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Introduction

Topological phases of matter have emerged as a novel paradigm in the study of condensed matter physics. [1] [2] [3] [4] Topological insulators (TI) are essentially material realizations that stem from this new theoretical paradigm. [4] [5] [6] [7] [8] They are interesting from both the fundamental and applied perspective. Typically, a topological insulator is a material that has an inverted orbital band ordering in the 3D bulk, which leads to the existence of Dirac cones at the surface of the material, at symmetric points in the Brillouin zone. [4] [5] These Dirac fermions are spin-momentum locked and highly robust to backscattering. From the fundamental perspective, a number of novel states of matter have so far been realized in topological insulators. The quantum anomalous Hall state, [9] [10] the Majorana fermion [11] and the quantized Faraday and Kerr effects [12] [13] are examples of such realizations. From the applied perspective, implementation in spintronic data storage devices and high frequency transistors are envisaged. Highly efficient spin-torque switching and spin injection have already been demonstrated in ferromagnet/TI devices thus establishing potential use in data storage, [14] [15] [16] however, studies aimed at realizing high frequency transistors still lack.

An important step to realize high frequency transistors is to characterize the capacitive response of the TI at radio frequency (RF) and establish its Dirac-like nature. The RF transport regime has already been significantly studied in graphene [17] [18] [19] [20] and more recently in HgTe TIs. [21] [START_REF] Inhofer | Probing AC Compressibility of 3D HgTe and Bi2Se3 Topological Insulators at High Electric Fields: Evidence for Massive Surface States[END_REF] In this regime, one can simultaneously measure the quantum capacitance of the Dirac states and the conductivity of the material. Contrary to the constant capacitance-voltage characteristic typical of metal-insulator-metal capacitors (Fig. 1(a)), in metal-insulator-graphene and metal-insulatortopological insulator capacitors (MITI-CAP), the capacitance is a function of the applied voltage (Fig 1(b)). The quantum capacitance being related to the compressibility or the density of states, then allows one to directly measure those quantities. [17] This is, however, only possible for materials that have a low carrier density and a good mobility. For this particular reason, RF capacitance studies have remained highly challenging in Bi-based 3D-TIs. In the case of Bi2Se3 for example, residual bulk ndoping renders a reliable detection of surface-state signatures difficult. [START_REF] Analytis | [END_REF] [24] [25] The first step in realizing an RF-transport device based on Bi2Se3 is a solution to the issue of material quality. Motivated by recent positive results on the growth of Bi2Se3 by chemical vapor deposition (CVD) on mechanically exfoliated hexagonal boron nitride (hBN), [26] , [27] we undertake a similar procedure.

We first grow Bi2Se3 by CVD on high-quality hBN, [28] [29] and then transfer a second layer of hBN on top of the grown Bi2Se3 to realize a capacitor device. The excellent dielectric properties of the hBN used in this work, and the improved transport characteristics of CVD grown Bi2Se3 on hBN, allow us to observe clear signatures of Dirac surface-states in the RF transport regime. We are able to simultaneously measure both the quantum capacitance and the channel resistance of the device. The capacitance exhibits a linear variation and a minimum versus chemical potential characteristic of Dirac fermions. The resistance shows a strong increase with decreasing voltage in the depleted regime. It does not reach a maximum at the capacitance dip. We argue that this is due to the contributions of the bottom surface in the bipolar regime. Our work provides a first quantitative analysis of the compressibility of Bi2Se3 in the RF regime and establishes the Dirac nature of the RF response in TIs.

Growth and characterization

Bi2Se3 nanoflakes are grown by catalyst free chemical vapor deposition (CVD) using a three zone tube furnace following a procedure similar to what is reported by Xu et al. [26] All growths are performed on high-resistivity Si/SiO2 substrates having an oxide thickness of 300nm, on which we mechanically exfoliate h-BN. The furnace tube is initially pumped down to 8x10 -2 mbar. A powder source of high purity (99.99%) Bi2Se3 is placed in the hot zone (A) of the furnace in a stream of Argon gas (99.999%) flowing at 200 sccm (Fig. 2(a)). The substrate (Fig. 2(b)) is placed downstream from the source in the colder zone (B). Zones (A) and (B) are initially heated up to 300⁰C in 30 min. (A) is then heated up to 600⁰C while (B) is only heated up to 400⁰C in 30 min. These temperatures are maintained for 60 seconds. Both zones are finally cooled down to 200⁰C in 80 min. An absolute pressure of 3.9 mbar is maintained during the entire process.

An optical microscope image of a characteristic sample is shown in Fig. 2(b,c), before and after the growth respectively. A layer of Bi2Se3 is seen to coat the hBN flakes, but does not nucleate on the Three flakes (6QL, 8QL, 13QL) having different thicknesses obtained from identical growths are selected for device implementation. The 8QL sample is studied in detail. The results from the other three samples are shown in the appendix section. An AFM image of the 8QL sample is shown in Fig. 3(a). We measure the Bi2Se3 thickness across a line shown in the inset of Fig. 3(a). We find a thickness varying between 8 and 10 quintuple layers (QL). A small peak-to-peak surface roughness of (1-2)QL is detected. A hBN flake is then transferred on top of the grown Bi2Se3 using the standard dry transfer method, already proven successful for graphene [31] [32] and 2D semiconductors.

