compared to unity (Ri << 1), it is
considered that the flow is in the forced convection regime.

v In this case, heat transfer has no influence on dynamics, the model for the
Reynolds stress does not require modifications.
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v' Influence of buoyancy on turbulence: physics — modelling
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Reynolds decomposition

v" Reynolds decomposition: u; = U; +u;; p* =P +p; T" =T + 6
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Influence of buoyancy on turbulence : dynamics
Buoyancy production

Transport equation for the Reynolds stress tensor:

D 7 Uyj v
U — P+ Gij + bij — €55 + DjtP
Dt 7
v" Buoyancy production: Gij = —Bgiu;0 — Bgui0
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Energy budget

Transport equation for &

Dk :
= = P+ G —e+ D"
D ~ IRt Oke

v" Buoyancy production: G = %Gii = —,Bgim

v' Energy cascade:

Mean kinetic energy Potential energy

Gy,

Turbulent kinetic energy

Internal energy (heat)
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Example: differentially heated vertical channel

= natural convection
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U  Ouw

Momentum: 0= Vﬁ v + Bg(T — To)
Temperature: = LaZT — @
P ’ T Pr 92 0z

v Boundary-layer-like: ww and w6 only active components.
> wh determines the temperature profile (wf = 0 = laminar profile)

> uw and T determine the velocity profile




v Production:

Component Strain production Buoyancy production
u? fzma—U +2B8guf
0z
v2 0 0
w? 0 0
T Al +Bgwh
0z
—Wa—U +Bguf
0z

v Buoyancy modifies the turbulent energy (potential energy = turbulent energy)

v' The vertical direction is a particular direction => buoyancy generates anisotropy

v" Dynamics and thermal turbulence are strongly coupled
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Redistribution

v Chou’s analysis is modified

¢i g = d),} j a4 ¢3J a4 d’?]
~— ~—~ ~—

Slow term  Rapid term  Buoyant term

> Rapid term

. oU; 2 2

Production: P;; = —uiuka— IP model: ¢;; = —Cs (Pi» — gpéi]’)
Tk

> Buoyant term: similar

Production: Gi; = —Bg:u;8 — Bg;ui®  IP model: ¢, = —Cs (GU - §G6i]~>




Dissipation

v" Buoyancy appears in the exact equations for €;; and €.

al‘k (9.Z‘k

v For «e: G = —28giv

v' No consensus in the literature: see next part
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Influence of buoyancy on turbulence : heat fluxes

Transport equation for the turbulent heat flux:

auie + U 8u29
8t k ﬁxk

= P+ Py + Gig + ¢ig — €40 + DI3PP

v' Three different production mechanisms:

—0U;

> By strain: Py = —uj,0—

v & g Oxy,
orT
> By temperature gradient: PZ%; = —uiuka—
Tk

> By buoyancy: G;g = —BgiG_Q
v" Production strongly couples velocity and temperature fields

v New variable to solve: the temperature variance 62
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Example: Unstably stratified channel flow
T, — &L
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= Unstable stratification promotes vertical fluctuations.
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Example: Stably stratified channel flow

To + %
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= Stable stratification damps vertical fluctuations.

v' Can lead to 2C turbulence in the atmosphere or the ocean.
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v' Can lead to relaminarization

10
Laminar Poiseuille Stable
10°
Laminar Poiseuille Unstable
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FIG. 3. (Color online) Phase diagram showing the regime in stably stratified
channel flow as a function of friction Reynolds number and Richardson
number Re_ and Ri. Squares: the walls remain turbulent. Triangles: laminar
and turbulent patches coexist in the near-wall region. The solid lines are the
neutral curve obtained from linear stability analysis (Ref. 34).

DNS of stably stratified channel flows
From Garcia-Villalba & del Alamo (2011)
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Example: Rayleigh-Bénard flow (natural convection)

T, — &L
1
lg
x
| T
To + %
Strain Buo.
S rod rod
prod. prod. Com Strain T gradient Buo.
. otp- prod. prod. prod.
u? 0 0
uf 0 0 0
v2 0 0
0 0 0 0
w2 0 28gwh
— — 0T —
wb 0 —w?2— Bg6?
_ 0z
k 0 Bgwb

v Turbulence is produced by the buoyancy term Bg62 only.

v If Bgh? is neglected (SGDH or GGDH) = laminar (linear) temperature profile.
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Influence of buoyancy on the other terms

auie + Uk 8u,9

B i PY 4 P+ Gig + ¢io — €i0 + DyhP

V' Scrambling term ¢
> Chou’s analysis is modified by buoyancy:
bio = bio + bio + i
> As usual: isotropization of production

$39 = —Co3Gig = Co39:02

v' Many different models in the literature

> Hanjali¢, K. (2002) One-point closure models for buoyancy-driven turbulent
flows. Annu. Rev. Fluid Mech. 34, 321-347

> Hanjali¢, K. & Launder, B. (2011) Modelling Turbulence in Engineering and the
Environment. Second-Moment Routes to Closure. Cambridge University Press

23



Influence of buoyancy on turbulence
Consequences for modelling

v' Buoyancy strongly couples fluctuating velocity and temperature fields.

