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Abstract—In this paper, we address the challenging problem
of learning from imbalanced data using a Nearest-Neighbor
(NN) algorithm. In this setting, the minority examples typically
belong to the class of interest requiring the optimization of
specific criteria, like the F-Measure. Based on simple geometrical
ideas, we introduce an algorithm that reweights the distance
between a query sample and any positive training example.
This leads to a modification of the Voronoi regions and thus
of the decision boundaries of the NN algorithm. We provide a
theoretical justification about the weighting scheme needed to
reduce the False Negative rate while controlling the number of
False Positives. We perform an extensive experimental study on
many public imbalanced datasets, but also on large scale non
public data from the French Ministry of Economy and Finance
on a tax fraud detection task, showing that our method is very
effective and, interestingly, yields the best performance when
combined with state of the art sampling methods.

Index Terms—Machine Learning, Nearest Neighbor, F-
Measure, Imbalanced Classification.

I. INTRODUCTION

Intrusion detection, health care insurance or bank fraud
identification, and more generally anomaly detection, e.g. in
medicine or in industrial processes, are tasks requiring to
address the challenging problem of learning from imbalanced
data [1]–[3]. In such a setting, the training set is composed
of a few positive examples (e.g. the frauds) and a huge
amount of negative samples (e.g. the genuine transactions).
Standard learning algorithms struggle to deal with this im-
balance scenario because they are typically based on the
minimization of (a surrogate of) the 0-1 loss. Therefore, a
trivial solution consists in assigning the majority label to any
test query leading to a high performance from an accuracy
perspective but missing the (positive) examples of interest. To
overcome this issue, several strategies have been developed

over the years. The first one consists in the optimization of
loss functions based on measures that are more appropriate for
this context such as the Area Under the ROC Curve (AUC),
the Average Precision (AP) or the F-measure to cite a few [4],
[5]. The main pitfalls related to such a strategy concern the
difficulty to directly optimize non smooth, non separable and
non convex measures. A simple and usual solution to fix this
problem consists in using off-the-shelf learning algorithms
(maximizing the accuracy) and a posteriori pick the model
with the highest AP or F-Measure. Unfortunately, this might be
often suboptimal. A more elaborate solution aims at designing
differentiable versions of the previous non-smooth measures
and optimizing them, e.g. as done by gradient boosting in [6]
with a smooth surrogate of the Mean-AP. The second family
of methods is based on the modification of the distribution of
the training data using sampling strategies [7]. This is typically
achieved by removing examples from the majority class, as
done, e.g., in ENN or Tomek’s Link [8], and/or by adding
examples from the minority class, as in SMOTE [9] and its
variants, or by resorting to generative adversarial models [10].
One peculiarity of imbalanced datasets can be interpreted from
a geometric perspective. As illustrated in Fig. 1 (left) which
shows the Voronoi cells on an artificial imbalanced dataset
(where two adjacent cells have been merged if they concern
examples of the same class), the regions of influence of the
positive examples are much smaller than that of the negatives.
This explains why at test time, in imbalanced learning, the risk
to get a false negative is high, leading to a low F-measure, the
criterion we focus on in this paper, defined as the harmonic
mean of the Precision = TP

TP+FP and the Recall = TP
TP+FN ,

where FP (resp. FN ) is the number of false positives (resp.
negatives) and TP the number of true positives. Note that



Fig. 1. Toy imbalanced dataset: On the left, the Voronoi regions around the
positives are small. The risk to generate false negatives (FN) at test time is
large. On the right: by increasing too much the regions of influence of the
positives, the probability to get false positives (FP) grows. In the middle: an
appropriate trade-off between the two previous situations.

increasing the regions of influence of the positives would allow
us to reduce FN and improve the F-measure. However, not
controlling the expansion of these regions may have a dramatic
impact on FP , and so on the F-Measure, as illustrated in Fig. 1
(right).

