
HAL Id: hal-02319259
https://hal.science/hal-02319259

Submitted on 12 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of Software Patches Using Numerical Abstract
Interpretation

David Delmas, Antoine Miné

To cite this version:
David Delmas, Antoine Miné. Analysis of Software Patches Using Numerical Abstract Interpreta-
tion. 26th International Symposium, Bor-Yuh Evan Chang, Oct 2019, Porto, Portugal. pp.225-246,
�10.1007/978-3-030-32304-2_12�. �hal-02319259�

https://hal.science/hal-02319259
https://hal.archives-ouvertes.fr

Analysis of Software Patches Using
Numerical Abstract Interpretation?

David Delmas1,2 and Antoine Miné2,3

1 Airbus Operations S.A.S., 316 route de Bayonne, 31060 Toulouse Cedex 9, France
2 Sorbonne Université, CNRS, LIP6, 75005 Paris, France

3 Institut universitaire de France, 1 rue Descartes, 75231 Paris Cedex 5, France
david.delmas@airbus.com, antoine.mine@lip6.fr

Abstract. We present a static analysis for software patches. Given two
syntactically close versions of a program, our analysis can infer a seman-
tic difference, and prove that both programs compute the same outputs
when run on the same inputs. Our method is based on abstract interpre-
tation, and parametric in the choice of an abstract domain. We focus on
numeric properties only. Our method is able to deal with unbounded ex-
ecutions of infinite-state programs, reading from infinite input streams.
Yet, it is limited to comparing terminating executions, ignoring non ter-
minating ones.
We first present a novel concrete collecting semantics, expressing the
behaviors of both programs at the same time. Then, we propose an ab-
straction of infinite input streams able to prove that programs that read
from the same stream compute equal output values. We then show how
to leverage classic numeric abstract domains, such as polyhedra or oc-
tagons, to build an effective static analysis. We also introduce a novel
numeric domain to bound differences between the values of the variables
in the two programs, which has linear cost, and the right amount of
relationality to express useful properties of software patches.
We implemented a prototype and experimented on a few small examples
from the literature. Our prototype operates on a toy language, and as-
sumes a joint syntactic representation of two versions of a program given,
which distinguishes between common and distinctive parts.

Introduction

The problem of proving the functional equivalence of programs, or program parts,
is fundamental [7]. It aims at comparing the behaviors of two programs running
in the same environment, i.e. their input-output relationships. In this paper, we
describe a static analysis which aims at inferring that two syntactically close
versions of a program compute equal outputs, when run on equal inputs.

The main application of this analysis is regression verification [8]: prove that
a program change does not add any undesirable behavior. Take, for instance, the

? This work is performed as part of a collaborative partnership between Sorbonnne
Université / CNRS (LIP6) and Airbus. This work is partially supported by the Euro-
pean Research Council under the Consolidator Grant Agreement 681393 – MOPSA.

2 David Delmas and Antoine Miné

remove.c: Accommodate systems with negative errno values.
* src/remove.c (cache_fstatat): Store errno value directly in

the st_ino field, rather than trying to shoehorn it into st_size.

This is required at least on BeOS and Haiku.

master v8.31 … v6.11

 authored and Jim Meyering committed on 21 Mar 2008 1 parent 18ce670 commit

Showing 1 changed file with 6 additions and 3 deletions.

0 comments on commit e73dfc3

Please sign in to comment.

coreutils / coreutils
mirrored from git://git.sv.gnu.org/coreutils.git

weinhold

src/remove.c

171 171

172 172

173 173

174

174

175 175

176 176

177 177

178 178

179 179

180

180

181

182

183

181 184

182 185

183

186

184 187

185 188

186 189

9

/* Like fstatat, but cache the result. If ST->st_size is -1, the

 status has not been gotten yet. If less than -1, fstatat failed

- with errno == -1 - ST->st_size. Otherwise, the status has already

+ with errno == ST->st_ino. Otherwise, the status has already

 been gotten, so return 0. */

static int

cache_fstatat (int fd, char const *file, struct stat *st, int flag)

{

if (st->st_size == -1 && fstatat (fd, file, st, flag) != 0)

- st->st_size = -1 - errno;

+ {

+ st->st_size = -2;

+ st->st_ino = errno;

+ }

if (0 <= st->st_size)

return 0;

- errno = -1 - st->st_size;

+ errno = (int) st->st_ino;

return -1;

}

Fig. 1. Patch on remove.c of Coreutils (between v6.10 and v6.11)

commit shown on Fig. 1, extracted from a revision control repository of the GNU
core utilities. It describes a change in a library implementing core functions for
removing files and directories, and used by the POSIX rm command. The main
function of this library uses the POSIX fstatat function to read information on
the file to delete. As the same status information is needed in several contexts,
the library implements a caching mechanism. At initialization, the main func-
tion calls a cache stat init function, which initializes the st size field of the stat
structure ∗st to −1. Then, it calls the cache fstatat function shown on Fig. 1
repeatedly, whenever status information is needed. Indeed, cache fstatat caches
the results of the fstatat function. In revision v6.10 of Coreutils, this function
used the st size field of the stat structure ∗st to store information on the error
value returned by fstatat upon the first call. It did it in a way that ensures that
st size<0 whenever errno>0, so as to use the sign of st size upon subsequent
calls, to distinguish between successful and erroneous executions. This scheme
works for operating systems where errno is always set to positive values. However,
some systems, such as BeOS [1] and Haiku [2], allow for negative errno values.
The fix displayed on Fig. 1 aims at accommodating such systems. It consists in
storing errno directly in the st ino field of the stat structure.

On this example, non regression verification amounts to proving that the
behavior of the main function of the library is unchanged on systems with only
positive error values. This is, indeed, validated by our analysis. The analyzed
source code includes a stub variable for errno, and stub code for the fstatat func-
tion. The stub for fstatat updates errno with a non-deterministic value, ranging

Analysis of Software Patches Using Numerical Abstract Interpretation 3

1 for (c=0; c<n; c++) cache stat init (&file [c]. st) ;
2
3 while ((c=getchar()) >= 0 && c < n)
4 r = cache fstatat (AT FDCWD, file[c].name, &file[c].st,

AT SYMLINK NOFOLLOW);

Fig. 2. Execution environments for cache fstatat

over positive integers. Note that a separate analysis of the cache fstatat function,
as opposed to an analysis of the whole library, makes it necessary to model its
possible execution environments with an unbounded loop, calling cache fstatat

an arbitrary number of times, with parameters taken from an arbitrary sequence
of file names and stat structures. This unbounded sequence is modeled, in prac-
tice, using an unbounded number of reads from an input stream. Fig. 2 shows
an example for n files, where n may be unbounded.

More generally, we are interested in analyzing patches of programs reading
an unbounded number of input values, e.g. programs reading from file or I/O
streams, and embedded reactive software with internal state, which no related
work addresses. Or goal is to prove that the original and patched versions of such
programs compute equal outputs, when run with the same sequence of inputs.
We therefore model streams directly in the semantics on which our analysis is
based (see section 1).

Running example In the following, we sketch our approach to the analysis
of semantic differences between two syntactically similar programs P1 and P2.
We are interested in proving that P1 and P2 compute equal outputs when run
on equal inputs. P1 and P2 are represented together in the syntax of a so-called
double program P . Simple programs P1 and P2 are referred to as the left and
right projections of P . Fig. 3 shows the Unchloop example, taken from [24], and
translated into our syntax of double programs. The ‖ symbol is used to represent
syntactic difference. It is available at expression, condition, and statement levels
in our syntax for double programs. For instance at line 3, c← 1 ‖ 0 means c← 1
for P1, and c← 0 for P2. In contrast, line 4 means i← 0 for both P1 and P2.

Let us describe the example program. Both versions P1 and P2 read inputs
in the range [−1000, 1000] into a and b at lines 1 and 2. At line 3, the counter
c is being initialised with value 1 for program P1, and value 0 for program P2.
Then, both programs add a times the value of b to c in a loop. Finally, they both
store the result into r at line 9: c for P1, c+1 for P2. The assertion at line 10
expresses the property we would like to check: if both programs reach it, then
they should have computed equal values for r.

