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Abstract

The quasi-linear quadratic utility model is widely used in economics. The knowledge of its
exact origin is less widespread. A first contribution of the paper is to explain the genesis of this
model. Next, we review the main properties of the general model, mainly following the previous
literature. Finally, it is shown that all the tractable versions of the model used in practice are
(almost) identical and have a mean variance structure. We provide ready-to-use formulae for this
symmetric model.
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1 Introduction
The usage of a Quasilinear Quadratic Utility Model (hereafter QQUM) is widespread in oligopoly
theory. A QQUM helps modelling price or quantity competition in a differentiated-product environ-
ment while keeping the (relative) simplicity of a linear demand system. This approach is particularly
fruitful when a closed-form solution is needed.

As Amir, Erickson, and Jin (2017) point out “this framework has become so widely invoked
that virtually no author nowadays cites any of the(se) early works when adopting this convenient
setting.” This lack of reference is not new, however. Some economists find it so natural to use
linear (direct or indirect) demands (and to derive them from QQUM) that they do not try to find a
source. By analogy, no sane economist would look for a reference when using a linear demand like
D(p) = a − bp.1 This lack of reference, however, can confuse other economists who try to cite a
source but have difficulties coördinating on the correct one.

The goal of this paper is threefold. First, it recounts how the QQUM was introduced and
extensively used by Richard E. Levitan and Martin Shubik2 in the 1960s and shows they deserve
credit for having paved the way. In fact, by analogy with the Cobb-Douglas utility function, it would
not be farfetched to name QQUM after Levitan and Shubik. Second, a brief survey of the QQUM
literature is provided. This literature can be divided into two type of papers: Those which make
few restrictive assumptions besides strict concavity and those which focus on a symmetric utility
function. We show that models presented as different are in fact isomorphic. Finally, we provide
ready-to-use formulae of the symmetric QQUMs used in practice, emphasizing their mean-variance
structure and that many results follow from this property.

The structure of the paper is as follows. First, in section 2, we trace back the origin of the model
to the early 1960s. Next, in section 3, we survey the main results obtained for the general form.
Finally, comparisons between the various variants found in the literature are made in section 4 and
useful formulae from the two main symmetric models used in practice are gathered in section 5.

2 Genesis of QQUM
In the second edition of his book Martin (2002) states that part of the QQUM originates in Bowley
(1924) (see section 3.6 of Martin’s book).3 However, a close look at page 56 of Bowley’s book shows
that it is farfetched, especially in the perspective of an oligopoly model with differentiated goods.
Bowley, indeed, considers (for two commodities q1 and q2) the following quadratic utility (changing
his notations in order to be in harmony with the rest of this paper):

U = a1q1 + a2q2 − σq1q2 −
b1
2 q

2
1 −

b2
2 q

2
2 (1)

which is the most general way to write it. The same expression (also for two goods) can be found in
Dixit (1979) or in Singh and Vives (1984). Yet, Bowley simply uses (1) to derive demand functions.
Most importantly, he does not make the assumption of quasi-linearity of the utility function. Bowley
solves the standard microceconomics consumer problem: maxU w.r.t. q1 and q2 subject to p1q1 +
p2q2 = m where m is the consumer’s income. Instead, in the QQUM literature the consumer problem
is maxU + q0 w.r.t. q0, q1, and q2 subject to q0 + p1q1 + p2q2 = m. Needless to say that the two
problems take different turns and do not have the same solutions. In Bowley’s case, demands are not
even linear in prices.

1Although, Cournot (1838) might be a decent try.
2March 24, 1926 – August 22, 2018.
3In the 1993 first edition of Martin’s book there is no such reference to Bowley and only a slight reference to Levitan

and Shubik.
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Fact 1 (Dawn of QQUM). Martin Shubik introduced a linear demand system to model a differentiated
good oligopoly (business) game in the early 1960s. In 1961, he joined forces with Richard E. Levitan
at I.B.M. to develop a program to solve the (business) game.

Indeed, after an extensive search, we could only traced back the usage of QQUM in oligopoly
theory to the 60s and to the long collaboration between Richard E. Levitan and Martin Shubik. We
found the following quote which is of particular interest:

“I went to IBM in October 1961 and started to work with Dick Levitan to move my game
from an IBM 650 to a bigger, better machine-also to add any new features to it. (Our
first game used a template as we had no way to print out the format. We could only print
numbers.) Levitan did his thesis with Dorfmann and me on a quadratic programming
method for allocating demand among oligopolistic firms with product differentiation.”
Martin Shubik (see Smith (1992), page 252)

From Vernon Smith’s perspective the work of Levitan and Shubik is one of the first (if not the first)
laboratory experiment in oligopoly theory. The quote seems to imply that before coming to IBM
Shubik had already started to use QQUM. But there is no doubt that the model is central to Levitan
and Shubik collaboration between 1961 and 1980.4

So the first available reference is Shubik (1961),5 where in the description of his game he first
introduces a more general demand function which is then simplified6 into a linear one à la QQUM.
That is (again changing the notations):

qi = 1
n

a− b(1 + σ − σ

n

)
pi + b

σ

n

∑
j 6=i

pj

 = 1
n

[a− bpi + bσ (p− pi)] (2)

where p = 1
n

∑
pi is the average price. Note that throughout our paper, whenever there is no ambi-

guity the subscript is skipped in the sum terms. That is the lengthy
∑n
i=1 xi is simply written

∑
xi.

The expression (2) has been (with or without the 1
n) a workhorse of product differentiation oligopoly

models. In Shubik (1961), the main elements of the linear demand functions for differentiated goods
are there, however, there is no reference to a representative consumer and therefore no hint of a
quadratic utility function. Notice, already, Shubik’s idea of putting a coefficient 1

n in front of the
demand expression. His point is that if all prices are equal, i.e. for all i, pi = p, then total demand
is independent of n, i.e.

∑
qi = a− bp. A point well explained in Martin’s book. This is potentially

relevant when doing comparative statics on n, but as shown in section 5 even with that assumption
consumers’ surplus increases with n (i.e. even for a fixed p) because consumers value diversity. So
it is not obvious which normalization is the most convenient: keeping total demand constant or
consumers’ surplus constant.7

Levitan’s name appears, however, immediately after. First, in two IBM research reports also
describing the same business/experimental game: Levitan and Shubik (1962a) and Levitan and
Shubik (1962b). Unfortunately, these two reports cannot be found online today. Next, in Shubik
(1964) the collaboration with Levitan is also made clear: “This paper is part of a continuing study
done by the author in coöperation with Richard Levitan of the IBM corporation.” Demands are again
given by (2) (multiplied by terms depending on advertising and conjuncture). The content of the

4Maybe Levitan’s role at the beginning was more of the nature of a research assistant than a research collaboration
which might explain that at first Shubik does not refer to Levitan in his 1961 working paper.

5Notice that in the book Shubik (1959) the linear demands for differentiated goods are not mentioned.
6The whole game is fairly complicated as it aims to incorporate not only the effect of advertising on demand, but

also inventory constraints, and financial variables like loans, and dividends.
7Of course with more firms the equilibrium prices would change. The idea of the normalization is to disentangle

this competitive effect from the pure diversity effect.

2



missing IBM reports is probably used in the Cowles Foundation research papers published later, in
particular: Levitan and Shubik (1967a) (part of which is published as Levitan and Shubik (1971b))
and Levitan and Shubik (1967b).

Fact 2 (Quasilinear Quadratic Utility). At least from the mid 1960s, Levitan and Shubik founded
their linear demand system on a quasilinear quadratic utility. Moreover, the model also started to be
used for both price and quantity competition.

Indeed, the understanding of QQUM by Levitan and Shubik had evolved from the astute but ad
hoc linear demands given by (2) to a more structural model with a representative consumer. “We
assume that consumer preferences can be represented by a general quadratic utility function. Our
somewhat strong special assumption is that to a first approximation there is no income effect between
this class of goods and the remainder of the consumer’s purchases.” (Levitan and Shubik (1967b),
page 2). They also refer to the PhD thesis Levitan (1966) for a detailed analysis.8 So they must
have written QQUM between 1964 and 1965. They write:9

U = a
∑

qi −
1

2β

2σ
∑
i

∑
j>i

qiqj +
∑(

σ + 1− σ
wi

)
q2
i

−∑ piqi (3)

where they call wi the weight reflecting the size of the ith firm. That is, for all i, 0 < wi < 1 and∑
wi = 1. It is also interesting to notice that in both Levitan and Shubik (1967a) and Levitan

and Shubik (1967b) matrix notations are used to solve for the Nash equilibrium (both for price and
quantity competition).