The main contribution of this paper is about the problem of
finding the appropriate trade-off (Fig. 1 (middle)) between the
two above-mentioned extreme situations (large FP or FN )
both leading to a low F-Measure. A natural way to increase the
influence of positives may consist in using generative models
(like GANs [10]) to sample new artificial examples, mimicking
the negative training samples. However, beyond the issues
related to the parameter tuning, the computation burden and
the complexity of such a method, using GANs to optimize
the precision and recall is still an open problem (see [11] for
a recent paper on this topic). We show in this paper that a
much simpler strategy can be used by modifying the distance
exploited in a k-nearest neighbor (NN) algorithm [12] which
enjoys many interesting advantages, including its simplicity,
its capacity to approximate asymptotically any locally regular
density, and its theoretical rootedness [13]–[15]. k-NN also
benefited from many algorithmic advances during the past
decade in the field of metric learning, aiming at optimizing
under constraints the parameters of a metric, typically the
Mahalanobis distance, as done in LMNN [16] or ITML [17]
(see [18] for a survey). Unfortunately, existing metric learning
methods are dedicated to enhance the k-NN accuracy and
do not focus on the optimization of criteria, like the F-
measure, in scenarios where the positive training examples
are scarce. A geometric solution to increase, at a very low
cost, the region of influence of the minority class consists in
modifying the distance when comparing a query example to
a positive training sample. More formally, we show in this
paper that the optimization of the F-Measure is facilitated
by weighting the distance to any positive by a coefficient
γ ∈ [0, 1] leading to the expansion of the Voronoi cells
around the minority examples. An illustration is given in Fig.1
(middle) which might be seen as a good compromise that
results in the reduction of FN while controlling the risk to
increase FP . Note that our strategy boils down to modifying
the local density of the positive examples. For this reason, we
claim that it can be efficiently combined with SMOTE-based
sampling methods whose goal is complementary and consists
in generating examples on the path linking two (potentially far)
positive neighbors. Our experiments will confirm this intuition.

The rest of this paper is organized as follows. Section II is
dedicated to the introduction of our notations. The related work
is presented in Section III. Section IV is devoted to the presen-
tation of our method. We perform an extensive experimental
study in Section V on many imbalanced datasets, including
non public data from the French Ministry of Economy and
Finance on a tax fraud detection task. We give evidence about
the complementarity of our method with sampling strategies.
We finally conclude in Section VI.

II. NOTATIONS AND EVALUATION MEASURES

We consider a training sample S = {(xi, yi), i = 1, ...,m}
of size m, drawn from an unknown joint distribution Z =
X ×Y , where X = Rp is the feature space and Y = {−1, 1}
is the set of labels. Let us assume that S = S+∪S− with m+

positives ∈ S+ and m− negatives ∈ S− where m = m++m−.
Learning from imbalanced datasets requires to optimize

appropriate measures that take into account the scarcity of
positive examples. Two measures are usually used: the Recall
or True Positive Rate which measures the capacity of the
model to recall/detect positive examples, and the Precision
which is the confidence in the prediction of a positive label:

Recall =
TP

TP + FN
and Precision =

TP

TP + FP
,

where FP (resp. FN ) is the number of false positives (resp.
negatives) and TP is the number of true positives. Since one
can arbitrarily improve the Precision if there is no constraint
on the Recall (and vice-versa), they are usually combined into
a single measure: the F-measure [19] (or F1 score), which
is widely used in fraud and anomaly detection, and more
generally in imbalanced classification [20].

F1 =
2× Precision× Recall

Precision + Recall
=

2TP
2TP + FN + FP

.

Note that F1 considers the Precision and Recall equally.

III. RELATED WORK

In this section, we present the main strategies that have
been proposed in the literature to address the problem of
learning from imbalanced datasets. We first present methods
specifically dedicated to enhance a k-NN classifier. Then, we
give an overview of the main sampling strategies used to
balance the classes. All these methods will be used in the
experimental comparison in Section V.

A. Distance-based Methods

Several strategies have been devised to improve k-NN. The
oldest method is certainly the one presented in [21] which
consists in associating to each neighbor a voting weight that
is inversely proportional to its distance to a query point x. The
assigned label ŷ of x is defined as:

ŷ =
∑

xi∈kNN(x)

yi ×
1

d(x,xi)
,

where kNN(x) stands for the set of the k nearest neighbors
of x. A more refined version consists in taking into account



both the distances to the nearest neighbors and the distribution
of the features according to the class p(xi | yi) [22]. Despite
these modifications in the decision rule, the sparsity of the
positives remains problematic and it possible that no positives
belong in the neighborhood of a new query x. To tackle this
issue, a version of the k-NN, called kPNN [23], is to consider
the region of the space around a new query x which contains
exactly k positive examples. By doing so, the authors are able
to use the density of the positives to estimate the probability
of belonging in the minority class.

A more recent version has been shown to perform better
than the two previously mentioned: kRNN [24]. If the idea
remains similar (i.e. estimating the local sparsity of minority
examples around a new query), the posterior probability of
belonging in the minority class is adjusted so that it takes
both the local and global disequilibrium for the estimation.

