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Abstract

In this paper, we introduce some new high-order discrete formulations on general unstructured meshes,
especially designed for the study of irrotational free surface flows based on partial differential equations
belonging to the family of fully nonlinear and weakly dispersive shallow water equations. Working with
a recent family of optimized asymptotically equivalent equations, we benefit from the simplified analytical
structure of the linear dispersive operators to conveniently reformulate the models as the classical nonlin-
ear shallow water equations supplemented with several algebraic source terms, which globally account for
the non-hydrostatic effects through the introduction of auxiliary coupling variables. High-order discrete
approximations of the main flow variables are obtained with a RK-DG method, while the trace of the
auxiliary variables are approximated on the mesh skeleton through the resolution of second-order linear
elliptic sub-problems with high-order HDG formulations. The combined use of hybrid unknowns and local
post-processing significantly helps to reduce the number of globally coupled unknowns in comparison with
previous approaches. The proposed formulation is then extended to a more complex family of three pa-
rameters enhanced Green-Naghdi equations. The resulting numerical models are validated through several
benchmarks involving nonlinear waves transformations and propagation over varying topographies, showing
good convergence properties and very good agreements with several sets of experimental data.

Keywords: Green-Naghdi equations, high-order schemes, Hybridized Discontinuous Galerkin, free surface
flows, shallow water Equations, nonlinear dispersive equations

1 Introduction

The propagation and transformations of incompressible, homogeneous and inviscid nonlinear surface waves in
nearshore areas are ideally governed by the free surface Euler equations. In particular, the mathematical and
numerical modeling of such processes require an accurate description of both dispersive and strongly nonlinear
effects. In its full generality, this problem remains mathematically and numerically challenging. To acquire a
better understanding of major physical processes associated with the nonlinear and non-hydrostatic propagation
over uneven bottoms, several improvements have been obtained recently in the derivation and mathematical
understanding of particular asymptotic models able to describe the behavior of the solution in some physical
specific regimes. A recent review of such models can be found in [46]. The shallow-water regime is of particular
interest in nearshore oceanography: the mean water depth H0 is assumed to be small compared to the typical
wave length λ:

(shallow water regime) µ :=
H2

0

λ2
� 1.

In such shallow-water regime, the weakly nonlinear regime has been widely studied for several decades: the
typical amplitude a of the waves are small, in the sense that

(weakly nonlinear regime) ε :=
a

h0
= O(µ). (1)

In such shallow water and weakly nonlinear regime, depth averaged approximations of order O(µ2) of the
free surface Euler equations are furnished by the Boussinesq systems. Many types of (possibly enhanced)
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Boussinesq-like models, which are all O(µ2) accurate approximations of the free surface Euler equations, have
been derived, theoretically and numerically studied, see for instance and among others [5,8,58,62,65]. All these
approximations generally differ through their linear and nonlinear dispersion properties. However, the small
nonlinearity assumption is too restrictive for many applications in coastal oceanography and such Boussinesq-
type models are often used outside of their range of validity, especially when nonlinear effects become overriding,
like in the shoaling area and in the vicinity of breaking. In such situations, fully nonlinear models should be
used instead, see for instance [80]. In this paper, we therefore focus on the less restrictive fully-nonlinear and
shallow water regime:

(fully nonlinear regime) ε :=
a

h0
= O(1). (2)

In this regime, the corresponding equations have been first derived in the horizontal surface dimension d = 1
in [70,71], and by Su and Gardner [75] and Green and Naghdi [42] in the d = 2 case. These have been recently
mathematically justified in [1]. Concerning the development of numerical approximations, the Green-Naghdi
(GN) equations have only recently really received attention and various numerical methods have been intro-
duced, mostly in the surface horizontal d = 1 case, like Finite-Differences (FD) approaches [2], Finite-Volumes
(FV) [7, 14], WENO [10, 22], pseudo-spectral (PS) [35], (continuous) Finite-Elements (FEM) [39, 59, 60], FV
and FEM methods on hyperbolic relaxed approximating models [37,44] and discontinuous Galerkin approaches
(possibly mixed with FEM) in [26,28,33,52,63,72]. In the far less studied d = 2 case, several methods have been
developed on cartesian meshes: FD approaches [3,80,83], FV methods [50], hybrid FV-FD methods [66,73] and
WENO-FD [47], a PS method (in the rotating case) [64] and more recently a Hybridizable-DG method [69] and
a Central DG-FE method in [53]. Numerical approximations of GN equations on general unstructured meshes
are considered in [34].
We have also recently introduced in [47] some new families of enhanced GN models in order to optimize the
dispersive properties of the classical GN equations, while allowing for easier and faster numerical approxima-
tions. High-order fully discontinuous Galerkin formulations based on the Local Discontinuous Galerkin (LDG)
approach have been subsequently introduced for some of these models in [33] for the d = 1 case and [34] for
the d = 2 case. In these works, the GN equations are written as coupled nonlinear (pseudo) hyperbolic-elliptic
problems, relying on the (non-dispersive) NonLinear Shallow Water (NSW) equations [21] supplemented by ad-
ditional algebraic source terms, which fully accounts for the O(µ2) nonlinear dispersive correction. These source
terms are themselves computed as the solutions of a cascade of 2 auxiliary linear second order elliptic problems.
The computational cost of the solutions of these elliptic problems is significantly alleviated through the use of
a new reformulation of the regularizing second order operator that allows to decouple the time evolution of the
two directional components and to assemble and factorize the associated matrix in a pre-processing step, while
preserving the O(µ2) asymptotic consistency with the Euler equations.
We observe from these works that high-order discontinuous formulations are particularly well-suited for the
approximation of the solutions of nonlinear and weakly dispersive equations. Indeed, it is well known that DG
methods exhibit several well-known appealing features, such as local conservation, stability, the straightforward
ability to handle arbitrary high-order polynomial approximations, a great flexibility regarding the underlying
geometrical discretization or the compact stencils and minimal inter-element communications allowing highly
parallelizable implementations. Beyond these general features, DG formulations provide a general and uni-
fied discrete framework allowing to accurately approximate both the hyperbolic and elliptic parts of the GN
equations. Targeting nearshore oceanography large-scale applications, such a framework may allow to easily
handle adaptive algorithms, since refining or coarsening a grid can be achieved without enforcing the continuity
property commonly associated with the conforming elements. This appealing feature may be additionally ex-
ploited together with the use of higher order approximations in regular flow areas, e.g. far from wave breaking
and submersion areas. Moreover, the strong robustness of DG methods in the vicinity of sharp gradients also
appears to be well suited for the modelization of wave steepening and breaking, see for instance [68].
However, when compared with the FEM method, the DG formulations introduced in [34] require solutions of
unsymmetric systems of linear equations with more unknowns for the same grids and are therefore more expen-
sive in terms of computational cost and storage requirements. In particular, even if the use of the optimized GN
formulations of [47] greatly alleviate the computational cost usually associated with the classical GN equations,
there is still a significant computational overhead when compared with the solution of the classical hyperbolic
NSW equations. This overhead is mostly due to the resolution of the global elliptic problems associated with
the dispersive corrections. As an answer to this weakness, and in order to lower as much as possible this
computational overhead, we focus in this work on the development of a combined Hybridized Discontinuous
Galerkin (HDG) and RK-DG strategy. HDG methods, relying on the hybridization through the faces of the
elements in combination with a Schur complement strategy, were introduced in [18] in the framework of dif-
fusion problems. These methods were shown to share appealing features with the Raviart-Thomas (RT) and
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Brezzi-Douglas-Marini (BDM) mixed Finite-Elements methods, allowing equally efficient implementations and
achieving optimal order of convergence for all the computed fields and possibly super-convergence of some of
them, while retaining the inherent advantages of DG methods. Moreover, HDG methods are known to reduce
the number of globally coupled degrees of freedom, when compared to other DG methods, relying on the intro-
duction of intermediate face-based unknowns (the hybrid unknowns) in addition to the cell-based ones and the
elimination of the cell-based unknowns by a static condensation process.
During the last decades, HDG methods have been successfully adapted to a wide range of applications, see for
instance [16] for a review, and we develop, in the following, some new discrete formulations especially designed
for the optimized GN equations introduced in [47]. In these formulations, we combine:

]1 a RK-DG formulation to approximate the main flow variables through the resolution of the nonlinear
(pseudo)-hyperbolic part of the systems,

]2 symmetric HDG formulations to approximate the trace of the auxiliary/coupling variables issued from the
elliptic sub-problems written in mixed form.

Both elliptic and (pseudo)-hyperbolic problems are coupled through the local reconstruction of corresponding
in-cells auxiliary variables, which are then used to compute the non-hydrostatic/dispersive source terms through
integration on mesh elements. We emphasize that the approximations of auxiliary variables traces on the mesh
edges are obtained through the resolution of global sparse linear systems and that, for high-order polynomial
approximations (i.e. k ≥ 2), such an hybrid approach leads to a significant decreasing of the size of these systems
when compared to classical DG methods, like L-DG or IP-DG, as the resulting set of algebraic equations has
globally coupled degrees of freedom only on the skeleton of the computational mesh. The in-cell reconstruction
of these auxiliary variables may also explicitly benefit from a local element-by-element post-processing of the
potential variables in the mixed formulations to lower the order of polynomial approximation of the dispersive
correction, while preserving the observed order of convergence of the main flow variables. This conveniently
allows to further decrease the size of the corresponding global algebraic systems without loosing the expected
accuracy. Additionally, in comparison with [34], the considered elliptic sub-problems rely on a slightly modified
formulation of the dispersive operator that leads to symmetric formulations for both local and global problems
in the HDG formulations. Such an hybrid formulation is also extended to a more complex family of three pa-
rameters optimized GN equations, allowing to consider a wider window of application with respect to frequency
dispersion properties. Note that we purposely avoid to consider in this work the additional issues of vorticity
and flows with wave-current interactions, as well as wave breaking and occurrence of dry areas. These particular
topics will be addressed in subsequent works.

The remainder of this work is organized as follows: we briefly recall the considered mathematical models together
with the associated initial-boundary problems and the corresponding notations in the next section. Section §3
is devoted to the introduction of the discrete settings and discrete formulations. The proposed approach is
then validated in the last section, with convergence studies and comparisons with data taken from several
experiments, with a particular attention paid to the study of waves refraction, diffraction and focusing over
submerged shoals.

2 The physical models

Let us denote by x = (x, y) ∈ Rd the horizontal variables, where d = 2 denotes the horizontal dimension, z the
vertical variable and t the time variable. In the following, ζ(t,x) describes the free surface elevation with respect
to its rest state, H0 is a reference depth, −H0 + b(x) is a parametrization of the bottom and H := H0 + ζ − b is
the water depth, as shown on Figure 1. Denoting by Uhor the horizontal component of the velocity field in the
fluid domain, we define the vertically averaged horizontal velocity v = (v1, v2)ᵀ ∈ Rd as

v(t,x) =
1

H

∫ ζ

−H0+b

Uhor(t,x, z)dz,

and we denote by q = Hv the corresponding horizontal momentum.
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Figure 1: Free surface flow description: main notations

2.1 One parameter optimized equations

Following [7], the original GN equations may be written as follows:{
∂tζ + ∇ · (Hv) = 0,[
I + T [H, b]

]
(∂t(Hv) + ∇ · (Hv ⊗ v)) + gH∇ζ +HQ1[H, b](ζ,v) = 0, (3)

where the operators T [H, b] and Q1[H, b] are defined as follows for all regular enough Rd-valued function w:

T [H, b]w = R1[H, b](∇ ·w) +R2[H, b](∇b ·w), (4)

Q1[H, b](w) = −2R1[H, b](∂1w · ∂2w
⊥ + (∇ ·w)2) +R2[H, b](w · (w ·∇)∇b), (5)

(here ∂1 and ∂2 denote space derivatives along the two horizontal directions and for a given R2-valued function
w = (w1, w2)ᵀ, we have w⊥ = (−w2, w1)ᵀ) with, for all smooth enough scalar-valued function w,

R1[H, b]w = − 1

3H
∇(H3w)− H

2
w∇b, (6)

R2[H, b]w =
1

2H
∇(H2w) + w∇b. (7)

We focus in this work on the asymptotically equivalent and computationally efficient formulation of the GN
equations, introduced in [47], called GN-LM equations as a shortcut in the following. Defining the water depth
at rest, which does not depend on time:

Hb = H0 − b = H − ζ,

the GN-LM equations of [47] read as follows:{
∂tζ + ∇ · (Hv) = 0,[
1 +T[Hb]

]
(∂t(Hv) + ∇ · (Hv ⊗ v)) + gH∇ζ +Q[H, b](ζ,v) = 0, (8)

where the linear operator T[Hb] is defined as follows for all smooth enough R-valued function w:

T[Hb]w = −C[Hb]
w

Hb
, (9)

with

C[Hb]w = ∇ · (δ[Hb]∇w), and δ[Hb] =
1

3
(Hb)3, (10)

and
Q[H, b](ζ,v) = H(Q1[H, b](v) + gQ2[H, b](ζ)) +Q3[H,Hb]

([
1 +T[Hb]

]−1
(gH∇ζ)

)
, (11)

is a second order nonlinear operator with

Q2[H, b](ζ) = −H(∇⊥H ·∇)∇⊥ζ − 1

2H
∇(H2∇b ·∇ζ) +

(H
2

∆ζ − (∇b ·∇ζ)
)
∇b, (12)
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and for all smooth enough R2-valued function w

Q3[H,Hb]w =
1

6
∇w∇(H2 − (Hb)2) +

H2 − (Hb)2

3
∆w − 1

6
∆(H2 − (Hb)2)w. (13)

We also recall that the linear dispersion properties of (8) can be improved in several ways by adding some terms
of order O(µ2) to the momentum equation, which consequently do not affect the accuracy of the model. In [47],
an asymptotically equivalent enhanced family of models parametrized by α > 0, and referred to as α-GN-LM
equations in the following, is given by

∂tζ + ∇ · (Hv) = 0,[
1 + αT[Hb]

](
∂t(Hv) + ∇ · (Hv ⊗ v) +

α− 1

α
gH∇ζ

)
+

1

α
gH∇ζ +Qα[H, b](ζ,v) = 0, (14)

with
Qα[H, b](ζ,v) = H(Q1[H, b](v) + gQ2[H, b](ζ)) +Q3[H,Hb]

([
1 + αT[Hb]

]−1
(gH∇ζ)

)
. (15)

Remark 1. We actually show in [47] that it is indeed possible to replace the inversion of I+αT [H, b] occurring
in (3) by the inversion of 1 + αT[Hb], where T[Hb] depends only on the fluid at rest (i.e. ζ = 0), while keeping
the asymptotic O(µ2) order of the expansion. 1+αT[Hb] has a simplified scalar structure, i.e. it can be written
in matricial form as (

1− α∇ · (δ[Hb]∇ 1
Hb ·) 0

0 1− α∇ · (δ[Hb]∇ 1
Hb ·)

)
. (16)

From a numerical viewpoint, this structure allows to compute each component of the discharge q separately,
and to alleviate the computational cost associated with the dispersive correction of the model, as the discrete
version of 1 + αT[Hb] may be assembled and factorized once and for all, in a preprocessing step.

Remark 2. Another difference with (3) is the presence of the modified quadratic term Qα[H, b], where no
computation of third order derivative is needed. The price to pay is the inversion of extra linear systems,

through the computation of Q3[H,Hb]
([

1 + αT[Hb]
]−1

(gH∇ζ)
)

. However, this extra computational cost is

largely off-set by the gain obtained by using the time independent scalar operator T[Hb], as shown in [47].

Assuming that the water depth at rest Hb is bounded away from 0, we see that for any sufficiently smooth
scalar-valued function v:

(1+αT[Hb])v = β[Hb]
v

Hb
−∇ ·

(
δα[Hb]∇

( v

Hb

))
, (17)

with
δα[Hb] := αδ[Hb], β[Hb] := Hb. (18)

Defining the total free surface elevation η = H + b, denoting W = (η,q)ᵀ ∈ R1+d the corresponding collection
of primal variables, introducing two novel auxiliary Rd-valued variables d and m, and provided that W, d,m are
regular enough, the enhanced model (14) can be conveniently rewritten as

∂tW + ∇ · F(W, b) + Dα(W, d) = B(W,∇b), (19a)

β[Hb]d−∇ ·
(
δα[Hb]∇d

)
=

1

α
gH∇η + Q̃α[H, b](W,m), (19b)

β[Hb]m−∇ ·
(
δα[Hb]∇m

)
= gH∇η, (19c)

with

F(W, b) =

 qᵀ

q⊗ q

η − b +
1

2
g(η2 − 2ηb)I

 , (20)

B(W,∇b) = (0,−gη∇b)
ᵀ
, Dα(W, d) =

(
0, Hbd− 1

α
gH∇η

)ᵀ

,

Q̃α[H, b](W,m) = H(Q1[H, b](v) + gQ2[H, b](ζ)) +Q3[H, b](Hbm), (21)

where (19b) and (19c) should be respectively intended as the definition of the auxiliary variables d and m and I
refers to the second order identity tensor. This last formulation clearly highlights that the dispersive correction
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operator D(W, d) only acts as a source term in the momentum conservation equation, and is obtained as the
solution of a cascade of auxiliary second-order elliptic sub-problems.
We recall that the particular form of the second component of the nonlinear flux F(W, b) comes from the pre-
balanced reformulation of the model, explicited in [54] for the case d = 1 and [31] for the case d = 2, using the
following splitting of the hydrostatic pressure term:

gh∇ζ =
1

2
g∇(η2 − 2ηb) + gη∇b. (22)

The use of the pre-balanced formulation allows to straightforwardly construct a discrete formulation that exactly
preserves motionless steady states, as detailed in §3.4.2. It also helps to slightly reduce the number of quadrature
nodes needed to exactly achieve such a preservation.

Remark 3. Considering the case of bounded connected domains Ω ⊂ Rd, with d = 2, with boundary ∂Ω
and outgoing unit normal vector n on ∂Ω, the formulation (19) highlights the need to add suitable boundary
conditions on W|∂Ω but also on d|∂Ω and m|∂Ω to be well-defined. We only consider one type of boundary
conditions here: reflective/solid-wall boundary conditions. This is achieved by applying mixed homogeneous
Dirichlet/ Neumann conditions on W (see for instance [26]) and by enforcing homogeneous Neumann boundary
conditions on (19b) and (19c), as follows:

∇η · n = 0, on ∂Ω, (23a)

q = 0, on ∂Ω, (23b)

(δα[Hb]∇d)n = 0, on ∂Ω, (23c)

(δα[Hb]∇m)n = 0, on ∂Ω. (23d)

Basically, a vertical wall at the boundary may be modeled only through the assumption that there is no flux
at the corresponding boundary, and thus only enforcing q = 0 at the corresponding boundary. It is however
generally observed and admitted that the reflection at a vertical wall is equivalent to the head-on collision of
two counter-propagating solitary waves of the same shape. In practice, during the interaction of a solitary wave
with a wall, the normal component of the derivative ∇η on the boundary is indeed negligible, and the additional
homogeneous conditions (23c) and (23d) may be introduced relying on similar symmetry argument. Although
not rigorously justified, such a choice for the reflective boundary conditions is numerically validated in §4.

Remark 4. Anticipating on the construction of the combined HDG-RKDG formulations, we observe that an
equivalent mixed formulation for the elliptic sub-problems can be straightforwardly obtained as follows:

∂tW + ∇ · F(W, b) + Dα(W, d) = B(W,∇b), (24a)

δα[Hb]−1Sd + ∇d = 0, (24b)

β[Hb]d−∇ ·Sd =
1

α
gH∇η + Q̃α[H, b](W,m), (24c)

δα[Hb]−1Sm + ∇m = 0, (24d)

β[Hb]m−∇ ·Sm = gH∇η, (24e)

in which Sd and Sm are second-order tensor fluxes respectively associated with the potentials d,m. Note that
the boundary conditions (23c)-(23d) may be reformulated as

Sdn = 0, on ∂Ω, (25a)

Smn = 0, on ∂Ω. (25b)

Remark 5. The original GN equations (3) may be supplemented by an energy conservation property, which
may be formulated as follows, for a flat bottom:

d

dt
E(t) = 0, E(t) :=

1

2

∫
R
gζ2 +H|v|2 +

1

3
H|H∇ · v|2 dx. (26)

We emphasize that model (8), as well as optimized model (14), only preserve this energy up to O(µ2) accuracy.

Remark 6. As pointed out in [47], a simpler model that avoids the resolution of an extra linear system could

be obtained by replacing Q3[H,Hb]
([

1 + αT[Hb]
]−1

(gH∇ζ)
)

in (15) by Q3[H,Hb] (gH∇ζ), keeping the same

O(µ2) accuracy. This would however leads to (linear) instabilities. This is due to the fact that Q̃3(ζ) contains
third order derivatives in ζ that can create high frequencies instabilities. We refer to [47] for more details on
this issue.
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2.2 Three parameters optimized equations

A three parameters optimized GN model has also been introduced in [47]. It is indeed possible to improve the
dispersive properties of the previous model without modifying its asymptotic accuracy. This can be achieved by
introducing a set of three parameters α, θ, γ and considering the following change of variables for the velocity:

∀θ ≥ 0, v :=

(
1− θ

H
C[H]

)
vθ,

leading to the following set of equations:
[
1 + γT[Hb]

](
∂tη + ∇ · (Hvθ)

)
− θ∇ ·

(
C[H]vθ

)
= 0,[

1 + α(1 + θ)T[Hb]
](

∂t(Hvθ) + ∇ · (Hvθ ⊗ vθ) +
α− 1

α
gH∇η

)
+

1

α
gH∇η +Qα,θ[H, b](η,v

θ) = 0,

(27)
with

Qα,θ[H, b](η,v) = H(Q1[H, b](v) + gQ2[H, b](η))

+ (1 + θ)Q3[H,Hb]
([

1 + α(1 + θ)T[Hb]
]−1

(gH∇η)
)

+ θQ4[H](v), (28)

and

Q4[H]v := −∇ · (C[H]v) v +
2

3
H2∇ · (Hv)∆v +H∇(H∇ · (Hv)) ·∇v

+
2

3

∑
k=1,2

H3(∇vk ·∇)∂kv +Hvk
(
∇ (H∂kH) ·∇

)
v.

(29)

This model is referred to as (α, θ, γ)-GN-LM equations in the following. Taking θ = γ = 0, (27) coincides with
(14). It is possible to find optimized values of (α, θ, γ) to improve the dispersion properties of the equations,
see the next section. In many practical configurations, when higher harmonics are released and larger values of
relative depth |k|H0 are reached, working with the (α, θ, γ)-GN-LM equations may help to improve the quality
of the flow description with a better description of higher order harmonics interactions. Again, an equivalent
mixed formulation can be straightforwardly obtained:

∂tWθ + ∇ · F(Wθ, b) + Dα,θ,γ(Wθ, χ, d) = B(Wθ, b), (30a)

δγ [Hb]−1gχ + ∇χ = 0, (30b)

β[Hb]χ−∇ · gχ = θ∇ ·
(
C[H]vθ

)
, (30c)

δα,θ[H
b]−1Sd + ∇d = 0, (30d)

β[Hb]d−∇ ·Sd =
1

α
gH∇η + Q̃α,θ[H, b](W,m), (30e)

δα,θ[H
b]−1Sm + ∇m = 0, (30f)

β[Hb]m−∇ ·Sm = gH∇η, (30g)

in which gχ is a first-order tensor flux associated with the scalar potential χ and

Dα,θ,γ(Wθ, χ, d) =

(
Hbχ,Hbd− 1

α
gH∇η

)ᵀ

.

Considering the case of an open bounded connected domain Ω ⊂ R2, with boundary ∂Ω and solid-wall boundary
conditions, these equations may be supplemented with the following set of boundary conditions:

∇η · n = 0, on ∂Ω, (31a)

q = 0, on ∂Ω, (31b)

gχ · n = 0, on ∂Ω, (31c)

Sdn = 0, on ∂Ω, (31d)

Smn = 0, on ∂Ω. (31e)
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2.3 Dispersion properties

As already highlighted in our previous studies, the presence of the operator (1 + αT[Hb])−1 for (14) and
(1 + α(1 + θ)T[Hb])−1, (1 + γT[Hb])−1 for (27) make these models very robust with respect to high frequency
perturbations. Considering, for the sake of simplicity, the case of flat bottom, we investigate the linear behavior
of small perturbation (ζ̇, V̇ ) to the motionless constant state solution (ζ = 0,v = 0). The linear equations that
govern these perturbations are

[
1− γ

3
H2

0 ∆
]
∂tζ̇ +H0∇ · v̇ −

θ

3
H3

0∇ · (∇ ·∇v̇) = 0,[
1− α(1 + θ)

3
H2

0 ∆
](
∂tv̇ +

α− 1

α
g∇ζ̇

)
+

1

α
g∇ζ̇ = 0,

(32)

Looking for plane wave solutions of the form (ζ0,v0)ei(k·x−ωt) to this linearized system, one finds the following
dispersion relation

ωα,θ,γ(|k|)2 = gH0|k|2
(1 + (α−1)(θ+1)

3 (|k|H0)2)(1 + θ+γ
3 (|k|H0)2)

(1 + γ
3 (|k|H0)2))(1 + α(θ+1)

3 (|k|H0)2)
. (33)

We observe of course that setting θ = γ = 0 in (33) leads to the dispersion relation associated to the linearized
version of (14)

ωα(|k|)2 = gH0|k|2
1 + α−1

3 (|k|H0)2

1 + α
3 (|k|H0)2

, (34)

while additionally setting α = 1 allows to recover the relation associated to the classical GN equations (3).
These relations have to be compared with the one coming from the linear Stokes theory, (see for instance [45]
for a full derivation from the Zakharov-Craig-Sulem formulation of the free surface water waves equations):

ωS(|k|)2 = g|k| tanh(H0|k|). (35)

For the applications considered here, we are interested in obtaining a model with the widest possible range of
validity and the discussion concerning the choices of (α, θ, γ) that improve the dispersive properties of the model
follows the usual procedure, see for instance in [7, 15, 62]. For the one parameter α-GN-LM equations (14), we
take α = 1.159 throughout this article.
Concerning model (27), the two additional parameters offer the opportunity to optimize further the dispersive
properties. Optimizing the errors in term of phase and group velocities, we show on Fig.2 the ratio of GN phase
velocities on Stokes phase velocity Cα,θ,γp /CSp and the ratio of GN group velocities on Stokes group velocity

Cα,θ,γg /CSg with respect to the values of |k| for three different sets of parameters: (α, θ, γ) = (1, 0, 0) (the original
GN equations), (α, θ, γ) = (1.159, 0, 0) (the α-GN-LM equations) and (α, θ, γ) = (1.018, 0.191, 0.097). We see
that this last set of parameters offers very good approximation properties up to kH0 = 10 for the phase velocity
and kH0 = 6 for the group velocity with an error smaller than 2%.

sever

Remark 7. Several techniques are available to improve the linear frequency dispersion of the models. We
choose here to use a classical trick consisting in trading a time derivative of v for a space derivative of ζ in
the higher order terms, together with changing the choice of the velocity unknown. Note that we did not find
any modified model with two parameters that allows to improve the dispersive properties of the one-parameter
model.