The vertical direction is obviously a privileged direction.

v" Potential energy = turbulent energy transfer depends on stratification

(stable/unstable/neutral).

Buoyancy production generates anisotropic turbulence (Reynolds stress and
turbulent heat flux): damps or promotes vertical fluctuations.

Buoyancy also affects redistribution, dissipation, scrambling.

Second moment closure is the natural level to account for these phenomena:
Reynolds stress model (RSM) + Differential flux model (DSM).

Are simplified models relevant:
> RSM+Algebraic Flux Model (AFM)?
> RSM+gradient models (SGDH, GGDH)?
> Eddy-viscosity models (EVM)?
— ERCOFTAC SIG-15 Workshop!
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Influence of buoyancy on dissipation

) de € g2
v e-equation: Fri CElEP’“ + Ge — 052? + De

v" No consensus in the literature: does buoyancy have on influence on the energy

cascade = on the dissipation. How?

> No influence: G =0

€
> Same influence as Pj: Ge = Ce3 -Gy,
with Ce3 = Ce1 or Ceg < Ceq

> Unstable: influence; Stable: no influence: G: = 053% max(Gy;0)

> Inﬂuaence function of the flux Richardson number:
CEIE(Pk + Gi)(1 + Ce3Riy)
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Ge = Cur(l— css)ick

Example: buoyant plume of Chung & Devaud (2008)
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Time scales

d P G 2
£ eli + 083719 — Cszi + D, Same time scale?
dt T T’/ k
. G 2 . . ———————
v Ge is exactly GV)\T iy = Taylor micro-scale associated to u;(x)0(x + r)
uf
k 02
= It can be shown that 7-/:0717'+C'72E T=—T9g = —
Pr € €2

v Other mixed time scales: 7/ = /72 + 7'02

150.0 e T

100.0

N

or 7' =
v Pr 50.0
(Dehoux et al., 2017)
‘== 1 =TR/Pr
e
O.OOHHHHwo\.zwHHHHouuuwHb\.éwuuub\-gwuuuul
y/3

A priori tests
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From Dehoux et al. (2017)
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Transition/relaminarization

42

=

2
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Turbulent kinetic energy

DNS of a differentially heated
cavity at Ra = 1010
From Trias et al. (2007)

v" Buoyancy effects can lead to co-existing
laminar and turbulent regions

v" RANS model are not designed to represent
such phenomena

v' The location of transition/relaminarization
depends on (uncontrolled) modelling
subtleties
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Vertical heated pipe of You et al. (2003)

Nu/Nu,

From Keshmiri et al. (2012)
v' Aiding buoyancy induces

il relaminarization (ascending flow case)

Bo

Nu/Nuo

0.8 1
—~~Launder & Sharma fodel (CONVERT)
—+—Coton & Ismael Model (CONVERT) ||
0.6 R X
LCL ke¢ Model (STAR-CD) 1
K<w-SST Model (STAR-CD)
— ~v24 Model (STARCD)
0.4 —=-Large Eddy Simulation (STAR-CD)
——k«w-SST Model (Code_Saturne)
Data of Steiner (1971)
4 Data of Carr et al (1973)
® NS - You et al 2003)

v' Heat transfer in severely impaired

v' Standard RANS models
v Relaminarization

extremely sensitive to
the model
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> Algebraic flux models
> Eddy-viscosity models

> Variable Pry?
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Algebraic flux models

Ou;0 Ou; 6 v
S UL = PY + Ph + Gio + i — 210 + DtP
8t Bxk
d  uf w0
v" Weak equilibrium assumption: ——F==0 and Diff ———= =10
SRV/AVEE ViV
= u;f uif
Pji + Py + Goi + ¢p: — €0i — 2% (Pe+Gr—¢) — o (P —e55) =0
v' Equilibrium assumption: P, + G = ¢ and Pg—2 =€z
— k oT —0U; —
i0 = —Cp— iUj i0 02
wil = —Co_ | (U o= + €0t + g

v' The main physical mechanisms are present:

> The 3 production terms

> The 3 redistribution terms

> Near-wall effects can be included: EB-DFM — EB-AFM (Dehoux et al., 2012)
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Eddy-viscosity models

2
Boussinesq relation: wiu; = —2v:Si + §k5ij
UVt aT
DH: i0=——
SG v Pr; Ox;
UVt 8T

v Production term G = —fBg;u:0 = fgi—— Pr. o
Tt OT;

v' Unstratified (or weakly stratified) flows:

oT
> g; = 0 (orthogonal) = Gy =0
8:177;
= (G as well

v' Idea: SGDH in the temperature equation, GGDH
in the production terms (Ince & Launder, 1987)

