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Outdoor field measurements of bioaerosols are performed within a wide range of basic and applied 

scientific disciplines, each with its own goals, assumptions, and terminology. This paper contains brief 

reviews of outdoor field bioaerosol research from these diverse interests, with emphasis on perspectives 

from the atmospheric sciences. The focus is on a high level discussion of pressing scientific questions, 

grand challenges, and needs for cross-disciplinary collaboration. The research topics, in which 

bioaerosol field measurement are important, include (i) atmospheric physics, clouds, climate, and 

hydrological cycle; (ii) atmospheric chemistry; (iii) airborne allergen-containing particles; (iv) airborne 

human pathogens and national security; (v) airborne livestock and crop pathogens; and (vi) 

biogeography and biodiversity. We concisely review bioaerosol impacts and discuss properties that 

distinguish bioaerosols from abiological aerosols. We give extra focus to regions of specific interest, 

i.e. forests, polar regions, marine and coastal environments, deserts, urban and rural areas, and 
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summarize key considerations related to bioaerosol measurements, such as of fluxes, long-range 

transport, and from both stationary and vessel-driven platforms. Keeping in mind a series of key 

scientific questions posed within the diverse communities, we suggest that pressing scientific questions 

include: (i) emission sources and flux estimates; (ii) spatial distribution; (iii) changes in distribution; 

(iv) atmospheric aging; (v) metabolic activity; (vi) urbanization of allergies; (vii) transport of human 

pathogens; and (viii) climate-relevant properties.  

 

 

 

1. Introduction  

The term bioaerosol encompasses a broad range of primary atmospheric organic particles 

associated with and emitted from both living and dead organisms, as defined rigorously by Després et 

al. (2012). Atmospheric bioaerosols can originate from sources in every terrestrial and marine 

environment, exist in air above virtually all locations on the globe, and exhibit a vast diversity of types, 

compositions, and sizes. From a functional perspective, there are three types of bioaerosols: (i) The first 

fraction is comprised of living organisms, such as bacteria, archaea, fungi, lichens, and microalgae, 

which may catalyse biochemical reactions in the atmosphere, change their own surface properties, and 

colonize new environments or hosts; (ii) The second fraction of bioaerosols are components such as 

propagules, i.e. fungal spores, bacterial spores, pollen, and viruses that are considered metabolically 

inactive in the atmosphere but serve as reproductive or dispersal units between plants, pathogen hosts 

and environments; (iii) The last fraction of bioaerosols are microbial, plant, or animal fragments and 

exudates that can be aerosolized on their own or attached to non-biological particles, such as mineral or 

salt particles. In addition to the fraction of aerosols that can influence a host through infection, all 
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bioaerosols, regardless of their viability, may carry molecules that are associated with a variety of 

environmental processes, are toxic, or provoke allergic reactions. Bioaerosols are particles that are 

identified by their characteristic chemical composition (ratio of organic elements) or physical 

properties (shape and spectral properties), their growth in/on nutrient media, or through the presence of 

molecular tracers such as information molecules (e.g. DNA, RNA), energy-carrying compounds (e.g. 

ATP, NADH), structural compounds (e.g. ergosterol, cellulose) or functional compounds (e.g. ice-

nucleation active proteins). 

 

Bioaerosols were among the first types of atmospheric aerosols to be identified (Carnelley et al. 

1887; De Bary 1887; Pasteur 1862; Ehrenberg 1847). Contemporary outdoor field measurements of 

bioaerosols are performed within a tremendously widespread set of basic and applied scientific 

disciplines that foster research toward separate scientific goals and with distinct sets of community-

associated terminology and assumptions. For example, areas of scientific research with established 

application to outdoor bioaerosols very broadly include: (i) atmospheric physics, clouds, climate, and 

hydrological cycle, (ii) atmospheric chemistry, (iii) airborne allergen-containing particles, (iv) airborne 

human pathogens and national security, (v) airborne livestock and crop pathogens, and (vi) 

biogeography and biodiversity. The role of outdoor bioaerosol field measurements for each of these 

areas is discussed in Section 2. 

 

The intention of this review is to ignite global collaborative effort across disciplines and 

communities in order to better understand the impacts of bioaerosols on aerosol chemistry and physics, 

health, climate, agriculture, and ecology. Brief, updated reviews are included, restricted to outdoor 

bioaerosol field measurements. Instead, we focus on a high level discussion of pressing scientific 
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questions, grand challenges, sampling recommendations, and needs for cross-disciplinary 

collaboration. Comprehensive reviews can be found elsewhere (Yao 2018; Buters et al. 2018; Delort 

and Amato 2017; Núñez et al. 2016b, 2016a; Fröhlich-Nowoisky et al. 2016; Sofiev and Bergmann 

2013; Després et al. 2012; Xu et al. 2011; Morris et al. 2011; Womack et al. 2010; Georgakopoulos et 

al. 2009; Jones and Harrison 2004; Madelin 1994). Contributions were compiled from a group of 

authors with diverse sets of backgrounds and expertise, with more emphasis added from the perspective 

of the atmospheric sciences than others, e.g. health sciences. This paper fits within a journal special 

issue focused on standardizing methodology across all areas of bioaerosol measurement.  

 

2. Research motivation 

Different communities of bioaerosol researchers have widely different motivating questions and 

challenges. Here, we summarize comments around six broad categories of bioaerosol impacts with 

respect to measurements in ambient air.  

 

2.1. Atmospheric physics, clouds, climate, and hydrological cycle  

Atmospheric bioaerosols can exert direct and indirect effects on climate. Direct effects are primarily 

based on the ability of bioaerosols to absorb and scatter light. The ability of aerosols to take up water at 

subsaturated conditions, i.e. hygroscopicity, can influence their direct climate-effects (Boucher et al. 

2013). The hygroscopic properties of bioaerosols have been only rarely assessed (Tang et al. 2019; Lin 

et al. 2015; Griffiths et al. 2012; Ghosal et al. 2010; Lee et al. 2002; Ko et al. 2000; Rubel 1997; 

Reponen et al. 1996), mainly due to technical challenges related to their relatively large sizes and their 

immense diversity. Indirect climate effects of bioaerosols are based on their interaction with clouds by 

acting as either cloud condensation nuclei (CCN), which nucleate liquid cloud droplets, or ice 
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nucleating particles (INPs), which promote cloud droplet freezing. Ice particles modify cloud 

reflectivity and lifetime and can also effect the initiation and efficiency of precipitation (see Kanji et al. 

2017). Ice-nucleation active (INA) bioaerosols have been hypothesized to exert a much more dramatic 

and potentially more transformative role upon clouds, precipitation, and regional climate than bio-

CCN, although the latter may play a key role as giant CCN (Fröhlich-Nowoisky et al. 2016; Möhler et 

al. 2007). Research priorities raised almost a decade ago (DeMott and Prenni 2010) remain pertinent 

and complement those recently outlined (Coluzza et al. 2017). Questions include: what biomolecules 

can act as INPs and what organisms produce them; how do emissions of INPs vary over land, 

freshwater and sea, differ by ecotype (e.g., natural vs. anthropogenic), and cycle by season; over what 

temperature range (degree of supercooling) are bio-INPs important; and how will climate- and land 

use-change affect emissions? Before a worldwide map of bioaerosol INPs can be constructed, we need 

to quantify their sources and understand how they are dispersed, such as e.g. via fire and weather, 

precipitation, humidity, and strong winds. While we are far from fulfilling these goals, rapid progress 

has been made (See reviews by Després et al. 2012; Morris et al. 2014a; Fröhlich-Nowoisky et al. 