After mastering this version of the QQUM, Levitan and Shubik seem to have been less involved
with it. They have another working paper together (duopoly model) Levitan and Shubik (1969) (later
published in the Journal of Economic Theory: Levitan and Shubik (1971a)). A duopoly variant of
(3) is used in Shapley and Shubik (1969) where they (strangely) do not cite Levitan and Shubik
(1967a) nor Levitan and Shubik (1967b). Levitan and Shubik published several articles on related
topics (always in a duopoly setting): Levitan and Shubik (1971b), Levitan and Shubik (1972), and
Levitan and Shubik (1978).

To summarize this examination of Levitan and Shubik’s working papers, articles, and book: as
early as 1961 they were using linear demand functions. At first, they did not offer a microeconomic
foundation for them. But by the year 1967, they derived systematically these linear demands from a
quasilinear quadratic utility function. All along they did not pay too much attention to second order
conditions. They not only proposed foundations for QQUM, they used the model to solve oligopoly
games with either Bertrand or Cournot competition, and finally they compared equilibrium prices
under both form of competition. They do not compute consumers’ surplus, nor aggregate profits,
nor welfare.

Fact 3 (Book and slow diffusion). In 1980, Levitan and Shubik gathered their previous work on
oligopoly, and QQUM in particular, in their book Shubik and Levitan (1980). The reception of the
book in the academic arena was cold.

The first five chapters of the book Shubik and Levitan (1980) can be seen as an update of the
book Shubik (1959). Chapter 6 introduces QQUM for a symmetric duopoly (admittedly they do not

8“Demand in an oligopolistic market and the theory of rationing” Harvard U. Officially, the two advisors were Robert
Dorfman and Hendrik Houthakker.

9Again, adjusting the notations to keep formulae homogeneous throughout this paper. From their formula page 2,
the following notational changes have been made: V → a and γ → σ

1−σ .
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check second order conditions), chapter 7 extends to a n firm symmetric oligopoly, and chapter 9
to an asymmetric oligopoly10 where their chosen quadratic utility (9.5) page 132 is written in the
compact form:

U = a
∑

qi −
1

2β

[
(1− σ)

∑ q2
i

wi
+ σ

(∑
qi
)2
]
−
∑

piqi

which can be rearranged as (3).

Despite their thorough work on QQUM, it would not be an understatement to say that Levitan
and Shubik’s approach was not immediately popular. In particular, the 1980 book Market structure
and behavior by Levitan and Shubik which from today’s perspective has certainly been a success
(most academic libraries hold the book and it is still in print) received mixed reviews to say the
least. In fact, it is almost painful to read some reviews written at the time. Rothschild (1982) in
the Journal of Economic Literature is unmerciful: “Much of the book is devoted to computing the
solutions of different variants of a single model. Although it is interesting and important to know
that this can be done, it is difficult to stay awake while watching the process. I found it hard to
make anything of the many numerical results that are presented and so, I suspect, did the authors.
The results of an attempt to apply the oligopoly model to a real problem can charitably be described
as eccentric. The U.S. automobile industry (in 1965) is modeled as a three-firm industry in which
each firm sells a single product. Apparently implausible conclusions –in particular that small price
reductions would have greatly increased sales and that GM cars were more expensive than those of
Ford or Chrysler– are laid to inadequacies of data rather than to deficiencies of the model.” In the
Journal of Political Economy, Telser (1982) is not enthusiastic either: “A mere catalog of some models
of oligopoly does not constitute a useful contribution to economics. Readers deserve a coherent set
of principles that can relate the theories, a demonstration of their explanatory power, if any, and a
statement of which survives these tests.” Telser is also quite harsh on the empirical part: “The book
also contains a section purporting to apply the theories to the study of the automobile industry, but
it does not pass even the loosest standards of econometric rigor.” In the Economic Journal, Reid
(1982) is more positive and spends more space than the previous two reviews on praising the book,
concluding “On balance, however, the reading of the book is a tonic. It stimulates, fascinates and
informs, and will repay frequent re-reading.”

Chapter 9 is praised (both Reid and Telser find chapter 9 the most ambitious) but also criticized:
“. . . but the great weight of attention is still given to pure theory and occasionally, as in chapter 9,
to one of its least attractive varieties, namely the intricate manipulation of specialized functional
forms.” (Reid (1982)). As well as by Pagoulatos (1983) in Southern Economic Journal “Finally, the
mathematical manipulations of different linear functions presented in Chapter 9 leave the reader in
strong doubt about the usefulness of following every step of the various exercises. Relegating the
nonessential manipulations to an appendix would have added considerably to the enjoyment of the
book.”

Fact 4 (QQUM ignored in the late 1980s IO surveys). Levitan and Shubik’s work on oligopoly, and
QQUM in particular, was not mentioned in the main IO surveys which flourished at the end of the
1980s.

Indeed, in the IO Bible, Tirole (1988), it is the address models, Hotelling and Salop, (see chap. 7)
which are put forward to deal with product differentiation. Similarly, in the “Product Differentiation”
chapter of the Handbook of Industrial Organization (vol. 1, chap. 12) Eaton and Lipsey (1989) focus
on address models and when briefly discussing the representative consumer approach they do not

10They have two sources of asymmetry: i) firms have heterogenous marginal costs ci, and ii) the “weights” wi. There
is no heterogeneity in terms of a. This is not really a drawback as what mostly matters is the difference ai − ci but
they do not indicate that they knew this property.
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mention Levitan and Shubik (see also their Figure 12.4. “Historical perspective”, page 762). They
only refer to the seminal papers of monopolistic competition: Spence (1976a), Spence (1976b) and
Dixit and Stiglitz (1977). When they use (1) they refer to Spence (1976a).11 Finally, in Anderson,
De Palma, and Thisse (1992) there is no reference to QQUM and (therefore) no reference to Levitan
and Shubik.12

How to explain the relative lack of success of Levitan and Shubik’s work on QQUM? First, as
shown by the surveys by Tirole and Eaton and Lipsey, by the end of the 1980s the representative
consumer approach was not seen as having appropriate microeconomic foundations. Consumers have
different tastes and each individual buys only a tiny subset of all available varieties. The aggregate
demand could possibly be linear in prices but QQUM does not provide a micro-foundation capturing
this idea that consumers are different in these dimensions. Second, the representative consumer
approach became popular in the monopolistic competition literature but there, following Dixit and
Stiglitz (1977), it is not the quadratic utility function which is used but the Constant Elasticity of
Substitution (CES) utility function.

A minor confusion comes from the fact that QQUM was independently introduced by Spence
(1976a) (n firms, completely symmetric model) and Dixit (1979) (a general duopoly setting). In fact,
in Spence (1976a) there is no representative consumer. Linear demands are assumed and Spence
derives (in a footnote) the consumers’ surplus (which takes the QQUM form). In Dixit (1979), a
general (two-good) quasi-linear utility function is introduced (see (1) page 21) and used to derive
inverse demands (see (2) page 22). In order to derive comparative statics results, Dixit assumes a
quadratic form (see (4) page 26). He gives the precise conditions under which the utility is concave.
It is Spence (1976a) which is referred to in the seminal work of Singh and Vives (1984) (they also
cite Shubik and Levitan (1980), but they do not present it as a predecessor of Dixit). Both Dixit
and Spence were very active researchers in the late 1970s and 1980s and their articles, published in
top journals, were probably more visible than a book and a series of old working papers.

Fact 5 (QQUM usage in IO). From the 1980s up until today, QQUM has been used in IO, typically
when closed-form formulae are needed.

However, despite the dominant view that address models were sounder, and despite the competing
references of Dixit and Spence, the spirit of QQUM endured and proved itself useful in IO and some
authors started to cite the book Shubik and Levitan (1980) and also, but to a lesser extend, the
chapter Levitan and Shubik (1971b). Prominent examples are Deneckere and Davidson (1985),13

Vives (1985),14 Shaked and Sutton (1990), Bagwell and Ramey (1991), Shaffer (1991), and Sutton
(1997). In, Motta (2004), influential book “Competition Policy: Theory and Practice”, the Levitan
and Shubik’s model is used (in particular in chapter 5 on horizontal mergers) to illustrate some
properties with a closed-form model.

Among the articles relying on QQUM, there is a literature on comparing prices, quantities, profits,
welfare, between Bertrand and Cournot competition. Levitan and Shubik themselves have compared
prices when all goods are substitutes, see Levitan and Shubik (1967b) page 7, but this strand of the

11In this article, linear demands for differentiated goods are introduced (see (2) page 411) and a hint toward a
quadratic utility function is given in footnote 6, page 412.

12Finally, almost 30 years later, in the Special Issue in Honor of Martin Shubik published by Games and Economic
Behavior (Volume 65, Issue 1, Pages 1-288, January 2009) the QQUM is not cited once (and Levitan and Shubik 1980
book only twice) in 16 articles.

13They give Shubik as the sole author of the book because on the book cover, of the first editions, the author is
“Martin Shubik with Richard Levitan”. Many authors give credit to both authors and we follow this tradition here.