We assume here that both programs read the same input value in a, and the
same input value in b. More generally, the semantics of P is parameterized by
a (possibly infinite) sequence of input values, and we wish to prove that, given
the same sequence of input values, P1 and P2 have the same result in r.

4 David Delmas and Antoine Miné

1 : a← input(−1000, 1000);
2 : b← input(−1000, 1000);
3 : c← 1 ‖ 0;
4 : i← 0;
5 : while (i < a) {
6 : c← c+ b;
7 : i← i+ 1;
8 : }
9 : r ← c ‖ c+ 1;
10 : assert sync(r);

Fig. 3. Unchloop example

1 : x← input(−100, 100);
2 : if (x < 0) x← −1;
3 : else {
4 : if (x ≥ 2 ‖ x ≥ 4) {} // x > 4 in original paper
5 : else {
6 : while (i = 2) x← 2;
7 : x← 3;
8 : }
9 : }
10 : assert sync(x); // x = 2 ignored

Fig. 4. Modified [24, Fig. 2] example

The assertion at line 10 of our example is thus valid. It is, indeed, validated
by our analysis.

Limitations Our analysis is based on abstractions of a concrete collecting se-
mantics which will be presented in section 1. This semantics relates pairs of ter-
minating executions of projections of a double program. It is suitable to prove
a number of properties, including that two terminating programs starting from
equal initial states will produce equal outputs, a notion called partial equivalence
in [8]. In contrast, an analysis based on this collecting semantics will fail to re-
port differences between pairs of executions where at least one of the programs
does not terminate. For instance, in the example on Fig. 4, our analysis does
not report any difference between P1 and P2, although P1 terminates on input
x = 2, and P2 does not.

As opposed to [21,22], which develop algorithms to automate the construction
of a correlating program P1 ./ P2, on which to run the static analysis, we assume
for now the joint representation of P1 and P2 given, as part of a double program
in our toy language.

Related work [11] pioneered the field of semantic differencing between two ver-
sions of a procedure by comparing dependencies between input and output vari-
ables. Symbolic execution methods [23,24,19] have proposed analysis techniques

Analysis of Software Patches Using Numerical Abstract Interpretation 5

for programs with small state space and bounded loops, which may support
modular regression verification. On the contrary, we can handle programs with
unbounded loops and an infinite number of execution paths, like the example of
Figs. 1 and 2. Some approaches [16] combine symbolic execution and program
analysis techniques to improve the coverage of patches with tests suites, but
such testing coverage criteria bring no formal guarantee of correctness, unlike
our method.

RVT [8] and SymDiff [14,15] combine two versions of the same program,
with equality constraints on their inputs, and compile equivalence properties
into verification conditions to be checked by SMT solvers. On the contrary, we
rely on abstract domains to infer equivalence properties.

The DIZY [21,22] tool leverages numerical abstract interpretation to estab-
lish equivalence under abstraction. In particular, the authors give a semi-formal
description of an operational concrete trace semantics. This semantics is not
defined by induction on the syntax, and does not support streams. Our main
contribution, with respect to this work, is a novel, fully formalized, denotational
concrete collecting semantics by induction on the syntax, which can deal with
programs reading from infinite input streams, and a novel numeric domain to
bound differences between the values of the variables in the two programs. An-
other difference is that [21,22] rely on program transformations to build a cor-
relating program, which they analyze according to simple program semantics,
while our semantics is defined for double programs directly.

The Fluctuat [17,9] static analyser compares the real and floating-point se-
mantics of numeric programs to bound errors in floating-point computations.
The authors use the zonotope abstract domain to bound the difference between
real and floating-point values. Like in our concrete semantics, they also address
unstable test analysis [10].

Contributions The main contributions of this work are:

– We present a novel concrete collecting semantics, expressing the behaviors
of two versions of a program at the same time. This semantics deals with
programs reading from unbounded input streams.

– We propose an abstraction of infinite input streams able to prove that pro-
grams that read from the same stream compute equal output values.

– We introduce a novel numeric domain to bound differences between the val-
ues of the variables in the two programs, which has linear cost, and the right
amount of relationality to express useful properties of software patches.

– We implemented a prototype static analyzer which exhibits significant speedups
with respect to previous works.

We build on previous work [6]. The main contributions of the current paper,
with respect to this work, is a formal treatment of infinite input streams, in the
concrete and abstract semantics.

The paper is organised as follows. Section 1 formalizes the concrete collecting
semantics, and illustrates it on the example from Fig. 3. Section 2 describes

6 David Delmas and Antoine Miné

stat ::= V ← expr V ∈ V
| V ← input(a, b) a, b ∈ R
| if cond then stat else stat
| while cond do stat
| stat; stat
| skip

(a) Simple statements

expr ::= V V ∈ V
| c c ∈ R
| −expr
| expr � expr � ∈ {+,−,×, /}
| rand(a, b) a, b ∈ R

cond ::= expr ./ expr ./ ∈ {≤,≥,=, 6=, <,>}
| ¬cond
| cond � cond � ∈ {∧,∨}

(b) Simple expressions and conditions

dstat ::= stat
| stat ‖ stat
| V ← dexpr V ∈ V
| assert sync(V)
| dstat; dstat
| if dcond then dstat else dstat
| while dcond do dstat

(c) Double statements

dexpr ::= expr
| expr ‖ expr

dcond ::= cond
| cond ‖ cond

(d) Double expressions and conditions

Fig. 5. Syntax of simple and double programs

the abstract semantics, discusses the choice of numeric abstract domains, and
introduces a novel numeric domain. Section 3 presents experimental results with
a prototype implementation. Section 4 concludes.

1 Syntax and concrete semantics

Following the standard approach to abstract interpretation [4], we developed a
concrete collecting semantics for a toy While language for double programs. The
‖ operator may occur anywhere in the parse tree, to denote syntactic differences
between the left and right projections of a double program. However, ‖ operators
cannot be nested: a double program only describes a pair of programs.

Given double program P with variables in V, consider its left (resp. right)
projection P1 = π1(P) (resp. P2 = π2(P)), where π1 (resp. π2) is a projection
operator defined by induction on the syntax, keeping only the left (resp. right)
side of ‖ symbols. For instance, π1(c ← 1 ‖ 0) = c ← 1, and π2(c ← 1 ‖ 0) =
c← 0, while π1(i← 0) = i← 0 = π2(i← 0).

1.1 Simple programs

P1 and P2 are simple programs, with concrete memory states in E , V → R. Let
k ∈ {1; 2}. The syntax of simple program Pk is standard. Statements stat are
presented in Fig. 5(a). They are built on top of numeric expressions expr and
Boolean conditions cond , defined in Fig. 5(b). To define the semantics of simple
program Pk, we leverage standard, relational, input-output semantics, defined
by induction on the syntax, in denotational style. Given EJ e K ∈ E → P(R)
for non-deterministic expression e ∈ expr , and CJ c K ∈ E → P({true, false})
for condition c ∈ cond , we let SJ s K describe the relation between input and
output states of statement s ∈ stat . Because of the input command, which

Analysis of Software Patches Using Numerical Abstract Interpretation 7

reads some input stream, SJ s K is parameterised by a sequence of values, and
program states record the current index in this sequence. Note that this sequence
has to be infinite: indeed, due to non-determinism, the concrete semantics maps
every input stream to a (possibly infinite) set of executions, which can execute
an unbounded number of input statements. Therefore SJ s K ∈ Rω → P(E ′×E ′),
where E ′ , E ×N, and:

SJV ← input(a, b) Kσ , { ((ρ, n), (ρ[V 7→ σn], n+ 1)) | (ρ, n) ∈ E ′ ∧ a ≤ σn ≤ b }

Note that we model one input stream only, but the generalization to several input
streams is obvious. We do not display the semantics for other commands, as
the semantics for assignments and tests are standard for memory environments,
and leave indexes unchanged. For instance, SJV ← e Kσ , { ((ρ, n), (ρ[V 7→
v], n)) | (ρ, n) ∈ E ′ ∧ v ∈ EJ e Kρ }.

