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Introduction
Co-variation in amino acid distribution of any two positions in the 

multiple sequence alignment (MSA) of a protein family is widely used 
to obtain structural and/or functional information [1]. It is assumed 
that, after mutation of one residue, structural/functional constraints can 
require a compensatory mutation of another residue to maintain the 
structure or to restore the function of the corresponding protein. Such 
compensatory mutations can depend on direct physical interactions 
between two residues or on an indirect interaction through intermediary 
residues or a ligand [2]. 

The analysis of sequence co-variation in the MSA of a protein family 
is not straightforward because the sequences are not independent but 
phylogenetically related. In the MSA of a protein family containing several 
sub-families, sub-family independent co-varying positions are assumed 
to correspond to structurally important compensatory mutations. Sub-
family dependent co-varying positions may arise from either compensatory 
mutations within one sub-family or independent mutations in several sub-
families. Both of these mechanisms lead to a phylogenetic bias. 

Until now, the goal of most co-variation studies has been to predict 
contacts in order to gain structural information from co-evolving positions. 
To achieve this goal, different methods attempt to remove or reduce the 
phylogenetic bias [3-5] and to differentiate direct coupling from indirect 
coupling which is created by the transitivity effect of pair co-variation [2]. To 
this effect, Bayesian network [2], maximum entropy [6] and neural network 
[7] models markedly improved the prediction of interacting pairs, with 
successful de novo 3D protein structure prediction. Recently, co-evolution 
based methods coupled to machine learning have significantly improved 
contact prediction and constitute an area of intense research for de novo 
structure prediction [8]. The analysis of co-varying residues in an MSA has 
also been used to identify specificity-determining residues [9-12], protein 
sectors [13] or connectivity pathways [14-16].

Most comparative studies of co-variation methods [3,4,17] aim to 
find methods that optimize the number of contact pairs to gain structural 
information. Co-variation approaches that aim to gain information 
on protein divergence have received less attention. However, these 
approaches can be very useful to gain information on protein evolution 
and sub-family specificity. We thus undertook a comparative analysis 
of widely used co-variation methods on a model system to determine 
methods best suited to this aim [18].

Characteristics of the model system

To carry out this analysis, we chose the large family of rhodopsin-like 
G protein coupled receptors as a model system [18]. The human non-
olfactory receptor set includes 283 receptors that can be classified into 
a dozen of sub-families [19] corresponding to three main evolutionary 
pathways [20]. The median sequence identity of human receptors 
varies from 20% in the full set to about 30% within sub-families 
(transmembrane domain only). We compared the different methods 
on three nested sequence sets. The sets correspond to (1) human non 
olfactory receptors, (2) receptors characterized by the P2.58 proline 
pattern (107 members, with 26% sequence identity). The latter receptors 
diverged after an indel in helix 2 which is one of the main evolutionary 
pathways of GPCRs [21] and (3) the chemokine receptors (23 members 
with 37% sequence identity). The characteristics of these three sets are 
frequently found in a variety of protein families. 

Sequence co-variation methods

Most methods that measure co-variation in the amino acid 
distribution at any two positions in an MSA can be classified into four 
main classes: 

(1)	 Methods based on the χ2 test, such as OMES (Observed minus 
Expected Squared) [17]. The OMES score is computed as:
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where N (i, j) is the number of sequences in the alignment with 
non-gapped residues at positions i and j, , ( , )ex

x yN i j  and , ( , )ex
x yN i j  are the 

number of times each pair of amino acids (x,y) is, respectively, observed 
and expected at positions (i,j). Expectation is based on the frequency of 
amino acids (x,y) at positions (i,j).
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Abstract
In a multiple sequence alignment, sequence co-variations result from structural, functional, and/or phylogenetic 