3 The discrete settings

3.1 Domain partitionning

Let Ω ⊂ Rd, with d = 2, denotes an open bounded connected polygonal domain with boundary ∂Ω. We
consider a geometrically conforming partition Th of Ω defined as a finite collection of |Th| nonempty open
disjoint triangular elements T of boundary ∂T such that Ω =

⋃
T∈Th

T and we set ∂Th = {∂T, T ∈ Th}. We
denote |T | the area of T and the partition is characterized by the meshsize h := maxT∈Th

hT , where hT is the

8
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Figure 2: Dispersion relations of optimized linearized GN equations: normalized phase velocities (top) and
group velocities with respect to wave numbers.

diameter of the element T . For all T ∈ Th, we denote by nT the unit outward normal on ∂T , and by xT its
barycenter.
Mesh faces are collected in the set Fh, which is partitioned as Fh = F 0

h ∪F ∂
h , where F 0

h collects the internal
faces (also called interfaces, i.e. there exist T1, T2 ∈ Th such that F ⊂ ∂T1 ∩ ∂T2) and F ∂

h the boundary faces
(i.e. there exists T ∈ Th such that F ⊂ ∂T ∩∂Ω). The length of a face F ∈ Fh is denoted by |F |, the barycenter
of a face F ∈ Fh is denoted by xF , and we let hF denote the minimum length of the mesh elements to which
F belongs. For all T ∈ Th, FT := {F ∈ Fh | F ⊂ ∂T} denotes the set of faces belonging to ∂T and, for all
F ∈ FT , nTF is the unit normal to F pointing out of T . For any internal face F ∈ F 0

h , we choose an arbitrarily
oriented but fixed unit normal nF , and we set nF := nTF for all boundary face F ⊂ ∂T ∩ ∂Ω. Additionally, Th

is partitioned as Th = T 0
h ∪T ∂

h , with T 0
h = {T ∈ Th, FT ∩F ∂

h = ∅} and T ∂
h = {T ∈ Th, FT ∩F ∂

h 6= ∅}.

3.2 Functional and interpolation setting

Given an integer polynomial degree k ≥ 0, we consider the following discontinuous finite elements spaces:

P kh = Pk(Th) :=
{
v ∈ L2(Th) | v|T ∈ Pk(T ) ∀T ∈ Th

}
, (36)

where Pk(T ) denotes the space of bivariate polynomials in T of total degree at most k, and

Pk
h :=

{
v ∈ (L2(Th))d | v|T ∈ (Pk(T ))d ∀T ∈ Th

}
, (37)

Pk
h :=

{
V ∈ (L2(Th))d×d | V |T ∈ (Pk(T ))d×d ∀T ∈ Th

}
, (38)

In addition, we introduce finite element spaces on the (interior) mesh skeleton:

Mk
h :=

{
µ ∈ L2(F 0

h ) | µ|F ∈ Pk(F ) ∀F ∈ F 0
h

}
, (39)

which consists of functions which are continuous inside the interfaces, but discontinuous at their borders, and

Mk
h :=

{
µ ∈ (L2(F 0

h ))d | µ|F ∈ (Pk(F ))d ∀F ∈ F 0
h

}
. (40)

We define the following inner products(
v, w

)
Ω

:=

∫
Ω

v w,
(
v, w

)
T

:=

∫
T

v w,
〈
v, w

〉
∂T

:=

∫
∂T

v w ∀T ∈ Th,
〈
v, w

〉
F

:=

∫
F

v w ∀F ∈ Fh,

9



for smooth enough scalar-valued functions v, w respectively defined on Ω, T , ∂T and F . Similar inner products
are also respectively defined for smooth enough vector-valued functions v,w:(
v,w

)
Ω

:=

∫
Ω

v ·w,
(
v,w

)
T

:=

∫
T

v ·w,
〈
v,w

〉
∂T

:=

∫
∂T

v ·w ∀T ∈ Th,
〈
v,w

〉
F

:=

∫
F

v ·w ∀F ∈ Fh,

and for second order tensor functions V ,W :(
V ,W

)
Ω

:=

∫
Ω

V :W ,
〈
V ,W

〉
F

:=

∫
F

V :W ∀F ∈ Fh,

(
V ,W

)
T

:=

∫
T

V :W ,
〈
V ,W

〉
∂T

:=

∫
∂T

V :W ∀T ∈ Th.

We also define the mesh elements inner products as(
v, w

)
Th

:=
∑
T∈Th

(
v, w

)
T
,
(
v,w

)
Th

:=
∑
T∈Th

(
v,w

)
T
,
(
V ,W

)
Th

:=
∑
T∈Th

(
V ,W

)
T
,

for v, w ∈ L2(Th), v,w ∈ (L2(Th))d, V ,W ∈ (L2(Th))d×d, and the mesh elements boundaries inner products
as 〈

µ, ν
〉
∂Th

:=
∑
T∈Th

〈
µ, ν

〉
∂T
,
〈
µ,ν

〉
∂Th

:=
∑
T∈Th

〈
µ,ν

〉
∂T
,

for µ, ν ∈ L2(∂Th), µ,ν ∈ (L2(∂Th))d. The following shortcuts are also defined:〈
µ,ν · n

〉
∂Th

:=
∑
T∈Th

〈
µ,ν · nT

〉
∂T
,
〈
Vn,ν

〉
∂Th

:=
∑
T∈Th

〈
VnT ,ν

〉
∂T
,

〈
ν,Vn

〉
∂T 0

h

:=
∑
T∈T 0

h

〈
ν,VnT

〉
∂T

+
∑
T∈T ∂

h

∑
F∈FT∩F0

h

〈
ν,VnTF

〉
F
,

〈
ν,Vn

〉
∂T ∂

h

:=
∑
T∈T ∂

h

∑
F∈FT∩F∂

h

〈
ν,VnTF

〉
F
,

for µ ∈ L2(∂Th), ν ∈ (L2(∂Th))d, V ∈ (L2(∂Th))d×d (these two expressions respectively refers to inner products
on interfaces and boundary mesh edges). For all T ∈ Th, we denote pkT the L2-orthogonal projector onto Pk(T )
and pkTh

the L2-orthogonal projector onto Ph. Applying pkT or pkTh
to Rd-valued functions, we respectively define

L2-orthogonal projectors onto (Pk(T ))d and Ph.
Similarly, we denote I kT the element nodal interpolation into Pk(T ). The corresponding nodal distributions
in elements and edges are approximate optimal nodes introduced in [11], which have better approximation
properties than equidistant distributions. The global I kTh

interpolation into Ph is obtained by gathering the

local interpolating polynomials defined on each elements. Applying I kT or I kTh
to Rd-valued functions, we

respectively define interpolations onto (Pk(T ))d and Pk
h.

For a given final computational time tmax > 0, we consider a partition (tn)0≤n≤N of the time interval [0, tmax]
with t0 = 0, tN = tmax and tn+1 − tn =: ∆tn. More details on the computation of the time step ∆tn and on
the time marching algorithms are given in §3.4.3. For any sufficiently regular scalar-valued function of time w
and Rd-valued function w, we let wn := w(tn) and wn := w(tn).

3.3 Discrete gradient, divergence and Laplace operators

Following [29], we define the jump and average operators such that, for a sufficiently smooth function ϕ and an
interior vertex F ∈ F i

h such that F ⊂ ∂T1 ∩ ∂T2 for distinct mesh elements T1 and T2,

JϕK := ϕ|T1
− ϕ|T2

, {{ϕ}}F :=
1

2
(ϕ|T1

+ ϕ|T2
), (41)

In what follows, and when no confusion can arise, we omit the subscript F from both JvKF and {{v}}F .
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To discretize the linear and nonlinear operators that appear in our models, we need discrete counterparts of
the gradient, divergence and of the Laplace operators applied to discontinuous polynomial functions. For any
vh ∈ Pk(Th), we define the following global lifting of the jumps of vh, see for instance [25]):

Rkh(JvhK) :=
∑
F∈Fh

rkF (JvhK),

where, for all F ∈ Fh, the local lifting operator rkF (JvhK) ∈ Pk
h is defined as the unique solution of the following

problem: (
rkF (JvhK),ψh

)
Ω

=
〈
JvhK, {{ψh}}nF

〉
F

∀ψh ∈ Ph.

Following [25, Section 2.3], we define the discrete gradient operator Gkh : P kh → Pk
h such that, for all vh ∈ P kh ,

Gkh(vh) := ∇hvh −Rkh(JvhK). (42)

This gradient has better asymptotic consistency properties than the discontinuous (element-by-element) gra-
dient ∇h, as it accounts for the jumps of its argument through the second contribution; see [24, Theorem
2.2] for further insight into this point. In a similar way, a discrete gradient operator Gkh : Pk

h → Pk
h may

also be straightforwardly defined for all Rd-valued function vh ∈ Pk
h with applying (42) on each scalar di-

rectional component of vh, together with a discrete orthogonal gradient Gk,⊥h : P kh → Pk
h such that, for all

vh ∈ P kh , Gk,⊥h (vh) := Gkh(vh)⊥. For the sake of simplicity, for vh ∈ P kh , we will denote by ∇2
hvh the second order

tensor obtained from the double application of the discrete gradient Gkh.
For any integer k ≥ 1, we also define the discrete divergence operator Dkh : Pk

h → P kh such that, for all vh ∈ Pk
h

with cartesian component (vh,i)1≤i≤d,

Dkh(vh) :=

d∑
i=1

(
∇hvh,i −Rkh(Jvh,iK)

)
· ei,

where ei denotes the ith vector of the cartesian basis on Rd. The discrete divergence operator enjoys consistency
property similar to the ones satisfied by the previous discrete gradient; see [24, Proposition 6.28].
We also introduce the discrete Laplace operator Lkh : P kh → P kh such that, for all vh ∈ P kh ,

Lkh(vh) = Dkh(Gkh(vh)).

Note that, by construction, we also have Lkh(vh) = Tr(∇2
h(vh)). In a similar way, a discrete Laplace operator

Lkh : Pk
h → Pk

h is defined for any Rd-valued function uh ∈ Pk
h by applying the discrete Laplace operator Lkh on

each scalar component of uh. It can be proved that, for any v ∈ H1
0 (Ω) ∩Hk+1(Ω), it holds

inf
vh∈Pk(Th)

‖∇v − Gkh(vh)‖ . hk, inf
vh∈Pk

h

‖∇ · v −Dkh(vh)‖ . hk, inf
vh∈Pk(Th)

‖∆v − Lkh(vh)‖ . hk−1,

where a . b means a ≤ Cb with real number C > 0 independent of the meshsize h.

3.4 The discrete formulations

3.4.1 A combined semi-discrete in space HDG-RKDG formulation

We consider in the following (k, r) ∈ N2, and we assume that k ≥ 2 and r ∈ {k − 1, k}. The topography
parameterization b and the associated water depth at rest Hb are approximated through high-order polynomial
interpolation respectively as bh = I kTh

(b) and Hb
h = I kTh

(Hb), allowing to compute the required approximations

Gkh(bh), ∇2
hbh and ∇3

hbh (third order tensor associated with third order discrete derivatives of bh), as well as
Gkh(Hb

h) and Lkh(Hb
h).