14There Levitan and Shubik’s book is cited although the publication year is wrong: 1971 instead of 1980. The same
mistake is made in Vives (2001). Maybe a confusion between the 1980 book and the 1971 chapter. In Vives (2008) the
year is correct but the QQUM origin is attributed to Shapley and Shubik (1969).
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literature really started with Singh and Vives (1984) and Vives (1985), the main reference remains
Amir and Jin (2001).15

Table 1 lists a few articles on various topics where (by and large) the same type of modelization
strategy is followed. A general product differentiation oligopoly framework is used at the start of
the paper, some results are derived, and at the end the QQUM is introduced in order to derive more
specific results which are unclear in the general framework. In all these examples only a symmetric
QQUM is used (the few exceptions are in a duopoly or triopoly setting). That is, a utility given by
(2) or the symmetric version of Spence but not the asymmetric (3). Also often the terms ai or ci
are assumed to be homogenous. As shown in section 5, however, there is no difficulty in including
heterogenous ai and ci.

The QQUM is not particularly popular among econometricians probably because in its general
form it involves too many coefficients to estimate. Pinkse, Slade, and Brett (2002) is an exception.
There QQUM is presented as a second order approximation of a general demand model. This is a
clever remark which could very well explain the success of QQUM in practice when a result cannot
be shown with a general (nonlinear) demand function.

15Häckner (2000) presents new results, in particular for σ < 0. See Chang and Peng (2012) for a survey.
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Table 1: Sample of articles using QQUM

Article Journal year Nb firms Type of B Hetero. L&S
a or c

Spence AER 1976 n Symmetric No No
Dixit BJE 1979 2 General Yes No

Friedman BJE 1983 n Symmetric Yes Yes
Singh and Vives RJE 1984 2 General Yes Yes

Deneckere and Davidson RJE 1985 n Symmetric No Yes
Vives JET 1985 n Symmetric No Yes

Shaked and Sutton RJE 1990 n Symmetric No Yes
Bagwell and Ramey RJE 1991 n Symmetric No Yes

Shaffer RJE 1991 2 Symmetric No Yes
Besanko and Perry RJE 1993 3 Symmetric No Yes
Röller and Tombak MS 1993 n Symmetric No Yes

Raju, Sethuraman, and Dhar MS 1995 n Symmetric No Yes
Sutton RJE 1997 n Symmetric No Yes

Sayman, Hoch, and Raju MkS 2002 3 Asymmetric Yes Yes
Pinkse and Slade EER 2004 n Symmetric Yes No

Motta Book 2004 n Symmetric No Yes
Daughety and Reinganum RJE 2008 n Symmetric Yes No

Fumagalli and Motta EJ 2008 n Symmetric No Yes
Vives JINDEC 2008 n Symmetric Yes Yes

Foros, Hagen, and Kind MS 2009 n Symmetric No Yes
Kind, Nilssen, and Sørgard MkS 2009 n Symmetric No Yes

Subramanian, Raju, Dhar, and Wang MS 2010 2 Symmetric Yes Yes
Inderst and Valletti EER 2011 n Symmetric No Yes

Calzolari and Denicolo AER 2015 2 Symmetric No Yes
Edelman and Wright QJE 2015 n Symmetric No Yes

Abhishek, Jerath, and Zhang MS 2016 2 Symmetric No Yes
Allain, Henry, and Kyle MS 2016 n Symmetric No Yes

Cho and Wang MS 2016 n Symmetric No Yes
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3 QQUM itself
At the core of QQUM there is a paradox of sort. On the one hand, the equilibrium expressions
(price, quantity, profit, surplus, welfare) are not simple and are often hard to read and write (see
the criticisms of chapter 9 of Levitan and Shubik’s book). On the other hand, the model is used
in practice because the linear demand functions allow to solve the equilibrium (price or quantity
competition) in closed-form. That is, variants of the model are simple enough to be a subgame of a
larger game. For example, in a first stage firms invest in R&D and in a second stage they compete
and competition is modelled with a QQUM.

Since Levitan and Shubik’s specific QQUM model, academics have generalized it. In this section,
we use this general framework to introduce formally QQUM and derive some properties. This section
builds on previous articles which can be divided into two groups. First, Economics oriented articles:
Jin (1997), Amir and Jin (2001), Bernstein and Federgruen (2004), Choné and Linnemer (2008),
Chang and Peng (2012), and Amir, Erickson, and Jin (2017). Second, Operation Research ori-
ented ones: Farahat and Perakis (2009), Farahat and Perakis (2011a), Farahat and Perakis (2011b),
Kluberg and Perakis (2012). Cross-citations between the two groups tend to be rare.

Notations Mostly for compactness in presentation, it is convenient to use the following notations.
Let x (bold font) denote a vector of size n: x = (x1, · · · , xn)′ where the ′ stands for transposition. A
capital bold letter, as X, denotes a n× n matrix which elements are xij .

Levitan and Shubik already resorted to matrix notations but mostly for their proofs. As economists
are not always at ease with matrix notations, standard expressions are (most of the time) also given
throughout this paper.

Quasi-linear Quadratic utility Let qi denote the quantity of good i, i = 1 to n, consumed
and let q = (q1, · · · , qn)′ denote the column vector of such quantities. The quasi-linear quadratic
utility model (QQUM) first assumes quasi-linearity. That is, there is a numéraire good q0 which
price is normalized to 1 and the utility function (of the representative consumer) writes U(q) + q0.
Let p = (p1, · · · , pn)′ denote the column vector of prices.16 The maximization problem of the
consumer writes: maxq0,q U(q) + q0 s.t. q0 + p′q = m where m denotes the wealth of the consumer.
Eliminating17 q0 and dropping the constant term m, leads to maxq U(q)−p′q. Assuming a quadratic
form for U(.) allows to write the maximization problem as

max
q

U(q)− p′q = max
q

(a − p)′ q − 1
2q′Bq (4)

where a is the column vector of the (marginal) quality (or utility) indexes, ai, one for each variety i,
and B is a n×n positive definite matrix18 a necessary condition for U to be strictly concave. The B
matrix captures the complementarity/substitution patterns that exist between the different varieties.

Without matrix notations, the objective function of (4) writes (noting bii = bi):

U(q)− p′q =
∑

(ai − pi) qi −
∑
i

∑
j>i

bijqiqj −
1
2
∑

biq
2
i (4 bis)

Some authors normalize the bi to one. This is possible (by changing the units with which each
quantity is measured, i.e. using xi = qi/

√
bi) but it is not always innocuous. Indeed, down the road,

16It goes without saying that throughout prices and quantities are non negative.
17This cannot be done for all values of m. If m is too small the constraint q0 ≥ 0 could be binding and the optimal

quantities would depend on m. See Varian (1992) (chapter 10 section 3) and Amir, Erickson, and Jin (2017).
18That is, B is symmetric and for any q 6= 0, the scalar q′Bq is positive.
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additional normalizations are (most of the time) introduced and it could be confusing to not make
all normalizations at the same time.

Fact 6 (Limiting cases). The utility function U(q) can be rewritten in order to emphasize two limiting
cases: perfect substitutes and perfect complements. In the neighborhood of perfect complements, the
no-income-effect assumption (i.e. q0 > 0) cannot hold.

Indeed,

U(q) =
∑

aiqi −
∑
i

∑
j>i

bijqiqj −
1
2
∑

biq
2
i

=
∑

aiqi −
∑
i

∑
j>i

(
bij −

√
bibj

)
qiqj −

1
2
(∑√

bi qi
)2

As the second line makes it clear, if for all i, j, bi = bij = b > 0, then U −
∑
piqi =

∑
(ai − pi)qi−

b
2 (
∑
qi)2. This utility is maximized by buying all units from the seller offering the largest surplus

ai − pi (Bertrand competition for vertically differentiated goods). The case ai = a > 0 being
Bertrand competition for an homogeneous good where only the

∑
qi is relevant and it corresponds

to the perfect substitutes case. In these cases, however, the matrix B is not definite positive. But
one can be arbitrarily close to bi = bij = b > 0 and still have a definite positive B.

The polar case is when all goods are perfect complements. Formally, this case corresponds to a
Leontief utility function (which is concave but not strictly concave), for example, q0+amin {q1, · · · , qn}
with a > 1 then maximizing under a budget constraint q0 +

∑
piqi ≤ m leads to q0 = 0 and, for all

i, qi = m/
∑
pi. This shows that for perfect complements (or in the neighborhood) the quantities

cannot be independent of the available income. But as it cannot be realistic for a consumer to spend
all his income on a particular set of goods. It means that this model does not capture fully the
economic environment of the consumer. Indeed, the choice of m should be modelled. QQUM can
“in spirit” replicate this case (with the same drawback). Indeed,

U(q) =
∑

aiqi −
∑
i

∑
j>i

bijqiqj −
1
2
∑

biq
2
i

=
∑

aiqi −
∑
i

∑
j>i

(
bij +

√
bibj

n− 1

)
qiqj −

1
2(n− 1)

∑
i

∑
j>i

(√
bi qi −

√
bj qj

)2

now if for all i, ai = a > 1, bi = b > 0 and for j 6= i, bij = −b
n−1 , then U = a

∑
qi− b

2(n−1)
∑
i

∑
j>i (qi − qj)2.