1.2 Double programs

We then lift the semantics S to double programs. As P1 and P2 have concrete
states in E ′, P has concrete states in D′ , E ′ × E ′. The syntax of double state-
ments dstat is shown in Fig. 5(c). They are built on top of double expressions
dexpr and double conditions dcond , defined in Fig. 5(d). The semantics of a
double statement s ∈ dstat , denoted DJ s K ∈ Rω → P(D′ × D′), describes the
relation between input and output states of s, which are pairs of states of simple
programs, for a given shared sequence of input values. The definition for DJ s K
is shown on Fig. 6, in relational style. It is defined by induction on the syn-
tax, so as to allow for modular, joint analyses of double programs that maintain
input-output relations on the variables. Note that D is parametric in S.

The semantics for the empty program is the diagonal, identity relation ∆D′ .
The semantics DJ s1 ‖ s2 K for the composition of two syntactically different
statements reverts to the pairing of the simple program semantics of individual
simple statements s1 and s2. Note that DJ s1 ‖ s2 Kσ = DJ s1 ‖ skip Kσ#DJ skip ‖
s2 Kσ for any σ ∈ Rω, where we use the symbol # to denote the left composition
of relations: R1 #R2 , { (x, z) | ∃y : (x, y) ∈ R1 ∧ (y, z) ∈ R2 }. The semantics for
assignments of double expressions DJV ← e1 ‖ e2 K (different expressions to the
same variable) is defined using this construct. The interest of double expressions
in the syntax is to allow for simple symbolic simplifications in later abstraction
steps, when computing differences between expressions assigned to a variable.
The semantics of assert sync(V) statements asserts that the left and right
projections of a double program agree on the value of variable V . The semantics
for the sequential composition of statements boils down to the composition of the
semantics of individual statements. The semantics for selection statements relies
on the filter FJ c1 ‖ c2 K to distinguish between cases where both projections agree
on the value of the controlling expression, and cases where they do not (a.k.a.
unstable tests). There are two stable and two unstable test cases, according
to the evaluations of the two conditions. The semantics for stable test cases is
standard. The semantics for unstable test cases is defined by composing the left

8 David Delmas and Antoine Miné

DJ dstat K ∈ Rω → P(D′ ×D′)

DJ skip Kσ ,∆D′

DJ s1 ‖ s2 Kσ , { ((i1, i2), (o1, o2)) | (i1, o1) ∈ SJ s1 Kσ ∧ (i2, o2) ∈ SJ s2 Kσ }
DJV ← e1 ‖ e2 Kσ ,DJV ← e1 ‖ V ← e2 Kσ
DJV ← e Kσ ,DJV ← e ‖ V ← e Kσ
DJV ← input(a, b) Kσ ,DJV ← input(a, b) ‖ V ← input(a, b) Kσ
DJassert sync(V) Kσ , { (((ρ1, n1), (ρ2, n2)), ((ρ1, n1), (ρ2, n2))) | ρ1(V) = ρ2(V) }
DJ s ; t Kσ ,DJ s Kσ #DJ t Kσ
DJ if c1 ‖ c2 then s else t Kσ, FJ c1 ‖ c2 K #DJ s Kσ

∪ FJ c1 ‖ ¬c2 K #DJπ1(s) ‖ skip Kσ #DJ skip ‖ π2(t) Kσ
∪ FJ¬c1 ‖ c2 K #DJπ1(t) ‖ skip Kσ #DJ skip ‖ π2(s) Kσ
∪ FJ¬c1 ‖ ¬c2 K #DJ t Kσ

DJ if c then s else t Kσ ,DJ if c ‖ c then s else t Kσ
DJwhile c1 ‖ c2 do s Kσ , (lfp H) # FJ¬c1 ‖ ¬c2 K
DJwhile c do s Kσ ,DJwhile c ‖ c do s Kσ

where FJ c1 ‖ c2 K , { (((ρ1, n1), (ρ2, n2)), ((ρ1, n1), (ρ2, n2))) | true ∈ CJ c1 Kρ1 ∩ CJ c2 Kρ2 }

and H(R) ,∆D′ ∪R #

(
FJ c1 ‖ c2 K #DJ s Kσ ∪)
FJ c1 ‖ ¬c2 K #DJπ1(s) ‖ skip Kσ ∪
FJ¬c1 ‖ c2 K #DJ skip ‖ π2(s) Kσ

Fig. 6. Denotational concrete semantics of double programs

restriction of the left projection π1(s) ‖ skip and the right restriction of the
right projection skip ‖ π2(t) of the then s and else t branches. Intuitively,
π1(s) ‖ skip means that the left projection of the double program executes s,
while the right projection of the double program does nothing. The semantics
for (possibly unbounded) iteration statements is defined using the least fixpoint
of a function defined similarly.

Note that the semantics DJV ← input(a, b) K of input statements is different
from the semantics DJV ← rand(a, b) K of non-deterministic assignments. The
latter entails no relationship between the values read by the two projections of
a double program, besides the fact that they range in the same interval. On
the contrary, the former reads from a shared input stream σ, hence the left
and right projections P1 and P2 read equal values if their input indexes n1
and n2 are equal. This is the case when P1 and P2 have called input equal
numbers of times. On the contrary, if one projection, say P1, has called input
more often than the other, then P1 is ahead of P2 in the stream, and the two
projections are desynchronized. Nonetheless, they may resynchronize later if P2

catches up with P1, hence read equal values again. Also, owing to the semantics
SJV ← input(a, b) K of simple input statements, input(a, b) returns only if the
input value at the current index is in the range [a, b]. Therefore, it should be
considered a semantic error if P1 and P2 use different ranges [a1, b1] 6= [a2, b2]

Analysis of Software Patches Using Numerical Abstract Interpretation 9

to read the input at the same index. For the sake of simplicity, we do not check
this in our semantics (altough our implementation performs this check).

The presence of both input and rand primitives makes the semantics very
expressive, and useful for modeling many practical problems. Non-determinism
allows to abstract unknown parts of a program: for instance, rand(0, 10) is a
sound stub for f(), when function f is only known to return values between
0 and 10. Also, combining input and rand allows to model information flow
problems. For instance, the D semantics distinguishes the two programs 21(a)
and 21(b) shown on Fig 21, which will be presented in the conclusion.

1.3 Properties of interest

We wish to prove the functional equivalence of the left and right projections of
a given double program P ∈ dstat , restricted to a set of distinguished variables
V0 ∈ P(V), specified with the assert sync primitive. Let I0 , {((λV. 0, 0), (λV. 0, 0))}
be the singleton state with all variables and input indexes initialized to zero. The
set of states reachable by P from I0 with input stream σ is (DJP Kσ)I0. Therefore
the property of interest may be formalized as:

∀σ ∈ Rω : ∀V ∈ V0 : ∀((ρ1, n1), (ρ2, n2)) ∈ (DJP Kσ)I0 : ρ1(V) = ρ2(V)

Coming back to our running example Unchloop on Fig. 3, the concrete se-
mantics of the program from line 3 to 9 is displayed on Fig. 7, for any sequence
of inputs σ ∈ Rω. With the additional assumption that both program projec-
tions compute with equal inputs (a1 = a2 = σ0 ∧ b1 = b2 = σ1), ensured by the
semantics of line 1 and 2, and the initial environment I0, the two projections can
be proved to compute equal values for r.