In order to weight the examples, in [25], the authors use
an iterative procedure to optimize the accuracy on each class
using the nearest neighbor classifier (i.e. k = 1)

In [26], the authors account both the label and the distance
to the neighbors (xi, yi) to define a weighted metric d′ from
the euclidean distance d, as follows:

d′(x,xi) =
(mi

m

)1/p
d(x,xi),

where mi is the number of examples in the class yi. As we will
see later, this method falls in the same family of strategies as
our contribution, aiming at weighting the distance to the exam-
ples according to their label. However, three main differences
justify why our method will be better in the experiments: (i)
d′ is fixed in advance while we will adapt the weight that
optimizes the F - measure; (ii) because of (i), d′ needs to take
into account the dimension p of the feature space (and so
will tend to d as p grows) while this will be intrinsically
captured in our method by optimizing the weight given the
p-dimensional space; (iii) d′ is useless when combined with
sampling strategies (indeed, mi

m would tend to be uniform)
while our method will allow us to weight differently the
original positive examples and the ones artificially generated.

Another way to assign weights to each class, which is close
to the sampling methods presented in the next section, is to
duplicate the positive examples according to the Imbalance
Ratio: m−/m+. Thus, it can be seen as a uniform over-
sampling technique, where all positives are replicated the same
number of times. However, note that this method requires to
work with k > 1.

A last family of methods that try to improve k-NN is related
to metric learning. LMNN [16] or ITML [17] are two famous
examples which optimize under constraints a Mahalanobis
distance dM(x,xi) =

√
(x− xi)>M(x− xi) parameterized

by a positive semidefinite (PSD) matrix M. Such methods
seek a linear projection of the data in a latent space where
the Euclidean distance is applied. As we will see in the
following, our weighting method is a specific case of metric
learning which looks for a diagonal matrix - applied only when

comparing a query to a positive example - and that behaves
well in terms of F-Measure.

B. Sampling Strategies

One way to overcome the issues induced by the lack of
positive examples is to compensate artificially the imbalance
between the two classes. Sampling strategies [7] have been
proven to be very efficient to address this problem. In the fol-
lowing, we overview the most used methods in the literature.

The Synthetic Minority Over-sampling Technique [9]
(SMOTE) over-samples a dataset by creating new synthetic
positive data. For each minority example x, it randomly selects
one of its k nearest positive neighbors and then creates a new
random positive point on the line between this neighbor and
x. This is done until some desired ratio is reached.

Borderline-SMOTE [27] is an improvement of the SMOTE
algorithm. While the latter generates synthetic points from
all positive points, BorderLine-SMOTE only focuses on those
having more negatives than positives in their neighborhood.
More precisely, new points are generated if the number n of
negatives in the k-neighborhood is such that k/2 ≤ n ≤ k.

The Adaptive Synthetic [28] (ADASYN) sampling approach
is also inspired from SMOTE. By using a weighted distri-
bution, it gives more importance to classes that are more
difficult to classify, i.e. where positives are surrounded by
many negatives, and thus generates more synthetic data for
these classes.

Two other strategies combine an over-sampling step with an
under-sampling procedure. The first one uses the Edited Near-
est Neighbors [29] (ENN) algorithm on the top of SMOTE.
After SMOTE has generated data, the ENN algorithm removes
data that are misclassified by their k nearest neighbors. The
second one combines SMOTE with Tomek’s link [8]. A
Tomek’s link is a pair of points (xi,xj) from different classes
for which there is no other point xk verifying d(xi,xk) ≤
d(xi,xj) or d(xk,xj) ≤ d(xi,xj). In other words, xi is the
nearest neighbor of xj and vice-versa. If so, one removes
the example of (xi,xj) that belongs to the majority class.
Note both strategies tend to eliminate the overlapping between
classes.

Interestingly, we can note that all the previous sampling
methods try to overcome the problem of learning from im-
balanced data by resorting to the notion of k-neighborhood.
This is justified by the fact that k-NN has been shown to
be a good estimate of the density at a given point in the
feature space. In our contribution, we stay in this line of
research. Rather than generating new examples, that would
have a negative impact from a complexity perspective, we
locally modify the density around the positive points. This
is achieved by rescaling the distance between a test sample
and the positive training examples. We will show that such a
strategy can be efficiently combined with sampling methods,
whose goal is complementary, by potentially generating new
examples in regions of the space where the minority class is
not present.



IV. PROPOSED APPROACH

In this section, we present our γk−NN method which works
by scaling the distance between a query point and positive
training examples by a factor.

A. A Corrected k−NN algorithm

Statistically, when learning from imbalanced data, a new
query x has more chance to be close to a negative example
due to the rarity of positives in the training set, even around the
mode of the positive distribution. We have seen two families
of approaches that can be used to counteract this effect: (i)
creating new synthetic positive examples, and (ii) changing
the distance according to the class. The approach we propose
falls into the second category.