The semi-discrete in space combined HDG-DG approximation of (19) written in the mixed formulation (24)
reads as follows: find Wh = (ηh,qh) ∈ P kh ×Pk

h, (Sd
h, dh, d̂h) ∈Pr

h×Pr
h×M r

h , (Sm
h ,mh, m̂h) ∈Pr

h×Pr
h×M r

h

such that:

11



(
∂tWh, ϕh

)
Th

+
(
AF
α (Wh), ϕh

)
Th

= 0, ∀ϕh ∈ P kh , (43a)

(
δα[Hb

h]−1Sd
h,Φh

)
Th
−
(
dh,∇ ·Φh

)
Th

+
〈
d̂h,Φhn

〉
∂T 0

h

+
〈
dh,Φhn

〉
∂T ∂

h

= 0, ∀Φh ∈Pr
h, (43b)(

β[Hb
h]dh,ψh

)
Th

+
(
∇ ·Sd

h,ψh
)
Th

+
〈
(Ŝd

h −Sd
h)n,ψh

〉
∂Th

=
(
Q̃

F
α,h,ψh

)
Th
, ∀ψh ∈ Pr

h, (43c)〈
Ŝd
hn,νh

〉
∂T 0

h

= 0, ∀νh ∈M r
h , (43d)

Ŝd
hnT :=

{
Sd
hnT + S∂T (dh − d̂h) on FT ∩F 0

h ,
0 on FT ∩F ∂

h ,
∀T ∈ Th, (43e)

(
δα[Hb

h]−1Sm
h ,Ψh

)
Th
−
(
mh,∇ ·Ψh

)
Th

+
〈
m̂h,Ψhn

〉
∂T 0

h

+
〈
mh,Ψhn

〉
∂T ∂

h

= 0, ∀Ψh ∈Pr
h, (43f)(

β[Hb
h]mh,φh

)
Th

+
(
∇ ·Sm

h ,φh
)
Th

+
〈
(Ŝm

h −Sm
h )n,φh

〉
∂Th

=
(
gHhGkh(ηh),φh

)
Th
, ∀φh ∈ Pr

h, (43g)〈
Ŝm
h n,µh

〉
∂T 0

h

= 0, ∀µh ∈M r
h , (43h)

Ŝm
h nT :=

{
Sm
h nT + S∂T (mh − m̂h) on FT ∩F 0

h ,
0 on FT ∩F ∂

h ,
∀T ∈ Th. (43i)

where:

(i) (43a) is a DG semi-discrete formulation associated with (19a) and the nonlinear operator AF
α acting on

any admissible discontinuous polynomial approximation Wh ∈ P kh ×Pk
h is defined by(

AF
α (Wh), ϕh

)
Th

:=−
(
F(Wh, bh),∇ϕh

)
Th

+
〈
F̂n, ϕh

〉
∂Th

+
(
DF
α,h, ϕh

)
Th
−
(
B(Wh, bh), ϕh

)
Th
, ∀ϕh ∈ P kh ,

(44)

where F̂n ∈ (Pk(∂Th))d+1 is such that for all T ∈ Th, F̂n|∂T is a numerical approximation of the trace
of the normal component of the interface flux F(Wh, bh)nT on ∂T , whose precise expression will be given

in Section 3.4.2 below, and DF
h is an in-cells discontinuous polynomial approximation of the dispersive

correction D(W, d), defined by:

(
DF
α,h, ϕh

)
Th

:=

(
0,

(
Hb
hd

F
h −

1

α
gHhGkh(ηh), ϕh

)
Th

)ᵀ

, ∀ϕh ∈ P kh , (45)

the definition of dFh is given below,

(ii) (43b)→(43e) and (43f)→(43i) are HDG discrete formulations respectively associated with the elliptic sub-
problems written in mixed form (24b)→(30e) and (24d)→(24e). These HDG problems allow to compute
polynomial approximations of the traces of the potentials d and m on the mesh interior edges. More
precisely, (43e) and (43i) should be intended as the definitions of the trace of the normal component

of the numerical fluxes Ŝd
hnT and Ŝm

h nT on ∂T , for all T ∈ Th, while (43d) and (43h) are transmission

equations enforcing the fact that the traces of the normal numerical fluxes Ŝd
h and Ŝm

h are single valued on
internal faces. These two sets of transmission equations allow to set-up the global problems respectively
leading to the computation of (d̂h, m̂h) ∈ (M r

h)2. In a second time, (43b)-(43c) and (43f)-(43g) are local
element-by-element problems defined with (Sd

h, dh) and (Sm
h ,mh) as unknowns, once the approximations

of the traces on the mesh edges d̂h and m̂h are known.
Note that this formulation only accounts for the case of homogeneous Neumann boundary conditions
(23) corresponding to global solid-wall boundary conditions on all boundary edges. Although not used
in this paper, the case of (one-directional) periodic boundary conditions may also be straightforwardly
implemented by enforcing accordingly the continuity of the potential and fluxes through the connected
(periodic) boundaries.

(iii) the nonlinear discrete operator Q̃F
α,h occurring in (43c) aims at approximating the nonlinear term (21) as

follows:

Q̃
F
α,h :=

1

α
gHhGkh(ηh) +HhQ1,h[Hh, bh](pkTh

(
qh
Hh

)) + gHhQ2,h[Hh, bh](ηh) +Q3,h[Hh, H
b
h](mF

h ),
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with for all uh ∈ Pk
h:

HhQ
h
1 [Hh, bh](uh) := 2H2

hGkh(Hh)
(
(Gkh(uh)ᵀe1) · (Gkh(u⊥h )ᵀe2) +Dkh(uh)2

)
+

2

3

(
H3
h

(
Gkh(Gkh(uh)ᵀe1)(Gkh(u⊥h )ᵀe2)

)
+
(
Gkh(Gkh(u⊥h )ᵀe2)(Gkh(uh)ᵀe1)

)
+ 2Dkh(uh)Gkh(Dkh(uh))

)
+H2

h

(
(Gkh(uh)ᵀe1) · (Gkh(u⊥h )ᵀe2) +Dkh(uh)2

)
Gkh(bh)

+
1

2
H2
h

(
2Gkh(uh)∇2

hbhuh + (∇3
hbhuh)uh

)
+Hh

(
uh · (uh · Gkh)Gkh(bh)

)
Gkh(bh)

+Hh

(
uh · (uh · Gkh)Gkh(bh)

)
Gkh(Hh), (46)

for all ζh ∈ P kh :

HhQ2,h[Hh, bh](ζh) :=−H2
hGkh

(
Gk,⊥h (ζh)

)ᵀGk,⊥h (Hh)−HhGkh(Hh)
(
Gkh(bh) · Gkh(ζh)

)
− 1

2
H2
h

(
∇2
hζhGkh(bh) + ∇2

hbhGkh(ζh)
)

+Hh

(Hh

2
Lkh(ζh)− Gkh(bh) · Gkh(ζh)

)
Gkh(bh), (47)

and:

Q3,h[Hh, H
b
h](mF

h ) :=
2

6

(
mF
h Gkh(Hb

h)ᵀ +Hb
hδα[Hb]−1Sm

h

) (
HhGkh(Hh)−Hb

hGkh(Hb
h)
)

+
1

3

(
H2
h − (Hb

h)2
) (
Lkh(Hb

h)mF
h +Hb

hDkh(δα[Hb]−1Sm
h ) + 2δα[Hb]−1Sm

h Gkh(Hb
h)
)

− 2

6

(
Gkh(Hh) · Gkh(Hh) + Lkh(Hh)− Gkh(Hb

h) · Gkh(Hb
h)− Lkh(Hb

h)
)
Hb
hm

F
h . (48)

(iv) dFh ∈ Pk
h and mF

h ∈ Pk
h are discontinuous polynomial approximations of the auxiliary variables d and

m (see (19b) (19c)) computed from the trace approximations d̂h ∈ M r
h and m̂h ∈ M r

h and which exact
definition depends on the chosen value of r ∈ {k − 1, k}. More precisely:

− if r = k, we set dFh = dh and mF
h = mh,

− if r = k−1, dFh and mF
h are defined as locally post-processed super-convergent polynomial approxima-

tions of d and m respectively obtained from (Sd
h, dh) ∈Pk−1

h ×Pk−1
h and (Sm

h ,mh) ∈Pk−1
h ×Pk−1

h

relying on the optimal convergence of both the primal and the dual variables, see for instance [19]
and [74]. These are respectively defined as the unique elements of Pk

h satisfying respectively the local
problems (

∇dFh ,∇ψh
)
T

= −
(
δα[Hb

h]−1Sd
h,∇ψh

)
T
, ∀ψh ∈ Pk

h, ∀T ∈ Th, (49a)(
dFh , 1

)
T

=
(
dh, 1

)
T
, ∀T ∈ Th, (49b)

and (
∇mF

h ,∇ψh
)
T

= −
(
δα[Hb

h]Sm
h ,∇ψh

)
T
, ∀ψh ∈ Pk

h, ∀T ∈ Th, (50a)(
mF
h , 1

)
T

=
(
mh, 1

)
T
, ∀T ∈ Th. (50b)

(v) S∂T ∈ (P0(∂T ))d×d is a second order tensor consisting of stabilization parameters for the HDG formulation.
In the following, we simply set S∂T = I, ensuring both stability and optimal convergence rates for all the
computed fields, see for instance [17].

Remark 8. From a practical viewpoint, the two sets of transmission equations through internal faces (43d)
and (43h) lead to the same square and symmetric system of linear equations associated with the linear operator
(17). As this operator does not depend on time, the corresponding sparse matrix is assembled once and for all
in a preprocessing step.
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Remark 9. We emphasize that (d̂h, m̂h) ∈ M r
h ×M r

h are globally defined discontinuous approximations of
the traces of the auxiliary variables d and m over the (interior) mesh edges, that (dh,mh) ∈ Pr

h × Pr
h are

reconstructed discontinuous approximations over the mesh elements, while (dFh ,m
F
h ) are reconstructed (post-

processed if r = k − 1) discontinuous approximations over the mesh elements belonging to P k
h × P k

h .
When r = k−1, we seek for traces d̂h, m̂h and auxiliary variables dh,mh in a smaller dimension polynomial space
of degree k − 1. Thanks to the local post-processing, we ultimately recover approximations (mF

h , d
F
h ) ∈ (P k

h )2,
which are respectively used to compute the right hand side of the local problem (43c) and the dispersive

correction DF
α,h occurring in the nonlinear equations (43a), see (45).

Remark 10. The HDG formulations (43b)→(43e) and (43f)→(43i) rely on the fact that we only consider
homogeneous Neumann boundary conditions on d and m, see (25). Hence, we borrow the alternative formulation
with Neumann local problems of [23], which consists in prescribing the Neumann boundary conditions directly
in the local problem and considering the modified definition of the numerical traces of the fluxes (43e) and (43i)
instead of the usual trace definition, see [61]. This formulation leads to slightly smaller global problems, as we
only seek for unknowns on the interior edges, and may provide a better accuracy of the solution near Neumann
boundaries, as pointed out in [23].

Remark 11. At first sight, formulation (43a)→(43i) may appear as unattractive, involving more unknowns
and approximations than the initial problem (19a)→(19c). However, since d̂h and m̂h are only defined on the
mesh edges, this approach allows to significantly reduce the total number of globally coupled unknowns needed
to compute the dispersive correction DF

α,h, while preserving the overall accuracy of the approximation and the
(expected) optimal convergence rates of the solutions, see §4 for numerical validations. Indeed, the hybridization
of the method and the static condensation strategy allow for a computationally efficient implementation of the
method, writing the resulting problem as two (diagonal bloc) algebraic systems of linear equations where only the
traces d̂h and m̂h appear as globally coupled unknowns, eliminating the variables (Sd

h, dh) and (Sm
h ,mh) through

the computation of the Schur-complement matrix system for the trace unknowns. This leads to dim(Mr
h) =

(r + 1) card(F 0
h ) globally coupled unknowns, while the use of (non-hybridized) SWIP-DG or L-DG methods

leads to dim(Pk(Th)) = (k+1)(k+2)
2 card(Th) coupled unknowns. More details about the sparsity of the associated

stiffness matrices may be found in [18], in which bounds on the number of non-zero coefficients are provided
and compared with those of IP-DG and L-DG methods.
After solving these two global problems for d̂h and m̂h, (Sd

h, dh) and (Sm
h ,mh) can respectively be inexpensively

computed in an element-by-element fashion with the local problems (43c)-(43d) and (43g)-(43h).
When r = k − 1, the number of globally coupled faces unknowns is further reduced (with k card(F 0

h ) coupled
unknowns), while the post-processing steps allow to recover polynomial approximations of degree k in mesh
elements is also inexpensively computed in an element-by-element fashion.