Maximizing U(q) + q0 under a budget constraint q0 +
∑
piqi ≤ m also leads to q0 = 0 and, for all i,

qi = m/
∑
pi.

More generally, as discussed by Varian (1992) (chapter 10 section 3), for a quasi-linear utility
function, the available income should be large enough in order to have demand functions which
are independent of income. This assumption can be mild for substitutes but, as pointed out by
Amir, Erickson, and Jin (2017) (see their Proposition 14), it is, indeed, incompatible with perfect
complements. For these goods, all the available income is spent. Or, in the absence of constraint on
income, consumption would go to infinity. That is, to analyze a market where perfect complements
are sold, one should first model how consumers allocate their revenue between these particular goods
and the other goods they consume.

In between perfect substitutes and perfect complements, one can put independent goods. That
is, assuming for all i, j, j 6= i, bij = 0. If each variant i is sold by a monopoly (it would not
really change the problem emphasized here if each good is sold at marginal cost) and denoting ci the

9



constant marginal cost of production, demand is qi = (ai − pi)/bi, the price pi = (ai + ci)/2, and the
expenditure of the consumer would be e =

∑
piqi =

∑(
a2
i − c2

i

)
/(4bi). Clearly, without restricting

further the values of ai, ci, and bi this sum would diverge when the number of good, n, tends to
infinity, and the constraint e ≤ m cannot be verified. For example, if bi = b for all i, and assuming
the existence of ε > 0 such that a2

i − c2
i > ε, then e > n ε

4b which tends to infinity with n. This
problem would occur by continuity if B is in a neighbourhood of such a diagonal matrix. Assuming
b ∼ n would eliminate the problem but rather artificially. Therefore one should keep in mind that
QQUM is not fit to model an infinite number of (almost) independent goods.

Demand and inverse demand functions The first-order condition of the maximization of U
with respect to q provides immediately the expression of inverse demand:

Bq = a − p i.e. p (q) = a −Bq (5)

this linear relationship between prices and demands is the main purpose of choosing a quadratic
utility function. Without matrix notations, it writes:

for all i, pi = ai − biqi −
∑
j 6=i

bijqj (5 bis)

which shows that, up to this point, the matrix notations do not simplify particularly the writing of
the model. However, to characterize the direct demand functions, one needs B−1 the inverse of B,
and here the matrix notations are useful.19 Inverting (5) gives the direct demand functions:

q(p) = B−1 (a − p) (6)

denoting βij the elements20 of B−1, and using βi for βii, the direct demands can be given without
matrix notations

for all i, qi =
∑
j

βij(aj − pj) = βi(ai − pi) +
∑
j 6=i

βij(aj − pj) (6 bis)

Fact 7 (Heterogeneity of the consumers). The aggregation of heterogenous individual QQUM into a
representative consumer’s QQUM is not always possible.

As we have seen one criticism of QQUM is that it assumes a representative consumer (or identical
consumers) and not heterogenous consumers whose demands have to be summed. However, it can
be presented as the aggregation of individual demands in special cases. Indeed, let parameterize a
population of consumers by θ, with a distribution function F (.), and assume each consumer has a
quasilinear quadratic utility function. The individual demands are (as above)

qi(θ) =
∑
j

βij(θ)(aj(θ)− pj) and total demand is qi =
∫
qi(θ)dF (θ)

Can the aggregate demand be obtained from a QQUM? One should be careful to use the above
formula only for prices where quantities are positive for all consumers. To illustrate this possibility,
assume aj(θ) = aj for all θ, assume that the prices belong to a range such that for all i, qi(θ) > 0.
Then on aggregate:

qi =
∑
j

βij(aj − pj) where βij =
∫
βij(θ)dF (θ)

19Recall here that as B is positive definite it has an inverse and B−1 is also positive definite.
20Formally, let Bij be the matrix where lign j and column i are deleted from B then βij = (−1)i+jdet

(
Bij
)
/det (B).
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if the matrix (βij)i,j is positive definite, then a representative consumer exists. This would be the
case if all B−1(θ) are diagonal dominant.

Another issue, is that all consumers do not value all goods (e.g. for some i, ai(θ) < ci). This
is not always inconsistent with a representative consumer. Each individual consumer could have a
quasi-linear quadratic utility over a subset of varieties. For example, a fraction of consumers could
only value good 1 (with a demand a1−p1), another group only value good 2 (with a demand a2−p2),

and the remaining consumers value both goods (with B3 =
(

1 σ
σ 1

)
and a =

(
a1
a2

)
). Then it is

easy to show that as long as all three groups consume the aggregate demand can be derive from a

QQUM with a and B =
(

2− σ σ
σ 2− σ

)
. To conclude this point, although it requires some care,

it is possible to have both heterogenous consumers and aggregate demand given by QQUM.

Firms To complete the description of the oligopoly two elements are needed. First, production
costs have to be introduced. Most of the time, they are assumed to be linear (i.e. constant marinal
cost): let ci denote the marginal cost of production of firm i and let c = (c1, . . . , cn)′ denote the
column vector of these marginal costs. Assuming convex costs is mainly problematic when one is
looking for closed-form expressions. See, however, Bernstein and Federgruen (2004) for existence
and uniqueness of equilibrium with convex costs, and various comparative statics results.Second, an

ownership structure has to be specified.

Fact 8 (Ownership structure). While most existing studies consider oligopolies with single-product
firms, the model naturally extends to multi-product competition, delivering simple expressions for
first-order conditions at Cournot-Nash and Bertrand Nash equilibria.

This question appears naturally in the context of mergers, see Choné and Linnemer (2008) for
example. It is also considered in Farahat and Perakis (2009), Farahat and Perakis (2010), and Farahat
and Perakis (2011b). Let N = {1, . . . , n} denote the set of all brands. The structure of the industry
is described by a partition of N into r subsets: {I1, · · · , Ir} where Ik denotes the set of brands owned
by firm k.

More generally, one could assume cross-ownership. In that case, let αkj ∈ [0, 1] denote the share
of profit generated by the sales of good j owned by firm k, with for all j,

∑
k αkj = 1. One would

also need to specify how the price (or quantity) of a multi-owned good is chosen. For example, it
could be chosen by the firm with the largest share but when this share is less than 0.5 there might
be no obvious choice.

Parameter space For the model to have economic sense, its parameters have to be constrained.
The model allows for four types of heterogeneities: the qualities a, the marginal costs c. Most
importantly, the elements of matrix B have to be such that B is positive definite. The diagonal
terms bi of matrix B correspond to −∂2U/∂2qi and capture the concavity of U with respect to qi (or
how quickly is the marginal utility of good i decreasing). The bij , i 6= j correspond to −∂2U/∂qi∂qj
and capture the (possibly rich) pattern of complementarity and substitutability among the goods.

Some authors, while working within the general framework, assume that all elements of B are
positive and they also add the assumption that B is diagonal dominant.21 These assumptions imply
that B is positive definite.

21Bernstein and Federgruen (2004), Farahat and Perakis (2009), Farahat and Perakis (2010), Farahat and Perakis
(2011b), and Kluberg and Perakis (2012).
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Notice that some authors start with U = (a − p)′ q − 1
2q′B−1q inverting (in the notation only)

the role played by B and B−1. This is a question of taste but this can be slightly confusing as the
off diagonal elements of B−1 are negative when those of B are positive.

In addition, the following two assumptions are often made: a−c > 0 (Positive primary markups)
and q(c) ≥ 0 (Positive primary outputs, i.e. all varieties are produced when all prices are set at
marginal costs). Both names are introduced by Amir and Jin (2001) see Chang and Peng (2012) for
a discussion. Both assumptions are quite natural. However, as in equilibrium prices are larger than
marginal costs, a variety can be profitable even if it would not be sold at the first best. See Zanchettin
(2006) for a detailed comparison of Betrand and Cournot competition when this assumption is not
made in a duopoly setting.

Equilibrium The purpose of establishing direct and indirect demand functions is to use them to
find the Nash equilibrium of an oligopoly game where each product is produced by one firm. As firms
either compete in prices or quantities there are two games: a Bertrand-like one (i.e. competition in
prices) and a Cournot-like one (i.e. competition in quantities).