[33] [34] [35] [36] [37] Optical images of the sample are shown in Fig. 3(b,c) before and after the transfer respectively. The transfer is performed in air, therefore exposing the top surface of Bi2Se3 to atmosphere. The transferred hBN layer is chosen to be thinner than 10 nm (8 nm in this case), in order to maximize its geometric capacitance and render the quantum capacitance of the Bi2Se3 experimentally visible. A single e-beam lithography step then allows us to pattern the gate and drain electrodes, as well as a co-planar waveguide. A metallic bilayer of Ti(5 nm)/Au(150 nm) is then deposited. Note that prior to depositing the Ti layer, light argon etching (<10 s) is performed in-situ to remove any native oxides, and to minimize contact resistance. The device processing sequence is summarized in Fig. 3(d). The hBN-encapsulated Bi2Se3 capacitor device embedded in an RFwaveguide is shown Fig. 4 (a,b).

RF-transport measurements

The devices are characterized using radio-frequency (RF) transport measurements for frequencies between 0.03 and 10 GHz using a variable network analyzer, in a cryogenic RF-probe station, as detailed in our previous works. [17] [22] [21] A standard short-open-load-through calibration is performed before the measurement. The S-matrix components are extracted by measuring the reflected and transmitted wave intensity through the device as a function of frequency for different gate voltages using a variable network analyzer. The complex admittance (inverse impedance) is then extracted from the S-matrix components. The real and imaginary parts of device admittance are quantified versus frequency and gate voltage. Proper care is taken to de-embed [START_REF] Pozar | Microwave Engineering[END_REF] parasitic capacitive and inductive contributions resulting from the device geometry by measuring a dummy device having identical contact geometry without the Bi2Se3 flake in between, as well as a conductive through-line.

Such measurements also rule out any parasitic RF signals stemming from the substrate Si/SiO2 substrates. All measurements are made at 10K. In what follows, we will focus on measurements made on the 8QL device shown in Fig. 2 and3. 
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Where as a function of gate voltage between -6 V and 1V. The capacitance decreases progressively for decreasing voltage (0 to -5 V), goes through a minimum at about -5 V, then increases again between -5 V and -6 V. With a capacitance dip of 5%, our results agree with previous low frequency capacitance measurements on similar Bi2Se3 reporting a capacitance dip of 6%. [26] The resistance exhibits a continuous increase that accelerates near the capacitance minimum.

No resistance maximum is observed. A fixed contact resistance Rc≈20Ω was included in the curve fit to the admittance data. Allowing this contact resistance to vary yielded negligible variation compared to the 5-fold increase observed in the channel resistance. We can thus confidently claim, that our two-point RF measurement yields a reliable simultaneous measurement of the quantum capacitance and the channel resistance.

Analysis of the quantum capacitance of top surface states

We next focus on the analysis of quantum capacitance. 𝑐 𝑄 can be extracted using Eq. ( 3), by fixing 𝑐 𝑔𝑒𝑜 = (124 ± 1) fF, the value at which the capacitance is seen to saturate in Fig. 4(e). The measured geometric capacitance is slightly lower than what is expected for hBN having κ=3.2, possibly as a result of the rough surface of Bi2Se3. The capacitance per unit area 𝑐 𝑄 is then determined by dividing the capacitance by the geometrical factors L and w. 𝑐 𝑄 is shown in Fig. 5 (a). The grey lines in Fig. 5(a) delimit the propagated uncertainty on 𝑐 𝑄 due to the uncertainty associated with 𝑐 𝑔𝑒𝑜 . A powerful consequence of our measurements is the fact that it allows us to determine the local (top surface) chemical potential 𝜀 𝑓 directly from experimental data via the Berglund integral, without a priori knowledge of the band structure. The Berglund integral is written as [START_REF] Berglund | [END_REF]:

𝜀 𝑓 = ∫ 𝑑𝑉 (1 - 𝐶(𝑉) 𝑐 𝑔𝑒𝑜 ) 𝑉 𝑔 0 (4) 
We use Eq. ( 4) to extract 𝜀 𝑓 which we now plot as a function of Vg in Fig. 5 (assumed parabolic with m*=0.14m0). [41] This yields a slight native bulk n-doping of 2×10 18 cm -3 . This is a significant improvement compared to pristine quality Bi2Se3 where typically 𝑛 > 10 We can additionally perform a linear fit to the 𝑐 𝑄 versus 𝜀 𝑓 curve. This is shown as the solid red line, fit to the data in Fig. 5(c). The dashed lines are fit extrema to the edges of the shaded area, and allow us to determine the uncertainty on the extracted slope. The slope allows us to extract the Dirac velocity of the topological surface states, near the Dirac point. This follows from the expression of the compressibility χ, which is related to 𝑐 𝑄 :

𝑐 𝑄 = 𝑒 2 𝜒 = 𝑒 2 𝜀 𝑓 2𝜋(ℏ𝑣 𝑓 ) 2 (5)
We find a Dirac velocity equal to (5.8±1.4)×10 5 m/s. This agrees within experimental uncertainty with previously reported velocities that vary between 5×10 5 m/s and 4.5×10 5 m/s. [40] [50] [25] It is worthwhile highlighting that while we can perfectly account for variation of the quantum capacitance versus Fermi energy shown in Fig. 5(c), this analysis cannot account for the finite 𝑐 𝑄 offset observed at the minimum. From Eq. ( 5) it is evident that 𝑐 𝑄 should go to zero at 𝜀 𝑓 = 0. Although this has never been observed experimentally, the typical capacitance offset at the Dirac point observed in graphene, for example, is an order of magnitude lower than what is observed here. [51] Our data suggests the presence of additional capacitive contributions in parallel with that of the top Dirac surface states. A thorough understanding of these capacitive contributions from other transport channels must thus be provided.