— k oT
Gk = —5giu,'0 = ,BgiC’uiujga—xi
2 _k*oT or
= Bgz C—— = BgﬂCVt—Szk

e Ox; Oxy
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Buoyancy-extended Eddy-Viscosity Models

Duiuj
Dt

=Pij + Gij + ¢ij — i + D7

v" Weak equilibrium + Equilibrium (Px + G = €):

2 k1-C 2 k1-C 2

Boussinesq part Buoyancy extension

= Uiy = %kéw — QVtSij —l—C;T <Glj — ;Gkéw) (DaVidSOIl7 1990)

Uilj Bouss UiljBuo

oT oT

v Associated with GGDH: w0 = —Cyr Uil Bouss 3~ — CoTu;
J

v Automatically extends all the terms involving w;u; and wi0: Py, Gy, Ge

v" Does not modify the model for forced convection
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U+

v' Balance of forces:

11

10l o DNS
F o~ ——— k-@-SST
oy 200 - Buoyancy-extended k--SST
8 ) 2 Qg ~ ——— BL/k B
7 Qo o~ ~ Buoyancy-extended BL-v2/k
6 = memm S~
SIE(S o S3~
o ~
4 00000\0\\ S
oo~
3 ey
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2 o
1
-
P I A A B I
50 100 150 200
yt

From Jameel et al. (2019)

Yy
/ /Bg(TfTref)dY:puT2fyaiU + uv
0 8y

v Underestimation of wo = overestimation of the mean velocity

v' Contribution of the extension:

+ CymBgul

U
= —Vr—

dy

g
&
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Variable turbulent Prandtl number?

v' Diffusion is due to mixing by large scales

v' The same scales for mechanical and
thermal turbulence

v .
= Pr;= 2! must be close to unity
Kt

Figure 8.11. Spectra of temperature veriance in liquids with large and small Prandti
numbers

From Tennekes & Lumley
(1972)

v Modifying Pr; for buoyant flows is a common practice (atmosphere/ocean)
v’ Why?

_ T
> Should have a buoyancy extension: v = _n 9t + v0Buo
Pry 0y
— -1
vy OT vy 0T — 1 1 v0Buo
> T te: — I P = [ =
© compensate Pr} oy Pry 0y +¥Buo "t (Prt + vy 0T /Oy
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0.70

Pr; extracted from a DNS of stably-stratified channel flow
From Garcfa-Villalba & del Alamo (2011)

v' Modifying Pr; is a patch
v Not a constant value but a function of the Richardson number

v' Variations must be modest
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Unsteady approaches
Just a word

v URANS, LES or hybrid RANS/LES: i T Ty
resolved unresolved

v Buoyancy is directly accounted for in the resolved part of turbulence u;

= the contribution of buoyancy to modelled scales is smaller

LES

PITM

URANS

i
Rayleigh-Bénard convection at Ra = x10°
From Kenjere$ & Hanjali¢ (2006)
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The MONACO_2025 project
http: //monaco2025.gforge.inria.fr

WANCE R,
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& (*7
- ,
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oy my

v Tackle the industrial simulation of transient, turbulent flows affected by

Ro,

G

Soud
S

buoyancy effects
v' Bring together

> Two academic partners: LMAP-University of Pau and Institute PPrime-Poitiers
e Turbulence modelling

e Experimental studies
> And R&D departments of two industrial partners:
e Automobile: PSA group

e Energy production: EDF
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Objectives
v Scientific objective

> Breakthrough in the unresolved issue of the modelling of turbulence/buoyancy
interactions in transient situations

> Within the continuous hybrid RANS/LES paradigm

> Transient cavity flow experiments: an unrivalled source of knowledge for
turbulence modelling

v' Industrial objective

> To make available computational methodologies to address dimensioning,
reliability and security issues in buoyancy-affected transient flows

> Problems are not tackled using CFD at present in the industry
> At the end:
e Panel of methodologies (simple URANS — sophisticated hybrid model)

e Evaluated in transient situations, against the dedicated cavity flow experiments
and a real car underhood configuration

> Decision-making tool for the industrial partners

> In line with the Full Digital 2025 ambition
43



New experimental facility (Poitiers)

r- - T T TN > Ra~ 100
> Steady state + transient + cyclic
T, |L > TR-PIV 4 microthermocouples

> Reynolds stresses, temperature
variance, wall heat flux

I
I
| Ty
[
|
1

— s e mm o

 —_———
$=0

v Experimental database — ERCOFTAC Nexus and/or QNET-CFD databases

v" ERCOFTAC SIG15 Workshop in Pau end of 2021
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Thank you for your attention

OF TURBULENT NATURAL CONYV
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