In both type of competition, price margins p− c and quantities q depend only on the marginal
surpluses a − c. That is, they do not depend separately on a and c. Therefore it is possible to
normalize one of these two vectors. For example, choosing ai = a for all i or ci = c for all i. Doing so,
unfortunately, only marginally simplifies the expressions at the expense of intuition. It is, however,
useful to introduce a new notation for these marginal surpluses:

let vi = ai − ci , or in matrix form v = a − c

Before characterizing the Nash equilibrium of the oligopoly games. We present briefly two bench-
marks: the first-best and the monopoly.

First-best Obviously, to maximize welfare, each good should be priced at marginal cost and the
first-best quantities, using (5), are given by

Bq∗ = a − p = a − c = v (7)

using (A.3), we have W ∗ = 1
2v′B−1v.

Monopoly It can be useful (e.g. to study collusion,22 or merger to monopoly) to characterize
the quantities (or equivalently in this case the prices) that a monopoly controlling all goods would
choose. Its profit is

Π =
∑

πi = (p− c)′ q = (a − c)′ q − q′B q

which is maximized here with respect to q and the f.o.c. writes in matrix notations

2Bqm = a − c = v

Fact 9 (Monopoly). Monopoly quantities are half the first-best quantities. Monopoly prices are
invariant with the elements of B, they are simply given by pm = 1

2 (a + c). Or equivalently, pm − c =
1
2v.

Moreover (almost like in the standard one good linear demand),

Πm = 1
4v′B−1v , and Wm = 3

8v′B−1v = 3
4W

∗ (8)
22See Deneckere (1983) for n = 2, Deneckere (1984) for a key correction, and Majerus (1988) for n firms.
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Cournot competition: f.o.c. Following Jin (1997) and Amir and Jin (2001),23 one can elegantly
write the f.o.c. of the maximization of the profit of firm i quite generally (i.e. for an arbitary positive
definite B matrix). Indeed, the profit of firm i being

πi = (pi − ci)qi =

ai − ci −∑
j

bijqj

 qi
which is maximized here with respect to qi. The f.o.c. (the s.o.c. is satisfied as bii which is noted bi
is positive) writes

pi − ci + ∂(pi − ci)
∂qi

qi = pi − ci − biqi = 0

or in matrix form
p− c = diag(b)q

where diag(b) is the diagonal matrix which elements are the diagonal elements of B (i.e. the bi).
Now, using p− c = a − c−Bq the f.o.c. collected in matrix form are

(B + diag(b)) qC = a − c = v (9)

Equation (9) helps addressing the questions or the existence of an equilibrium and of its uniqueness
in the Cournot competition game. The answer is simple. As the B matrix and the diag(b) matrix
are both positive definite their sum B + diag(b) is positive definite and then invertible. Therefore
an equilibrium exists and it is unique. In Appendix B, f.o.c. are similarly computed for the case
where firms are multi-products.

Bertrand competition: f.o.c. Again following Jin (1997) and Amir and Jin (2001), one can
also write the f.o.c. of the maximization of the profit of firm i with respect to price quite generally
(i.e. for an arbitary positive definite B matrix). Indeed, the profit of firm i being

πi = (pi − ci)qi = (pi − ci)

βi(ai − pi) +
∑
j 6=i

βij(aj − pj)


which is maximized here with respect to pi. The f.o.c. (the s.o.c. is satisfied as βi is positive) writes

qi + ∂qi
∂pi

(pi − ci) = qi − βi(pi − ci) = 0

or in matrix form
q = diag(β)(p− c)

where diag(β) is the diagonal matrix which elements are the diagonal elements of B−1 (i.e. the βi).
Now, using p− c = a − c−Bq the f.o.conditions collected in matrix form are(

B + diag(β)−1
)

qB = a − c = v (10)

the prices have been eliminated in order to show the similarity of the Bertrand and Cournot char-
acterization. Here also as B and diag(β)−1 are both positive definite (as the βi are positive), also
is their sum B + diag(β)−1 and thus inversible. Hence the existence of a unique equilibrium. In
Appendix B, f.o.c. are similarly computed for the case where firms are multi-products.

23In Levitan and Shubik (1967b), the same derivation is done, for a particular, B matrix. The writing is slightly
messy but the idea is sound.
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To move from the Cournot characterization to the Bertrand one, the diag(b) matrix has to be
replaced by diag(β)−1. In Jin (1997) (see Appendix A), it is shown that bi > 1/βi, that is the
element of the diag(b) matrix are larger than the ones of diag(β)−1. In that sense, the intuition
is that the Bertrand quantities should be larger than the Cournot ones. However, this is not that
mechanical and counterexamples exist.

In Appendix A, we show how consumers’ surplus, total profit, and welfare can be written in this
general framework. Another approach is to introduce the following function which allows to describe
all equilibrium quantities.

Fact 10 (Equilibrium quantities). Let

q∗ (X) ≡ q∗ (X; B,v) = (B + X)−1 v (11)

where X is a positive definite matrix. Then the First-best, Monopoly, Cournot, and Bertrand equi-
librium quantities are respectively given by

q∗ = q∗ (0) , qm = q∗ (B) , qC = q∗ (diag(b)) , and qB = q∗
(
diag(β−1)

)
.

The case of multi-product firms can also be described with this function, see (B.1) and (B.2).

For example, in the case of Cournot (resp. Bertrand), as the matrix X is diagonal, it is particularly
easy to move from the expression of the first-best quantity q∗i to the expression of qCi . On has to
change all the bj in 2bj , j = 1 to n.24 This change applies only to the quantity expressions, the prices
are still given by (5), and the expressions of consumers’ surplus, aggregate profits, and welfare by
(A.1), (A.2), and (A.3), respectively. For example, the welfare at the Cournot equilibrium is

2WC = v′qC − qC′B qC

4 Various forms encountered in the literature
The general case is, however, seldom encountered (except for n = 2 where it remains manageable) and
at least three main specifications of the general case have been used by economists. The differences
come mostly from the B matrix. Authors also differ in terms of their heterogeneity choices of the
parameters a and c but there are two broad possibilities: either no heterogeneity, i.e. a = (a, · · · , a)′
and c = (c, · · · , c)′ or heterogeneity for a, c, or both. Indeed, as shown by (9) and (10) the equilibrium
quantities depend only on the difference a − c.

First, there are the Levitan and Shubik’s forms which they call asymmetric and nonsymmetric in
their book and which dates back to Levitan and Shubik (1967a) (part of which is published as
Levitan and Shubik (1971b)) and Levitan and Shubik (1967b) and the chapter 9 of their 1980
book. Their nonsymmetric case, already given by (3), is:

ULS −
∑

piqi =
∑

(a− pi) qi −
1

2β

2σ
∑
i

∑
j>i

qiqj +
∑(

σ + 1− σ
wi

)
q2
i


with, for all i, 0 < wi < 1 and

∑
wi = 1, in addition marginal costs are heterogeneous

(chapter 9 of their book). The symmetric case being wi = 1/n for all i and marginal costs are
homogeneous (chapter 7 of their book). The symmetric Levitan and Shubik’s formulation is
used, for example, by Motta (2004) and Wang and Zhao (2007). Levitan and Shubik always

24For Bertrand bj → bj + 1/βj .
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consider σ > 0 but with their symmetric specification, the matrix B is positive definite for any
σ ∈ ]−∞, 1[.25

Second, there is the version of Spence (1976a):

USp −
∑

piqi =
∑

(a− pi) qi − σ
∑
i

∑
j>i

qiqj −
b

2
∑

q2
i (12)

Spence assumes homogenous marginal costs. But this formulation has also been used in the
literature with heterogenous a and/or c. This model is the most popular. For example,
Majerus (1988) and later Häckner (2000) (see also Hsu and Wang (2005), and many others)
who all “simplify” further by assuming b = 1. One as to assume σ ∈

]
−b
n−1 , b

[
for the matrix B

to be definite positive.

Third, there is the formulation of Sutton (1997) (see also Sutton (1996) but the working paper of
the 1997 RAND article pre-dates the 1996 EER article):

USu −
∑

p̃ixi =
∑

(1− p̃i)xi − σ
∑
i

∑
j>i

xi
ui

xj
uj
− 1

2
∑
i

x2
i

u2
i

with ui > 0 (and where the usual 1/2 that Sutton does not use is introduced). See also
Symeonidis (1999), Symeonidis (2003b) (duopoly), and Symeonidis (2003a).

Fact 11 (Similarity of the common models). A natural simplification of the general model (4 bis)
encompasses these three models. It takes the following form:

Ub =
∑

(ai − pi) qi − σ
∑
i

∑
j>i

qiqj −
1
2
∑

biq
2
i (13)

Proof. To see that Uq encompasses USu, just write qi = xi
ui

and pi = uip̃i (the marginal cost should
also be normalized)26 it comes that Sutton’s expression writes:

USu =
∑

(ui − pi) qi − σ
∑
i

∑
j>i

qiqj −
1
2
∑
i

q2
i

which is exactly Uq with ai = ui and bi = 1.