DJUnchloop3..9 Kσ =
{ s0, ((a1, b1, 1, 0, 1, n1), (a2, b2, 0, 0, 1, n2)) | a1 ≤ 0 ∧ a2 ≤ 0 ∧H0 }
∪ { s0, ((a1, b1, 1 + a1 × b1, a1, 1 + a1 × b1, n1), (a2, b2, 0, 0, 1, n2)) | a1 > 0 ∧ a2 ≤ 0 ∧H0 }
∪ { s0, ((a1, b1, 1, 0, 1, n1), (a2, b2, a2 × b2, a2, 1 + a2 × b2, n2)) | a1 ≤ 0 ∧ a2 > 0 ∧H0 }
∪ { s0, ((a1, b1, 1 + a1 × b1, a1, 1 + a1 × b1, n1), (a2, b2, a2 × b2, a2, 1 + a2 × b2, n2)) | a1 > 0 ∧ a2 > 0 ∧H0 }

where s0 , ((ak, bk, ck, ik, rk), nk)k∈{1,2}
and H0 , s0 ∈ R4 ×N

Fig. 7. Concrete semantics of the Unchloop example from Fig. 3

Unfortunately, our concrete collecting semantics D is not computable in gen-
eral. A particular difficulty of the Unchloop example is that the input-ouptut
relation is non linear: (a ≤ 0 ⇒ r = 1) ∧ (a ≥ 0 ⇒ r = 1 + a × b). Hence, in-
ferring such information is beyond classic numeric domains, such as polyhedra.
We will provide a new analysis method which avoids resorting to more complex,
non-linear numeric domains. An additional difficulty, not shown in the Unchloop

example, is that the programs can read an unbounded number of values from
their input stream.

10 David Delmas and Antoine Miné

(Rω → P(D′ ×D′), ⊆̇) −−−−→−→←←−−−−−
αF

γF
(P(D̂ × D̂),⊆)

αF(f) , { (βσ(s), βσ(s′)) | (s, s′) ∈ f(σ) ∧ σ ∈ Rω }
(γF(R))(σ) , { (s, s′) | (βσ(s), βσ(s′)) ∈ R }

where ∀ σ ∈ Rω : βσ ∈D′ → D̂
βσ(((ρ1, n1), (ρ2, n2))) , (ρ1, ρ2, δ, q)

with δ = n2 − n1 ∧ |q| = |δ| ∧ ∀ 0 ≤ n < |δ| : qn = σmax{n1,n2}−n−1

Fig. 8. Abstraction of shared input sequences with unbounded FIFO queues

2 Abstract semantics

We therefore tailor an abstract semantics suitable for the analysis of program
differences.

2.1 Wrapping up infinite input sequences

A first observation is that we do not need to recall the whole input sequence
σ ∈ Rω shared by the left and right projections P1 and P2 of a double program
P . Indeed, we only aim at inferring equalities between the input values read by P1

and P2. We therefore only need to record, at any point in the analysis, the input
subsequence that has been read by one program, but not the other one yet. This
ensures that, when a program that has read less values than the other catches up
with it, it reads the same values. Values read by both programs can be discarded,
and values not read by any program do not need to be known in advance, as they
can be chosen non-deterministically. This subsequence of input values read by
one program only forms an (unbounded) FIFO queue, as inputs are read in order.
We therefore abstract the input sequence σ, and indexes n1 and n2 of P1 and P2

in this sequence, defined in D′, as the difference δ , n2 − n1, and a FIFO queue
of length |δ| in D̂ , E×E×Z×R?. This abstraction does not lose information. A
formalization of this abstraction is shown on Fig. 8. Note that we use the symbol
⊆̇ to denote the pointwise lifting of ⊆: f⊆̇f ′ ≡ ∀σ ∈ Rω : f(σ) ⊆ f ′(σ).

Proposition 1. The pair (αF, γF) defined in Fig. 8 is a Galois isomorphism.

Note that this abstraction includes some redundancy: indeed, it would be
enough to record only the sign of δ, instead of its value, as its absolute value is
given by the length of the queue. However, keeping the value simplifies subse-
quent abstraction steps.

Simple programs Starting from the concrete semantics D, let us now for-
malize the semantics resulting from this first abstraction step. To start with,
we first define the simple program semantics. The behaviors of the left and
right projections P1 and P2 of a double program P depend on which is ahead
in the input sequence, and which is behind. P1 is ahead if δ < 0, and P2 is

Analysis of Software Patches Using Numerical Abstract Interpretation 11

ŜkJ s K ∈ P(Ê × Ê) ; k ∈ {1, 2}

Ŝ1JV ← input(a, b) K ,
{ ((ρ, δ, q), (ρ[V 7→ ν], δ − 1, ν · q)) | (ρ, δ, q) ∈ Ê ∧ δ ≤ 0 ∧ a ≤ ν ≤ b }
∪ { ((ρ, δ, q · v), (ρ[V 7→ v], δ − 1, q)) | (ρ, δ, q) ∈ Ê ∧ δ > 0 ∧ a ≤ v ≤ b }

Ŝ2JV ← input(a, b) K ,
{ ((ρ, δ, q), (ρ[V 7→ ν], δ + 1, ν · q)) | (ρ, δ, q) ∈ Ê ∧ δ ≥ 0 ∧ a ≤ ν ≤ b }
∪ { ((ρ, δ, q · v), (ρ[V 7→ v], δ + 1, q)) | (ρ, δ, q) ∈ Ê ∧ δ < 0 ∧ a ≤ v ≤ b }

Fig. 9. Abstract semantics of simple programs P1 and P2 with unbounded queues

ahead if δ > 0. Therefore, we need to particularize the simple program seman-
tics ŜkJ s K ∈ P(Ê × Ê), where Ê , E × Z×R?, and k ∈ {1, 2}. Fig. 9 shows the
semantics for ŜkJV ← input(a, b) K . Note that we write q ·q′ to denote concate-
nation of queues q and q′. Intuitively, this semantics distinguishes between two
cases:

1. If program Pk is ahead of the other program in the input sequence, or at
the same point, then a new successful input read operation produces a fresh
input value, and adds it at the head of the queue.

2. If program Pk is behind the other program in the input sequence, then a new
successful input read operation retrieves the value at the tail of the queue.

In both cases, an input read operation is only successful if the value read matches
the bounds specified for the input statement. We do not display the semantics
for other commands, as the semantics for assignments and tests are standard for
memory environments, and leave input index differences and queues unchanged.
For instance, ŜkJV ← e K , { ((ρ, δ, q), (ρ[V 7→ v], δ, q)) | (ρ, δ, q) ∈ Ê ∧ v ∈
EJ e Kρ }.

Double programs We then lift the semantics Ŝ1J s K and Ŝ2J s K to double pro-
grams. The definition of D̂J s K ∈ P(D̂×D̂) is very similar to that of DJ s K. It can
be obtained by removing σ parameters from Fig. 6, except for the composition
of syntactically different statements D̂J s1 ‖ s2 K and conditions F̂J c1 ‖ c2 K We
thus only show the definitions of these relations on Fig. 10. Following the partic-
ularization of simple statement semantics, the semantics for double statements
and conditions compose the semantics of their left and right projections D̂kJ sk K
and F̂kJ ck K , where D̂k and F̂k operate on simple statements and conditions
only. Note that the order of the composition is arbitrary, and not significant, as
D̂1J s K # D̂2J t K = D̂2J t K # D̂1J s K , and likewise for F̂1J c K and F̂2J d K . Finally,
we formalize the relation between the abstract semantics D̂ and the concrete
collecting semantics D.

Proposition 2. D̂ is a sound and complete abstraction of D: D̂ = αF(D).

12 David Delmas and Antoine Miné

D̂J s K ∈ P(D̂ × D̂)

D̂J s1 ‖ s2 K, D̂1J s1 K # D̂2J s2 K
D̂1J s K , { ((ρ1, ρ2, δ, q), (ρ

′
1, ρ2, δ

′, q′)) | ((ρ1, δ, q), (ρ′1, δ′, q′)) ∈ Ŝ1J s K ∧ ρ2 ∈ E }
D̂2J s K , { ((ρ1, ρ2, δ, q), (ρ1, ρ

′
2, δ
′, q′)) | ((ρ2, δ, q), (ρ′2, δ′, q′)) ∈ Ŝ2J s K ∧ ρ1 ∈ E }

F̂J c1 ‖ c2 K , F̂1J c1 K # F̂2J c2 K
F̂kJ c K , { ((ρ1, ρ2, δ, q), (ρ1, ρ2, δ, q)) | (ρ1, ρ2, δ, q) ∈ D̂ ∧ true ∈ CJ c Kρk } ; k ∈ {1; 2}

Fig. 10. Abstract semantics of double programs with unbounded queues

(P(D̂ × D̂),⊆) −−−→−→←−−−−−
αp

γp
(P(D̂p × D̂p),⊆)

αp(R) , { (βp(s), βp(s
′)) | (s, s′) ∈ R }

γp(R) , { (s, s′) | (βp(s), βp(s′)) ∈ R }

where βp ∈ D̂ → D̂p

βp((ρ1, ρ2, δ, q)), (ρ1, ρ2, δ, q̃) with q̃n =

{
qn if 0 ≤ n < |δ|
0 if |δ| ≤ n < p

Fig. 11. Abstraction of FIFO queues to fixed length p ≥ 1

2.2 Bounding input queues

The abstract semantics D̂ features unbounded queues. We aim at abstracting
the concrete collecting semantics D in numeric domains, so we need to deal with
a bounded number of variables. As it is also simpler to deal with a fixed number
of variables, we parameterize our abstract semantics with some predetermined
integer p ≥ 1, used to define the lengths of abstract FIFO queues in domain
D̂p , E × E × Z × Rp. Queues from D̂ are truncated whenever |δ| > p, and
padded with zeros whenever |δ| < p. A formalization of this abstraction is shown
on Fig. 11.