constraints. Numerous methods have been developed to calculate co-variation scores, but few studies have 
compared these methods to identify which methods are best suited for the analysis of protein family divergence. 
Here, we give an overview of widely used methods and identify simple rules for selection of appropriate methods. 
Specifically, we found that methods such as OMES and ELSC, which favor pairs with intermediate entropy and co-
variation networks with hub structure, are well suited to reveal evolutionary information on family divergence. When 
applied to G protein-coupled receptors, these methods support an epistasis model of protein evolution in which, after 
a key mutation, co-evolution of several residues was necessary to restore and/or shift protein function.
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(2)	 Methods based on mutual information (MI), the probability of 
joint occurrence of events [22]. The MI score is given by:
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where, px (i), py (i), and px, y (i, j) are the frequencies of amino acids 
x at position i, y at position j and of the pair (x,y) at positions (i,j). 
As mutual information formula favors pairs with high entropy, several 
corrections have been applied to correct this bias. The MIp score 
(mutual information product) outperforms other MI based methods 
[3] and is computed as:

( , ) ( , )( , ) ( , ) MI i j MI i jMIp i j MI i j
MI
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where ( , )MI i j , ( , )MI i j  and MI< >

 

are the average of MI(i,j) on, 
respectively, i, j and both i and j.

(3)	 Methods based on substitution matrices such as McBASC 
(McLachlan Based Substitution Correlation method) [23]. The 
McBASC score is computed as:
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where 
, ( )k lS j and 

, ( )k lS j are the similarity scores based on the 
McLachlan matrix [24] for the amino acid pair present in sequences 
k and l at positions i and j, respectively, S(i) and S(j) are, respectively, 
the averages of all the scores , ( )k lS j  and , ( )k lS j  and σ(i) and σ(j) are, 
respectively, the standard deviations of all the scores , ( )k lS i  and , ( )k lS j .

(4) Methods using perturbation of an MSA, such as the statistical 
coupling analysis (SCA) [16] and Explicit Likelihood of Subset Co-
variation (ELSC) [25] methods. These latter two methods compare 
amino acid composition in a subset to the composition in the entire 
alignment. The SCA score is given by: 
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y

SCA i j P j P jδ

where ( | )y iP j δ  is the frequency of amino acid y at position j in the 
subset defined by the presence of the most prevalent amino acid x at 
position i.

The ELSC score measures how many possible subsets of size n 
would have the composition found in column j. It is computed as:
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 is the binomial coefficient

and
 
Ny (j), ny (j) and my (j)  are, respectively, the numbers of residues 

y at position j in the total (unperturbed) sequence alignment, in the 
subset alignment defined by the perturbation in column i and in the 
ideal subset (i.e., in a subset with the amino acid distribution equal to 
the total alignment). 

Entropy biases 

To compare the different methods [18], we analyzed co-variation 
scores as a function of sequence entropy which is a measure of variability 
based on the Shannon entropy [26] and is given by:

20( ) ( ) log ( )x x
x

S i p i p i= −∑
where, i is the position of interest in the MSA, x represents the 

20 amino acids and ( )xp i  represents the frequency of amino acid 
x at the ith position. To do so, we used bi-dimensional plots. In these 
plots, each dot represents a pair of positions (i,j) in the MSA and is 
located at the position of the entropies of i and j, with a color code 
indicating the co-variation score. The bi-dimensional plots obtained 
with Set 1 (about 300 sequences) are shown in Figure 1. Similar results 
were obtained with the other data sets. The MI and SCA methods have 

Figure 1: Bi-dimensional plots of the co-variation scores as a function of sequence entropy. Each dot represents a pair of positions (i,j) in the MSA. The dot position 
corresponds to the entropy of i (x axis) and j (y axis) respectively. The color code indicates the co-variation score. Dark and light blue dots indicate the top 25 and 250 
pairs respectively. Red and pink dots indicate the bottom 25 and 250 pairs respectively. The analysis was carried out on the transmembrane domain of human non-
olfactory class A GPCRs (283 sequences), adapted from [18].
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strong bias towards pairs with at least one highly variable position (blue 
dots on right top corner or along right side of the plot) and should 
thus be considered with caution. The other four methods favor pairs 
with intermediary conservation (blue dots in the center of the plots). 
However, with OMES and ELSC, the entropy of the top pairs is clearly 
separated from the entropy of the bottom pairs (red dots), which is 
not the case for the MIp and McBASC methods with more fuzzy plots. 
The plots in Figure 1 clearly indicate that each method favor pairs with 
different levels of sequence conservation. This entropy bias leads to 
different results for each method. Consequently, this bias must be taken 
into account and carefully analyzed upon selection of a method (to do 
so, we developed the R package bios2cor which includes a function for 
this bi-dimensional analysis [27]). 