In (13), the substitution effects are assumed to be the same for any two goods, i.e. for all i, j, i 6= j,
∂2U
∂qi∂qj

= −σ as in all the other simplified forms, but the concavity with respect to each qi are allowed
to vary, as ∂2U

∂q2
i

= −bi. The attractiveness of a variety in this model is therefore bi-dimensional. The
higher vi = ai−ci, the more (marginal) surplus is offered by good i and the more should be consumed
in equilibrium. The second aspect is bi. A larger bi implies that additional units are less and less
valued which limits consumption. The best products are those with large ai − ci and low bi.27

In comparison, in Levitan and Shubik formulation, it is assumed that bi ≡ σ
β + 1−σ

βwi
, a rather

awkward assumption. The heterogeneity comes from the wi but the fact that bi vary with σ is not
25In fact, they use a parameter γ which correspond to σ/(1− σ) and they (implicitly) assume γ between 0 and +∞.

The model allows γ between −1 and and +∞.
26The normalization is innocuous. For example, if xi is measured in grams, and ui = 1000, then qi is measured in

kilograms. For the price, if p̃i is the price for one gram, then 1000p̃i is indeed the price for one kilogram.
27Notice that for n = 2, this formulation is the most general one and this n = 2-version is used by Dixit (1979) and

Singh and Vives (1984).
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intuitive as σ measures already the differentiation between two goods. Therefore one would prefer
not to mix the two. Furthermore as they impose

∑
wi = 1 it also means that the bi vary with n.

Figure 1 summarizes the links between the various QQUM encountered in practice. At first,
it seems that Levitan-Shubik nonsymmetric model encompasses Spence’s one. Indeed, choosing
β = 1, keeping σ and making wi = w = b−σ

1−σ allows to move from Levitan-Shubik to Spence. The
only caveat is that in Levitan-Shubik to have bi = b for all i you need

∑
wi = 1 and this fixes a

particular value of b, i.e. b = 1+(n−1)σ
n . So in fact, it is Spence’s formulation which encompasses the

symmetric formulation of Levitan-Shubik. It is also straightforward to see that Spence’s formulation
encompasses Sutton’s one.

A fourth model is presented in Amir, Erickson, and Jin (2017) (see their section 7) where it is
attributed to Bresnahan (1987). They assume that the matrix B is such that bij = σ|i−j|. They call
it “a linear demand with local interaction” or the KMS model after the name of the matrix which is a
Kac–Murdock–Szegö matrix or an asymmetric n-Toeplitz matrix. They show that, in addition to its
own price, the demand of firm i, 2 ≤ i ≤ n− 1 only depends on the prices of i− 1 and i+ 1, whereas
the demand for firm 1 (resp. n) depends only on its price and the price of firm 2 (resp. n− 1). This
is reminiscent of an Hotelling model. The asymmetry between the extreme varieties i = 1 and i = n
and the varieties in the middle 2 ≤ i ≤ n − 1 is not necessarily intuitive outside particular cases.
Formally,

UKMS =
∑

(ai − pi) qi −
∑
i

∑
j>i

σ|i−j|qiqj −
1
2
∑
i

q2
i , and

(1− σ2)q1 = a1 − p1 − σ(a2 − p2)
(1− σ2)qi = −σ(ai−1 − pi−1) + (1 + σ2)(ai − pi)− σ(ai+1 − pi+1) for 2 ≤ i ≤ n− 1
(1− σ2)qn = −σ(an−1 − pn−1) + an − pn

The local interaction property would disappear if bii = b 6= 1, however.

5 Symmetric formulations: ready-to-use formulae
As in practice the most used models are the symmetric ones (either Spence’s/Sutton’s utility, or
Levitan and Shubik’s symmetric utility), in this section we solve completely for the Nash equilliria
of the Bertrand and Cournot oligopoly games with heterogenous a and c.28 The main results are
presented in a compact way in Table 2. Proofs are in the Appendix.

By symmetric formulations, we mean for all i, bi = b and for all i, j, j 6= i, bij = σ (these two
constants b and σ are not the same in the two formulations which make them different). Heterogeneity
is allowed for a and c. That is, there is nothing to gain, in term of simplification, by assuming both
that ai = aj = a and ci = cj = c, on the contrary.

Fact 12 (Mean-Variance structure of equilibrium values). Equilibrium surplus, profit, and welfare
are all usefully written in terms of mean, v, and variance, Var(v), of the marginal surpluses v.29

Table 2 summarizes the symmetric Levitan-Shubik’s and Spence’s formulations.30

28In another working paper, we solve for closed-form equilibrium expression for the utility function given by (13) (the
flexible nonsymmetric utility of Figure 1), also with heterogenous a and c.

29Using, for any vectors x, y the notation x = 1
n

∑
i
xi for the mean and Var(x) = 1

n

∑
i
(xi − x)2 for the variance

and Cov(x,y) = 1
n

∑
i
(xi − x)(yi − y) for the covariance.

30Individual equilibrium profits are not given in the Table but they are easily obtained by multiplying the price
margin with the quantity which are proportional with one another.
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Because of this property, the formulae are more intuitive with heterogenous vi than with a constant
one. This mean-variance property was first noticed for the Cournot model, where it holds even for a
general demand, by Linnemer (2003) and Valletti (2003). Valletti also gives the result for QQUM,
in a variant close to symmetric formulation (using b− σ instead of b). It could be used to study the
effects of shocks on vi in the spirit of Zhao (2001) and Février and Linnemer (2004).

As discussed briefly in the previous section, Spence’s formulation (12) is more natural as the
coefficient of the q2

i terms does not, a priori, vary with the coefficient of the qiqj terms. That is b is,
a priori, independent of σ nor n. Also, as shown in Figure 1, one can derive the Levitan-Shubik’s
symmetric formulation from Spence’s one by a change of parameters. For this reason, we recommend
to use the more general Spence’s formulation.

Fact 13 (Main property of the Spence’s formulation). When B is the Spence’s matrix, for any
vectors x and y:

x′B−1y = n

(b− σ)Cov(x,y) + n

(b+ (n− 1)σ)x y (14)

therefore, using (A.1) and (A.2), for any p such that q(p) > 0,

• 2V (p) = n
(b−σ)Var(a − p) + n

(b+(n−1)σ)a − p2

• Π(p) = n
(b−σ)Cov(p− c,a − p) + n

(b+(n−1)σ) (p− c) (a − p).

and therefore the First-best and Monopoly values are

• q∗i = 2qmi = vi−v
(b−σ) + v

(b+(n−1)σ)

• 2W ∗ = 8
3W

m = 4Πm = n
(b−σ)Var(v) + n

(b+(n−1)σ)v2.

Dealing with a variation of n. This is an important research question and we just touch on the
subject here. When one more variety is added, there are two main effects. First, there is a variety
effect: the utility tends to increase with one more product. Second, there is a competition effect:
prices tend to decrease with the arrival of one more competitor. A priori, it is not easy to disentangle
them. To study the variety effect, one can look at the variation of surplus/welfare for first-best prices
(or monopoly prices) as they do not vary with n. In that case there are three sources of variations: i)
the average marginal surplus, v, could increase of decrease, ii) the variance of these surplus, Var(v),
could also increase of decrease, and finally iii) there is a direct positive effect of n. For example, the
introduction of a new variety such that vn+1 = v implies that the mean does not change, and that
nVar(vn) = (n+ 1)Var(vn+1), but W ∗ increases.

Fact 14 (Additional property of Levitan-Shubik’s formulation). In the LS-formulation, the choice
of b ≡ n− (n− 1)σ implies n

(b−σ) ≡
1

(1−σ) and n
(b+(n−1)σ) ≡ 1 (and σ < 1). Therefore, for any p such

that q(p) > 0,

• 2V (p) = 1
(1−σ)Var(a − p) + a − p2

• Π(p) = 1
(1−σ)Cov(p− c,a − p) + (p− c) (a − p).