2016; Kanji et al. 2017; Hu et al. 2018; Knopf et al. 2018). To mention a few examples, diverse and 

often abundant organisms producing bio-INPs have been revealed in addition to the well-known group 

of Gram negative INA bacteria (Morris et al. 2004), including Gram positive bacteria (Failor et al. 

2017; Maki et al., 2018), fungi (Fröhlich-Nowoisky et al. 2015; O’Sullivan et al. 2015; Pummer et al. 

2015; Huffman et al. 2013; Morris et al. 2013), microalgae (Tesson and Šantl-Temkiv 2018), and 

pollen (Dreischmeier et al. 2017; Augustin et al. 2013; Pummer et al. 2012; von Blohn et al. 2005). It is 

also becoming clear that biogenic INPs typically predominate over minerals, in terms of their numeric 

abundance, across a wider temperature range than previously assumed, often comprising the majority 

of INPs at higher temperatures and down to -23°C (Hartmann et al. 2019; Suski et al. 2018; McCluskey 

Acc
ep

te
d 

M
an

us
cr

ipt



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Šantl-Temkiv, T. (Auteur de correspondance), Sikoparija, B., Maki, T., Carotenuto, F., Amato,

P., Yao, M., Morris, C. E., Schnell, R., Jaenicke, R., Pöhlker, C., DeMott, P. J., Hill,
Huffman, J. A. (Auteur de correspondance) (2019). Bioaerosol field measurements: Challenges and

perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October
2019, 1-79. , DOI : 10.1080/02786826.2019.1676395

et al. 2018; Petters and Wright 2015; Mason et al. 2015) or even colder (Tobo et al. 2014). There is a 

vital need for numerical modelling studies to investigate the impact of different types of bioaerosols on 

cloud and precipitation properties as well as climate (e.g., Hummel et al. 2018; Hoose et al. 2010; 

Sahyoun et al. 2016), from regional to global scales, and by considering biogenic INPs beyond whole 

microbial cells. 

 

 

2.2. Atmospheric chemistry 

Chemical processes can be affected by the presence of bioaerosols, in particular metabolically-active 

living microorganisms such as bacteria. They were indeed identified as potentially involved in the 

transformation of organic compounds (Tina Šantl-Temkiv et al. 2013; Amato et al. 2007a; Ariya et al. 

2002; Herlihy et al. 1987) and in the scavenging and detoxification of oxidants like free radicals and 

their sources and drivers (Passananti et al. 2016; Vinatier et al. 2016; Vaïtilingom et al. 2013). 

Recently, direct observations detailed the microbial activity in the atmosphere (Amato et al. 2019; 

Šantl-Temkiv et al. 2018; Amato et al. 2017; Krumins et al. 2014). However, we still have little 

understanding of the variety of microorganisms that can maintain activity under atmospheric conditions 

and of their metabolic rates. Overall, the extent of biological impacts on atmospheric chemical 

processes still needs to be evaluated quantitatively. 

 

2.3. Airborne allergen-containing particles  

The quantitative spatial and temporal understanding of airborne fungal spores and pollen is urgently 

needed to assist diagnosis of allergies. Seasonal allergies are driven primarily by anemophilous (i.e., 

wind-driven) pollen (Sofiev et al. 2013) and monitoring networks across the globe conduct frequent 
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measurements of airborne pollen, with the results used as inputs for forecasts that inform public health 

(Buters et al. 2018; Papadopoulos et al. 2012). Only recently the focus of research also expanded to 

include airborne fungal spores, which are more abundant than pollen and have different occurrence 

patterns (Grinn-Gofroń et al. 2019; Damialis et al. 2015). Fungal spores can comprise from 5 – 80% of 

the coarse mode mass of atmospheric particulate matter (Fröhlich-Nowoisky et al. 2016; Pöschl et al. 

2010; Elbert et al. 2007). Long-term continuous monitoring efforts delivered calendars of the most 

abundant airborne allergen-containing particles and described their spatial and temporal variability, 

supporting the modelling efforts (Šikoparija et al. 2018a; Gehrig et al. 2018; D’Amato et al. 2016). 

However, to resolve peculiarities of human dose response, the capability to detect airborne allergens 

more specifically is needed. Recently, high-throughput DNA sequencing helped identify the diversity 

of airborne fungal taxa (Banchi et al. 2018) and grass species throughout the season (Kraaijeveld et al. 

2015), while enzyme-linked immunosorbent assays proved that reactive pollen allergens could be 

monitored in the outdoor air (Grewling et al. 2016; Buters et al. 2012, 2015; Galan et al. 2013). It has 

been shown that a real-time monitoring of pollen with a high temporal resolution can be achieved on 

what is currently a limited scale (Crouzy et al. 2016). Much effort is also being invested on improving 

autonomous detection of potential allergen-containing particles in real-time (Huffman et al. 2019; Wu 

et al. 2018; Swanson and Huffman 2018; Crouzy et al. 2016; Oteros et al. 2015; Kiselev et al. 2013). 

However, there is still need for proving that new methodological approaches are robust enough for 

continuous long-term outdoor monitoring. In addition, the specificity of the immune response calls for 

a more personalized approach (Werchan et al. 2018; Yamamoto et al. 2015), which should resolve the 

uncertainty of the symptom thresholds.  
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2.4. Airborne human pathogens and national security  

The rapid detection of infectious microorganisms suspended in air is of critical importance to agencies 

tasked with preserving public health and security. As a result, many researchers are focused solely on 

detecting and mitigating possible infectious viral, bacterial or fungal threats. Metagenomic analyses 

and culture experiments indicate that atmospheric microbial communities can include potential 

pathogens hazardous to human health (Griffin 2007), and individual pathogens can be spread actively 

through acts of bioterror. The virulence-related genes, such as enterotoxin synthesis, have been also 

detected from atmospheric samples suggesting pathogens dispersal in air (Kobayashi et al. 2016). 

However, there are only few animal assay and epidemiological surveys that directly demonstrate the 

health impacts of airborne microorganisms, for example the dispersion of Kawasaki disease in humans 

(Rodó et al. 2011) and measles occurrences in western China (Ma et al. 2017) associated with Asian-

dust events. Bioaerosol monitoring systems also play an important role in human-health care and 

military safety, to assess the probability of exposure, predict and reduce or prevent exposure.  

 

2.5. Airborne livestock and crop pathogens  

Monitoring of airborne plant and livestock pathogens facilitates early detection of disease because it 

can overcome the constraints and limits of detecting spatially discrete or heterogeneously distributed 

symptoms that could be missed by field scouts (Mahaffee and Stoll 2016). As a consequence, 

commercial development of air samplers has led to a range of samplers for passive (deposition) and 

active (impaction) collection of airborne pathogens (Mahaffee and Stoll 2016). Data on aerial spread of 

plant pathogens has been incorporated into simulation models that help farmers strategically apply 

pesticides or other preventative agricultural practices. However, decision-making based solely on 
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monitoring the presence of plant pathogens has limited direct application, and it mostly concerns 

decisions restricted to the scale of individual fields (Mahaffee and Stoll 2016). When the deposition of 

airborne pathogen propagules depends on washout by rainfall, collection of rain is a very useful means 

to monitor pathogen arrival. Rainfall collection has been deployed successfully to monitor arrival of 

airborne spores of soybean rust (Isard et al. 2011) and of downy mildew of cucurbits (Neufeld et al. 

2018) leading to significant financial gains for the farmer and environmental benefits because of 

informed decisions that allow reduced pesticide applications (Isard et al. 2011).  