The origin of the capacitance offset: capacitive coupling of top and bottom surface channels

First, it is simple to rule out reminiscent bulk carriers as the source of this offset, simply by computing the screening length for Bi2Se3 using the measured quantum capacitance. In order to extract the screening length from experimental data, we need to develop and expression that relates the screening length to the 2D density-of-states and to the quantum capacitance. This is discussed in detail in appendix A. The end result is a screening length that scales linearly with the inverse of the 2D quantum capacitance of bulk states 𝑐 𝑄 𝑏𝑢𝑙𝑘 :

𝜆 = 𝜅𝜀 0 𝑐 𝑄 𝑏𝑢𝑙𝑘 ( 7 
)
Note that here 𝑐 𝑄 𝑏𝑢𝑙𝑘 is a quantum capacitance, related to a surface charge accumulation or depletion that screens the electric field over a finite length. 𝜅 ≈ 100 is the generally accepted static dielectric constant of Bi2Se3. [52] [53] [54] [55] [56] 𝜀 0 = 8.85 × 10 -12 𝐹/𝑚 is the permittivity of free space. If

we assume that all measured quantum capacitance contributions are due to screening, then for 𝑐 𝑄 𝑏𝑢𝑙𝑘 < 100 fF/μm 2 , 𝜆 exceeds 10 nm and the thickness of the sample (8nm); implying that full bulk depletion is possible. Near the capacitance minimum, it is thus highly unlikely that reminiscent charge carriers from the bulk contribute to the transport.

Consequently, we can consider the situation of a fully depleted insulating bulk that contributes a geometric capacitance, between two metallic surfaces. The Dirac character of the top metallic surface is proven by the quantum capacitance observed in Fig. 5. However, the character of the bottom surface is not evident in our experiments. Experimentally, we can still determine the net quantum capacitance contribution of this bottom metallic layer, assuming it couples capacitively in parallel with the top surface via the insulating bulk:

𝑐 𝑄 = 𝑐 𝑄 𝑇𝑇𝑆𝑆 (𝜀 𝑓 ) + ( 1 𝑐 𝑔 𝐵𝑢𝑙𝑘 + 1 𝑐 𝑄 𝐵𝑜𝑡𝑡𝑜𝑚 (𝜀 𝑓 ) ) -1 (8) 
Here, 𝜀 𝑓 denotes the chemical potential of the top surface, 𝑐 𝑄 𝑇𝑇𝑆𝑆 is top surface quantum capacitance and 𝑐 𝑄 𝐵𝑜𝑡𝑡𝑜𝑚 is that of the bottom metallic surface. The geometric capacitance of the insulating bulk with a thickness 𝑑 𝐵𝑖2𝑆𝑒3 ≈ 8 𝑛𝑚 is given by:

𝑐 𝑔 𝐵𝑢𝑙𝑘 = 𝜅𝜀 0 𝑑 𝐵𝑖2𝑆𝑒3 ≈ 110 fF/μm 2 (9) 
When 𝑐 𝑄 𝑇𝑇𝑆𝑆 (𝜀 𝑓 = 0)=0, an offset equal to (30 ± 5) fF/μm 2 has to result from the other term in Eq. ( 8). This yields 𝑐 𝑄 𝐵𝑜𝑡𝑡𝑜𝑚 = (40 ± 10)fF/μm 2 . It can be easily shown that the quantum capacitance expected from a quadratically dispersing Bi2Se3 interfacial 2DEG significantly exceeds this value:

ℎ 2 𝜋 𝑒 2 𝑚 * = 94fF μm 2 > 𝑐 𝑄 𝐵𝑜𝑡𝑡𝑜𝑚
using the effective mass of Bi2Se3, 𝑚 * = 0.14𝑚 0 . [41] This is therefore an unlikely scenario.

The last scenario to consider is that the bottom Dirac TSS having a finite Fermi energy at the charge neutrality point of the top TSS, yields the offset in the quantum capacitance. Using Eq. ( 5), we estimate, for a chemical potential close to (170±40)meV above the Dirac point (with 𝑣 𝑓 ≈ 5 × 10 5 𝑚/𝑠), a Dirac quantum capacitance 𝑐 𝑄 𝐵𝑜𝑡𝑡𝑜𝑚 = (40 ± 10)fF/μm 2 . We conclude that the most likely explanation to the observed offset is presence of the bottom TSS that couples capacitively to the top TSS via the insulating bulk.

Charging curve of a bulk-depleted topological insulator

In order to get further insight on the charging mechanism expected in such as situation, we develop in Fig. 6(a,b) a model that describe the charging of both the top and bottom TSS coupled via the bulk, as a function of a top gate voltage. This capacitance model is summarized by the circuit shown in Fig.

6(b)

. The total quantum capacitance corresponding to this circuit is given by Eq. ( 8).