3.4.2 Interface nonlinear fluxes

The high-order reconstructed numerical flux detailed in [32] is a good default choice to approximate the in-

terface fluxes F̂n ∈ (Pk(∂Th))d+1, leading to a well-balanced scheme that preserves motionless steady states.
Considering T ∈ Th such and F ∈ FT (we only focus on the case F ∈ F i

h and do not detail the case F ∈ F b
h)

we denote Ŵ− = (η̂−, q̂−) and Ŵ+ = (η̂+, q̂+) respectively the interior and exterior traces on F , with respect
to the elements T . Similarly, b− and b+ stand for the interior and exterior traces of bh on F . We define:

b∗ = max(b−, b+), b̌ = b∗ −max(0, b∗ − η−) (51)

and

ȟ− = max(0, η− − b∗), ȟ+ = max(0, η+ − b∗), (52)

η̌− = ȟ− + b̌, η̌+ = ȟ+ + b̌, (53)

leading to the new interior and exterior values:

W̌− = t(η̌−,
ȟ−

η− − b−q−), W̌+ = t(η̌+,
ȟ+

η+ − b+ q+). (54)

Now we set 〈
F̂n, ϕh

〉
∂Th

=
∑
T∈Th

∑
F∈FT

〈
F̂nTF , ϕh

〉
F
, (55)
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and
F̂nTF = Fh(W̌−,W̌+, b̌, b̌,nTF ) + F̃TF , (56)

as the numerical flux function through the interface F , where:

1. the numerical flux function Fh is the global Lax-Friedrichs flux:

Fh(W−,W+, b−, b+,nTF ) =
1

2
((F(W−, b−) + F(W+, b+))nTF − λTh

(W+ −W−)), (57)

with λTh
= max
T∈Th

λ∂T and

λ∂T = max
∂T

(∣∣∣∣ qh|T

ηh|T − bh|T
· nT

∣∣∣∣+
√
g(ηh|T − bh|T )

)
. (58)

2. F̃TF is a correction term defined as follows:

F̃TF =

 0 0

gη̌−(b̌− b−) 0

0 gη̌−(b̌− b−)

nTF . (59)

Note that the modified interface flux (56) only induces perturbations of order k + 1 when compared to the
regular Lax-Friedrichs flux straightforwardly applied to the (not reconstructed) traces.

3.4.3 Time discretization

Supplementing the α-GN-LM equations with an initial data W(0, ·) = W0, and introducing the corresponding
discrete initial data W0

h = pkTh
(W0), the time stepping is carried out using explicit SSP-RK schemes [41]. Up

to k = 3, we consider RK-SSP schemes of order k + 1. A fourth order SSP-RK scheme is used for k ≥ 3.
For instance, advancing Wh from time level n to n + 1 with the third-order SSP-RK scheme involves two
intermediate stages denoted Wn,i

h , i = 1, 2 and is computed as follows :
Wn,1

h = Wn
h −∆tnAF

α (Wn
h) ,

Wn,2
h = 1

4 (3Wn
h + Wn,1

h )− 1
4∆tnAF

α (Wn,1
h ),

Wn+1
h = 1

3 (Wn
h + 2wn,2

h )− 2
3∆tnAF

α (Wn,2
h ),

(60)

where the corresponding time step ∆tn is computed adaptively using the following CFL condition:

∆tn ≤ 1

2k + 1
min
T∈Th

(
hT
λ∂T

), (61)

with λ∂T defined in (58).

3.4.4 Well-balancing for motionless steady states

The preservation of motionless steady states can be deduced from the corresponding property obtained for
the nonlinear (non-dispersive) shallow water equations, see for instance [32], provided that the problems
(43b)→(43e) and (43f)→(43i) are well-defined.

Proposition 1. The formulation (43) together with the interface fluxes discretization (56) and a first order
Euler time-marching algorithm preserves the motionless steady states, provided that the integrals of (43a) are
exactly computed for the motionless steady states. In other terms, we have for all n ∈ N:({

ηnh ≡ ηe
qnh ≡ 0

)
⇒

({ ηn+1
h ≡ ηe

qn+1
h ≡ 0

)
, (62)

with ηe constant,
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Proof. Assuming that the equilibriumWh = (ηe, 0) holds, we have to show that(
AF
α (Wh), ϕh

)
Th

= 0, ∀ϕh ∈ P kh .

We first observe that the local solvers (43b)-(43c)-(43e) and (43f)-(43g)-(43i) are well defined. Indeed, looking
at (43f)-(43g), we have for homogeneous conditions (i.e. m̂h = 0 and gHhGkh(ηh) = 0):(

δα[Hb
h]−1Sm

h ,Ψh

)
Th
−
(
mh,∇ ·Ψh

)
Th

+
〈
mh,Ψhn

〉
∂T ∂

h

= 0, ∀Ψh ∈Pr
h,(

β[Hb
h]mh,φh

)
Th

+
(
∇ ·Sm

h ,φh
)
Th

+
〈
(Ŝm

h −Sm
h )n,φh

〉
∂Th

= 0, ∀φh ∈ Pr
h,

Ŝm
h nT :=

{
Sm
h nT + S∂Tmh on FT ∩F 0

h ,
0 on FT ∩F ∂

h ,
∀T ∈ Th,

which gives locally, for (Ψh,φh) = (Sm
h ,mh):(

δα[Hb
h]−1Sm

h ,S
m
h

)
T
−
(
mh,∇ ·Sm

h

)
T

+
〈
mh,S

m
h nT

〉
∂T\∩Ω

= 0, ∀T ∈ Th,(
β[Hb

h]mh,mh
)
T

+
(
∇ ·Sm

h ,mh
)
T

+
〈
S∂Tmh,mh

〉
∂T\∂Ω

−
〈
Sm
h nT ,mh

〉
∂T∩∂Ω

= 0, ∀T ∈ Th,

where the restriction of global functions to the considered element T are not explicitly written, for the sake of
simplicity. Summing both equations straightforwardly yields to Sm

h = 0 and mh = 0. Then, from this definition
of the local solver (43f)-(43g) and the trace (43i), the existence and uniqueness of the global solution m̂h ∈M r

h

satisfying 〈
Ŝm
h n,µh

〉
∂T 0

h

= 0, ∀µh ∈M r
h ,

can be obtained following, for instance, the unified formalism of [18] for hybridized methods and is the trivial one.

Observing that, from definitions (42)-(46)-(47)-(48), we have Q̃F
α,h = 0 at steady states, similar considerations

lead to d̂h = 0 and hence (
DF
α,h, ϕh

)
Th

= 0 ∀ϕh ∈ P kh ,

no matter what type of in-cell reconstructions dFh and mF
h are used. From now, prooving that

−
(
F(Wh, bh),∇ϕh

)
Th

+
〈
F̂n, ϕh

〉
∂Th
−
(
B(Wh, bh), ϕh

)
Th

= 0, ∀ϕh ∈ P kh ,

at equilibrium follows for instance the lines of [34].

Remark 12. Although not detailed in this work, a positivity preservation property for the water height can
also be obtained following for instance the approach of [82], already developed in [34].

Remark 13. The study of stability and dispersive properties of the whole discrete formulations for our models
is a difficult issue, even in the simplified case of linearized equations. This is mainly due to the occurrence

of the term Q3[H,Hb]
([

1 + αT[Hb]
]−1

(gH∇ζ)
)

. The existence and uniqueness result for the discrete elliptic

problems relies on the discrete stability of the chosen HDG discretization, following [18]. Considering the classical
(non-dispersive) linearized shallow water equations, several results closely related to the discrete stability and
dispersive properties of DG methods may be found in [51].

3.4.5 Boundary conditions

Boundary conditions are imposed weakly. For equations (43a), the solid-wall conditions (23a) and (23b) are

enforced through suitable values of Ŵ+ at virtual exterior quadrature nodes on mesh boundaries F ∂
h , allowing

to compute the corresponding interface fluxes in AF
α (Wn

h). As shown in formulation (43a)→(43i), the corre-
sponding homogeneous Neumann boundary conditions on the elliptic equations associated with the dispersive
corrections are directly enforced in the local HDG problems (43b)-(43c) and (43f)-(43g), following the approach
described in [23]. Although not used in this work, periodic boundary conditions on opposite domain boundaries,
for instance for rectangular domains, can also be obtained by enforcing the continuity of the corresponding vari-
ables and fluxes.
These simple boundary conditions possibly have to be supplemented with ad-hoc absorbing boundary condi-
tions, allowing the dissipation of the incoming waves energy together with an efficient damping of possibly
non-physical reflections, and generating boundary conditions that mimic a wave generator of free surface waves.
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We use a relaxation techniques and we enforce periodic waves combined with generation/absorption by mean
of a generation/relaxation areas, following the ideas of [57] and using the relaxation functions described in [79].
The computational domain is therefore locally extended to include a generating layer at the inlet boundaries
and a sponge layer at the outlet boundaries. Note that the generating layer may also be supplemented with
a sponge layer in order to avoid possibly reflected waves. The relaxed solution along the domain is defined as
follows:

Wrel
h = FaWh + (1− Fa)FgR(t)Wenf , (65)

where Fa , Fg stand for the absorption and generation profiles and R governs the time evolution of the generation
process. Above, Wenf defines the targeted (enforced) wave profile. Concerning the relaxation functions, we
follow [79] and consider the following smooth profiles:

Fa(x) = 1− exp ((xr)
n − 1))

exp(1)− 1
, Fg(x) = 1− exp ((1− xr)n − 1))

exp(1)− 1
,

where xr =
x− xR

∆R
, n is a positive parameter, and xR, ∆R are respectively the beginning and the width of the

relaxation zone. In agreement with other works, the length of the sponge layers ∆R is calibrated for each test
case (generally 2 or 3 wavelengths); the parameter n is set to 3. The reader is referred to the above references
for more details. Note that new generating boundary conditions for GN equations based on dispersive boundary
layers, inspired from [49], are currently under study.

3.4.6 A combined HDG-RKDG formulation for the (α, θ, γ)-GN-LM equations

The combined semi-discrete in space HDG-DG problem (43) can be extended to approximate the solutions
of the (α, θ, γ)-GN-LM equations (30). In the following, we only give details concerning the additional terms
and corresponding modifications and do not recall parts of the formulation similar to those of (43). The
main differences between (24) and (30) are on one hand the occurrence of a new second order and scalar
elliptic problem in the first equation of (30a) (the mass conservation equations, which is therefore not an exact
conservation equations but an approximate conservation equation up to O(µ2) terms) and on the other hand
the occurence of an additional source term, namely Q4, in the definition of the fully nonlinear term Q̃α,θ[H, b].
One also has to deal with the occurence of optimization parameters γ and θ. Considering the construction
of an associated discrete formulation, this leads to the construction of two different linear discrete operators,
respectively associated with 1 + γT[Hb] and 1 + α(1 + θ)T[Hb]. These operators are built relying on the same
HDG method as in (43), considering now two different sets of continuity equations through mesh edges (see the
vectorial systems (66d)-(66h) and the scalar system (66l) besides).
Still assuming k ≥ 2 and r ∈ {k−1, k}, this extended discrete formulation reads as follows: find Wθ

h = (ηh,q
θ
h) ∈

P kh × Pk
h, (gχh, χh, χ̂h) ∈ Pr

h × P rh ×Mr
h , (Sd

h, dh, d̂h) ∈ Pr
h × Pr

h ×M r
h , (Sm

h ,mh, m̂h) ∈ Pr
h × Pr

h ×M r
h such

that:
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(
∂tW

θ
h, ϕh

)
Th

+
(
AF
α,θ,γ(Wθ

h), ϕh
)
Th

= 0, ∀ϕh ∈ P kh , (66a)

(
δα,θ[H

b
h]−1Sd

h,Φh
)
Th
−
(
dh,∇ ·Φh

)
Th

+
〈
d̂h,Φhn

〉
∂T 0

h

+
〈
dh,Φhn

〉
∂T ∂

h

= 0, ∀Φh ∈Pr
h, (66b)(

β[Hb
h]dh,ψh

)
Th

+
(
∇ ·Sd

h,ψh
)
Th

+
〈
(Ŝd

h −Sd
h)n,ψh

〉
∂Th

=
(
Q̃

F
α,θ,h,ψh

)
Th
, ∀ψh ∈ Pr

h, (66c)〈
Ŝd
hn,νh

〉
∂T 0

h

= 0, ∀νh ∈M r
h , (66d)

Ŝd
hnT :=

{
Sd
hnT + S∂T (dh − d̂h) on FT ∩F 0

h ,
0 on FT ∩F ∂

h ,
∀T ∈ Th, (66e)

(
δα,θ[H

b
h]−1Sm

h ,Ψh

)
Th
−
(
mh,∇ ·Ψh

)
Th

+
〈
m̂h,Ψhn

〉
∂T 0

h

+
〈
mh,Ψhn

〉
∂T ∂

h

= 0, ∀Ψh ∈Pr
h, (66f)(

β[Hb
h]mh,φh

)
Th

+
(
∇ ·Sm

h ,φh
)
Th

+
〈
(Ŝm

h −Sm
h )n,φh

〉
∂Th

=
(
gHhGkh(ηh),φh

)
Th
, ∀φh ∈ Pr

h, (66g)〈
Ŝm
h n,µh

〉
∂T 0

h

= 0, ∀µh ∈M r
h , (66h)