 

2.6. Biogeography and biodiversity 

Our limited knowledge of bioaerosols impedes a more comprehensive understanding of principles 

involved in microbial aerial dispersal and the biogeography of microorganisms. Dispersal is one of the 

four fundamental processes that underlie biogeographic patterns (selection, drift, dispersal, and 

mutation) (Hanson et al. 2012). The likelihood of dispersal is in some cases independent of taxon 

properties and relies on neutral factors, such as taxon abundance in the source community (Nemergut et 

al. 2011). Atmospheric dispersal plays a crucial role as one of the dominant types of microbial 

dispersion. It is thus no surprise that the atmosphere was found to be a selective boundary for 

dispersing microbes, enabling some taxa to grow during their dispersal while others are killed by e.g. 

UV radiation or desiccation (T. Šantl-Temkiv et al. 2013). INA microbial strains can induce their own 

precipitation, thereby reducing their atmospheric residence time (Amato et al. 2015; S M Burrows et al. 

2009). It has not yet determined whether certain taxa dispersing through air might have properties that 

increase their chance of colonization success in already occupied habitats.  
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3. Current considerations related to bioaerosol field measurements 

3.1. Important physical, chemical, and biological properties of bioaerosols 

Bioaerosols possess immense chemical diversity: from simple or complex biological molecules (lipids, 

amino-acids, peptides, saccharides, carboxylic acids, etc.) varying in solubility, charge, polarity, and 

catalytic activity, to whole dead, dormant, or metabolically-active cells of various taxonomic 

affiliations and genetic potential. The formation of cloud droplets on biogenic CCN may be favoured 

by the presence of biosurfactants, i.e. amphiphilic molecules responsible for a decrease of water surface 

tension (Noziere 2016; Petters and Petters 2016; Renard et al. 2016). Other molecules can nucleate ice, 

such as INA proteins, active from -2 to -13ºC, or structural molecules that are usually active <-15ºC 

(Conen et al. 2017; Pouzet et al. 2017; Hiranuma et al. 2015; Joly et al. 2014; Burrows et al. 2013; 

Hoose and Möhler 2012; Christner et al. 2008; Möhler et al. 2007; Morris et al. 2004). Aside from 

specialized INA proteins, the rainfall effects potentially triggered by biological ice nucleators may 

involve multiplication through secondary ice formation (Lauber et al. 2018; Sullivan et al. 2018) and 

large-scale positive-feedbacks (Bigg et al. 2015; Huffman et al. 2013). Due to their extremely complex 

physiology and chemical composition, the chemical and physical properties of bioaerosols remain 

largely unknown. For example, the sequence and structure of INA proteins remain unknown for most 

species of INA microorganisms (Tesson and Šantl-Temkiv 2018; Fröhlich-Nowoisky et al. 2015).  

 

While bioaerosols include a large variety of particle classes that range in size from several nm to 

tens of μm, mass distributions of most bioaerosol types peak at relatively large sizes. Particle behaviour 

is thus heavily influenced by mass and size-related effects, i.e. sedimentation and inertia. Larger 

particles can generally be collected with higher efficiency than smaller particles (Morris et al. 2014b; 
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Reponen et al. 2001), though large particles (especially bacterial agglomerates, spores, and pollen) are 

frequently missed due to particle loss caused by poor sampling strategies. A well-designed and 

characterized inlet system can thus help minimize and quantify biases in the results (Mainelis 2019; 

Wiedensohler et al. 2014; Von Der Weiden et al. 2009).  

 

Bioaerosols are dynamic components of the atmosphere. Similar to abiological aerosols, repeated 

cycles of activation/evaporation or freeze/thaw, reaction with oxidants, UV radiation, and changes in 

temperature can change chemical or physical surface properties. Bioaerosols may age through drying, 

oxidation, nitrification or accumulation of condensable species on their surfaces (Liu et al. 2017; 

Estillore et al. 2016; Santarpia et al. 2012). Unlike non-living aerosols, however, living microorganisms 

can die through these processes, but have also been hypothesized to metabolise and grow in the 

atmosphere (Amato et al. 2019; Womack et al. 2010; Sattler et al. 2001). Additionally, atmospheric 

aging processes may alter the microphysical effects (Attard et al. 2012), allergenic potential, and 

toxicity of bioaerosols (Liu et al. 2017; Franze et al. 2005). The physiologically active fraction of 

bioaerosols can affect their own aging by modifying their physical properties, surface properties (Santl-

Temkiv et al. 2015), gene expression, and by degrading oxidative species and atmospheric organics 

(Vaïtilingom et al. 2013). Recently, it has also been confirmed that airborne bacterial cells maintain 

some extent of metabolic activity: they react to the presence of substrates (Krumins et al. 2014), 

contain a high number of ribosomes (Šantl-Temkiv et al. 2018), and respond to oxidative stress and 

physiological shocks (Amato et al. 2019). Finally, airborne microbial assemblages are also highly 

complex, since they consist of mixes of cells of different taxa and physiological states. These 

assemblages may possess a degree of functional stability acquired via the ability to resist environmental 

stress (Temkiv et al. 2012) or even limited interactions between cells.  
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3.2. Study regions of special interest 

[i: Forests] Tropical-rain, boreal, and temperate forests are locations of intense biological activity 

and are, therefore, important ecosystems for in-depth bioaerosol analysis (Andreae and Crutzen 1997). 

The number of bioaerosol studies in forested locations is still comparatively small, however, and thus 

our understanding of bioaerosol-related processes in these locations has remained limited (Whitehead 

et al. 2016; Fröhlich-Nowoisky et al. 2016; Womack et al. 2015; Schumacher et al. 2013; Huffman et 

al. 2012; Whitehead et al. 2010; Pöschl et al. 2010; Graham et al. 2003). While it is acknowledged that 

the intense hydrological cycling involving tropical rain forests, with its large exchanges of water and 

energy, has major importance to the Earth climate system, the role of bioaerosol-cloud interactions 

driven by tropical rain forests is largely unassessed (Pöschl et al. 2010; Prenni et al. 2009). 

Furthermore, it is mostly unexplored as to what extent human activities (i.e., deforestation, fires, and 

other land use changes) have altered the abundance and properties of bioaerosol populations relative to 

preindustrial states of the atmosphere (Moran-Zuloaga et al. 2018; Morris et al. 2014a; Andreae 2007).  

 

[ii: Polar regions] Due to synoptic atmospheric patterns, polar regions are geographically isolated 

areas. Unconstrained feedback processes, caused by changes in albedo, sea-ice extent, ice-sheet melt, 

and glacial retreats, are affecting the polar radiation budgets. Melting of terrestrial ice also opens up 

new terrestrial surfaces for colonization. Therefore, polar regions are of special interest for aerobiology 

(Šantl-Temkiv et al. 2019, 2018; Crawford et al. 2017; Pearce et al. 2016; Barbaro et al. 2015; Pearce 

et al. 2009). So far, a few studies proposed biogenic sources of INP in the Arctic (Wex et al. 2019; 

Tobo et al. 2019; J. M. Creamean et al. 2018a; Irish et al. 2017; Conen et al. 2016; Wilson et al. 2015; 

Bigg and Leck 2001; Bigg 1996) and in Antarctica (Saxena and Weintraub 1987; Saxena 1983). Also, 
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several studies have investigated airborne microorganisms in Antarctica and have suggested that they 

have an important role in colonizing Antarctic terrestrial environments (Archer et al. 2019; Pearce et al. 

2009, 2016). There are scarce studies on Arctic bioaerosols (Šantl-Temkiv et al. 2018, 2019; 

Cuthbertson et al. 2017; Harding et al. 2011)
 
and biogenic INP (Šantl-Temkiv et al. 2019; Wex et al. 