The quantum capacitance of the top TSS 𝑐 𝑄 𝑇𝑇𝑆𝑆 is computed using Eq. ( 5), with 𝑣 𝑓 ≈ 5 × 10 5 𝑚/ 𝑠. [25] Note that in Eq. ( 8) 𝜀 𝑓 is the top surface chemical potential. Hence, the expression for that of the bottom TSS 𝑐 𝑄 𝐵𝑜𝑡𝑡𝑜𝑚 (𝜀 𝑓 )is not simply given by Eq. ( 5). We show in the appendix, that the effective capacitance of the bottom TSS that is capacitively coupled via the insulating bulk is given by:

( 1 The contribution of 𝑐 𝑄 𝑇𝑇𝑆𝑆 is shown in red in Fig. 6(a). The evolution of the effective capacitance of the bottom TSS 𝑐 𝑄 𝐵𝑇𝑆𝑆 in series with the insulating bulk as a function of top-surface chemical potential 𝜀 𝑓 is shown in dashed magenta. For W ≈ 140 meV, the Eq. ( 10) is in good agreement with the data as seen in Fig. 6(a). The quantum capacitance associated to the bottom surface is seen to flatten out at large values of 𝜀 𝑓 due to an enhanced screening of the electric field at large charge carrier density by the top-TSS. Note that this treatment is only valid when the bulk is fully depleted (region (I) in Fig. 6(a)); the quantum capacitance from populated bulk bands should be taken into account at larger Fermi energies (region II in Fig. 6(a)), however our data is not precise enough to provide any quantitative analysis in this region. 

𝑐 𝑔 𝐵𝑢𝑙𝑘 + 1 𝑐 𝑄 𝐵𝑇𝑆𝑆 (𝜀 𝑓 ) ) -1 = 𝑐 𝑔 𝐵𝑢𝑙𝑘 [ 1 - 1 ( √ 1 + 𝑒 2 |𝜀 𝐹 + 𝑊| 𝜋(ℏ𝑣 𝑓 ) 2 𝑐 𝑔 𝐵𝑢𝑙𝑘 ) ] (10) 

The behavior of the channel resistance

Next, we qualitatively discuss the variation of the channel resistance. Near the capacitance minimum, a fast increase of the channel resistance is observed, likely corresponding to the depletion of surface carriers on the top and bottom surfaces, but no resistance maximum is reached. Since the Fermi energy is likely higher above the Dirac point at the bottom surface, bottom Dirac electrons provide a parallel conduction channel that has a much lower resistivity. The effective resistance from both top and bottom parallel channels is hence dominated by the resistivity of the bottom channel. Therefore, one does not expect to observe an ambipolar resistance maximum as long as the bottom Dirac cone remains heavily occupied.

Lastly, going up in Fermi energy away from the capacitance minimum, the resistance curve flattens out and eventually increases at large positive values of Vg (Fig. 4(e)). We point out, that this increased scattering at high charge carrier density in top TSS is likely associated to sub-band scattering as reported in Ref. [22] [21]. It is worth noting that any issue with the contact resistance can be ruled out.

First, the Au/Bi2Se3 interface is not under the gate stack and therefore remains ohmic throughout the entire experiment, since Bi2Se3 remains n-doped away from the gate stack. Second, even when the top surface is very close to neutrality, the bottom surface of the sample remains carrier doped, thus ensuring a good connection with the source contact. This highlights the strength of our measurement and the local nature of the quantum capacitance in our experiment.

Conclusion

In conclusion, we have realized implementation of CVD grown Bi2Se3 in RF capacitor devices and reported the observation of the quantum capacitance of the top Dirac surface state and its variation versus gate voltage. The reduced electron doping of Bi2Se3 grown in these conditions, and the use of a high quality hBN dielectric allows us to quantify the quantum capacitance of Bi2Se3 and observe its minimum resulting from the top topological surface Dirac point. A detailed analysis of the field effect mechanism in thin Bi2Se3 flakes shows that a bulk depleted regime can be reached at an accessible gate voltage in hBN-encapsulated Bi2Se3 allowing to investigate Dirac physics. We have lastly modeled the capacitance-voltage curve of a TI slab consisting of two surface states separated by an insulating bulk, and confirmed its correspondence with our data. As an outlook, a dual-gated device might allow to electrostatically compensate the chemical doping asymmetry between the two surfaces. [57] Topological materials with even larger dielectric constants will also be interesting to investigate. [60] [61] Overall, our work establishes hBN encapsulated Bi2Se3 as a promising platform to motivate future work on implementation in high frequency transistors. Ref. [49] (1-3)×10 18 
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Appendix A. Quantum capacitance and dielectric screening of electron-doped 3D semiconductor

The quantum capacitance is directly related to the compressibilitythe variation of the 2D electrical charge density per unit chemical potential

𝜕𝑛 2𝐷 𝜕𝜇 𝑇 : 𝑐 𝑄 = 𝑒 2 𝜕𝑛 2𝐷 𝜕𝜇 𝑇 = 𝑒 2 𝜕 𝜕𝜇 𝑇 [∫ 𝜌(𝑧) 𝑒 𝑑𝑧 𝑑 0 ] (𝐴1)
Here n2D is the surface carrier density, 𝜇 𝑇 ≡ 𝜀 𝐹 is the top surface chemical potential and 𝜌(𝑧)the 3D charge density. The z-axis is chosen to be perpendicular to the surface of the material and therefore parallel to the electric field. The top BN-Bi2Se3 interface is at z=0.

From the conservation of electrochemical potential we get: 𝜇 𝑇 = -𝑒𝑉 0 .