The parameter b increases with n, which decreases the utility, and cancels out the positive effect
of an additional variety. However, the introduction of a n + 1th variety cannot leave both the
variance and the mean constant. The competition effect would be the only one only in the (very)
symmetric case where for all i, vi = v (no variance term). So, indeed, one could want to switch to
this special case of the LS-formulation to focus on the competition effect. Yet, notice a last drawback
of LS-formulation: when n → +∞ (and vi = v) the equilibrium prices do not converge to marginal
costs.
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Table 2: The two commonly used models with heterogenous a and c

Levitan and Shubik Spence

Indirect demands:

pi = ai − n
β ((1− σ)qi + σq)

= ai − n
β (qi + σ (q − qi))

= ai − n
β (q + (1− σ) (qi − q))

pi = ai − (b− σ)qi − nσq
= ai − (b+ (n− 1)σ) qi − nσ (q − qi)
= ai − (b+ (n− 1)σ) q − (b− σ) (qi − q)

Direct demands:

qi = β
n(1−σ) [(ai − pi)− σ (a − p)]

= β
n

[
(ai − pi) + σ

1−σ ((ai − pi)− (a − p))
]

= β
n

[
a − p + ((ai−pi)−(a−p))

1−σ

]
qi = 1

b−σ

[
(ai − pi)− nσ

b+(n−1)σ (a − p)
]

= 1
b+(n−1)σ

[
(ai − pi) + nσ

b−σ ((ai − pi)− (a − p))
]

= a−p
b+(n−1)σ + ((ai−pi)−(a−p))

b−σ

Equilibrium quantities and prices under Cournot competition:

qCi = β
2n−(2n−1)σ

[
vi − nσ

2n−(n−1)σv
]

= β
2n−(2n−1)σ

[
(vi − v) + 2n−(2n−1)σ

2n−(n−1)σ v
] qCi = 1

2b−σ

[
vi − nσ

2b+(n−1)σv
]

= 1
2b−σ

[
(vi − v) + 2b−σ

2b+(n−1)σv
]

pCi − ci = n−(n−1)σ
2n−(2n−1)σ

[
vi − nσ

2n−(n−1)σv
]

= n−(n−1)σ
2n−(2n−1)σ

[
(vi − v) + 2n−(2n−1)σ

2n−(n−1)σ v
] pCi − ci = b

2b−σ

[
vi − nσ

2b+(n−1)σv
]

= b
2b−σ

[
(vi − v) + 2b−σ

2b+(n−1)σv
]

Equilibrium quantities and prices under Bertrand competition:

qBi = β
2n−(2n−1)σ−Ψ

[
vi − nσ

2n−(n−1)σ−Ψv
]

= β
2n−(2n−1)σ−Ψ

[
(vi − v) + 2n−(2n−1)σ−Ψ

2n−(n−1)σ−Ψ v
] qBi = 1

2b−σ−Φ

[
vi − nσ

2b+(n−1)σ−Φv
]

= 1
2b−σ−Φ

[
(vi − v) + 2b−σ−Φ

2b+(n−1)σ−Φv
]

where Ψ = (n−1)σ2

n−σ where Φ = (n−1)σ2

b+(n−2)σ

pBi − ci = n−(n−1)σ−Ψ
2n−(2n−1)σ−Ψ

[
vi − nσ

2n−(n−1)σ−Ψv
]

= n−(n−1)σ−Ψ
2n−(2n−1)σ−Ψ

[
(vi − v) + 2n−(2n−1)σ−Ψ

2n−(n−1)σ−Ψ v
] pBi − ci = b−Φ

2b−σ−Φ

[
vi − nσ

2b+(n−1)σ−Φv
]

= b−Φ
2b−σ−Φ

[
(vi − v) + 2b−σ−Φ

2b+(n−1)σ−Φv
]

Equilibrium surplus under Cournot and Bertrand competition:

2VC = n2(1−σ)β
(2n−(2n−1)σ)2Var (v) + n2

(2n−(n−1)σ)2 v2 2VC = n(b−σ)
(2b−σ)2Var (v) + n(b+(n−1)σ)

(2b+(n−1)σ)2 v2

2VB = n2(1−σ)β
(2n−(2n−1)σ−Ψ)2Var (v) + n2

(2n−(n−1)σ−Ψ)2 v2 2VB = n(b−σ)
(2b−σ−Φ)2Var (v) + n(b+(n−1)σ)

(2b+(n−1)σ−Φ)2 v2

Equilibrium aggregate profit under Cournot and Bertrand competition:

ΠC = n(n−(n−1)σ)β
(2n−(2n−1)σ)2

[
Var (v) + (2n−(2n−1)σ)2v2

(2n−(n−1)σ)2

]
ΠC = nb

(2b−σ)2

[
Var (v) + (2b−σ)2v2

(2b+(n−1)σ)2

]
ΠB = n(n−(n−1)σ−Ψ)β

(2n−(2n−1)σ−Ψ)2

[
Var (v) + (2n−(2n−1)σ−Ψ)2v2

(2n−(n−1)σ−Ψ)2

]
ΠB = n(b−Φ)

(2b−σ−Φ)2

[
Var (v) + (2b−σ−Φ)2v2

(2b+(n−1)σ−Φ)2

]
Equilibrium welfare under Cournot and Bertrand competition:

2WC = nβ(3n−(3n−2)σ)
(2n−(2n−1)σ)2 Var (v) + nβ(3n−2(n−1)σ)

(2n−(n−1)σ)2 v2 2WC = n(3b−σ)
(2b−σ)2 Var (v) + n(3b+(n−1)σ)

(2b+(n−1)σ)2 v2

2WB = nβ(3n−(3n−2)σ−2Ψ)
(2n−(2n−1)σ−Ψ)2 Var (v) + nβ(3b+(n−1)σ−2Ψ)

(2n−(n−1)σ−Ψ)2 v2 2WB = n(3b−σ−2Φ)
(2b−σ−Φ)2 Var (v) + n(3b+(n−1)σ−2Φ)

(2b+(n−1)σ−Φ)2 v2
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Appendix
A Surplus, profit, welfare
Consumers’ surplus, Aggregate profits, and Welfare Using (6), the indirect utility function
as a function of prices.

V (p) = max
q

U(q)− p′q = 1
2 (a − p)′B−1 (a − p) = 1

2 (q(p))′B (q(p)) (A.1)

As B−1 is also a n× n positive definite matrix, V (p) is a quadratic form in a − p.
Aggregate profit (i.e. the sum of all profits) is:

Π(p) = (p− c)′B−1 (a − p) = (a − c)′ q(p)− q(p)′B q(p) (A.2)

and therefore welfare writes:

W (p) = 1
2 (a − c + p− c)′B−1 (a − p) = (a − c)′ q(p)− 1

2q(p)′B q(p) (A.3)

These expressions (A.1), (A.2), and (A.3) hold independently of the type of competition, or the
ownership structure of firms, for any positive semi-definite matrix B.
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Consumers’ surplus, Aggregate profits, and Welfare in equilibrium First, combining (A.1)
with (9) and (10) leads to (using the fact that for a symmetric matrix M′ = M)

2V C = v′ (B + diag(b))−1 B (B + diag(b))−1 v (A.4)

2V B = v′
(
B + diag(β)−1

)−1
B
(
B + diag(β)−1

)−1
v (A.5)

Next, combining (A.1) with (9) and (10) leads to

ΠC = v′
[
(B + diag(b))−1 − (B + diag(b))−1 B (B + diag(b))−1

]
v

(A.6)
= v′

[
(B + diag(b))−1 diag(b) (B + diag(b))−1

]
v

ΠB = v′
[(

B + diag(β)−1
)−1
−
(
B + diag(β)−1

)−1
B
(
B + diag(β)−1

)−1
]

v

(A.7)

= v′
[(

B + diag(β)−1
)−1

diag(β)−1
(
B + diag(β)−1

)−1
]

v

Finally, combining (A.1) with (9) and (10) leads to

WC = v′
[
(B + diag(b))−1 − 1

2 (B + diag(b))−1 B (B + diag(b))−1
]

v

(A.8)
2WC = v′

[
(B + diag(b))−1 (B + 2 diag(b)) (B + diag(b))−1

]
v

WB = v′
[(

B + diag(β)−1
)−1
− 1

2
(
B + diag(β)−1

)−1
B
(
B + diag(β)−1

)−1
]

v

(A.9)

2WB = v′
[(

B + diag(β)−1
)−1 (

B + 2 diag(β)−1
) (

B + diag(β)−1
)−1

]
v

B F.o.c. with multi-product firms
Cournot competition Recall that Ik is the set of product under the control of firm k. We
introduce the following r matrices. For all k, 1 ≤ k ≤ r, let Bk = (bij)i,j∈Ik . That is, Bk is a square
matrix of size #Ik the number of varieties under the control of firm k. If each firm owns only one
good, Bk is simply bkk = bk. Next, let diag(B1, . . . ,Br) denote the block diagonal matrix, whose
blocks are Bk, k = 1, · · · , r. The matrix diag(B1, . . . ,Br) is positive definite. Computations similar
to the ones leading to (9) now gives:

p− c = diag(B1, . . . ,Br)q

and therefore, using p− c = a − c−Bq,

(B + diag(B1, . . . ,Br)) q = a − c = v (B.1)
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Bertrand competition Recall that Ik is the set of product under the control of firm k. We
introduce the following r matrices. For all k, 1 ≤ k ≤ r, let Bk = (βij)i,j∈Ik where the βij are the
elements of matrix B−1. That is, Bk is a square matrix of size #Ik the number of varieties under the
control of firm k. If each firm owns only one good, Bk is simply βkk = βk. Next, let diag(B1, . . . ,Br)
denote the block diagonal matrix, whose blocks are Bk, k = 1, · · · , r. The matrix diag(B1, . . . ,Br)
is positive definite. Computations similar to the ones leading to (9) now gives:

q = diag(B1, . . . ,Br)(p− c)

and therefore, using p− c = a − c−Bq,(
B + diag(B1, . . . ,Br)−1

)
q = a − c = v (B.2)

where, as in the text, prices have been eliminated in order to show the similarity of the Bertrand
and Cournot characterization. The only difference from the Cournot f.o.c. is that diag(B1, . . . ,Br)
as been replaced by diag(B1, . . . ,Br)−1.