Proposition 3. For all p ≥ 1, the pair (αp, γp) defined in Fig. 11 is a Galois
embedding.

Let p ≥ 1. Starting from semantics D̂, we now give a formal definition for the
abstract double program semantics D̂p resulting from this second abstraction
step.

Simple programs To this aim, we first define the semantics ŜpkJ s K ∈ P(Êp×Êp)
of simple programs, where Êp , E × Z × Rp, and k ∈ {1, 2}. Fig. 12 shows the

semantics of Ŝp1JV ← input(a, b) K . Mutatis mutandis, the case of Ŝp2 is similar.
Intuitively, this semantics distinguishes between three cases:

1. If program Pk is ahead of the other program in the input sequence, or at
the same point, then a new successful input read operation produces a fresh

Analysis of Software Patches Using Numerical Abstract Interpretation 13

Ŝ
p
1J s K ∈ P(Êp × Êp)

Ŝ
p
1JV ← input(a, b) K ,{

((ρ1, δ, q · v), (ρ1[V1 7→ ν], δ − 1, ν · q))
∣∣ (ρ1, δ, q) ∈ Ep−1 ∧ δ ≤ 0 ∧ a ≤ ν ≤ b ∧ v ∈ R

}
∪
{

((ρ1, δ, q · v · r), (ρ1[V1 7→ v], δ − 1, q · 0 · r))
∣∣∣∣ (ρ1, δ, q) ∈ E|δ|−1 ∧ 0 < δ ≤ p ∧ a ≤ v ≤ b
r ∈ Rp−2 ∧ ∀ 0 ≤ n < p− 2 : rn = 0

}
∪
{

((ρ1, δ, q), (ρ1[V1 7→ ν], δ − 1, q))
∣∣ (ρ1, δ, q) ∈ Ep ∧ δ > p ∧ a ≤ ν ≤ b

}
Fig. 12. Abstract semantics of simple program P1 with queues of length p ≥ 1. The
case of P2 is similar.

input value, and adds it on top of the queue, discarding the value at the
bottom at the queue.

2. If program Pk is behind the other program in the input sequence, and the
delay is less than the size of the input queue, then a new successful input
read operation retrieves the value in the queue indexed by this delay, and
resets this value to zero.

3. If program Pk is behind the other program in the input sequence, and the
delay is more than the size of the input queue, then a new successful input
read operation produces a fresh input value, and leaves the queue unchanged.

In any case, an input read operation is only successful if the value read matches
the bounds specified for the input statement. We do not display the semantics
for other commands, as the semantics for assignments and tests are standard for
memory environments, and leave input index differences and queues unchanged.
For instance, ŜpkJV ← e K , { ((ρ, δ, q), (ρ[V 7→ v], δ, q)) | (ρ, δ, q) ∈ Ep ∧ v ∈
EJ e Kρ }.

Double programs We then lift the semantics Ŝp1J s K and Ŝ
p
2J s K to double

programs. The definition of D̂pJ s K ∈ P(D̂p × D̂p) is very similar to that of

D̂J s K . The main change is that D̂pkJ s K is defined with Ŝ
p
kJ s K , where D̂kJ s K

is defined with ŜkJ s K . We thus only show the definitions of some relations
on Fig. 13. These definitions are very similar to those of D̂J s K on Fig. 10.
The semantics for double statements and conditions compose the semantics of
their left and right projections. The order of the composition is arbitrary, but
significant for statements, as D̂p1J s K #D̂p2J t K 6= D̂

p
2J t K #D̂p1J s K . Both composition

orders, however, are sound. A way to make the analyse precise and independent
on the order would be to compute the intersection of the compositions with the
two orders. The order is in constrast not significant for conditions, as F̂p1J c K #
F̂
p
2J d K = F̂

p
2J d K # F̂p1J c K .

Finally, we formalize the relation between the abstract semantics D̂p and the
previous abstraction D̂ of the concrete collecting semantics.

Proposition 4. For all p ≥ 1, D̂p is a sound and optimal abstraction of D̂:
D̂p = αp(D̂).

14 David Delmas and Antoine Miné

D̂
pJ s K ∈ P(D̂p × D̂p)

D̂
pJ s1 ‖ s2 K, D̂p1J s1 K # D̂p2J s2 K

D̂
p
1J s K , { ((ρ1, ρ2, δ, q), (ρ

′
1, ρ2, δ

′, q′)) | ((ρ1, δ, q), (ρ′1, δ′, q′)) ∈ Ŝp1J s K ∧ ρ2 ∈ E }
D̂
p
2J s K , { ((ρ1, ρ2, δ, q), (ρ1, ρ

′
2, δ
′, q′)) | ((ρ2, δ, q), (ρ′2, δ′, q′)) ∈ Ŝp2J s K ∧ ρ1 ∈ E }

F̂
pJ c1 ‖ c2 K , F̂p1J c1 K # F̂p2J c2 K
F̂
p
kJ c K , { ((ρ1, ρ2, δ, q), (ρ1, ρ2, δ, q)) | (ρ1, ρ2, δ, q) ∈ D̂p ∧ true ∈ CJ c Kρk } ; k ∈ {1; 2}

Fig. 13. Abstract semantics of double programs with queues of length p ≥ 1

2.3 Numerical abstraction

We now rely on numeric abstractions to abstract further D̂pJ s K into a com-
putable abstract semantics D̂]pJ s K , resulting in an effective static analysis.

Connecting to numeric domains As D̂p ≈ R2|V|+p+1, any numeric abstract
domain with 2|V|+p+1 dimensions may be used, such as polyhedra [5]. Let N be
such an abstract domain, with values in D], order v], concretization γN ∈ D] →
P(R2|V|+p+1), and operators Ŝ]pJ s K , Ĉ]pJ c K ∈ D] → D] for assignments and
tests of simple programs over variables in V1 ∪V2 ∪Q, where Vk , {xk |x ∈ V },
and Q , {δ, (qn)0≤n<p}. Let ∪] and ∩] be the abstractions of set union and
intersection of domain N , and O be its widening operator.

We abstract D̂pJ s K ∈ P(D̂p×D̂p) by D̂]pJ s K ∈ D] → D], with the soundness

condition ∀X] ∈ D] : D̂pJ s K (γN (X])) ⊆ γN (D̂]pJ s K (X])). As D̂pJ s K is defined
by induction on the syntax, the definition for D̂]pJ s K is straightforward: the
abstract semantics needs only be defined for the composition of syntactically
different statements s1 ‖ s2 and conditions c1 ‖ c2. Fig. 14 shows definitions
for associate transfer functions, as well as the transfer functions for some of the
other syntactic constructs. We use the syntactic renaming operator τ1 (resp.
τ2), defined by induction on the syntax, to distinguish the variables of the left
(resp. right) projection of a double program, with suffix 1 (resp. 2). For instance,
D̂]pJ c← 1 ‖ 0 K = Ŝ]pJ c2 ← 0 K ◦ Ŝ]pJ c1 ← 1 K .