2019; J. Creamean et al. 2018). As such, our knowledge of how biogenic INPs impact cloud dynamics 

in polar regions is highly fragmented and lacks a mechanistic and quantitative foundation. 

 

[iii: Marine and coastal environments] Marine aerosols contain large amounts of inorganic salts 

and organic compounds as well as microbial cells, fragments and exudates (Kuznetsova et al. 2005; 

Marks et al. 2001; Monahan et al. 1983). Detection of marine bacterial groups in air samples collected 

both at the seashores of Europe (Polymenakou et al. 2008) and at high altitudes in Japan (Maki et al. 

2014) suggest inland transport of marine microorganisms. In line with this, marine bacteria carried to 

the free troposphere could change the airborne microbial compositions over continental regions (Cáliz 

et al. 2018; Maki et al. 2014; DeLeon-Rodriguez et al. 2013; Amato et al. 2007c). Microbially 

produced soluble and particulate organic material both in seawater and in the sea surface microlayer 

exhibits potent ice nucleation activity (McCluskey et al. 2018; Wang et al. 2017; Irish et al. 2017; 

Ladino et al. 2016; Wilson et al. 2015). There is, however, still very little quantitative understanding of 

the emission rates with which these marine INP are released to the atmosphere and which processes 

control these emission rates.  

 

[iv: Deserts] The surface soils of deserts constitute the most abundant and seasonally consistent 

terrestrial biome on Earth (Peel et al. 2007). Surface biological cover (i.e. biological crust), which 

stabilizes desert soil (Pointing and Belnap 2012), is disturbed naturally by high-winds during desert 
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storms and anthropogenically by human activities (Griffin 2007). Airborne bacteria over desert areas 

includes highly diverse bacterial communities, which were found to predominately originate from 

terrestrial sources, such as plants and animal faeces (An et al. 2013; Puspitasari et al. 2016). 

Microorganisms in desert habitats frequently show resistance to stressors that are shared between 

terrestrial and atmospheric conditions (Essoussi et al. 2010). During dust events, the diversity and 

concentration of airborne bacteria have been shown to increase compared to background conditions 

(Maki et al. 2017b; Puspitasari et al. 2016). After dust events, atmospheric stressors eliminate more 

sensitive strains of bacteria, derived from less extreme environments, while the polyresistant members 

arriving attached to sand particles remain unaffected (Maki et al. 2017b).  

 

[v: Urban and rural areas] Urban and rural bioaerosols affect outdoor and indoor air quality and 

relate to human, plant and animal pathogen transmission, the distribution of allergens, and deprivation 

of cultural heritage (Sterflinger and Piñar 2013). Multiple studies have investigated the difference 

between urban and rural environments in affecting the atmospheric microbiome. Després et al. (2012) 

reviewed urban vs. rural differences in the bacterial aerobiomes and showed that methods based on 

culturability often yield higher counts in urban environments In contrast, methods based on genetic 

analysis detected a greater richness in the rural environment (Bowers et al. 2013; Kaarakainen et al. 

2008; Wu et al. 2007) or no significant differences between the two environments (Negrin et al. 2007, 

2009). There is also ambiguity regarding the concentration of fungal spores. While certain studies 

highlight an increase in fungal spore concentration close to rural areas (Lin et al. 2018; Di Filippo et al. 

2013; Oliveira et al. 2009, 2010; Kaarakainen et al. 2008; Kasprzyk and Worek 2006), others see an 

enhancement in urban environments (Rathnayake et al. 2016; Bauer et al. 2008; Pei-Chih et al. 2000). 

Overall, it seems that the relationship between land-use and bioaerosols is not well understood and the 
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effect of meteorological factors, season, and the local environment on the airborne community 

assembly still needs to be determined (“The distribution variance of airborne microorganisms in urban 

and rural environments” 2019; Wolf et al. 2017; Rathnayake et al. 2016; Morris et al. 2014a; Bowers et 

al. 2013; Kaarakainen et al. 2008).  

 

3.3. Issues related to bioaerosol measurements 

[i: Choosing the temporal resolution] For a particular bioaerosol monitoring campaign, the 

temporal resolution should be carefully considered in connection with the type of bioaerosols of 

interest. Large, short-term temporal variations in bioaerosols have frequently been observed (Fierer et 

al. 2008), and the performance of bioaerosol monitoring is affected by a number of parameters such as 

time of the day, season, and meteorological factors (Wei et al. 2016; Saari et al. 2015; Bowers et al. 

2011, 2012; Jones and Harrison 2004). For example, humidity, atmospheric radiation, temperature, and 

wind have significant effects on observed bioaerosol abundance and diversity (Hu et al. 2018; Després 

et al. 2012; Evans et al. 2006; Jones and Harrison 2004). Unlike inorganic dust concentrations, which 

are lower both during and shortly after rainfall (Issanova and Abuduwaili 2017), concentrations e.g. of 

bioaerosols including fungal spores and bacteria can frequently increase during and after rainfall due to 

both passive and active processes (Joung et al. 2017; Morris et al. 2017; Rathnayake et al. 2017; Conen 

et al. 2017; Wolf et al. 2017; Wang et al. 2016; Petters and Wright 2015; Hader et al. 2014; Wright et 

al. 2014; Huffman et al. 2013; Schumacher et al. 2013). Concentrations of various classes of 

bioaerosols, including fungal spores, bacteria, and pollen, are also known to change depending on the 

time of the day, influenced by a combination of biological emissions processes, relative humidity, 

increase of turbulent kinetic energy, and also atmospheric dilution effects caused by daily changes in 

boundary layer height (Šikoparija et al. 2018b; Healy et al. 2014; Huffman et al. 2012; Fang et al. 
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2007). Finally, the speed of atmospheric dilution and microbial activity, such as growth or gene 

expression, occur on a much shorter time scales than the sampling and could thus go unnoticed. Real-

time sensors that detect bioaerosols continuously and relatively autonomously can help provide 

windows into certain emission and atmospheric processes by providing data at high time resolution 

(minutes or less) (Šaulienė et al. 2019; Huffman et al. 2019; Huffman and Santarpia 2017; Oteros et al. 

2015; Holt and Bennett 2014; Huffman et al. 2012; Xu et al. 2011). 

 

[ii: Cultivation dependent and independent techniques] Cultivation-dependent techniques were 

long the reference methods for investigating microbial communities in the environment, including 

aerosols and atmospheric waters (e.g. Lighthart 1997). Most environmental microorganisms cannot be 

cultivated efficiently, despite the fact that they are viable (Amann et al. 1995). Proportions of viable 

bacteria culturable after collection from the atmosphere range widely, e.g. from <1% (Amato et al. 

2007b) to >10% (Temkiv et al. 2012; Tong and Lighthart 2000). This is either due to most cells being 

damaged, or because suitable cultivation techniques or appropriate growth media were not used. 

Therefore, cultivation dependent techniques significantly underestimate both the number and the 

diversity of microorganisms (T. Šantl-Temkiv et al. 2013; Temkiv et al. 2012). Recently, molecular 

and single-cell approaches have been applied and provided insights into the true microbial diversity of 

the atmosphere (e.g. Bowers et al. 2009; DeLeon-Rodriguez et al. 2013; Temkiv et al. 2012).  

 

[iii: The problem of low biomass] In the atmosphere, microbial cells are found at concentrations 

varying from ~10
2
 to ~10

6
 cells m

-3
 of air. Hence, a representative sample with sufficient biomass for 

downstream analyses should comprise collecting bioaerosols from >1 to several 100 m
3 

of air. For 

microbial aerosols, the high volume filter samplers (Dommergue et al. 2019) and high-flow-rate 
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impingers (Šantl-Temkiv et al. 2017) are currently the most appropriate instruments for sampling in 

areas, characterized with low biomass, and can be coupled with molecular, microbial, and INP analysis. 