𝑉 0 = 𝑉(𝑧 = 0) is the electric potential at the dielectric-semiconductor interface. From this we get:

𝑐 𝑄 = 𝑒 2 𝜕𝑛 2𝐷 𝜕𝜇 𝑇 = - 𝜕 𝜕𝑉 0 [∫ 𝜌(𝑧)𝑑𝑧 ∞ 0 ]
Poisson's law relates the charge to the electric potential:

𝜌(𝑧) = 𝜅𝜀 0 𝜕 2 𝑉 𝜕𝑧 2
𝜅 is the dielectric constant and 𝜀 0 = 8.85 × 10 -12 𝐹/𝑚 is the permittivity of free space.

Plugging this into 𝑐 𝑄 and performing the integration gives:

𝑐 𝑄 = -𝜅𝜀 0 𝜕 𝜕𝑉 0 ([ 𝜕𝑉 𝜕𝑧 ] 𝑧→∞ -[ 𝜕𝑉 𝜕𝑧 ] 𝑧=0 )
We assume [ induced by the applied surface electrical potential 𝑉 0 . Given in this form, the quantum capacitance from a 3D semiconductor is conceptually simple to understand but not straight forward to quantify experimentally. We will next relate this quantum capacitance to the screening length.

Using the Poisson equation again we can show that since:

𝜌(𝑧) 𝜅𝜀 0 = 𝜕 2 𝑉 𝜕𝑧 2
We can write:

∫ 𝜌(𝑧) 𝜅𝜀 0 𝜕𝑉 𝜕𝑧 ∞ 0 𝑑𝑧 = ∫ 𝜕 2 𝑉 𝜕𝑧 2 𝜕𝑉 𝜕𝑧 𝑑𝑧 ∞ 0 ∫ 𝜌(𝑉)𝜕𝑉 𝜅𝜀 0 0 𝑉(0) = - 1 2 ( 𝜕𝑉 𝜕𝑧 ) 𝑧=0 2
Again assuming V and

𝜕𝑉 𝜕𝑧

tend to 0 at ∞, and we get:

Or, √2 ∫ 𝜌(𝑉)𝜕𝑉 𝜅𝜀 0 𝑉(𝑧=0) 0 = [ 𝜕𝑉 𝜕𝑧 ] 𝑧=0
With 𝑉(𝑧 = 0) by definition equal to 𝑉 0 .

Then, the term

𝜕 𝜕𝑉 0 [ 𝜕𝑉 𝜕𝑧 ] 𝑧=0
in the quantum capacitance can be written as:

𝜕 𝜕𝑉 0 [ 𝜕𝑉 𝜕𝑧 ] 𝑧=0 = 𝜕 𝜕𝑉 0 [√2 ∫ 𝜌(𝑉)𝜕𝑉 𝜅𝜀 0 𝑉 0 0 ] = 𝜕 𝜕𝑉 0 ∫ 𝜌(𝑉)𝜕𝑉 𝑉 0 0 √2𝜅𝜀 0 ∫ 𝜌(𝑉)𝜕𝑉 𝑉 0 0 𝜕 𝜕𝑉 0 [ 𝜕𝑉 𝜕𝑧 ] 𝑧=0 = 𝜌(𝑉 0 ) √2𝜅𝜀 0 ∫ 𝜌(𝑉)𝜕𝑉 0 𝑉 0 Or, 𝜕 𝜕𝑉 0 [ 𝜕𝑉 𝜕𝑧 ] 𝑧=0 = 𝜌(𝑉 0 ) 𝜅𝜀 0 [ 𝜕𝑉 𝜕𝑧 ] 𝑧=0 = 𝜌(𝑉 0 ) 𝜅𝜀 0 𝐸(0)
Finally, combing this result with Eq. (A2) we get the quantum capacitance:

𝑐 𝑄 = 𝜌(𝑉 0 ) 𝐸(0) (𝐴3)
From Gauss' law, we get:

𝜕𝐸 𝜕𝑧 = 𝜌 𝜅𝜀 0
Integrating from 0 to infinity and assuming E tends to zero at infinity, yields:

𝜅𝜀 0 𝐸(0) = -𝑒 ∫ 𝑛 0 𝑒 - 𝑧 𝜆 ∞ 0 𝑑𝑧 = 𝑒𝑛 0 𝜆
Here, the charge distribution is assumed to follow an exponential decay into the sample: 𝜌(𝑧) = -𝑒𝑛 0 𝑒 -𝑧 𝜆 , where n0 is the charge at z=0 and λ is an effective screening length. This gives: 𝜆 = 𝜅𝜀 0 𝐸(0) 𝑒𝑛 0 = 𝜅𝜀 0 𝐸(0) 𝜌(𝑉 0 ) According to (A3) this gives:

𝜆 = 𝜅𝜀 0 𝑐 𝑄

𝑏𝑢𝑙𝑘

Note that here 𝑐 𝑄 𝑏𝑢𝑙𝑘 is a quantum capacitance related a 2D compressibility from a charge accumulation/depletion profile. It is related to the 2D density of states of this charging profile. The screening length λ is not the Thomas-Fermi screening length, but rather a screening length parameter that varies with the chemical potential and depends on the 2D quantum capacitance of a surface charging/depletion layer. We have thus derived the dependence of the screening length on the quantum capacitance that we measured experimentally.