Leveraging standard numeric domains Coming back to the example Unchloop

from Fig. 3, recall that the relation between c and i is non linear: c1 = i1×b1+1
and c2 = i2 × b2 from line 4 to line 9. Thus, a separate analysis of programs P1

and P2 would require a non linear abstract domain to compare r1 and r2. In
contrast, our joint analysis of P1 and P2 will be sufficiently precise, even when
using linear numeric domains, because the difference between the values of the
variables in P1 and in P2 remains linear. For instance, the polyhedra domain [5]
is able to infer that the invariant −c1 + c2 + 1 = 0 holds from line 3 to 9, hence
r1 = r2 at line 9, although it is not able to discover any interval for r1 or r2.
The octagon domain [18] is also able to express these invariants, but its transfer
function for assignment is not precise enough to infer them. Indeed, x ← a − b

Analysis of Software Patches Using Numerical Abstract Interpretation 15

D̂
]pJ s K ∈ D] → D]

D̂
]pJ s1 ‖ s2 K , D̂

]p
2 J s2 K ◦ D̂]p1 J s1 K

D̂
]p
k J s K , Ŝ

]pJ τk(s) K ; k ∈ {1; 2}

F̂
]pJ c1 ‖ c2 K , F̂

]p
2 J c2 K ◦ F̂]p1 J c1 K

F̂
]p
k J c K , Ĉ

]pJ τk(c) K ; k ∈ {1; 2}

D̂
]pJV ← e1 ‖ e2 K , Ŝ

]pJV2 ← τ2(e2) K ◦ Ŝ]pJV1 ← τ1(e1) K

D̂
]p
1 JV ← input(a, b) K , Ŝ

]pJ δ ← δ − 1 K ◦(
Ŝ
]pJV1 ← q0 K ◦ Ŝ]pJ q0 ← rand(a, b) K ◦ Ŝ]pJ q1 ← q0 K ◦ · · · ◦ Ŝ]pJ qp−1 ← qp−2 K ◦ Ĉ]pJ δ ≤ 0 K ∪])
Ŝ
]pJ qδ−1 ← 0 K ◦ Ŝ]pJV1 ← qδ−1 K ◦ Ĉ]pJ qδ−1 ≤ b K ◦ Ĉ]pJ qδ−1 ≥ a K ◦ Ĉ]pJ δ ≤ p K ◦ Ĉ]pJ δ > 0 K ∪]

Ŝ
]pJV1 ← rand(a, b) K ◦ Ĉ]pJ δ > p K

D̂
]p
2 JV ← input(a, b) K , Ŝ

]pJ δ ← δ + 1 K ◦(
Ŝ
]pJV2 ← q0 K ◦ Ŝ]pJ q0 ← rand(a, b) K ◦ Ŝ]pJ q1 ← q0 K ◦ · · · ◦ Ŝ]pJ qp−1 ← qp−2 K ◦ Ĉ]pJ δ ≥ 0 K ∪])
Ŝ
]pJ q−δ−1 ← 0 K ◦ Ŝ]pJV2 ← q−δ−1 K ◦ Ĉ]pJ q−δ−1 ≤ b K ◦ Ĉ]pJ q−δ−1 ≥ a K ◦ Ĉ]pJ δ ≥ −p K ◦ Ĉ]pJ δ < 0 K ∪]

Ŝ
]pJV2 ← rand(a, b) K ◦ Ĉ]pJ δ < −p K

where τk(x) ,

{
xk if x ∈ V
x if x ∈ Q

Fig. 14. Abstract semantics of double programs with a standard numeric domain

(P(D̂p × D̂p),⊆) −−−−→−→←←−−−−−
α−

γ−
(P(D̂p × D̂p),⊆)

α−(R) ,
{

((ρ1, ρ2 − ρ1, δ?, q), (ρ′1, ρ′2 − ρ′1, δ?′, q′))
∣∣ ((ρ1, ρ2, δ

?, q), (ρ′1, ρ
′
2, δ

?′, q′)) ∈ R
}

γ−(∆) ,
{

((ρ1, ρ1 + δρ, δ
?, q), (ρ′1, ρ

′
1 + δ′ρ, δ

?′, q′))
∣∣ ((ρ1, δρ, δ

?, q), (ρ′1, δ
′
ρ, δ

?′, q′)) ∈ ∆
}

Fig. 15. Abstraction of double environments with environment differences

cannot be exactly abstracted by the domain, and currently proposed transfer
functions fall back to plain interval arithmetics in that case, so that the domain
cannot exploit the bound it infers on a−b to bound x, for efficiency reasons. The
interval domain is not able to express the invariants, hence it cannot be used
directly for a conclusive analysis.

2.4 Introducing a dedicated numeric domain

However, we remark that it is sufficient to bound the difference x2 − x1 for any
variable x to express the necessary invariants, where x1 (resp. x2) represents the
value of x for the left (resp. right) projection P1 (resp. P2) of a double program P .
Thus, we now design an abstract domain that is specialized to infer these bounds.
We abstract the values x1 and x2 by the pair (x1, δx), where δx , x2− x1. This
abstraction amounts to changing the representation of states of double program
P . It does not lose information. A formalization of this abstraction is shown on
Fig. 15. Note that we extend operators + and − to functions (pointwise lifting).

Proposition 5. The pair (α−, γ−) defined in Fig. 15 is a Galois isomorphism.

Let �p , α−(D̂p). �p is able to represent two-variable equalities x1 = x2 ⇔
δx = 0, even after numeric abstraction using non relational domains, such as

16 David Delmas and Antoine Miné

�
pJ c← c+ bK
= { (s1, (((a1, b1, c1 + b1, i1, r1), ((a1 + δa)− a1, (b1 + δb)− b1,

((c1 + δc) + (b1 + δb))− (c1 + b1), (i1 + δi)− i1, (r1 + δr)− r1), δ, q)) |H1 }
= { (s1, ((a1, b1, c1 + b1, i1, r1), (δa, δb, δc+ δb, δi, δr), δ, q)) |H1 }

�
pJ r ← c ‖ c+ 1K
= { (s1, ((a1, b1, c1, i1, c1), ((a1 + δa)− a1, (b1 + δb)− b1, ((c1 + δc)− c1,

(i1 + δi)− i1, (c1 + δc+ 1)− c1)), δ, q) |H1 }
= { (s1, ((a1, b1, c1, i1, c1), (δa, δb, δc, δi, δc+ 1), δ, q)) |H1 }

where s1 , ((a1, b1, c1, i1, r1), (δa, δb, δc, δi, δr), δ, q)

and H1 , s1 ∈ R10 × Z× Rp

Fig. 16. Examples of �p semantics

�
]pJV ← input(a, b)K ,(
Ŝ
]pJ δV ← 0 K ◦ Ŝ]pJV1 ← q0 K ◦ Ŝ]pJ q0 ← rand(a, b) K ◦p−2

i=0 Ŝ
]pJ qi+1 ← qi K ◦ Ĉ]pJ δ? = 0 K ∪])

�
]p
2 JV ← input(a, b)K ◦�]p1 JV ← input(a, b)K ◦ Ĉ]pJ δ? 6= 0 K

�
]pJV ← eK , �

]p
2 JV ← eK ◦ Ŝ]pJV1 ← (τ1 ◦ π1)(e) K

where

�
]p
2 JV ← eK ,

Ŝ
]pJ δV ← 0 K if is deterministic(e) ∧ ∀x ∈ Vars(e) : δx = 0

Ŝ
]pJ δV ←

∑
x∈V λxδx K if ∃(µ, (λx)x∈V) ∈ R|V|+1 : e = µ+

∑
x∈V λxx

Ŝ
]pJ δV ← (τ ′2 ◦ π2)(e)− (τ1 ◦ π1)(e) K otherwise

τ ′2(x) ,

{
x1 + δx if x ∈ V
x if x ∈ Q

Fig. 17. Symbolic simplifications in �]p

intervals. Transfer functions rely on symbolic simplifications to let such equalities
propagate through linear expressions. The semantics �p of statements 6 and 9
of the UnchLoop example are shown for instance on Fig. 16, before and after
simple symbolic simplifications of affine expressions.