Aerosol concentrators of different design, e.g. virtual impactors, also allow overcoming low biomass 

issues (Kim et al. 2001). Another implication of the low biomass is the high susceptibility to 

contaminations. Aside from high sample volumes, good practices include stringent cleaning, 

sterilization or baking of the sampling equipment (Dommergue et al. 2019; Šantl-Temkiv et al. 2017, 

2018; Lever et al. 2015), sterile techniques when handling and analysing the samples (T. Šantl-Temkiv 

et al. 2013; Temkiv et al. 2012) as well as performing periodical handling and operational blanks to 

verify that measurements are not influenced by contamination
 
(Dommergue et al. 2019; Šantl-Temkiv 

et al. 2017; Temkiv et al. 2012). Finally, using real-time samplers (e.g. fluorescence or mass 

spectrometric analyzers) as a component of the study can complement other work by providing 

qualitative or semi-quantitative results at a much higher time resolution (Huffman et al. 2019). These 

methods can also offer real-time windows into atmospheric processes that can help inform the sampling 

strategy for lower resolution devices, though all techniques that rely primarily on light-scattering or 

chemical information suffer from lower specificity. 

 

[iv: Preserving the in situ state during sampling, storage, and transportation] For understanding 

the in-situ state of bioaerosols, sampling and storage processes should preserve sample integrity, 

including viability, physiological state, ice-nucleation activity, or mixing state as much as possible, and 

allow relevant downstream applications, such as DNA/RNA-based analyses, viability assays, 

cultivation, or microscopy. Long sampling times affect the physiological state and viability of 

organisms, for example by passing large volumes of desiccated air across filter-bound particles. The 

use of impingers allows sampling in physiological liquid or a fixative, thus preserving bioaerosols in 
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their in situ states (Šantl-Temkiv et al. 2017). For example, for some INA microorganisms, there is 

evidence that the ice-nucleation activity increases due to starvation and low temperature (Fall and Fall 

1998; Nemeck-Marshall et al. 1993). Thus, when quantifying biogenic INP, storing environmental 

samples at 4 °C, which is a common short-storage strategy during sampling campaigns, is problematic. 

In addition, numerous microorganisms are known to grow at 4 °C, therefore altering the quantitative 

assessment. Cryopreservation (< -20
o
C or -80

o
C) might be an adequate procedure for many of the 

analyses, but might affect future culturability of microbial aerosols (Donegan et al. 1991). Shipment 

with frozen ice packs can keep samples cool and shipment on dry ice (solid CO2) can keep samples 

frozen for up to several days. Consideration should always be made, and reported, for possible effects 

of additional freezing/thawing of samples.  

An additional challenge to characterizing bioaerosols is their complex mixing state. Bacterial 

aerosols for example are rarely free floating, but often clumped together or attached to other particles, 

(Turnbull et al. 1998; Lighthart et al. 1993), thus breaking up of aggregates can introduce biases in the 

quantification of bacterial aerosols. Microscopic investigations of the bioaerosol mixing states (e.g., 

biological particle attached to mineral dust grains) thus rely on ‘soft’ sampling techniques (e.g. 

electrostatic precipitation) that preserve the their authentic state (Zavala et al. 2014; Mainelis et al. 

2002). 

 

3.4. Emission/deposition fluxes and long-range transport 

[i: Wind speed] Originating from diverse souces, bioaerosol populations are often heterogenous and 

represent a mixture of local and long-range transported biological particles (Šantl-Temkiv et al. 2018; 

Weil et al. 2017; Mazar et al. 2016). While the emission of inorganic dust increases with wind speed, 

microbial aerosol release has a more complex relationship with wind (Waggoner 1973). For example, 
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minimum wind speeds of approximately 0.4 m s
-1

 are required for microbial aerosol emission from 

plant canopies (Jones and Harrison 2004), whereas 4 m s
-1 

is required for emission via sea spray 

(O’Dowd and de Leeuw 2007). After aerosolization, microbial cells and other bioaerosols with a 

diameter of ~1 µm have been modelled to spend on average 3-4 days aloft in the atmosphere (S. M. 

Burrows et al. 2009), but are also observed and modelled to be airborne over longer periods (Barberán 

et al. 2015; Wilkinson et al. 2012; Kellogg and Griffin 2006). Active mixing processes at the boundary 

layer, such as turbulence and wind, transport microbial populations into the free atmosphere and induce 

the long-range transport by winds (Iwasaka et al. 2009; Maki et al. 2008). 

 

[ii: Long-range transport and mixing processes] Microorganisms are known to disperse on long-

range scales (>>1,000 km), e.g. with dust events (Weil et al. 2017; Mazar et al. 2016). In seeking to 

identify long-range sources of bioaerosols, including bacteria, sampling is frequently performed at sites 

that can at least occasionally sample free-tropospheric air, such as: mountaintop observatories (Weil et 

al. 2017; Smith et al. 2013; Vaitilingom et al. 2012; Bowers et al. 2012), tall towers (Uetake et al. 

2019; Moran-Zuloaga et al. 2018; Jeon et al. 2011) and networks of roof level stations distributed over 

the continent (de Weger et al. 2016; Šikoparija et al. 2013). During long-range transport, microbial 

aerosols change dynamically due to mixing with new air masses, microbial activity, and aging. The 

long-range transported microorganisms at high altitudes are often mixed with anthropogenic particles 

originating from agricultural (Suski et al. 2018) and industrial processes (Maki et al. 2017a), with sea-

spray particles over marine environments (Maki et al. 2019; Mazar et al. 2016; Maki et al. 2014; 

Yamaguchi et al. 2012; Polymenakou et al. 2008) or particles derived from freshwater and plant 

surfaces. Dust events have been shown to have increased abundance of airborne microorganisms by 10- 

to 100-fold (Hara and Zhang 2012; Lim et al. 2011; Prospero et al. 2005). In areas downwind of dust 
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events, regional airborne microbial communities are changed after mixing with bioaerosols originating 

from the dust event (Weil et al. 2017; Maki et al. 2014). In many cases, microorganisms are damaged 

by atmospheric stressors during their long-range transport with dust, e.g. leaving only ~20% of 

microorganisms viable despite the fact that agglomeration with dust can provide protection from heat 

or UV flux (Hara and Zhang 2012). Experiments in atmospheric chambers allowed estimation of a half-

life of ~4 hours for Pseudomonas syringae bacteria (Amato et al. 2015). In the atmosphere, many 

environmental factors will have additional adverse effects on bacterial cells, resulting in even shorter 

half-lives (Wirgot et al. 2017; Joly et al. 2015; Smith et al. 2011).  

 

[iii: Assessing fluxes] Models that try to simulate the environmental impacts of bioaerosols suffer 

from several uncertainties. Studies have estimated concentrations of various classes of bioaerosols, but 

large uncertainties (e.g. 80-870%) in emission estimates arise (S M Burrows et al. 2009; S. M. Burrows 

et al. 2009) from the fact that very few direct measurements of bioaerosol emission or deposition have 

been performed (Sesartic et al. 2012; Elbert et al. 2007). The exchange of aerosols between a surface 

and the atmosphere is quantified by measuring its flux, taking into account both emission and 

deposition rates. Past attempts to estimate bioaerosol fluxes relied on the gradient method, which scales 

a gradient of concentrations measured at different heights to a flux through a so-called eddy-diffusivity 

coefficient (Baldocchi et al. 1988). These are not direct measurements, as the estimation depends on the 

parameterization of the diffusivity coefficient. Varying results were obtained by this technique, which 

may in many cases be associated with the choice of specific parameterization and the cultivation-

dependent techniques (Carotenuto et al. 2017; Mayol et al. 2014; Crawford et al. 2014; Huffman et al. 