Ŝm
h nT :=

{
Sm
h nT + S∂T (mh − m̂h) on FT ∩F 0

h ,
0 on FT ∩F ∂

h ,
∀T ∈ Th, (66i)

(
δγ [Hb

h]−1gχh,πh
)
Th
−
(
χh,∇ · πh

)
Th

+
〈
χ̂h,πh · n

〉
∂T 0

h

+
〈
χh,πh · n

〉
∂T ∂

h

= 0, ∀πh ∈ Pr
h, (66j)(

β[Hb
h]χh, ϕh

)
Th

+
(
∇ · gχh, ϕh

)
Th

+
〈
(ĝχh − gχh) · n, ϕh

〉
∂Th

=
(
θMh(vθh), ϕh

)
Th
, ∀ϕh ∈ P rh , (66k)〈

ĝχh · n, κh
〉
∂T 0

h

= 0, ∀κh ∈Mr
h , (66l)

ĝχh · nT :=

{
gχh · nT + S∂T (χh − χ̂h) on FT ∩F 0

h ,
0 on FT ∩F ∂

h ,
∀T ∈ Th, (66m)

where:

(i) (43a) is a DG discrete formulation associated with (19a) and the discrete nonlinear operator AF
α,θ,γ acting

on any admissible discontinuous polynomial approximation Wθ
h ∈ P kh ×Pk

h is defined by(
AF
α,θ,γ(Wθ

h), ϕh
)
Th

:=−
(
F(Wθ

h, bh),∇ϕh
)
Th

+
〈
F̂n, ϕh

〉
∂Th

+
(
DF
α,θ,γ,h, ϕh

)
Th
−
(
B(Wθ

h, bh), ϕh
)
Th
, ∀ϕh ∈ P kh ,

(67)

where DF
α,θ,γ,h ∈ P kh × Pk

h is a numerical approximation of the dispersive correction Dα,θ,γ(Wθ, χ, d),
defined by:

(
DF
α,θ,γ,h, ϕh

)
Th

:=

((
Hb
hχ

F
h , ϕh

)
Th
,
(
Hb
hd

F
h −

1

α
gHhGkh(ηh), ϕh

)
Th

)ᵀ

, ∀ϕh ∈ P kh , (68)

with the definition of χF
h given below,

(ii) (66j)→(66m) is an additional HDG formulation associated with (30b)−(30c). χF
h ∈ P kh is defined as

follows:

− if r = k, we set χF
h = χh,

− if r = k − 1, χF
h is defined as a locally post-processed super-convergent discontinuous polynomial

approximation of the auxiliary variable χ obtained from (gχh, χh) ∈ Pk−1
h × P k−1

h . More precisely,

χF
h is defined as the unique element of Pk

h satisfying(
∇χF

h ,∇ψh
)
T

= −
(
δγ [Hb

h]−1gχh,∇ψh
)
T
, ∀ψh ∈ P kh , ∀T ∈ Th, (69a)(

χF
h , 1

)
T

=
(
χh, 1

)
T
. ∀T ∈ Th, (69b)
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(iii) the additional third order source term Mh in the mass evolution equations is defined as follows:

Mh(vθh) :=
1

3

{
6HhGkh(Hh)ᵀGkh(vθh)ᵀGkh(Hh) + 3H2

hGkh(Hh) · Lkh(vθh) +H3
hDkh(Lkh(vθh))

+ 3H2
h

(
Gkh(vθh)ᵀ : ∇2

hHh + Gkh(Hh) · Gkh(Dkh(vθh))
)}
, (70)

where : stands for the inner product with two indices,

(iv) the nonlinear discrete operator Q̃F
α,θ,γ,h occurring in (66c) aims at approximating (28) as follows:

Q̃
F
α,θ,γ,h :=

1

α
gHhGkh(ηh) +HhQ1,h[Hh, bh](pkTh

(
qθh
Hh

)) + gHhQ2,h[Hh, bh](ηh)

+ (1 + θ)QF
3,h[Hh, H

b
h](mF

h ) + θQ4,h[Hh](vθh), (71)

where Q4,h is a discrete operator built upon definition (29) as follows:

Q4,h[Hh](vθh) :=−Mθ,h(vθh)vθ +
2

3
H2
hDkh(qθh)Lkh(vθh) +HhGkh(vθh)ᵀGkh(pkTh

(HhGkh(qθh))

+
2

3
H3
h

(
Gkh(Gkh(vθh)) : Gkh(vθh) + qθh,1Gkh(vθh)ᵀGkh ◦ pkTh

(HhGkh(Hh) · e1)

+ qθh,2Gkh(vθh)ᵀGkh ◦ pkTh
(HhGkh(Hh) · e2)

)
. (72)

We have the following well-balancing result:

Proposition 2. The formulation (66) together with the interface fluxes discretization (56) and a first order
Euler time-marching algorithm preserves the motionless steady states, providing that the integrals of (66a) are
exactly computed for the motionless steady states.

Proof. The proof follows the line of Proposition 1, accounting for the additional elliptic problem (66j)→(66m).

4 Numerical results

In this section, we assess the previous formulations with several benchmarks. Unless stated otherwise, we use
the α-GN-LM equations with α = 1.159. We consider solid-wall boundary conditions on ∂Ω and the time step
restriction is computed according to (61). Some numerical accuracy and convergence analysis are performed
in §4.3 using the L2 norm defined, for any arbitrary scalar valued piecewise polynomial function wh ∈ P kh , as
follows:

‖wh‖2Th
=
(
wh, wh

)
Th
.

When generating/absorbing layers are needed, we add a generating/absorbing layer of 3λin at the inlet boundary
and an absorbing layer of 2λin at the outlet boundary, where λin is the incident wave-length, see §3.4.5 for details.
For several test cases, we conveniently summarize the corresponding computational set up in Tables. We recall
that k refers to the polynomial order of the in-cell DG approximations of the main flow variables (ηh,qh), r
refers to the polynomial order of the HDG approximations of the auxiliary variables (d̂h, m̂h) (and possibly χ̂h is
the (α, θ, γ)-GN-LM equations are used) on the mesh skeleton, |Th| refers to the number of mesh elements, |F 0

h |
refers to the number of interior mesh edges, hmin and hmax refers respectively to the minimum and maximum
edges lengths of the mesh. For test cases 4.3, 4.4, 4.5 and 4.6, which rely on extruded one-dimensional channels
with one dimensional flow features, we apply a rotation of angle π/4 with respect to the horizontal direction on
the corresponding meshes in order to activate all the components of the flow variables during the computations.

4.1 Remarks on implementation

The combined HDG-RKDG formulations (43) and (66), as well as the d = 2 extension of the SWIPDG-RKDG
formulation of [26] (which is provided in Appendix for the sake of completeness), have been implemented into
our C++ WaveBox framework. The linear algebra is handled with the Eigen library [43]. The linear systems
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arising from the discrete formulations are solved using the supernodal Cholesky CHOLMOD library [13]. The
proposed formulations may be implemented on general polytopal unstructured meshes and do not rely on any
particular properties of the polynomial basis functions. Yet, the numerical results shown in this section are
obtained using structured (for the convergence studies) and unstructured simplicial meshes and the Dubiner
basis functions [30] with an implementation relying on the nodal polymorphic approach of [40] for the sake of
efficiency. Every piece of stationary information is computed once, in a set-up pre-processing step. In particular,
the sparse matrices issued from the global problems associated with the elemental transmission conditions (43d)
and (43h), the dense matrices associated with the local solvers (43b)-(43c) and (43f)-(43g), as well as the local
post-processing (49)-(50) operators are assembled and (Choleski) factorized once and for all in a preliminary
set-up step. Yet, at this level of implementation, the emphasize was put on developing a unified framework
with a generic interface for wave flow problems and no particular attempt has been made to improve the code
performance. In particular, we do not investigate yet the solver efficiency or the parallelization possibilities of
the HDG formulations for the computation of local problems.
In contrast with [34] in which a quadrature free implementation was used for the computations of the discrete
version of the nonlinear operator (21), we carefully compute every piece of polynomial integration with an
exact quadrature rule and high-order rules are used for the integration of non-polynomial terms to lower the
associated aliasing errors. For the tests shown in the following, no additional stabilization mechanism is needed.
In particular, we do not need to introduce any filtering to eliminate short wave/high-frequency components
generated by the nonlinear interactions.

4.2 Preservation of motionless steady state

This preliminary test case is devoted to briefly check the ability of the formulation to preserve motionless
steady states. The computational domain is the [-1,1] × [-1,1] square, and we use an unstructured mesh of 8466
elements. The bottom elevation involves a bump and a hollow having same dimensions, respectively located at

x1 = (−1

3
,−1

3
) and x2 = (

1

3
,

1

3
), leading to the following analytic profile :

b(r1, r2) = 1 + d e−(r1/L)2 − d e−(r2/L)2 , (73)

where r1,2 are respectively the distances from x1 and x2 and we set d = 0.45 and L = 0.15. The reference water
depth is H0 = 1.5m. Numerical investigations confirm that this initial condition is preserved up to the machine
accuracy for any value of polynomial order k. For instance, the L2 numerical errors obtained at t = 100 s using
a k = 3 approximation are respectively 2.40e-15, and 7.2e-14 for η and q.

4.3 Solitary wave propagation over a flat bottom

We consider the time evolution of a solitary wave profile over a flat bottom b = 0, defined as follows:{
η(t,x) = H0 + εH0 sech2 (κ(x · e1 − ct)) ,
q(t,x) = c (η(t,x)−H0) ,

(74)

with κ =

√
3ε

4H2
0 (1 + ε)

and c =
√
gH0(1 + ε). Note that (74) is an exact solution of the original GN equations

(3), but only a solution of the GN-LM models up to O(µ2) terms. However, for small enough values of ε, such
profiles are expected to propagate over flat bottoms without noticeable deformations, possibly with a small
dispersive tails propagating backward. The computational domain is a channel [0, 200]× [0, 5] with a reference
water depth H0 = 1m. A solitary wave of relative amplitude ε = 0.1 is initially centered at x0 = 80m. To
study the h-convergence properties of the formulation (43), we consider a sequence of regular triangular meshes,
with a level of mesh refinement defined by the number of equi-spaced segments along each side of the domain,
with mesh size h ranging from h0 to h0/2

p, with h0 = 1.25m and p = 3, together with polynomial expansions
of degrees ranging from k = 1 to k = 4. The time step is chosen small enough to ensure that the dominant
component of the error is related to the spatial discretization. As an exact solution is not available, we use a
reference solution which computed on a refined mesh of size h = h0/2

4 and using k = r = 6. We compute the
L2-errors at tmax = 0.1 s, the h-convergence curves and the corresponding convergence rates obtained by linear
regression for both the free surface elevation η and the discharge q. Two possible formulations are investigated:
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SWIP-DG (k) HDG (r=k) HDG (r=k-1)
k= 2 76800 56352 37568
k= 3 128000 75134 56352
k= 4 192000 93920 75134

Table 1: Solitary wave propagation over a flat bottom: number of coupled freedom degrees with respect to the
polynomial order of approximation and the chosen formulation for the elliptic problems

Figure 3: Solitary wave propagation over a flat bottom: initial free surface

− k ≥ 1 and r = k: we seek the trace of the auxiliary variables in the same space as the one used for the
main flow variables (η,q). The corresponding results are reported on Fig. 4 ,

− k ≥ 2 and r = k − 1: we seek the trace of the auxiliary variables in a smaller space than the one used for
the main flow variables, leading to smaller global linear systems. The expected order of convergence are
then recovered relying on local post-processing, see Fig. 5.

We assume k ≥ 2 in §3.4 to avoid the lowest order approximation r = k − 1 = 0 for the trace space, as no
super-convergent post-processing is available. However, even if not used in practice as this formulation produces
too much numerical dissipation and dispersion errors for the study of dispersive problems, the choice r = k = 1
is of course allowed and leads to the expected convergence rate, as reported on Fig. 4. As expected, we observe
overall rates ranging between O(hk+ 1

2 ) and O(hk+1) for both variables and both formulations, although the
L2-errors on η are generally one order of magnitude smaller than those on q. For the finer mesh of the sequence
(|Th| = 12800 and |F 0

h | = 18784), we provide in Table 1 a comparison of the number of freedom degrees
associated with the elliptic sub-problems for both SWIP-DG with order k, HDG formulation of order r = k
and HDG formulation of order r = k − 1. In particular, we point out that the same level of accuracy may be
reached with either choices r = k and r = k − 1, but with significantly smaller global systems than with the
SWIP-DG formulation.
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Figure 5: Solitary wave propagation over a flat bottom - L2-error for the free surface η (left) and the discharge
q (right) vs. mesh size h for k = 2, 3, 4 and r = k − 1 with local-post-processing of the auxiliary variables at
t = 0.1 s.
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Figure 4: Solitary wave propagation over a flat bottom - L2-error for the free surface η (left) and the discharge
q (right) vs. mesh size h for k = 1, 2, 3, 4 and r = k at t = 0.1 s.