We propose to modify how the distance to the positive ex-
amples is computed, in order to compensate for the imbalance
in the dataset. We artificially bring a new query x closer to any
positive data point xi ∈ S+ in order to increase the effective
area of influence of positive examples. The new measure dγ
that we propose is defined, using an underlying distance d
(e.g. the euclidean distance) as follows:

dγ(x,xi) =

{
d(x,xi) if xi ∈ S−,
γ · d(x,xi) if xi ∈ S+.

As we will tune the γ parameter, this new way to compute
the similarity to a positive example is close to a Mahalanobis-
distance learning algorithm, looking for a PSD matrix, as
previously described. However, the matrix M is restricted to
be γ2 · I, where I refers to the identity matrix. Moreover,
while metric learning typically works by optimizing a convex
loss function under constraints, our γ is simply tuned such
as maximizing the non convex F-Measure. Lastly, and most
importantly, it is applied only when comparing the query
to positive examples. As such, dγ is not a proper distance,
however, it is exactly this which allows it to compensate for
the class imbalance. In the binary setting, there is no need
to have a γ parameter for the negative class, since only the
relative distances are used. In the multi-class setting with K
classes, we would have to tune up to K − 1 values of γ.

Before formalizing the γk−NN algorithm that will leverage
the distance dγ , we illustrate in Fig. 2, on 2D data, the decision
boundary induced by a nearest neighbor binary classifier that
uses dγ . We consider an elementary dataset with only two
points, one positive and one negative. The case of γ = 1,
which is a traditional 1-NN is shown in a thick black line.
Lowering the value of γ below 1 brings the decision boundary
closer to the negative point, and eventually tends to surround it
very closely. In Fig 3, two more complex datasets are shown,
each with two positive points and several negative examples.
As intuited, we see that the γ parameter allows to control
how much we want to push the boundary towards negative
examples.

We can now introduce the γk−NN algorithm (see Algo 1)
that is parameterized by a γ parameter. It has the same overall
complexity as k−NN. The first step to classify a query x is to
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Fig. 2. Evolution of the decision boundary based on dγ , for a 1-NN classifier,
on a 2D dataset with one positive (resp. negative) instance represented by a
blue cross (resp. orange point). The value of γ is given on each boundary
(γ = 1 on the thick line).
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Fig. 3. Behavior of the decision boundary according to the γ value for the
1-NN classifier on two toy datasets. The positive points are represented by
blue crosses and the negatives by orange points. The black line represents the
standard decision boundary for the 1-NN classifier, i.e. when γ = 1.

find its k nearest negative neighbors and its k nearest positive
neighbors. Then, the distances to the positive neighbors are
multiplied by γ, to obtain dγ . These 2k neighbors are then
ranked and the k closest ones are used for classification
(with a majority vote, as in k−NN). It should be noted that,
although dγ does not define a proper distance, we can still use
any existing fast nearest neighbor search algorithm, because
the actual search is done (twice but) only using the original
distance d.

Algorithm 1: Classification of a new example with
γk−NN
Input : a query x to be classified, a set of labeled

samples S = S+ ∪ S−, a number of
neighbors k, a positive real value γ, a
distance function d

Output: the predicted label of x

NN−,D− ← nn(k,x, S−) // nearest negative
neighbors with their distances
NN+,D+ ← nn(k,x, S+) // nearest positive

neighbors with their distances
D+ ← γ · D+

NN γ ←
firstK

(
k, sortedMerge((NN−,D−), (NN+,D+))

)
y ← + if

∣∣NN γ ∩NN+
∣∣ ≥ k

2 else − // majority
vote based on NN γ

return y



B. Theoretical analysis

In this section, we formally analyze what could be a good
range of values for the γ parameter of our corrected version of
the k−NN algorithm. To this aim, we study what impact γ has
on the probability to get a false positive (and false negative)
at test time and explain why it is important to choose γ < 1
when the imbalance in the data is significant. The following
analysis is made for k = 1 but note that the conclusion still
holds for a k-NN.

Proposition 1. (False Negative probability) Let dγ(x,x+) =
γd(x,x+), ∀γ > 0, be our modified distance used between a
query x and any positive training example x+, where d(x,x+)
is some distance function. Let FNγ(z) be the probability for
a positive example z to be a false negative using Algorithm
(1). The following result holds: if γ ≤ 1,

FNγ(z) ≤ FN(z)

Proof. (sketch of proof) Let ε be the distance from z to its
nearest-neighbor Nz. z is a false negative if Nz ∈ S− that is
all positives x′ ∈ S+ are outside the sphere S ε

γ
(z) centered

at z of radius ε
γ . Therefore,

FNγ(z) =
∏

x′∈S+

(
1− P (x′ ∈ S ε

γ
(z))

)
,

=
(
1− P (x′ ∈ S ε

γ
(z))

)m+

(1)

while

FN(z) = (1− P (x′ ∈ Sε(z)))
m+ . (2)

Solving (1) ≤ (2) implies γ ≤ 1.