C Common symmetric model
In section 3, we have shown how to find the Cournot-Nash or Bertrand-Nash equilibrium of QQUM.
So here we only have to compute the relevant matrices.

First, notice that

B =



b σ · · · · · · σ

σ
. . . . . . ...

... . . . b
. . . ...

... . . . . . . σ
σ · · · · · · σ b


using I =



1 0 · · · · · · 0

0 . . . . . . ...
... . . . 1 . . . ...
... . . . . . . 0
0 · · · · · · 0 1


and J =



1 1 · · · · · · 1

1 . . . . . . ...
... . . . 1 . . . ...
... . . . . . . 1
1 · · · · · · 1 1


one can write

B = (b− σ)I + σJ

It is important to emphasize, here, a convenient property of the matrix J, namely that it is a sum
or, if one divides by n, a mean operator. This property plays a key role in the analysis. Indeed, let
u′ = (1, · · · , 1), then for any vector x,

1
n

Jx = xu and 1
n

u′ Jx = x and x′Jy = n2x y

Direct and inverse demands The expression of the inverse demand functions given at the top
of Table 2:

p = a −Bq = a − ((b− σ)I + σJ) q = a − (b− σ)q + nσxu

It is readily confirmed (one can simply verify it by computing BB−1, using J2 = nJ) that

B−1 = 1
b− σ

(
I− σ

b+ (n− 1)σJ
)

this gives the demand functions given at the top of Table 2:

q = B−1(a − p) = 1
b− σ

(
I− σ

b+ (n− 1)σJ
)

(a − p) = 1
b− σ

(
(a − p)− nσ

b+ (n− 1)σ (a − p)
)
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We can also compute x′B−1y to prove Fact 13. Using x′y = nCov (x,y) + nx y.

x′B−1y = 1
b− σ

(
x′y− σ

b+ (n− 1)σx′Jy
)

= 1
b− σ

(
nCov (x,y) + nx y− n2σ

b+ (n− 1)σx y
)

= 1
b− σ

(
nCov (x,y) +

(
1− nσ

b+ (n− 1)σ

)
nx y

)
= n

b− σ
Cov (x,y) + n

b+ (n− 1)σx y

Cournot equilibrium prices and quantities As shown by (9), one only needs to compute the
inverse of B + diag(b) in order to compute the equilibrium quantities in the Cournot game. This is
straightforward,

(B + diag(b))−1 = ((2b− σ)I + σJ)−1 = 1
2b− σ

(
I− σ

2b+ (n− 1)σJ
)

hence
qC = 1

2b− σ

(
I− σ

2b+ (n− 1)σJ
)

v = 1
2b− σ

(
v− nσ

2b+ (n− 1)σvu
)

and
pC − c = diag(b)qC = b

2b− σ

(
v− nσ

2b+ (n− 1)σvu
)

Bertrand equilibrium prices and quantities As shown by (10), one only needs to compute the
inverse of B + diag(β)−1 in order to compute the equilibrium quantities in the Bertrand game. This
is again straightforward (although a little bit cumbersome),(

B + diag(β)−1
)−1

=
((b− σ)(2b+ (2n− 3)σ)

b+ (n− 2)σ I + σJ
)−1

= ((2b− σ − Φ) I + σJ)−1

= 1
2b− σ − Φ

(
I− σ

2b− (n− 1)σ − ΦJ
)

where
Φ = (n− 1)σ2

b+ (n− 2)σ
hence

qB = 1
2b− σ − Φ

(
I− σ

2b+ (n− 1)σ − ΦJ
)

v = 1
2b− σ − Φ

(
v− nσ

2b+ (n− 1)σ − Φvu
)

and
pB − c = diag(B−1)−1qB = b− Φ

2b− σ − Φ

(
v− nσ

2b+ (n− 1)σ − Φvu
)

Cournot and Bertrand equilibrium consumers’ surplus One can either use (A.1) and replace
q by qC and qB respectively, using the expressions

qC = 1
2b− σ

[
(v− vu)− 2b− σ

2b+ (n− 1)σvu
]

qB = 1
2b− σ − Φ

[
(v− vu)− 2b− σ − Φ

2b+ (n− 1)σ − Φvu
]
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which are the most convenient to see the variance terms. Or, more directly (but with slightly more
matrix computations), one can use (A.4). For example, in the case of Cournot (the computations for
Bertrand are almost exactly the same), we start from

2V C = v′ (B + diag(b))−1 B (B + diag(b))−1 v

so we have to compute the matrix which is between v′ and v, we do it in two steps. First (using
again J2 = nJ),

(B + diag(b))−1 B = 1
2b− σ

[
I− σ

2b+ (n− 1)σJ
]

[(b− σ)I + σJ]

= b− σ
2b− σ

[
I− σ

2b+ (n− 1)σJ
] [

I + σ

b− σ
J
]

= b− σ
2b− σ

[
I +

(
σ

b− σ
− σ

2b+ (n− 1)σ

)
J− σ2

(2b+ (n− 1)σ)(b− σ)J2
]

= b− σ
2b− σ

[
I + σb

(2b+ (n− 1)σ)(b− σ)J
]

Now, we compute M = (B + diag(b))−1 B (B + diag(b))−1

M = (b− σ)
(2b− σ)2

[
I + σb

(2b+ (n− 1)σ)(b− σ)J
] [

I− σ

2b+ (n− 1)σJ
]

= (b− σ)
(2b− σ)2

[
I +

(
b(2b+ (n− 1)σ)− (2b+ (n− 1)σ)(b− σ)− nσb)

(2b+ (n− 1)σ)(b− σ)

)
σ

2b+ (n− 1)σJ
]

= (b− σ)
(2b− σ)2

[
I−

(
σ2 ((n− 2)b− (n− 1)σ)
(2b+ (n− 1)σ)2(b− σ)

)
J
]

Finally, using
Var (v) = 1

n
v′v− v2 and v′ Jv = n2v2

2V C = v′Mv

= (b− σ)
(2b− σ)2 v′

[
I−

(
σ2 ((n− 2)b− (n− 1)σ)
(2b+ (n− 1)σ)2(b− σ)

)
J
]

v

= n(b− σ)
(2b− σ)2

[
Var (v) +

(
1− nσ2 ((n− 2)b− (n− 1)σ)

(2b+ (n− 1)σ)2(b− σ)

)
v2
]

= n(b− σ)
(2b− σ)2Var (v) + n

(2b− σ)2

(
(b− σ)− nσ2 ((n− 2)b− (n− 1)σ)

(2b+ (n− 1)σ)2

)
v2

= n(b− σ)
(2b− σ)2Var (v) + n(b+ (n− 1)σ)

(2b+ (n− 1)σ)2v
2

which is the formula given in Table 2. One can check that if n = 1 it is the consumers’ surplus of the
linear demand monopoly, i.e. 2V = (a−c)2

4b . If σ = 0 the formula becomes 2V = n
4b
(
Var (v) + v2).

More generally, it increases with the variance of v because consumers enjoy diversity and it increases
with the average marginal surplus v.
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Cournot and Bertrand firms’ profits Individual profits (again we show the computation for
Cournot as the Bertrand ones are similar) are immediately given deduced from the expressions of qCi
and pCi − ci. One can either sum these individual profits or directly use the equilibrium expression
for total profit given by (A.6). That is,

ΠC = v′
[
(B + diag(b))−1 − (B + diag(b))−1 B (B + diag(b))−1

]
v

we need to compute the matrix between v′ and v which is

1
2b− σ

[
I− σ

2b+ (n− 1)σJ
]
− (b− σ)

(2b− σ)2

[
I−

(
σ2 ((n− 2)b− (n− 1)σ)
(2b+ (n− 1)σ)2(b− σ)

)
J
]

and simplifies into
b

(2b− σ)2

[
I− σ(4b+ (n− 2)σ)

(2b+ (n− 1)σ)2 J
]

and finally

ΠC = nb

(2b− σ)2

[
Var (v) + (2b− σ)2

(2b+ (n− 1)σ)2v
2
]
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