Appendix B. Quantum capacitance from two Dirac surfaces states coupled via an insulating bulk

A capacitance model accounting for two Dirac surface states coupled via an insulating bulk (Fig. 6(b)) results in the following expression:

𝑐 𝑄 (𝜇 𝑇 ) = 𝑐 𝑄 𝑇𝑇𝑆𝑆 (𝜇 𝑇 ) + ( 1 𝑐 𝑔 𝐵𝑢𝑙𝑘 + 1 𝑐 𝑄 𝐵𝑇𝑆𝑆 (𝜇 𝑇 ) ) -1
Here 𝑐 𝑔 𝐵𝑢𝑙𝑘 is the bulk geometric capacitance, and 𝜇 𝑇 ≡ 𝜀 𝐹 is the top surface chemical potential.

The expression for the quantum capacitance of a single Dirac cone at the top surface (Eq. 5 in manuscript) is straight forward to determine:

𝑐 𝑄 𝑇𝑇𝑆𝑆 (𝜇 𝑇 ) = 𝑒 2 |𝜇 𝑇 | 2𝜋(ℏ𝑣 𝑓 ) 2 (𝐵1)
𝑣 𝑓 is the Fermi velocity.

The expression for the quantum capacitance of single Dirac cone at the bottom surface, is more challenging to extract:

𝑐 𝑄 𝐵𝑇𝑆𝑆 (𝜇 𝑇 ) = 𝑒 2 |𝜇 𝐵 (𝜇 𝑇 )| 2𝜋(ℏ𝑣 𝑓 ) 2 A knowledge of 𝜇 𝐵 (𝜇 𝑇 ) is required. This can be modelled by carefully studying electrochemical equilibrium is a system of two Dirac fluids in parallel, coupled by an insulating capacitive layer.

The electrochemical potential 𝜇 * imposed by the metallic contact ensures equilibrium and allows us to write:

𝜇 * = 𝜇 𝑇 -𝑒𝑉 𝑇 + 𝑊 = 𝜇 𝐵 -𝑒𝑉 𝐵 (B2)

Here 𝜇 𝑇/𝐵 and 𝑉 𝑇/𝐵 are respectively the chemical potential and the electric potential at the top/bottom surface, and W is a work function term that includes contributions that allows band misalignment such as band bending and surface charging due to impurities which essentially lead to a band offset between the top and bottom surface Dirac point.

The 2D carrier density 𝑛 2𝐷 as a function of chemical potential 𝜇 for a non-spin degenerate Dirac surface states can be written as:

𝑛 = 𝑠𝑖𝑔𝑛(𝜇) 𝜇 2 4𝜋(ℏ𝑣 𝑓 ) 2 (𝐵3)
The charge density is simply given by 𝜌 = -𝑛𝑒.

We now apply Gauss' law to find an expression for the charge density at the top and bottom interfaces:

For the bottom surface we have: We highlight the simplicity of this model from an experimental viewpoint, since most parameters can be determined independently from previous measurements. The only adjustable parameter is the band offset W.

𝑐 𝑔 𝐵𝑢𝑙𝑘 (𝑉 𝐵 -𝑉 𝑇 ) = -𝑒𝑛 𝐵 ( 

Appendix C. Thickness dependence

We have also measured two additional MITI-devices having respectively thinner and thicker Bi2Se3. The device characteristics are summarized in the Table II. Both devices exhibit a capacitance that varies with voltage. The quantum capacitance is extracted in each case using the analysis described in the manuscript. We did not observe a capacitance minimum in those devices. The quantum capacitance versus gate voltage curve for the 6QL and 14QL samples are shown in Fig. 7(a) and compared to that of the 8QL sample. The experimental error bars are quite large in the 6QL near V=0 since the top hBN used for this sample is quite thick (25nm) and has a small geometrical capacitance. This renders quantum capacitance measurements less precise.

This comparison allows us to get an idea about how the capacitance offset depends on thickness. Recall in Eq. ( 10), the offset is shown to depend on both 𝑐 𝑔 𝐵𝑢𝑙𝑘 and W the Fermi energy offset. 𝑐 𝑔 𝐵𝑢𝑙𝑘 is inversely proportional to the Bi2Se3 thickness. In Fig. 7(b) we compare the smallest quantum capacitance values measured for each sample. The capacitance minima are plotted versus sample thickness, and compared to the variation of Eq. ( 10) with sample thickness and W. The data suggests that varying thickness yields a changing 𝑐 𝑔 𝐵𝑢𝑙𝑘 and W. In the thicker sample, even though the bottom surface is further decoupled from the top gate, its influence on the quantum capacitance is also smaller. This is due to 𝑐 𝑔 𝐵𝑢𝑙𝑘 becoming smaller when the sample thickness increases (see Eq. ( 10)).

This agrees with the fact the capacitance offset observed in HgTe (~70nm) [21] is smaller than that measured in Bi2Se3 8QL.

While we cannot draw more conclusions from this analysis, we motive further work on the thickness dependence and the question of capacitive top-bottom coupling. 

FIG 1 .

 1 FIG 1. (a) Linear charge (Q) vs voltage (V) characteristic of a metal-insulator-metal (MIM) device. The capacitance is constant in this case (b) Non-linear Q vs V curve characteristic of voltage dependent quantum capacitance in a MITI-CAP. The quantum capacitance is due to finite change in density (eΔn) and chemical potential at the surface of the TI. The arrow in C-V graph indicates the Dirac point.

  SiO2. A Z-contrast scanning electron microscope image shown in Fig. 2(d) confirms nucleation of Bi2Se3 on the hBN flake. The dark spots observed on the light grey flake indicate the presence of heavy atoms such as Bi or Se. This growth mechanism is consistent with previous reports on CVD synthesis of Bi-based TI on hBN. [26] [27]

FIG 2 .