This result means that satisfying γ < 1 allows us to increase
the decision boundary around positive examples (as illustrated
in Fig. 3), yielding a smaller risk to get false negatives at test
time. An interesting comment can be made from Eq.(1) and (2)
about their convergence. As m+ is supposed to be very small
in imbalanced datasets, the convergence of FN(z) towards 0
is pretty slow, while one can speed-up this convergence with
FNγ(z) by increasing the radius of the sphere S ε

γ
(z), that is

taking a small value for γ.

Proposition 2. (False Positive probability) Let FPγ(z) be the
probability for a negative example z to be a false positive
using Algorithm (1). The following result holds: if γ ≥ 1,

FPγ(z) ≤ FP (z)

Proof. (sketch of proof) Using the same idea as before, we
get:

FPγ(z) =
∏

x′∈S−

(1− P (x′ ∈ Sγε(z))) ,

= (1− P (x′ ∈ Sγε(z)))
m− (3)

while

FP (z) = (1− P (x′ ∈ Sε(z)))
m− . (4)

TABLE I
INFORMATION ABOUT THE STUDIED DATASETS SORTED BY IMBALANCE
RATIO. THE FIRST PART REFERS TO THE PUBLIC DATASETS, THE SECOND

ONE DESCRIBES THE DGFiP PRIVATE DATASETS.

DATASETS SIZE DIM %+ %− IR
BALANCE 625 4 46.1 53.9 1.2
AUTOMPG 392 7 37.5 62.5 1.7
IONOSPHERE 351 34 35.9 64.1 1.8
PIMA 768 8 34.9 65.1 1.9
WINE 178 13 33.1 66.9 2
GLASS 214 9 32.7 67.3 2.1
GERMAN 1000 23 30 70 2.3
VEHICLE 846 18 23.5 76.5 3.3
HAYES 132 4 22.7 77.3 3.4
SEGMENTATION 2310 19 14.3 85.7 6
ABALONE8 4177 10 13.6 86.4 6.4
YEAST3 1484 8 11 89 8.1
PAGEBLOCKS 5473 10 10.2 89.8 8.8
SATIMAGE 6435 36 9.7 90.3 9.3
LIBRAS 360 90 6.7 93.3 14
WINE4 1599 11 3.3 96.7 29.2
YEAST6 1484 8 2.4 97.6 41.4
ABALONE17 4177 10 1.4 98.6 71.0
ABALONE20 4177 10 0.6 99.4 159.7
DGFIP 19 2 16643 265 35.1 64.9 1.9
DGFIP 9 2 440 173 24.8 75.2 3
DGFIP 4 2 255 82 20.8 79.2 3.8
DGFIP 8 1 1028 255 17.8 82.2 4.6
DGFIP 8 2 1031 254 17.9 82.1 4.6
DGFIP 9 1 409 171 16.4 83.6 5.1
DGFIP 4 1 240 76 16.2 83.8 5.2
DGFIP 16 1 789 162 10.3 89.7 8.7
DGFIP 16 2 786 164 9.9 90.1 9.1
DGFIP 20 3 17584 294 5 95 19
DGFIP 5 3 19067 318 3.9 96.1 24.9

Solving (3) ≤ (4) implies γ ≥ 1.

As expected, this result suggests to take γ > 1 to increase
the distance dγ(z,x+) from a negative test sample z to any
positive training example x+ and thus reduce the risk to
get a false positive. It is worth noticing that while the two
conclusions from Propositions 1 and 2 are contradictory, the
convergence of FPγ(z) towards 0 is much faster than that
of FNγ(z) because m− >> m+ in an imbalance scenario.
Therefore, fulfilling the requirement γ > 1 is much less
important than satisfying γ < 1. For this reason, we will
impose our Algorithm (1) to take γ ∈]0, 1[. As we will see in
the experimental section, the more imbalance the datasets, the
smaller the optimal γ, confirming the previous conclusion.