4.4 Head-on collision of solitary waves

We consider now the head-on collision of two identical solitary waves propagating in opposite directions [20].
The collision of the two waves implies rapidly modifies the nonlinear dispersion characteristics of the flow and
the discrete formulation has to ensure the equilibrium between amplitude and frequency dispersion to propagate
the wave profile at constant shape and speed. The computational domain is a channel of 300m length and 2m
width. We initialize the computation with two solitary waves (74) of relative amplitude ε = 0.2 initially located
at x = −50m and x = 50m and with opposite velocities. We set the order of polynomial approximations to
(k = 2, r = 1) and use a regular mesh of triangular elements, with edges lengths ranging from hmin = 0.2m to
hmax = 0.25m. We show in Figure 6 some snapshots of the free surface at various times during the propagation
with equations (14). The obtained numerical results are in agreement with [59, 67] and those exhibited in [20]
using Euler equations. As in the d = 1 case, we observe some minor differences with the results obtained with
the original GN equations. The maximum amplitude during the collision is qualitatively similar and there is
no phase shift. We notice, however, some small variations in the amplitude of the oscillations in the dispersive
tails before and after the collision, mainly due to the fact that (74) is only an approximated solution of (14).

4.5 Shoaling and reflection of a solitary wave over a sloping beach

Next, we investigate the reflection of a solitary wave on a sloping beach. The aim of this test is to study
the shoaling and full reflection of a non-breaking solitary wave propagating above a regular sloping beach,
before reaching a vertical solid wall, following the set-up of [78]. We consider the computational domain
Ω = [−55, 20]× [0, 5] (in m) and a topography defined with the following slope:

s(x) =

{
0 if x ≤ 0,
1/50 if x ≥ 0.

(75)

The water depth at rest is H0 = 0.7m, the solitary wave is initially centred at x = −30m, we use a mesh with
a characteristic size h = 0.2 and set (k = 2, r = 1). We show a sketch of a cut of the topography and initial free
surface on Figure 7. We compute time series of the free surface at a location near the vertical wall (x = 17.75m)
and compare numerical results with experimental data taken from [78]. Two runs are performed with ε = 0.1
(]A) and ε = 0.171 (]B) and the results are shown on Figure 8.
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Figure 6: Head-on collision of solitary waves: free surface elevation at several times
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Figure 7: Shoaling and reflection of a solitary wave on a sloping beach: topography and initial free surface

We clearly identify the two expected peaks corresponding respectively to the incident and reflected waves, with
a very good matching between simulations and experimental data for both the wave’s celerity and amplitude.
In comparison with the numerical results obtained with the original GN equations, we observe a slightly more
oscillating dispersive tail for the second (more nonlinear) case, in agreement with the fact that the initial solitary
wave is not an exact solution of the modified α-GN-LM equations.
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Figure 8: Shoaling and reflection of a solitary wave on a sloping beach: time series of the free surface at
x = 17.75m for the α-GN-LM model
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4.6 Propagation of periodic highly dispersive waves: the Dingemans experiments

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11
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Figure 9: Propagation of periodic highly dispersive waves: the Dingemans experiments - Locations of wave
gages and (rescaled) 3d view of the free surface during the propagation.

We now study the Dingemans case [27] which highlights the ability of the models to compute the propagation
and the interaction of higher order harmonics. Using the set-up introduced in [4], we compute the propagation
of regular periodic waves over a submerged bar, see Figure 9. For this test, we generate periodic waves at
the left boundary, with an amplitude of 0.01m, a time period of 2.02 s and mean water depth H0 = 0.4m.
When the incident wave encounters the upward part of the bar, it shoals and steepens, which generates higher-
harmonics as the nonlinearity increases. These higher-harmonics are then freely released on the downward
slope and propagates after the bar. For the numerical computation, we consider a channel of 40m long and 1m
wide. The corresponding computational set-up is provided in Table 2. With k = 2, the use of hybrid HDG-DG
formulation allows to halve the number of globally coupled freedom degrees needed for the computation of the
dispersive correction with the SWIP-DG method of [26] or the L-DG method of [34].

k r |Th| |F 0
h | hmin hmax

2 1 5400 8409 0.11 0.17

Table 2: Propagation of periodic highly dispersive waves: the Dingemans experiments - computational set-up

Comparisons are performed between the two sets of parameters corresponding to the α-GN-LM model and the
(α, θ, γ)-GN-LM model with and the data taken from the experiment, for the last four wave gauges. Time
series of the free surface elevation at the four last wave gauges of the experiment are plotted on Figure 10.
As already pointed out in our previous study [26], we observe that the α-GN-LM is not able to provide an
accurate free surface evolution at the last wave gauge 11. This last gauge is the most discriminating one as the
higher-harmonics are completely released and interact together. We observe the improvements obtained using
the (α, θ, γ)-GN-LM model at the last two wave gauges. It is worth highlighting that for this case, the use of
the (α, θ, γ)-LM-GN equations allows to obtain the same quality of approximation than the one obtained for
instance with the two-layers model of [56], with a computational overhead of less than 10%.

24



35 35.5 36 36.5 37 37.5 38 38.5 39
−0.02

0

0.02
wg8

35 35.5 36 36.5 37 37.5 38 38.5 39
−0.02

0

0.02
wg8

35 35.5 36 36.5 37 37.5 38 38.5 39

−0.02

0

0.02 wg9

35 35.5 36 36.5 37 37.5 38 38.5 39

−0.02

0

0.02 wg9

35 35.5 36 36.5 37 37.5 38 38.5 39
−0.02

0

0.02
wg10

35 35.5 36 36.5 37 37.5 38 38.5 39
−0.02

0

0.02
wg10

35 35.5 36 36.5 37 37.5 38 38.5 39
−0.02

0

0.02
wg11

35 35.5 36 36.5 37 37.5 38 38.5 39
−0.02

0

0.02
wg11

t (s)t (s)

ζ
(m

)
ζ
(m

)
ζ
(m

)
ζ
(m

)

Figure 10: Propagation of periodic highly dispersive waves: the Dingemans experiments - Time series of the free
surface at the last 4 wage gauges. Comparison between experimental data at wave gauges (o) and numerical
results (−).

Figure 11: Waves focusing by a topographical lens: Whalin experiments - 3D view of the topography

4.7 Waves focusing by a topographical lens: Whalin experiments

Whalin [81] carried out a set of experiments studying the focusing effects on monochromatic periodic waves of
a semi-circular bottom topography in a wave tank of 25.6m long and 6.096m wide. The following equations
describe the topography:

b(x, y) =

 0 if 0 ≤ x ≤ 10.67− Γ(y),
(10.67−G(y)− x)/25 if 10.67− Γ(y) ≤ x ≤ 18.29− Γ(y),
0.30480 if 18.297− Γ(y) ≤ x.

(76)

with Γ(y) =
√
y(6.096− y). We focus here on the computation of case ] B: T = 2.0 s and a = 0.0075m where

T refers to the wave train period and a the amplitude, leading to µ
1
2 = 0.117 and ε = 0.0165. The numerical
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domain is defined as [−8, 36] × [0, 6.096] (meters). The computational set-up used for this test is reported in
Table 3. We compute the waves propagation up to tmax = 100 s and we extract time series of wave elevation at
several locations along the centerline during the last 25 s. The time series of the surface elevation is analyzed in
the frequency domain to obtain the first, second and third harmonic amplitudes and we consider their spatial
evolution. These numerical results are compared to the experimental data on Fig 12.

k r |Th| |F 0
h | hmin hmax

3 2 5162 7625 0.21 0.54

Table 3: Wave focusing by a topographical lens: Whalin experiments - computational set-up

The hybrid formulation allows to obtain very good agreements with the measurements, using a very coarse mesh.
The energy transfert towards the second and third harmonics through the focusing is accurately reproduced.
As a comparison, the results shown in [47] and obtained with our previous FV-WENO formulation on cartesian
grid relies on a mesh with equidistant spacing δx = δy = 0.12, and the results obtained in [55] and [67]
with FE formulations respectively rely on 55018 (structured) and 30705 (unstructured and adapted) triangular
elements. Of course, this low number of mesh elements is partially balanced by the number of freedom degrees
in each elements but we also emphasize that the chosen formulation leads to global systems coupling only
22875 freedom degrees. This number has to be compared with the 46458 global freedom degrees needed by
the SWIP-DG formulation or L-DG method of [34] to reach the same level of polynomial approximation of
the dispersive correction. It is always tricky to fairly compare the efficiency of different numerical methods, as
many optimization may be achieved or not relying on the chosen implementation. However, relying on the same
background implementation and the same computational set-up, denoting by tIPDG and tHDG the total CPU
times (elapsed times on an otherwise-idle system) respectively needed to reach the final time of the computations
respectively for the SWIPDG-RKDG formulation of order k and the proposed HDG-RKDG formulation, we
measure that (tIPDG − tHDG)/tIPDG ≈ 0.23. This is a mean value obtained from 3 different runs, and we recall
that the global matrices are assembled in a preprocessing step, so that we consider the solve rather than the
matrix setup CPU time.
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Figure 12: Waves focusing by a topographical lens: Whalin experiments - Comparison between experiment
(case B) and numerical results for the amplitudes of the first three harmonics

4.8 Periodic waves propagation over an elliptic shoal: Berkhoff experiment

We now reproduce the experiment carried out in [6] to study the refraction and diffraction of 2D monochromatic
wave train over a varying bottom. The wave tank is 20m wide and 22m long. The bathymetry consists of an
elliptic shoal built on a ramp of constant slope, forming a 20◦ angle with the y axis (see Fig. 13). Introducing
the rotated coordinates

xr = x cos(20◦)− y sin(20◦) , yr = x sin(20◦) + y cos(20◦),
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the topography is defined by b = zb + zs, where:

zb(x, y) =

{
(5.82 + xr)/50 if xr ≥ −5.82 ,
0 elsewhere ,

zs(x, y) =

 −0.3 + 0.5

√
1−

( xr
3.75

)2

−
(yr

5

)2

if (
xr
3

)2 + (
yr
4

)2 ≤ 1 ,

0 elsewhere .

Figure 13: Periodic wave propagation over an elliptic shoal: : Berkhoff experiment - the topography

The propagating periodic wave train has an amplitude a = 2.32 cm and a period T = 1s. The corresponding
computational domain has dimensions [−14.5, 15]× [−10, 10] (in meters) including a 4.5m generating-absorbing
zone at the inlet boundary of the domain and a 3m absorbing layer at the opposite (outlet) boundary. In the
original experiment, the wave elevation is measured along several sections defined as follows:

section 1 : {x = 1m, −5m ≤ y ≤ 5m},
section 2 : {x = 3m, −5m ≤ y ≤ 5m},
section 3 : {x = 5m, −5m ≤ y ≤ 5m},
section 4 : {x = 7m, −5m ≤ y ≤ 5m},
section 5 : {x = 9m, −5m ≤ y ≤ 5m},
section 6 : {y = −2m, 0m ≤ x ≤ 10m},
section 7 : {y = 0m, 0m ≤ x ≤ 10m},
section 8 : {y = 2m, 0m ≤ x ≤ 10m}.

We investigate two different numerical configurations, which are summarized in Table 4. For this particular test
case, the formulation resulting with the choice (k = 2, r = 1) lead to under-resolved computation, even with
the use of higher order post-processing for the coupling variables, and was therefore not retained here.

k r |Th| |F 0
h | hmin hmax

set-up 1: 2 2 45562 68025 0.14 0.23

set-up 2: 3 2 15222 22645 0.22 0.40

Table 4: Periodic waves propagation over an elliptic shoal: Berkhoff experiments - computational configurations.

Time series of the free surface elevation are obtained at several locations along the sections, between t = 30 s
and t = 50 s. The signal is then analyzed with the zero up-crossing method to isolate single waves and compute
mean wave heights, which are normalized by the incoming (targeted) wave heights (2a). We show on Fig. 14
a comparison between numerical results and experimental data along the sections, obtained with the set-up 1.
Although not shown here, very similar results are obtained with the set-up 2. We observe the expected wave
focusing behind the shoal and due to the sloping beach, the waves continue shoaling after passing the shoal. We
obtain very satisfying results, comparable with other studies found in the literature, see for instance [67,76,79]
but with significantly coarser meshes. As in the previous test case, averaging the measured CPU times on 3
different runs, we measure that (tIPDG − tHDG)/tIPDG ≈ 0.14 for set-up 1, and 0.22 for set-up 2.