2013; Lighthart and Shaffer 1994; Lindemann and Upper 1985; Lindemann et al. 1982). The gradient 

method also tends to fail in specific cases such as under canopies, as in forests, due to the formation of 
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counter gradients (Baldocchi et al. 1988). In contrast, the eddy-covariance method (Baldocchi et al. 

1988), which is the best available measure for fluxes, is based on direct measurements. To apply the 

eddy-covariance method, bioaerosol concentration should, however, be measured at a frequency of at 

least ten times per second. This may be possible in specific cases with high bioaerosol concentrations 

by using real-time bioaerosol sensors, but these sensors most often sample with insufficient flow rates 

to enable meaningful statistics at normally low atmospheric bioaerosol concentrations (<100 L
-1

). Thus, 

no currently available sensors can enable bioaerosol flux measurements by the eddy-covariance method 

for general use at different bioaerosol concentrations. Further improvements that would allow direct 

flux measurements may be possible using real-time optical methods that are under constant 

improvement, such as UV-laser induced fluorescence (Huffman et al. 2019). While the detected 

particle concentrations are likely not sufficient for direct measurement by the eddy-covariance method, 

the real-time bioaerosol sensors are suitable for flux measurements following the disjunct eddy-

covariance approach (Crawford et al. 2014; Whitehead et al. 2010; Haugen 1978). As such, real-time 

sensors are capable of providing environmental concentration values and therefore could potentially 

provide the opportunity to directly measure fluxes e.g. of fluorescent aerosols. An associated challenge 

is the analytical uncertainty linking fluorescent aerosol with classes of bioaerosols, but advancements 

in instrumentation and analysis strategy continue to reduce these uncertainties (Huffman et al. 2019; 

Savage and Huffman 2018; Ruske et al. 2017). 

 

3.5. Stationary bioaerosol research 

[i: Choosing the location] Bioaerosol sources can be hyperlocal in nature. For example individual 

plants can emit pollen, spores, or bacteria that could overwhelm a sampler and mislead interpretation of 

results meant to characterize the region more generally. The amount of the upwind area that contributes 
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to the collected sample (i.e. the concentration footprint) will depend on the height of sampling (Rojo et 

al. 2019), wind speed, and atmospheric stability (Vesala et al. 2008). Due to this strong dependence on 

environmental conditions there is not a single “recipe” for correct sampling, though certain sampling 

practices are encouraged. The ideal sampling location should be located above the roughness sublayer 

to minimize influence from local turbulent disruptions, i.e. 2-5 times the height of the roughness 

elements (Raupach et al. 1991) and with as much as homogeneous surface area upwind as possible 

(Vesala et al. 2008). Aside from choosing an appropriate sampling location, the spatial heterogeneity of 

the atmosphere can be assessed through replicate sampling (Temkiv et al. 2012, see also Mainelis 

2019). 

 

[ii: Monitoring networks] Providing data for health management requires a widespread network of 

measurements, which must ensure comparability and reproducibility. Both the sampling and analysis 

could introduce errors and notable efforts are made to ensure high quality regarding identification of 

bioaerosols, which is commonly done manually (Sikoparija et al. 2017; Galán et al. 2014). The 

achieved level of standardization (British Standards Institution EN 16868:2019) is now challenged by 

introduction of new methods that involve a notable portion of automatization and where identification 

of bioaerosols is achieved by computational tools (Šaulienė et al. 2019). It is becoming increasingly 

apparent that what is measured is often not the same as what we breathe. For example, while aiming to 

provide data representative of a relatively large geographical region, measurements are often performed 

at roof-level resulting in notable underestimation of bioaerosol concentrations at the street (i.e. 

breathing) level (Rojo et al. 2019). As a result, personal and portable samplers are important to link 

health effects to exposure. Also it seems that exposure to allergen-containing particles alone does not 

have to result in health impact, as was seen with respect to mugwort pollen, where sensitization occurs 
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only from pollen contaminated with bacterial endotoxins (Oteros et al. 2019). In order to adequately 

support health impact assessments, outdoor field measurements should provide data on all important 

cofactors. This strategy goes beyond identification of allergen-containing particles (i.e. pollen grain and 

fungal spore) and requires simultaneous identification and quantification of modulators of 

immunological reaction. In addition, the allergen modelling community requires bioaerosol 

measurements in real-time to support model assimilation. At the same time, however, new 

measurement approaches should be compatible with historical datasets in order to integrate with long 

term climatological studies (Ziska et al. 2019). 

 

3.6. Vessel-driven bioaerosol research 

[i: Marine sampling] Ships, both powered and sailing, are excellent platforms for sampling marine 

bioaerosols. Ship-borne sampling has been used to measure intact marine entities in aerosols 

(Könemann et al. 2018; Mayol et al. 2014; Fröhlich-Nowoisky et al. 2012; Leck and Bigg 2008; Aller 

et al. 2005), their excretions (e.g., exopolymer gels, carbohydrates) and decomposition products 

(Chance et al. 2018; Aller et al. 2017; Gantt and Meskhidze 2013; Orellana et al. 2011; Russell et al. 

2010; Leck and Bigg 2008), CCN (Gantt and Meskhidze 2013; Orellana et al. 2011) and INPs (Irish et 

al. 2019; McCluskey et al. 2018; DeMott et al. 2016; Wilson et al. 2015; Burrows et al. 2013; Schnell 

1977; Bigg 1973). Recently, a number of scientific consortia have begun contributing to large-scale 

trans-oceanic research programs designed to better understand ocean-atmosphere interactions, and so 

significant advances in these areas are expected in coming years (Behrenfeld et al. 2019). INP and 

microbial concentrations over remote oceans are often extremely low compared with terrestrial values, 

and thus different sampling strategies are frequently required to achieve detectable concentrations. 

Under such pristine conditions preferably >50 m
3
 should be sampled to allow molecular, microbial, or 
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INP analyses, and hence high-flow-rate samplers should be employed (Šantl-Temkiv et al. 2017). Care 

should also be taken to avoid exhaust plume contamination (Thomson et al. 2018).  

 

[ii: Aerial sampling] Aerial vessels such as planes, drones, and balloons facilitate the exploration of 

spatial dynamics in both horizontal (i.e. transects) and vertical (i.e. profiles) dimensions. While moving 

through the air, they also allow for collection of volumes of air that represent a wide spectrum of 

spatial variability in a single sample. Bioaerosol profiles, particularly spanning across the lower 

troposphere, provide crucial information on the amount and identity of bioaerosols being transported to 

altitudes where they could influence aerosol-cloud processes. Bioaerosol samples have been collected 

by aircraft (Smith et al. 2018; Ziemba et al. 2016; Maki et al. 2015; DeLeon-Rodriguez et al. 2013; 

Yamaguchi et al. 2012; Kourtev et al. 2011), helicopters (Maki et al. 2017b), blimps (Perring et al. 