Networking biases

The network representation of the top pairs obtained with the OMES, 
ELSC, MIp and McBASC methods for Set 1 (Figure 2) highlights another 
striking difference between methods. MIp and McBASC methods favor 
pairs with low connectivity whereas the networks obtained with OMES 
and ELSC have a hub structure with a highly connected central residue. 
Most importantly, the central residue (P2.58) obtained with the OMES 
and ELSC methods is an important determinant of GPCR evolution 
[20,21]. This networking structure is observed for the three nested 
sequence sets that we have analyzed [18]. In each case, the central 
residue corresponds to a residue known to be crucial for the evolution 
of the GPCR family and the sub-family specificity (divergence of 
purinergic receptors in the set of P2.58 receptors and of inflammatory 
receptors in the chemokine receptor set). The hub structure observed 
for GPCRs strongly supports an epistasis model of protein evolution in 
which after mutation of a key residue, co-evolution of several residues 
was necessary to restore/shift protein function.

Selection of a co-variation method

The performance of co-variation analysis to answer specific 
questions crucially depends on (1) the co-variation method used and (2) 
the characteristics of the MSA (e.g., number of sequences, homogeneity 
and conservation) [3,4,17]. The first step in a co-variation analysis is 
thus to determine the specific questions of interest and then, to select a 
suited co-variation method and to prepare a sequence set accordingly.

When co-variation analysis aims to gain structural information, the 
methods favoring pairs with low connectivity are suited because these 
pairs are enriched in contact pairs [3,4]. This is the case for McBASC 
and MIp (Figure 2). This latter method was specifically developed with 
this aim. These methods require large sequence sets, with at least 100 
sequences, as homogeneous as possible [3,17]. This last requirement 
should prompt to build MSA of orthologs whenever possible. 

When co-variation analysis aims to gain evolutionary information, 
OMES and ELSC are well suited to identify the co-evolving residues that 
contributed to the divergence within a protein family. These methods 
favor pairs with intermediate conservation and highly connected 
residues and can work with a very small number of sequences (<25). 
They require a sequence set with two subsets of similar size and sequence 
similarity. Size requirement can be fulfilled by tailoring sequence sets 
with judicious use of paralogs and orthologs [18]. Homogeneity of the 
subsets is mandatory to avoid bias toward an overwhelming or a highly 
conserved sub-family.

Conclusion
The phylogenetic bias, related to the intrinsic inhomogeneity of 

a sequence set containing sub-families, represents a rich source of 
information on the mechanisms that drove the evolution of a protein 
family. Two co-variation methods, OMES and ELSC, are adequate to 

Figure 2: Network representation of the top 25 pairs obtained from co-variation analysis of human non-olfactory class A GPCRs (transmembrane domain only). 
Positions correspond to nodes and co-variation signals to edges. The size of the nodes is proportional to their connectivity. The color indicates the entropy of the 
position from black for a fully conserved position to white for the most variable position. Node labels indicate the position with Ballesteros’ numbering [29]. Dotted edges 
indicate distance below 8 Å. Adapted from [18].
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mine evolutionary hubs, in relation with an epistasis-based mechanism 
of functional divergence within a protein family [28].

Software availability 

The R package bios2cor is freely accessible at the Comprehensive 
R Archive Network (http://cran.r-project.org). It includes R-coded 
OMES, ELSC, MIp and McBASC functions as well as representation 
tools, such as the 2D entropy-score plots. 
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