Like for D̂p, any numeric domain over variables in V1 ∪ Vδ ∪ Q, where
Vδ , { δx |x ∈ V }, can be used to abstract �p. Therefore the definition for �]p

is straightforward, by induction on the syntax of double programs. We also define
the semantics for the s1 ‖ s2 construct as �]pJ s1 ‖ s2K , �

]p
2 J s2K ◦ �]p1 J s1K ,

where �p1J sK , �pJ s ‖ skipK , and �
p
2J sK , �pJ skip ‖ sK , for simple state-

ment s. Nonetheless, we add some particular cases, to gain both efficiency and
precision on δV , for all variables V , through simple symbolic simplifications.
These particular cases are displayed on Fig. 17. Note that we use the syntactic
renaming operator τ ′2, defined by induction on the syntax, to replace variables
V2 of the right projection of a double program by their abstraction V1 + δV .

The first particular case is that of input statements V ← input(a, b) for both
programs, in environments such that both programs have read the same number
of input values, i.e. δ? = 0, where δ? represents the difference between input
indexes. In this case, we may assign δV ← 0 directly, and leave δ? unchanged.

Analysis of Software Patches Using Numerical Abstract Interpretation 17

For instance, after statement a← input(−1000, 1000) at line 1 of the Unchloop

example on Fig. 3, we have a ∈ [−1000, 1000], and δa = 0. The second particular
case is that of affine assignments V ← e, where e = µ +

∑
x∈V λx × x. We

call such expressions “differentiable”, as it is easy to compute δV directly as
a function of all the δx variables. A third particular case is that of arbitrary
(non necessarily affine) assignments V ← e, when e is deterministic, and all
the occurring variables x satisfy δx = 0. Then δV = 0, as we know that both
expressions always evaluate to equal values in P1 and P2.

To further enhance precision on some examples, we slightly generalize these
particular cases to double assignments V ← e1 ‖ e2, when expressions e1 and
e2 are found syntactically equal, modulo some semantics preserving transforma-
tions, such as associativity, commutativity, and distributivity. We also generalize
symbolic simplifications based on expression differentation to some double as-
signments V ← e ‖ e + e′, in particular when e′ is a constant. For instance,

for line 9 of the Unchloop example on Fig. 3, we have �]p2 J r ← c ‖ c + 1K =

Ŝ]pJ δr ← δc+ 1 K .
As a consequence, the interval domain is able to infer the invariant δr = 0

for semantics �]p at line 10 of this example, resulting a conclusive analysis with
linear cost, which is much more efficient than using polyhedra with D̂]p.

3 Evaluation

We implemented a prototype abstract interpreter for the semantics D̂]p and �]p

of the toy language introduced in this paper. It is about 2,500 lines of OCaml
source code. It uses the Apron [12] library to experiment with the polyhedra
and octagon abstract domains, and the BddApron [13] library to implement
state partitioning.

3.1 Benchmarking

We compare results on small examples selected from other authors’ bench-
marks [24,21,22]. Note that some of these benchmarks originate from real patches
in GNU core utilities. We added a larger benchmark (also from a Coreutils
patch), to evaluate scalability. For most benchmarks, patches preserve most of
the loop and branching structure, except for the seq benchmark from [21,22],
which features deep modifications of the control structure. The related works
do not address streams. As a consequence, these benchmarks do not feature un-
bounded reads into input streams, except for the remove benchmark, which we
presented in the introduction: see Fig. 1 and Fig. 2. Note that we simplified this
benchmark to fstatat caching for a single file, in order to compare with [21].

[24,21,22] deal with C programs directly, while we encode their benchmarks
in our toy language. In addition, these references not only prove equivalences,
but also characterize differences, while we focus on equivalence for now. We
therefore selected benchmarks relevant to equivalence only, except for the [24,

18 David Delmas and Antoine Miné

Fig. 2] example, which we modified slightly to restore equivalence of terminat-
ing executions: see Fig.4. On the other hand, [24] gives several versions of their
benchmarks, depending on the maximum numbers of loop iterations of the ex-
amples. Indeed, the symbolic execution technique they use is very sensitive to
this parameter. We do not have this constraint, as we use widening instead of
fully unrolling loops, so that we handle directly unbounded loops in a sound way.

Figure 18 summarises the results of our analysis. It shows the analysis tim-
ings and results of our prototype, as well as timings of the analyses the related
work, when they are available (their analyses are all successful). All experiments
were conducted on a Intel R© Core-i7TM processor. Our results are comparable
with those of the original authors, with speedups of one order of magnitude or
more. Some timing differences, of the order of milliseconds, cannot be consid-
ered significant, especially as the experiments are not performed on the same
machines. A significant point, however, is that the benchmark LoopMult takes
49 seconds in [24], which is two orders of magnitude slower than the bench-
mark Const, while, with our method, both Const and LoopMult are analyzed
at roughly the same speed. This difference in behaviors can be explained as a
benefit of widening over unrolling loops. Hence, our timing comparison proves
that our method can achieve at worst a similar speed, and it is also much more
scalable for problems difficult in previous work. Note that [24] compared their
method to well-established tools, such as Symdiff [14] and RVT [8], and observed
speedups of one order of magnitude and more with respect to them. Therefore,
it is not useful to compare our prototype with these tools on these benchmarks.

Most benchmarks are analyzed successfully with the polyhedra domain, with-
out partitioning. The seq benchmark, for instance, is analyzed precisely despite
significant changes in the control structure, as the matching of statements is
established as part of the syntax of double programs. Only the remove bench-
mark requires partitioning for a successful analysis with the polyhedra domain.
Four other benchmarks are analyzed very efficiently with the non relational in-
terval domain, thanks to the �]p semantics. Partitioning improves the preci-
sion on three other, but reduces efficiency. Nonetheless, some benchmarks, such
as LoopSub, cannot be analysed conclusively using a non relational numeric do-
main with semantics D̂]p or �]p. Indeed, related patches exchange the roles of
two variables a and b, so that the challenge is not to infer a1 = a2 ∧ b1 = b2,
but a1 = b2 ∧ b1 = a2. We therefore developed a dedicated abstract domain, to
refine D̂]p with automatically inferred variable equalities. This domain is based
on union-find data structure that maintains a partitioning of the set V1 ∪V2 ∪Q
of program variables. Two variables are part of the same equivalence class if
they are guaranteed to be equal. The associate abstract lattice is the dual of the
standard geometric lattice of partitions of a finite set: a v b means that partition
b refines partition a, i.e. every equivalence class of a is a union of classes of b;
> is the set of singleton variables; and the smallest non ⊥ element is the whole
set of variables. This abstract lattice has finite height, so we use union in place
of widening. The LoopSub benchmark is analysed successfully using a reduced
product between intervals and this domain.

Analysis of Software Patches Using Numerical Abstract Interpretation 19

D
]1(polyhedra) D

]1(octagon) �
]1(interval)

Related Benchmark LOC Related Partitioning Partitioning Partitioning
origin time No Yes No Yes No Yes

[24]

Comp 13 539 ms 14 ms 3 18 ms 7 2 ms 7

Const 9 541 ms 7 ms 3 17 ms 3 1 ms 3

Fig. 2 14 – 4 ms 3 5 ms 3 1 ms 3

LoopMult 14 492 s 20 ms 3 56 ms 7 1 ms 7

LoopSub 15 1.2 s 19 ms 3 53 ms 7 2 ms 7

UnchLoop 13 2.83 s 15 ms 3 36 ms 7 2 ms 3

[21]

sign 12 – 6 ms 3 8 ms 7 420 ms 3 2 ms 7 400 ms 3

sum 14 4 s 14 ms 3 30 ms 3 6 ms 7 3.2 s 34

copy1 37 7 s 102 ms 3 60 ms 3 2 ms 7 430 ms 3

remove1 19 1 s 31.6 s 7 481 ms 3 42 ms 7 322 ms 3 7 ms 7

[21,22] seq1 41 11 s 75 ms 3 500 ms 7 2 ms 7

test1 158 – 96 ms 3 521 ms 3 4 ms 3

Fig. 18. Benchmarks

3.2 Handling streams

All benchmarks of table 18 were analyzed using fixed-length queues of length 1,
as the related works do not handle input streams. Note that abstracting infinite
input streams with fixed-length queues of length 1 is also enough to analyze
some patches of infinite-state programs with unbounded loops reading from a
stream (e.g. a file), even when patches reorder input statements across the body
of unbounded loops.