 2 FIG 2. (Color Online) (a) Schematic of the CVD growth tube showing the Bi2Se3 source in hot zone A, and substrates in colder zone B, down stream in the Argon flow direction. (b) Optical microscopy image showing hBN exfoliated flakes on SiO2 prior to growth. (c) The same hBN flakes coated with 90QL of Bi2Se3 after the growth. (d) Z-contrast SEM image of Bi2Se3 growth (dark patches) on hBN flake. (e) Microscopic Raman spectroscopy of Bi2Se3 flakes of different thicknesses on hBN. The 2-4QL flakes are shown in (f). Three Raman active peaks are observed in (e) corresponding to the three vibrational modes shown in (g), namely, the 1 1g A and 2 1g A out-of-plane modes and the 2 g E in-plane mode.

Fig. 2 (FIG 3 .

 23 Fig. 2(e) shows Raman spectra obtained using an excitation wavelength of 532nm on Bi2Se3 flakes having thicknesses ranging from 2QL to 90QL. The thinnest flakes studied in Raman spectroscopy (2QL-4QL) all nucleate on the same BN flake, shown in Fig. 2(f). Three characteristic Raman active phonon peaks (Fig. 2(g)) are observed in Fig. 2(e) between 50 and 200 cm -1 , confirming the presence of a Bi2Se3 layer on the exfoliated hBN. A blueshift of the 2 1g A mode and a redshift of the 2 g E and 1 1g A modes are observed with decreasing thickness in agreement with previous reports on Raman spectroscopy on Bi2Se3. [26] [30]

FIG 4 .

 4 FIG 4. (Color Online) (a) Optical microscope image of the finished device with the capacitor shown embedded inside a coplanar waveguide (W). G and D denote the gate and drain contacts respectively. (b) Zoomed in microscope image showing the capacitor device. (c) Real (red) and Imaginary (blue) parts of the RF-admittance as a function of frequency for three typical gate voltages. (d) Schematic of a distributed RC-line model in series with a contact resistance. The capacitance is split into two components the geometric capacitance Cgeo and the quantum capacitance CQ. (e) Total device capacitance and channel resistance extracted by fitting the model corresponding to the circuit shown in (d) to the data in (c). Curve fits in (c) are shown as dashed lines.

  capacitance and 𝑐 𝑄 = 𝑒 2 𝜒 is quantum capacitance related to the compressibility 𝜒 = 𝜕𝑛 𝜕𝜀 𝐹 . Here 𝜀 𝐹 represents the chemical potential at the sample surface and n is a 2D carrier density. The curve fit of    total Y allows us to separate C and  for different gate voltages. As seen in Fig. 4(c), the model yields an excellent fit to the data up to 10 GHz. Results for C and R from curve fits up to 10 GHz are shown in Fig. 4(e)

  (b) along with the propagated uncertainty associated with it. We can now plot the quantum capacitance 𝑐 𝑄 versus the local chemical potential 𝜀 𝑓 . This is shown in Fig. 5(c). The minimum in 𝑐 𝑄 defines the chemical potential origin, as it is associated with the position of the Dirac point. This allows us to determine the Fermi energy at zero applied potential to be close to (200±40) meV above the Dirac point. This corresponds to a surface Dirac carrier density of (3±1)×10 12 cm -2 . Assuming the Dirac point occurs at 200meV below the bottom-most bulk conduction band, as seen in ARPES, [40] [23] this would corresponds to a Fermi level position of at most 40 meV above conduction band bottom of Bi2Se3

FIG 5 .

 5 FIG 5. (Color Online) (a) Quantum capacitance versus gate voltage at 10K. (b) Surface chemical potential (Fermi energy) versus gate voltage. (c) Quantum capacitance versus Fermi energy. Blue line represents data, grey lines show uncertainty extrema, red lines are linear fits using Eq. 5.

  𝑐 𝑄 𝐵𝑇𝑆𝑆 (𝜀 𝑓 ) is the bottom TSS Dirac quantum capacitance as a function of the top surface chemical potential. W is the band offset between the top and bottom TSS. It is the only adjustable parameter in the model. The W term allows the top and bottom TSS to have a different local chemical potential (Fig. 6(c)), as has been reported in previous studies. [57] [58]

FIG 6 .

 6 FIG 6. (Color Online) (a) Quantum capacitance versus surface chemical potential data (blue) compared to model of topological insulator shown in (b). Gray curves represent upper and lower bounds of experimental data, black solid is the total quantum capacitance resulting from this model, the dashed red line is that of the top TSS, the dashed magenta line is that of the bottom TSS. (b) MITI-CAP model of a topological insulator in the bulk depleted regime where the top TSS (𝑐 𝑄 𝑇𝑇𝑆𝑆 ) is

  quantum capacitance measures the changing local (top surface) depletion/accumulation profile [

FIG 7 . 2 .

 72 FIG 7. (a) Quantum capacitance versus gate voltage for the 3 Bi2Se3 samples. (b) Smallest cQ measured in each respective sample. A full square indicates the sample for which we observe the Dirac point feature. An empty square is used for the other. The thickness (horizontal) error bar accounts for sample roughness. Solid lines represent the variation of Eq. (9) versus thickness for different values of W.

Table I .