V. EXPERIMENTS

In this section, we present an experimental evaluation of our
method on public and real private datasets with comparisons to
classic distance-based methods and state of the art sampling
strategies able to deal with imbalanced data. All results are
reported using k = 3. Note that if the theoretical study is
presented for k = 1, the same Analysis can be conducted for
other values of k. Furthermore, we have decided to present the
results for k = 3 as it is the most used k-value for that kind
of algorithms (e.g. for LMNN [16]) The results for k = 1 are
comparable as the presented results in this section



TABLE II
RESULTS FOR 3−NN ON THE PUBLIC DATASETS. THE VALUES CORRESPOND TO THE MEAN F-MEASURE F1 OVER 5 RUNS. THE STANDARD DEVIATION IS

INDICATED BETWEEN BRACKETS. THE BEST RESULT ON EACH DATASET IS INDICATED IN BOLD.

DATASETS 3−NN DUPk−NN Wk−NN CWk−NN KRNN LMNN γk−NN
BALANCE 0.954(0.017) 0.954(0.017) 0.957(0.017) 0.961(0.010) 0.964(0.010) 0.963(0.012) 0.954(0.029)

AUTOMPG 0.808(0.077) 0.826(0.033) 0.810(0.076) 0.815(0.053) 0.837(0.040) 0.827(0.054) 0.831(0.025)

IONOSPHERE 0.752(0.053) 0.859(0.021) 0.756(0.060) 0.799(0.036) 0.710(0.052) 0.890(0.039) 0.925(0.017)

PIMA 0.500(0.056) 0.539(0.033) 0.479(0.044) 0.515(0.037) 0.579(0.055) 0.499(0.070) 0.560(0.024)

WINE 0.881(0.072) 0.852(0.057) 0.881(0.072) 0.876(0.080) 0.861(0.093) 0.950(0.036) 0.856(0.086)

GLASS 0.727(0.049) 0.733(0.061) 0.736(0.052) 0.717(0.055) 0.721(0.031) 0.725(0.048) 0.746(0.046)

GERMAN 0.330(0.030) 0.449(0.037) 0.326(0.030) 0.344(0.029) 0.383(0.048) 0.323(0.054) 0.464(0.029)

VEHICLE 0.891(0.044) 0.867(0.027) 0.891(0.044) 0.881(0.021) 0.879(0.034) 0.958(0.020) 0.880(0.049)

HAYES 0.036(0.081) 0.183(0.130) 0.050(0.112) 0.221(0.133) 0.050(0.100) 0.036(0.081) 0.593(0.072)

SEGMENTATION 0.859(0.028) 0.862(0.018) 0.877(0.028) 0.851(0.022) 0.797(0.019) 0.885(0.034) 0.848(0.025)

ABALONE8 0.243(0.037) 0.318(0.013) 0.241(0.034) 0.330(0.015) 0.253(0.041) 0.246(0.065) 0.349(0.018)

YEAST3 0.634(0.066) 0.670(0.034) 0.634(0.066) 0.699(0.015) 0.723(0.021) 0.667(0.055) 0.687(0.033)

PAGEBLOCKS 0.842(0.020) 0.850(0.024) 0.849(0.019) 0.847(0.029) 0.843(0.023) 0.856(0.032) 0.844(0.023)

SATIMAGE 0.454(0.039) 0.457(0.027) 0.454(0.039) 0.457(0.023) 0.458(0.033) 0.487(0.026) 0.430(0.008)

LIBRAS 0.806(0.076) 0.788(0.187) 0.806(0.076) 0.789(0.097) 0.810(0.056) 0.770(0.027) 0.768(0.106)

WINE4 0.031(0.069) 0.090(0.086) 0.031(0.069) 0.019(0.042) 0.000(0.000) 0.000(0.000) 0.090(0.036)

YEAST6 0.503(0.302) 0.449(0.112) 0.502(0.297) 0.338(0.071) 0.490(0.107) 0.505(0.231) 0.553(0.215)

ABALONE17 0.057(0.078) 0.172(0.086) 0.057(0.078) 0.096(0.059) 0.092(0.025) 0.000(0.000) 0.100(0.038)

ABALONE20 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.067(0.038) 0.000(0.000) 0.057(0.128) 0.052(0.047)

MEAN 0.543(0.063) 0.575(0.053) 0.544(0.064) 0.559(0.046) 0.550(0.041) 0.560(0.053) 0.607(0.049)

A. Experimental setup

For the experiments, we use several public datasets from
the classic UCI 1 and KEEL 2 repositories. We also use
eleven real fraud detection datasets provided by the General
Directorate of Public Finances (DGFiP) which is part of the
French central public administration related to the French
Ministry for the Economy and Finance. These private datasets
correspond to data coming from tax and VAT declarations of
French companies and are used for tax fraud detection purpose
covering declaration of over-valued, fictitious or prohibited
charges, wrong turnover reduction or particular international
VAT frauds such as ”VAT carousels”. The DGFiP performs
about 50,000 tax audits per year within a panel covering
more than 3,000,000 companies. Being able to select the
right companies to control each year is a crucial issue with
a potential high societal impact. Thus, designing efficient
imbalance learning methods is key. The main properties of the
datasets are summarized in Table I, including the imbalance
ratio (IR).