4.9 Waves propagation over a circular shoal: Chawla and Kirby experiments

We now present the comparison of numerical results with a test issued from the experiments performed by
Chawla and Kirby in the directional wave basin at the University of Delaware in 1996, see [9]. The physical
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Figure 14: Periodic waves propagation over an elliptic shoal: Berkhoff experiments - Comparison of the com-
puted mean wave height with the experimental data along the height wave gauges sections

wave basin is approximately 18m long and 18.2m wide. A circular shoal of radius 2.57m is placed in a otherwise
flat basin, leading to the following topography parameterization:

b(x, y) = 8.73−
√

82.81− (x− 5)2 − (y − 8.98)2.

We consider the propagation of a monochromatic train of waves with H0 = 0.45, a wave height at the input
boundary of 2.36 cm and a wave period T = 1.0 s, corresponding to the Test 4 of [9]. Accounting for boundary
layers, the computational domain is 25.5m long and 18.2m wide. The physical experiment provides measured
significant wave heights along seven sections covering most the areas of the submerged shoal and behind the
shoal, see again Fig.16. A schematic view of the domain and the gauges locations is shown on Fig. 16. The
numerical set-up used for this test is summarized in Table 5.

k r |Th| |F 0
h | hmin hmax

2 2 30082 44865 0.15 0.25

Table 5: Periodic waves propagation over a circular shoal: Chawla and Kirby experiments - computational
set-up

We collect time series of wave elevation at several locations corresponding to the following sections

section A : {2m ≤ x ≤ 14m, y = 8.98m},
section B : {x = 11.12m, 2m ≤ y ≤ 16m},
section C : {x = 9.65m, 2m ≤ y ≤ 16m},
section D : {x = 7.995m, 2m ≤ y ≤ 16m},
section E : {x = 6.35m, 4m ≤ y ≤ 14m},
section F : {x = 5.075m, 4m ≤ y ≤ 14m},
section G : {x = 3.885m, 4m ≤ y ≤ 14m},

between t = 30 s and t = 50 s. Again, mean wave heights are extracted and normalized by the initial incoming
wave height, leading to the comparisons shown on Fig.15. As pointed out in [12], even if the values of wave
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Figure 15: Waves propagation over a circular shoal: Chawla and Kirby experiments - Comparison of the
computed normalized mean wave height with the experimental data along the seven transects

Figure 16: Waves propagation over a circular shoal: Chawla and Kirby experiments - Experimental set-up and
wave gauges transects locations
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period and H0 are close or equal to those in the previous test case, the resulting wave fields for these two
experiments exhibits several differences. Indeed, the focusing of waves is much stronger in this second case and
occurs on the top of the shoal, while the focus of waves in the previous test case occurs at a location further
behind the shoal. This focusing is well reproduced here, with results close to those shown in [12] and obtained
with mesh sizes of 0.05m and 0.1m respectively in the x and y directions. Our model reproduces very well the
transverse (asymmetric) variations of the wave field resulting from the effects of combined refraction/ diffraction
and the slightly off-centered shoal location.

4.10 Waves propagation over an elliptic shoal: Vincent and Briggs experiments

We conclude this section with a computation corresponding to the M1 experiment of Vincent and Briggs [77] and
which aims at showing preliminary computational results obtained with the (α, θ, γ)-GN-LM equations. Here
again, we study the transformations of a non-breaking monochromatic train of waves over a submerged shoal.
The experimental basin is 25m long and 30m large. The elliptic shoal is centered at (x0, y0) = (6.1, 13.72) and
is 6.1m long in the x-direction and 7.92m wide in the y-direction. Its perimeter is defined by(

x− x0

3.05

)2

+

(
y − y0

3.96

)2

= 1,

and the corresponding topography is defined by

b(x, y) = −H0 + 0.7620(1−
(
x− x0

3.81

)2

+

(
y − y0

4.95

)2

),

with H0 = 0.4572. Following [56], we generate a wave train at the left boundary with a wave height of 0.048m
and a wave period T = 1.3 s. The computational set-up used for this test is detailed in Table 6.

k r |Th| |F 0
h | hmin hmax

2 2 28302 42701 0.22 0.40

Table 6: Periodic waves propagation over an elliptic shoal: Vincent and Briggs experiments - computational
set-up

A snapshot of the quasi-steady state free surface taken at t = 32 s is shown on Figure 17. As expected, we observe
that oblique wave interactions dominate the wave-field behind the shoal, creating an irregular sea surface. We
ran this test case with the two sets of equations: α-GN-LM and (α, θ, γ)-GN-LM with the parameters given in
section §2.3. The significant wave heights (in cm) are extracted from time series of the free surface taken along
the section located at y = 13.72m and ranging from x = 2.0m to x = 17m, hence covering the wave variations
over and behind the shoal. The results obtained for both models are then compared with the measurements
taken from sections 7−9 of [77] and shown on Fig 18. As in Test §4.6, we observe that the higher-frequency waves
generated due to nonlinear transfers on the shoal strongly interacts behind the shoal, and if the two models
give satisfactory agreements with the data from the experiment, we observe that the (α, θ, γ)-GN-LM equations
provide a slightly better matching regarding the maximum wave amplification in the vicinity of the shoal. The
amplitude after the shoal is over-predicted by both models. We also note that the discrete formulation associated
with the (α, θ, γ)-GN-LM equations seems to be more sensible with respect to high frequency perturbations and
further studies regarding additional stabilization are required for this more elaborated 3 parameters model to
be used with confidence for long time simulations.

5 Conclusion

In this work, we further investigate the design of high-order discontinuous formulations for fully nonlinear
and weakly dispersive shallow water equations. We introduce a new combined HDG-RKDG method for the
asymptotically equivalent models of [48]. The main flow variables are approximated by in-elements polynomial
approximations, while the coupling variables are approximated on the mesh skeleton, contributing to alleviate
the computational overhead associated with the non-hydrostatic effects. This also offers the possibility to use
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Figure 17: Waves propagation over an elliptic shoal: Vincent and Briggs experiments - contour view of the free
surface (up) and 3d view (down) at t = 35 s
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Figure 18: Waves propagation over an elliptic shoal: Vincent and Briggs experiments - significant wave heights
along sections 7-9
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different kind of polynomial approximations for each problem, and we take benefit from the existence of super-
convergent post-processing for the auxiliary variables to further reduce the size of the global algebraic problems
associated with the discrete trace space of the dispersive correction. The computational efficiency of this new hy-
brid approach allows to consider its extension to the further optimized three parameters (α, θ, γ)-GN-LM model
of [47]. Our numerical investigations show that the expected convergence properties are recovered, together
with interesting approximation capabilities for the study of waves transformations in d = 2 horizontal configu-
ration and an enjoyable robustness for the α-GN-LM model, as no additional stabilization mechanism is needed.
On-going and future works will investigate the enforcement of positivity preservation through sub-element res-
olution to accurately model run-up, wave-breaking and occurence of vorticity following the preliminary works
of [48] and parallelized implementations [38].

Appendix - A SWIP-DG formulation for the α-GN-LM equations

In this section, for the sake of completeness, we extend to the d = 2 case the Symmetric Weighted Interior
Penalty Discontinuous Galerkin (SWIP-DG) discrete formulation introduced in [26] in the d = 1 case. Let
κ ∈ L∞(Ω) denote a uniformly positive scalar valued function and set κT := κ|T for all T ∈ Th. We consider
the following bilinear form ah(κ; ·, ·) on Ph × Ph:

ah(κ; vh, wh) :=
(
κ∇hvh,∇hwh

)
Th

+
∑
F∈Fh

〈ξκ,F
hF

JvhK, JwhK
〉
F

−
∑
F∈Fh

(〈
{{κ∇hvh · nF }}ω, JwhK

〉
F

+
〈
JvhK, {{κ∇hwh · nF }}ω

〉
F

)
,

with diffusion-dependent penalty coefficient

ξκ,F :=

{
ξF

2κT1
κT2

κT1
+κT2

if F ∈ F i
h is such that F = ∂T1 ∩ ∂T2,

ξFκT if F ∈ F b
h is such that F = ∂T ∩ ∂Ω,

(77)

where ξ is defined in Remark 15, and with the weighted average operator defined such that, for a sufficiently
smooth function ϕ and an interior face F ∈ F ih such that F ⊂ ∂T1 ∩ ∂T2 for distinct mesh elements T1 and T2,

{{ϕ}}ω,F := ω2ϕ|T1
+ ω1ϕ|T2

, ωi :=
κTi

κT1
+ κT2

∀i ∈ {1, 2}. (78)

Note that when κ ≡ C in Ω for some real number C > 0, we have ω1 = ω2 = 1
2 , and also the subscript ω is

omitted. We also introduce the associated discrete Laplace operator La,kh : P kh → P kh such that, for all vh ∈ P kh ,

La,kh (vh) solves

−
(
La,kh (vh), ψh

)
Th

= ah(1; vh, ψh) ∀ψh ∈ P kh .

Under a mesh quasi-uniformity assumption, it can be proved that, for any v ∈ H1
0 (Ω) ∩Hk+1(Ω), it holds

inf
vh∈Pk(Th)

‖∆v − La,kh (vh)‖ . hk−1.

We assume in the following k ≥ 1. The semi-discrete in space SWIP-DG approximation of (19) reads as follows:
find Wh = (ηh,qh) ∈ P kh ×Pk

h, (dh, ph,mh) ∈ Pk
h ×Pk

h ×Pk
h such that:(

∂tWh, ϕh
)
Th

+
(
Ah(Wh), ϕh

)
Th

= 0, ∀ϕh ∈ P kh , (79)

(
dh,ψh

)
Th

+
(
gHhGkh(ηh),ψh

)
Th

=
(
Hb
hph,ψh

)
Th
, ∀ψh ∈ Pk

h, (80)

ah(δα[Hb
h];mh,φh) +

(
β[Hb

h]mh,φh
)
Th

=
(
gHhGkh(ηh),φh

)
Th
, ∀φh ∈ Pk

h, (81)

ah(δα[Hb
h]; ph,πh) +

(
β[Hb

h]ph,πh
)
Th

=
(
Q̃α,h,πh

)
Th
, ∀πh ∈ Pk

h, (82)

where
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(i) the discrete nonlinear operator Ah in (43a) is defined by(
Ah(Wh), ϕh

)
Th

:=−
(
F(Wh, bh),∇ϕh

)
Th

+
〈
F̂n, ϕh

〉
∂Th

+
(
Dh, ϕh

)
Th
−
(
B(Wh,∇bh), ϕh

)
Th
, ∀ϕh ∈ Ph,

(83)

where F̂n ∈ (Pk(∂Th))d+1 is still defined as in (55), and the discrete dispersive correction Dh is(
Dh, ϕh

)
Th

:=
(

0,
(
dh, ϕh

)
Th

)ᵀ
, ∀ϕh ∈ Ph. (84)

(ii) The discrete nonlinear operator Q̃α,h in (82) is defined by

Q̃α,h := gHhGkh(ηh) +HhQ1,h[Hh, bh](pkTh
(
qh
Hh

)) +HhQ2,h[Hh, bh](ηh) +Q3,h[Hh, H
b
h](mh),

with Q1,h and Q2,h defined according to (46) and (47) and

Q3,h[Hh, H
b
h](mh) :=

2

6

(
mhGkh(Hb

h)ᵀ +Hb
hGkh(mh)

) (
HhGkh(Hh)−Hb

hGkh(Hb
h)
)

+
1

3

(
H2
h − (Hb

h)2
) (
La,kh (Hb

h)mh +Hb
hLa,kh (mh) + 2Gkh(mh)Gkh(Hb

h)
)

− 2

6

(
Gkh(Hh) · Gkh(Hh) + La,kh (Hh)− Gkh(Hb

h) · Gkh(Hb
h)− La,kh (Hb

h)
)
mh. (85)

Remark 14. The definition of Q3,h implies the computation of the second order tensor Gkh(mh), as in contrast
with the previous HDG formulation, the SWIP-DG method does not provide approximations of the flux variable
Sm.

Remark 15. The penalty coefficient ξF used in (77) denotes a user-defined parameter sufficiently large to
ensure coercivity. Following [36], this coefficient is defined as

ξF :=
6δα[Hb

h]
2

δα[Hb
h]

2 k(k + 1) max
T∈Th

cot θT , (86)

where δα[Hb
h] and δα[Hb

h] are respectively the global lower and upper bounds of δα[Hb
h] on Ω and cot θT is the

cotangent of the smallest angle in a triangle T (we choose not to distinguish interior from boundary faces for
the sake of simplicity).

Remark 16. An extended SWIP-DG formulation can be accordingly designed for the (α, θ, γ)-GN-LM equa-
tions. This has been implemented and used in §4.10 to estimate the computational speed-up observed when
using our new hybrid formulations.
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rivières et à l’introduction des marées dans leur lit. C.R. Acad. Sci. Paris, Section Mécanique, 73:147–154,
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