 I Comparison of the Bi2Se3 sample studied in this work to those previously reported.

		19	10	MBE
	Ref. [47]	7×10 19	10	MBE
	Ref. [44]	2×10 19	20	MBE
	Ref. [42]	2×10 19	8	MBE
	Ref. [52]	>10 19	10QL pristine	Exfoliated

  B4)𝑐 𝑇𝐺 is the geometric top gate capacitance, and 𝑛 𝑇/𝐵 is the carrier density of the top/bottom surface. 𝑉 𝐺 is the gate voltage. We can now proceed and compute the variation of the quantum capacitance as a function of the chemical potential of the top surface.By plugging into eq. (B4) the expression for 𝑉 𝑇 and 𝑉 𝐵 determined from (B2) and that of 𝑛 𝑇 and 𝑛 𝐵 from (B3) we get: This allows us to setup a second degree equation to extract 𝜇 𝐵 as a function of 𝜇 𝑇 4𝜋(ℏ𝑣 𝑓 )Finally, we have 𝜇 𝐵 as a function of 𝜇 𝑇 :We finally obtain the expression for the total quantum capacitance:Finally replacing 𝜇 𝑇 by 𝜀 𝐹 , to keep a coherent notation, we get:

		𝜇 𝐵 =	2𝜋(ℏ𝑣 𝑓 ) 2 𝑒 2	𝑐 𝑔 𝐵𝑢𝑙𝑘 (1 -√ 1 +	𝑒 2 (𝜇 𝑇 + 𝑊) 𝜋(ℏ𝑣 𝑓 ) 𝑐 𝑔 𝐵𝑢𝑙𝑘 2	)
	𝜇 𝐵 (𝜇 𝑇 ) = ±	2𝜋(ℏ𝑣 𝑓 ) 2 𝑒 2	𝑐 𝑔 𝐵𝑢𝑙𝑘 (1 -√ 1 +	𝑒 2 (𝜇 𝑇 + 𝑊) 𝜋(ℏ𝑣 𝑓 ) 𝑐 𝑔 𝐵𝑢𝑙𝑘 2	)
	This expression can then be used to find 𝑐 𝑄 𝐵𝑇𝑆𝑆 :
	𝑐 𝑄 𝐵𝑇𝑆𝑆 (𝜇 𝑇 ) = 𝑐 𝑔 𝐵𝑢𝑙𝑘 (-1 + √ 1 +	𝑒 2 (𝜇 𝑇 + 𝑊) 𝜋(ℏ𝑣 𝑓 ) 𝑐 𝑔 𝐵𝑢𝑙𝑘 2	) > 0
		𝑐 𝑄 (𝜇 𝑇 ) = 𝑐 𝑄 𝑇𝑇𝑆𝑆 (𝜇 𝑇 ) +	𝑐 𝑔 𝐵𝑢𝑙𝑘 𝑐 𝑄 𝐵𝑇𝑆𝑆 (𝜇 𝑇 ) 𝑐 𝑔 𝐵𝑢𝑙𝑘 + 𝑐 𝑄 𝐵𝑇𝑆𝑆 (𝜇 𝑇 )
	𝑐 𝑄 (𝜇 𝑇 ) = 𝑐 𝑄 𝑇𝑇𝑆𝑆 (𝜇 𝑇 ) + 𝑐 𝑔 𝐵𝑢𝑙𝑘	1 -	1
						[	( √ 1 +	𝑒 2 (𝜇 𝑇 + 𝑊) 𝜋(ℏ𝑣 𝑓 ) 2 𝑐 𝑔 𝐵𝑢𝑙𝑘	)	]
	𝑐 𝑄 (𝜇 𝑇 ) =	𝑐 𝑔 𝐵𝑢𝑙𝑘 (𝜇 𝐵 -𝜇 𝑇 -𝑊) = -𝑒 2 𝑠𝑖𝑔𝑛(𝜇 𝐵 ) 𝑒 2 |𝜀 𝐹 | [ ( √ 1 + 𝜋(ℏ𝑣 𝑓 ) 4𝜋(ℏ𝑣 𝑓 ) 𝜇 𝐵 2 2 𝑐 𝑔 𝐵𝑢𝑙𝑘 ) 𝑒 2 |𝜀 𝐹 + 𝑊| 2𝜋(ℏ𝑣 𝑓 ) 2 + 𝑐 𝑔 𝐵𝑢𝑙𝑘 1 -1	]	(𝐵5)
				2	
		𝑒 2		𝑐 𝑔 𝐵𝑢𝑙𝑘 (𝜇 𝐵 -𝜇 𝑇 -𝑊) + 𝑠𝑖𝑔𝑛(𝜇 𝐵 )𝜇 𝐵 2 = 0
	We get four solutions, two of which are inconsistent with the sign of 𝜇 𝐵 :
	For 𝜇 𝐵 > 0:				
		𝜇 𝐵 =	2𝜋(ℏ𝑣 𝑓 ) 2 𝑒 2	𝑐 𝑔 𝐵𝑢𝑙𝑘 (-1 ± √ 1 +	𝑒 2 (𝜇 𝑇 + 𝑊) 𝜋(ℏ𝑣 𝑓 ) 𝑐 𝑔 𝐵𝑢𝑙𝑘 2	)
	Only, the solution with the + sign satisfies 𝜇 𝐵 > 0.
	Similarly for 𝜇 𝐵 < 0, we get only one satisfactory solution:
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