All the datasets are normalized using a min-max normal-
ization such that each feature lies in the range [−1, 1]. We
randomly draw 80%-20% splits of the data to generate the
training and test sets respectively. Hyperparameters are tuned
with a 10-fold cross-validation over the training set. We repeat
the process over 5 runs and average the results in terms of F-
measure F1. In a first series of experiments, we compare our
method, named γk−NN, to 6 other distance-based baselines:

• the classic k−Nearest Neighbor algorithm (k−NN),
• the weighted version of k−NN using the inverse distance

as a weight to predict the label (wk−NN) [21],
• the class weighted version of k−NN (cwk−NN) [26],

1https://archive.ics.uci.edu/ml/datasets.html
2https://sci2s.ugr.es/keel/datasets.php

• the k−NN version where each positive is duplicated
according to the IR of the dataset (dupk−NN),

• kRNN where the sparsity of minority examples is taken
into account [24] by modifying the way the posterior
probability of belonging to the positive class is com-
puted.

• the metric learning method LMNN [16].
Note that we do not compare with [25] as the following results
are given with k = 3 while their algorithm can be used only
with k = 1.

We set the number of nearest neighbors to k = 3 for
all methods. The hyperparameter µ of LMNN, weighting the
impact of impostor constraints (see [16] for more details), is
tuned in the range [0, 1] using a step of 0.1. Our γ parameter
is tuned in the range [0, 1]3 using a step of 0.1. For kRNN,
we have used parameters values as described in [24], however
we take k = 3 instead of 1.

In a second series of experiments, we compare our method
to the five oversampling strategies described in Section III-B:
SMOTE, Borderline-SMOTE, ADASYN, SMOTE with ENN,
SMOTE with Tomek’s link. The number of generated pos-
itive examples is tuned over the set of ratios

m+

m−
∈

{0.1, 0.2, ..., 0.9, 1.0} and such that the new ratio is greater
than the original one before sampling. Other parameters of
these methods are the default ones used by the package
ImbalancedLearn of Scikit-learn.

B. Results

The results on the public datasets using distance-based
methods are provided in Table II. Overall, our γk−NN ap-
proach performs much better than its competitors by achieving

3We experimentally noticed that using a larger range for γ leads in fact
to a potential decrease of performances due to overfitting phenomena. This
behavior is actually in line with the analysis provided in Section IV-B.



an improvement of at least 3 points on average, compared
to the 2nd best method (DUPk−NN). The different k−NN
versions fail globally to provide models efficient whatever
the imbalance ratio. The metric learning approach LMNN is
competitive when IR is smaller than 10 (although algorithmi-
cally more costly). Beyond, it faces some difficulties to find
a relevant projection space due to the lack of positive data.
The efficiency of γk−NN is not particularly sensitive to the
imbalance ratio.

The results for our second series of experiments, focusing
on sampling strategies, are reported on Fig. 4. We compare
each of the 5 sampling methods with the average performances
of 3−NN and γk-NN obtained over the 19 public datasets
reported in Table II. Additionally, we also use γk−NN on the
top of the sampling methods to evaluate how both strategies
are complementary. However, in this scenario, we propose to
learn a different γ value to be used with the synthetic positives.
Indeed, some of them may be generated in some true negative
areas and in this situation it might be more appropriate to
decrease the influence of such synthetic examples. The γ
parameter for these examples is then tuned in the range [0, 2]
using a step of 0.1. If one can easily observe that all the
oversampling strategies improve the classic k − NN , none
of them is better than our γk-NN method showing that our
approach is able to deal efficiently with imbalanced data.
Moreover, we are able to improve the efficiency of γk-NN
when it is coupled with an oversampling strategy. The choice
of the oversampler does not really influence the results. The
gains obtained by using a sampling method with γk-NN for
each dataset is illustrated in Fig. 6 (top).

To study the influence of using two γ parameters when com-
bined with an oversampling strategy, we show an illustration
(Fig. 5 (top)) of the evolution of the F -measure with respect to
the γ values for synthetic and real positive instances. The best
F -measure is achieved when the γ on real positives is smaller
than 1 and when the γ on synthetic positives is greater than
1, justifying the interest of using two parameterizations of γ.
In Fig. 5 (bottom), we show how having two γ values gives
the flexibility to independently control the increased influence
of real positives and the one of artificial positives.