2015), and altitude-controlled balloons (J. M. Creamean et al. 2018b) to investigate their long-range 

transport, while avoiding the ground-surface contamination. Drones and other unpiloted aerial vessels 

can also be used to explore hazardous areas. When rotary wings are employed, the sensors’ inlets have 

to placed in disturbance-free areas to ensure representative measurements (Villa et al. 2016). In some 

cases new samplers have been developed specifically for use on drones, from simple impaction on Petri 

dishes, spore collectors (Jimenez-Sanchez et al. 2018; Powers et al. 2018; Lin et al. 2013; Schmale III 

et al. 2008, 2012; Aylor et al. 2011; Gonzalez et al. 2011), and filters (Crazzolara et al. 2019; Lateran et 

al. 2016; Smith et al. 2015), to more complex and specialized methods paired with immunoassays 

(Anderson et al. 1999; Ligler et al. 1998), surface plasmon resonance (Palframan et al. 2014), and 

cryopumps (Harris et al. 2002). Simultaneous recovery of bioaerosols from different altitudes has been 

attempted with drones (Powers et al. 2018; Lateran et al. 2016; Techy et al. 2010; Yang et al. 2008). 

While physical collectors can only integrate bioaerosols information over a given sampling time, 
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optical methods would be able to give real-time information on airborne bioaerosols (Huffman et al. 

2019). Drones able to carry real-time sensors for bioaerosols would represent a game-changer in 

airborne outdoor measurements, allowing the retrieval of information at high spatial resolution in three 

dimensions. While scientific drones generally have short endurance and are able to explore only the 

lower troposphere, balloon carried devices can explore all the way to the stratosphere (Bryan et al. 

2014; Yang et al. 2008; Harris et al. 2002; Rogers and Meier 1937) and have frequently been used to 

collect bioaerosols on filters (Maki et al. 2017a, 2015, 2013; Chen et al. 2011; Iwasaka et al. 2009; 

Maki et al. 2008; Kakikawa et al. 2008). Other kinds of airships such as blimps or zeppelins could be 

viable airborne laboratories since they are able to perform long flights at low speeds. In one such 

example, the behaviour of airborne biological fluorescent particles was characterized in a 

transcontinental flight across the United States (Perring et al. 2015). 

 

4. Research needs and future concerning outdoor bioaerosol measurements 

4.1. Pressing scientific questions 

The increased interest in bioaerosols has been motivated by their health, agricultural, environmental, 

and climate effects, which are related to several U.N. Sustainable Development Goals (United Nations 

2015). The inter-related communities that conduct outdoor bioaerosol field measurements (see Section 

2) are guided by a variety of motivations, broadly summarized as coloured circles in Figure 1, which 

are further driven primarily by some combination of scientific, economic, and societal and safety 

interests. These motivations fall within inter-related scientific and social grand challenges, including 

climate change, land cover/use change, and public health. Below we summarize eight areas of pressing 

scientific needs. Many ideas concern several of these topic areas and each topic can have relevance to 

multiple scientific disciplines.  
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[1] Emission sources and flux estimates: The upward vertical transport of bioaerosols from 

sources at the surface to the lowest layers of the atmosphere, i.e. emission flux, is technically 

challenging to assess. This has led to a significant lack of quantitative estimates of surface-

atmosphere bioaerosol exchange. Direct assessment of fluxes is important to resolve major 

questions concerning the mechanisms and strength of bioaerosol emissions from the diverse 

marine and terrestrial sources, including natural emissions (e.g. due to the active release of 

propagules or passive release of bioaerosols due to wind), and anthropogenic emissions (e.g. 

caused by wheat harvesting or processing silage) as well as emissions caused by extreme events 

such as thunderstorms, strong thermals, and winds.  

 

[2] Spatial distribution: Another important and related question concerns how bioaerosols are 

distributed vertically and over different habitats of interest (including urban and rural 

environments, pristine polar and marine environments, forests, grasslands, and deserts) and how 

this relates to the climate, environmental, economic, and health effects of the particles. In order 

to bridge the source emission strength with the bioaerosol vertical and horizontal distributions, 

it is necessary to: (i) understand the transfer of bioaerosols to higher atmospheric layers and 

their long-range dispersal, (ii) obtain a mechanistic understanding of bioaerosol dynamics: their 

survival, aging, activity, and growth as well as interaction with water in the atmosphere, (iii) 

determine the rate of bioaerosol depletion through dry or wet deposition or cell death as a 

function of atmospheric residence time, and (iv) quantify the importance of their dynamic 

‘multiplication processes’ in the atmosphere, e.g. release of smaller particles (fragments, 

cytosolic content) upon cell lysis or particle rupture, emission of membrane vesicles, leaching 
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in cloud droplets, or reproduction of microorganism, each of which may alter concentration of 

bioaerosols that can serve as allergens and cloud nuclei (also see points [4] and [5]). 

 

[3] Changes in distribution: Ecosystems across the world face mounting pressure from a 

changing climate, and as a result, patterns of distribution are changing for all kingdoms of life. 

Continued studies are required to assess to what extent the natural (preindustrial) bioaerosol 

cycling has been altered by human activities (e.g. through climate change, large-scale land use 

change, alterations in the water cycle, changes in species distribution, and air pollution), by 

focussing on in-depth bioaerosol studies at ‘pristine’ sites. Geographic distribution and seasonal 

timing of pollination are changing as the climate warms, and this has important implications for 

airborne human allergies, ecology, agriculture, and the timing of release of pollen INPs. It has 

been proposed that patterns in precipitation and the hydrological cycle may be influenced by 

bioaerosol emission through alteration of land use driven by climate and human activity. 

Changes in dispersal patterns of plant pathogens, as related to both natural ecology and 

agriculture, are also effected. Thus, monitoring in a variety of ecosystem types is required to 

assess changes in bioaerosol distribution, as related to geography of airborne pollination, 

invasion of plant, fungal, or bacterial species, and associated changes in biodiversity.  

 

[4] Atmospheric aging: There is a necessity to understand how atmospheric aging affects the 

different bioaerosol functions, such as their hygroscopicity and nucleation, their allergenic 

impact, as well as their ability to colonize new surfaces or hosts. Finally, the viability half-lives 

of airborne microorganisms exhibit under different realistic conditions should be determined. 
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[5] Metabolic activity: This unique aspect of bioaerosols should be evaluated as a function of 

water availability in the atmosphere. There is an urgency to understand the extent of metabolic 

activity in airborne microorganisms and thus their ability to change: (i) budgets of atmospheric 

organic and inorganic compounds, (ii) their surface properties impacting their hygroscopicity 

and nucleation potential, and (iii) their toxicity, pathogenicity and ability to colonize new 

environments.  

 

[6] Urbanization of allergies: A variety of causes have been hypothesized for the increased 

allergies in recent decades and in urban areas, including internal mixtures of pollen i.e. with 

combustion soot, atmospheric reaction with urban pollutant gases as well as alteration of 

physical properties and emission rates from plants exposed to pollution. Additional studies are 

required to understand influence of allergic diseases from factors associated with climate 

change, urbanization, and urban pollution. Longer-term epidemiological studies linking 

multiple factors are also required to study the complex relationships that influence human 

health. 

 

[7] Transport of human pathogens: The transmission of airborne pathogens to human hosts (e.g. 

viral and bacterial aerosols) is generally understood to take place largely in indoor spaces. The 

role of outdoor air for dispersal of pathogens is less well understood, including how far different 

pathogens can travel within a city or occupied region and the factors that influence pathogen 

viability. These questions relate not only to naturally dispersed aerosol (e.g. from sick 

individuals) but also to intentionally-aerosolized harmful agents.  
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[8] Climate-relevant properties: Finally, there is a pressing need to obtain a functional 

understanding of the environmental, climatic, health, and economical importance of bioaerosol 

hygroscopicity, cloud droplet activation, and ice nucleation. Aside from their climate impacts, 

the hygroscopic properties of bioaerosols, for example, impact deposition in the lungs and can 

thus have health impacts. Hygroscopicity also influences allergenic pollen deposition and thus 

their spatiotemporal distribution (Sofiev et al. 2006). Finally, liquid water droplet activation and 

ice nucleation activity impact atmospheric residence time and deposition rates, which leads to 

effects on colonization. A better understanding of the physico-chemical processes of water 

activation and ice nucleation on bioaerosol surfaces is required. To better understand the effects 

of bio-INPs on cloud formation and evolution, cloud radiative forcing, and the hydrological 

cycle, expanded input of measurement data to both global and regional models are needed. This 

necessitates close collaboration between modelling and measurement communities to 

streamline efforts for inclusion of the most cloud-relevant properties (i.e. simplified size 

distributions of INPs active at specific temperatures). 