Fig.19 shows an example. This patch reorders input statements in the loop,
and changes the number of input statements in terminating executions. The loop
is unbounded, and the program is infinite-state. Terminating executions of the
left and right projections compute equal values for s, though possibly not for
x. This double program is analyzed successfully with D]1, using any relational
numerical domain: 33 ms for polyhedra, 43 ms for octagon, and 18 ms for the
reduced product between the domains of intervals and variable equalities. To
the best of our knowledge, no previous work has sound and precise automatic
analyses for patches of this type.

In the bounded abstraction of streams, the unbounded FIFO queue represents
the subsequence of input values read by the program ahead in the sequence,
and not yet read by the program behind. Though we are bounding this queue
in the abstract, we retain precise information on executions reading arbitrary
long input sequences. The bounded queue allows retaining relational information
between all input values read with delays less or equal to the bound, while non
relational (interval) information is retained for values read with larger delays.
Fig. 20 shows a simple example. Using a queue of length 1 is enough to infer the
range of variable s in both projections of the double program. On the contrary,

1 Coreutils 2only 20 loop iterations 3only 5 loop iterations 4only 32 values of len

20 David Delmas and Antoine Miné

1 s = input(−5,5);
2 b = input(0,1);
3 { x = input(0,10); } ‖ {/∗ skip ∗/}
4 while (b == 1) {
5 {/∗ skip ∗/} ‖ { x = input(0,10); }
6 s = s + x;
7 b = input(0,1);
8 { x = input(0,10); } ‖ {/∗ skip ∗/}
9 }

10 assert sync(s) ;

Fig. 19. Reordering reads from an input stream

1 { a = input(0,5); a = input(−5,0); } ‖ {/∗ skip ∗/}
2 x = input(0,5);
3 x = input(−5,0);
4 s = a ‖ x;
5 assert(−5 <= s && s <= 0); // inferred with with a queue of length p ≥ 1
6 assert sync(s) ; // inferred with a queue of length p ≥ 2

Fig. 20. Relational and non relational information versus lengths of queues

a queue of length at least 2 is necessary to prove that both programs compute
equal values for s.

4 Conclusion

We presented a static analysis for software patches. Our method is based on
abstract interpretation, and parametric in the choice of an abstract domain. We
presented a novel concrete collecting semantics, expressing the behaviors of two
syntactically close versions of a program at the same time. This semantics deals
with programs reading from unbounded input streams. We also introduced a
novel numeric domain to bound differences between the values of the variables
in the two programs, which has linear cost. We implemented a prototype and
experimented on a few small examples from the literature.

In future work, we will consider extensions to larger, and non purely nu-
meric programs, towards the analysis of realistic patches. We will also extend
our method to characterize the semantic differences between two non equivalent
versions of program. We will also investigate to what extend our approach could
generalize to portability analysis, a dual problem where we wish to compare the
semantics of the same program in two different environments. We plan to exper-
iment with other abstract domains for our analysis, such as zonotopes. Finally,
we will investigate the connections between our semantics and information flow
problems. Indeed, as a side-effect of our method, our analysis is able to prove

Analysis of Software Patches Using Numerical Abstract Interpretation 21

1 pub = input(−10,10);
2 sec = rand(−5,5);
3 if (sec < 0) pub = 1;
4 pub = 0;
5 assert sync(pub); // OK

(a) secure program

1 pub = input(−10,10);
2 sec = rand(−5,5);
3 if (sec < 0) pub = 1;
4 pub = pub + 1;
5 assert sync(pub); // failed

(b) insecure program

Fig. 21. Proving information flow properties

that two sets of executions of the same program compute equal values for some
outputs. This is useful for proving some information flow properties, such as
secrecy. For instance, Fig. 21 shows two programs with public variable pub and
secret variable sec. These programs read pub as an input value, and choose sec

non-deterministically, For all pairs of executions reading equal values in pub,
but possibly different values in sec, Program 21(a) computes equal values for
pub. hence ensuring secrecy. On the contrary, Program 21(b) leaks the sign of
sec. Our analysis is able to distinguish these two programs. Indeed, it compares
the semantics of two versions of each program. In this case, both versions have
exactly the same code, which is a form of self-composition [3,20].

References

1. The Be Book, https://www.haiku-os.org/legacy-docs/bebook/index.html
2. The Haiku Operating System, https://www.haiku-os.org/
3. Barthe, G., D’argenio, P.R., Rezk, T.: Secure information flow by self-composition.

Mathematical. Structures in Comp. Sci. 21(6), 1207–1252 (Dec 2011)
4. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: POPL’77.
pp. 238–252. ACM (Jan 1977)

5. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL’78. pp. 84–97. ACM (1978)

6. Delmas, D., Miné, A.: Analysis of Program Differences with Numerical Abstract
Interpretation. In: PERR 2019. Prague, Czech Republic (Apr 2019)

7. Floyd, R.W.: Assigning meanings to programs. Proceedings of Symposium on Ap-
plied Mathematics 19, 19–32 (1967)

8. Godlin, B., Strichman, O.: Regression verification. In: Proceedings of DAC ’09. pp.
466–471. ACM, New York, NY, USA (2009)

9. Goubault, E., Putot, S.: Static analysis of finite precision computations. In: VM-
CAI. pp. 232–247 (2011)

10. Goubault, E., Putot, S.: Robustness analysis of finite precision implementations.
In: Programming Languages and Systems. pp. 50–57 (2013)

11. Jackson, D., Ladd, D.A.: Semantic diff: A tool for summarizing the effects of mod-
ifications. In: Proceedings of ICSM ’94. pp. 243–252 (1994)

12. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static
analysis. In: Proc. of CAV’09. vol. 5643, pp. 661–667 (June 2009)

13. Jeannet, B.: Bddapron: A logico-numerical abstract domain library (2009), http:
//pop-art.inrialpes.fr/~bjeannet/bjeannet-forge/bddapron/

22 David Delmas and Antoine Miné

14. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: Symdiff: A language-
agnostic semantic diff tool for imperative programs. In: CAV. pp. 712–717 (2012)

15. Lahiri, S.K., McMillan, K.L., Sharma, R., Hawblitzel, C.: Differential assertion
checking. In: Proceedings of ESEC/FSE 2013. pp. 345–355 (2013)

16. Marinescu, P.D., Cadar, C.: Katch: High-coverage testing of software patches. In:
Proceedings of ESEC/FSE 2013. pp. 235–245 (2013)

17. Martel, M.: Propagation of roundoff errors in finite precision computations: A
semantics approach. In: Programming Languages and Systems. pp. 194–208 (2002)

18. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation
19(1), 31–100 (2006)

19. Mora, F., Li, Y., Rubin, J., Chechik, M.: Client-specific equivalence checking. In:
Proceedings of ASE 2018. pp. 441–451 (2018)

20. Müller, C., Kovács, M., Seidl, H.: An analysis of universal information flow based
on self-composition. In: CSF 2015. pp. 380–393 (July 2015)

21. Partush, N., Yahav, E.: Abstract semantic differencing for numerical programs. In:
SAS. pp. 238–258 (2013)

22. Partush, N., Yahav, E.: Abstract semantic differencing via speculative correlation.
In: Proceedings of OOPSLA’14. pp. 811–828 (2014)

23. Person, S., Dwyer, M.B., Elbaum, S., Pǎsǎreanu, C.S.: Differential symbolic execu-
tion. In: Proceedings of the 16th ACM SIGSOFT’08/FSE-16. pp. 226–237 (2008)

24. Trostanetski, A., Grumberg, O., Kroening, D.: Modular demand-driven analysis of
semantic difference for program versions. In: Proceedings of SAS 2017. pp. 405–427
(2017)