We now propose a study on the influence of the imbalance
ratio on the optimal γ-parameter. We consider the Balance
dataset which has the smallest imbalance ratio that we increase
by iteratively randomly under-sampling the minority class over
the training set. We report the results on Fig. 6 (bottom). As
expected, we can observe that the optimal γ value decreases
when the imbalance increases. However, note that from a
certain IR (around 15), γ stops decreasing to be able to keep
a satisfactory F-Measure.

The results for the real datasets of the DGFiP are avail-
able in Table III. Note that only the SMOTE algorithm is
reported here since the other oversamplers have comparable
performances. The analysis of the results leads to observations
similar as the ones made for the public datasets. Our γ−kNN
approach outperforms classic k−NN and is better than the
results obtained by the SMOTE strategy. Coupling the SMOTE
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Fig. 4. Comparison of different sampling strategies averaged over the 19
public datasets.OS refers to the results of the corresponding sampling strategy
and OS + γ to the case when the sampling strategy is combined with γk-
NN. k−NN and γk−NN refers to the results of these methods without
oversampling as obtained in Table II. (numerical values for these graphs are
provided in supplementary material)
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Fig. 5. (Top) An example of heatmap that shows the best couple of γ for
the OS+γk−NN strategy on the yeast6 dataset with SMOTE and Tomek’s
link. (Bottom) Illustration, on a toy dataset, of the effect of varying the γ for
generated positive points (in grey) while keeping a fixed γ = 0.4 for real
positive points.

sampling method with our distance correction γk-NN allows
us to improve the global performance showing the applicability
of our method on real data.

VI. CONCLUSION

In this paper, we have proposed a new strategy that ad-
dresses the problem of learning from imbalanced datasets,
based on the k−NN algorithm and that modifies the distance
to the positive examples. It has been shown to outperform its
competitors in term of F1-measure. Furthermore, the proposed
approach is complementary to oversampling strategies and
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Fig. 6. (Top) Comparison of k-NN with (i) γk−NN (points in blue) and (ii)
γk−NN coupled with the best sampling strategy (OS?) (points in orange) for
each dataset and for k = 3. Points below the line y = x means that k-NN is
outperformed. (Bottom) Evolution of the optimal γ value with respect to the
IR for k = 3.

TABLE III
RESULTS FOR 3−NN ON THE DGFIP DATASETS. THE VALUES

CORRESPOND TO THE MEAN F-MEASURE F1 OVER 5 RUNS. THE BEST
RESULT ON EACH DATASET IS INDICATED IN BOLD WHILE THE SECOND IS

UNDERLINED.

DATASETS 3−NN γk−NN SMOTE SMOTE+γk−NN
DGFIP19 2 0,454(0,007) 0,528(0,005) 0,505(0,010) 0,529(0,003)

DGFIP9 2 0,173(0,074) 0,396(0,018) 0,340(0,033) 0,419(0,029)

DGFIP4 2 0,164(0,155) 0,373(0,018) 0,368(0,057) 0,377(0,018)

DGFIP8 1 0,100(0,045) 0,299(0,010) 0,278(0,043) 0,299(0,011)

DGFIP8 2 0,140(0,078) 0,292(0,028) 0,313(0,048) 0,312(0,021)

DGFIP9 1 0,088(0,090) 0,258(0,036) 0,270(0,079) 0,288(0,026)

DGFIP4 1 0,073(0,101) 0,231(0,139) 0,199(0,129) 0,278(0,067)

DGFIP16 1 0,049(0,074) 0,166(0,065) 0,180(0,061) 0,191(0,081)

DGFIP16 2 0,210(0,102) 0,202(0,056) 0,220(0,043) 0,229(0,026)

DGFIP20 3 0,142(0,015) 0,210(0,019) 0,199(0,015) 0,212(0,019)

DGFIP5 3 0,030(0,012) 0,105(0,008) 0,110(0,109) 0,107(0,010)

MEAN 0,148(0,068) 0,278(0,037) 0,271(0,057) 0,295(0,028)

can even increase their performance. Our γk−NN algorithm,
despite its simplicity, is highly effective even on real data sets.

Two lines of research deserve future investigations. We can
note that tuning γ is equivalent to building a diagonal matrix
(with γ2 in the diagonal) and applying a Mahalanobis distance
only between a query and a positive example. This comment
opens the door to a new metric learning algorithm dedicated to
optimizing a PSD matrix under F-Measure-based constraints.
If one can learn such a matrix, the second perspective will
consist in deriving generalization guarantees over the learned
matrix. In addition, making γ non-stationary (a γ(x) that
smoothly varies in X ) would increase the model flexibility.
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