 

 

4.2. Technical challenges, recommendations, and needs 

The atmosphere is dynamic, with high fluctuations in bioaerosol quantities and types. Obtaining a 

representative sample is a challenge in light of the diversity bioaerosols represent and the multitude of 

interactions they can have with aging effects. The atmosphere also has a strong diluting capability, thus 

microbiological events in the air are difficult to capture. The research questions strongly orient the 

choice of sampling and analytical techniques. Samplers influence results due to differences in size 

fractionation, efficiency, and sample volume. These effects have consequences on the reliability of 
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inter-study comparisons, especially if the studies to be compared do not have the same objectives. 

Thus, there is a distinct need for standardization of measurement practices (e.g. Environmental Agency 

2018). While the diversity of research objectives implies the need for a broadly diverse approaches, 

consistency within each approach is necessary across users and experiments. Needs include: 

 

[1] Standardization of collection strategies concerning the spatial and temporal resolution, 

replicated sampling, appropriate sterile practices and controls, improved intake efficiency, 

losses in ducts and tubes, increased sample biomass (i.e. high volume bioaerosol sampling 

technique with high concentrate rate) and techniques allowing access to microbial in situ states 

(Cox et al. 2019; Mainelis 2019). 

 

[2] Improved real-time measurements: fast reliable real-time quantification and specific real-

time sensing technologies which will allow high time-resolution monitoring necessary for 

detecting key moments that bioaerosols exhibit in the atmosphere (Huffman et al. 2019). 

Standardization of methodology and reduction in false positive detection by real-time 

techniques, e.g. fluorescence sensors, will further improve the quality of bioaerosol data 

acquired (Savage et al. 2017). 

 

[3] Further development of new technologies are expected to improve the quality, quantity, and 

timescale of bioaerosol measurements. Some examples of these emerging and improving 

technologies include: unpiloted aircraft and drones, tethersondes, additive manufacturing (i.e. 3-

D printing), and microfluidic detection technologies (i.e. lab-on-a-chip) which will all allow 

easier customization of sampling instruments. 
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[4] Long-term measurements at selected sampling sites, in particular at supersites that have a 

broad context of complementary meteorological, ecological, trace gas and aerosol observations 

to link aerobiological and physicochemical observations. This could be achieved by including 

bioaerosol measurements in large measurement campaigns to complement the well documented 

meteorological, chemical, and physical descriptions with biological information. 

 

[5] A network of observatories spread at different spatial scales (e.g. low-cost detectors, 

distributed through citizen science or establishing bioaerosol monitoring networks for climate 

purpose), as was developed through FluxNet/Ameriflux for CO2 or for continuous monitoring 

of airborne pollen that is well established in Europe. 

 

[6] Development of (standardized) methods for estimating surface-to-atmosphere exchanges of 

bioaerosols (i.e. fluxes).  

 

[7] Simultaneous deployment of real-time instruments that can provide quantitative information 

at high time resolution (but generally with low specificity) with samplers that collect for longer 

periods for off-line analysis. This will allow the characterization of bioaerosols with higher 

specificity (i.e. organism identification via molecular biological techniques) to obtain an 

improved understanding of spatiotemporal variability of specific functional or taxonomic 

organism classes.  
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[8] New solutions for specific bioaerosol detection, for example based on direct molecular 

biology techniques, high-throughput screening methods targeting specific groups of interest, 

and next-generation mass-spectra-based detectors. 

 

[9] Development of methods for source tracking of bioaerosols to address the questions of the 

contribution by local, regional and distant sources as well as the contribution of microbial 

growth in air.  

 

[10] Pinpointing of tracers to be used for determining bioaerosol age: local and long-range 

sources, aging. 

 

[11] Complementing bulk measurements by ambient analyses of single bioparticle properties 

(i.e., morphology, surface properties, and mixing state) as well as the transformation of these 

properties in the atmosphere, which is crucial for an improved understanding of nucleation 

processes 

 

4.3. Needs and means for interdisciplinarity and cross-community collaboration  

While all research is ultimately motivated by societal or economic factors, some questions are 

somewhat more basic in nature (i.e. cloud physics, atmospheric chemistry, biodiversity) and secure 

funding e.g. from federal research agencies, while others are more applied in nature and funded more 

directly e.g. by companies for profit investment or by national security agencies for the protection of 

citizens and military personnel (Fig. 1). These differences in motivation and funding can lead to divides 

in the interest and ability to share results and experience across community lines. For example, the 
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development of improved detection technologies against agents of biowarfare is frequently hidden 

behind security clearances, and information related to agricultural or farming practices can be 

proprietary in nature. These various communities have developed somewhat independently, and thus 

approach research questions from different perspectives. As a result there are often discrepancies due to 

the lack of collaboration between communities. Due to the theoretical and technical resources needed 

for carrying out outdoor bioaerosol field studies, these should be approached from interdisciplinary 

research fields. Dedicated field measurements should be supported by chamber experiments, in order to 

obtain a mechanistic understanding of bioaerosol fluxes, which is crucial for forecasting their future 

emission strength and distribution. Therefore, there is a need to bring researchers together with 

expertise in microbiology, meteorology, aerosol physics, aerosol chemistry, and bioaerosol engineers to 

design complementary chamber, laboratory and field experiments. In this way, the bioaerosol field 

could eventually introduce exciting research ideas and directions to traditional disciplines. In addition 

to interdisciplinary efforts, cross-community discussion and collaboration should promote exchange of 

ideas, approaches and technical advances between the different disciplines studying bioaerosols. For 

example, the idea of monitoring networks initiated for quantifying airborne allergen-containing 

particles could be applied to studying climatic and pathogenic aspects of bioaerosols or advanced 

molecular microbiology techniques currently used in the study of microbial diversity in biogeography 

could be applied to fields that use more traditional techniques, such as allergen and pathogen detection. 

Consequently, we need to identify an appropriate or establish a new platform, where researchers could 

meet cross disciplines and community in order to network, exchange ideas and approaches and identify 

collaborative funding opportunities.  
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Figures 

 

Figure 1: Motivating topics of outdoor bioaerosol field measurements (circles) from the perspective of 

different research communities, with bulleted examples of application. These are embedded into the 

context of current scientific and social grand challenges, i.e. climate change, land use change, and 

public health, and categorized by the primary community drivers. Community drivers are listed 

separately to highlight differences in communities, although there is also substantial overlap. The 

drivers primarily imply differences in scientific motivation (e.g. basic vs. applied questions), funding 
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sources (e.g. research agencies, governmental, industrial) and mixture of results-dissemination 

strategies (e.g. peer-reviewed publications, reports, proprietary information). Dual-directional arrows 

visually represent overlap and interaction between grand challenges and between fields of bioaerosol 

research. All topics are influenced in some measure by each of the three grand challenges listed. 

Similarly, each of the topic circles can have some influence from each of the community drivers 

(colour), but in each case the weight of influence is different. Central image shows a mixture of 

bioaerosols analysed via optical microscopy. 
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