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Abstract 

 

When assessing change in patient-reported outcomes, the meaning in patients’ self-

evaluations of the target construct is likely to change over time. Therefore, methods 

evaluating longitudinal measurement non-invariance or response shift (RS) at item-level 

were proposed, based on structural equation modelling (SEM) or on item response theory 

(IRT). Methods coming from Rasch Measurement Theory (RMT) could also be valuable. 

The lack of evaluation of these approaches prevents determining the best strategy to 

adopt. A simulation study was performed to compare and evaluate the performance of 

SEM, IRT and RMT approaches for item-level RS detection. 
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Performances of these three methods in different situations were evaluated with the rate 

of false detection of RS (when RS was not simulated) and the rate of correct RS detection 

(when RS was simulated). 

The RMT-based method performs better than the SEM and IRT-based methods when 

recalibration was simulated. Consequently, the RMT-based approach should be preferred 

for studies investigating only recalibration RS at item-level. For SEM and IRT, the low 

rates of reprioritization detection raise issues on the potential different meaning and 

interpretation of reprioritization at item-level. 

 

Keywords: Structural equation modelling, Item response theory, Rasch models, response 

shift, item level 
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List of abbreviations 

GPCM  generalized partial credit model 

IRT  item response theory 

LRT  likelihood ratio test 

NUR  non-uniform recalibration 

OPIL  Oort’s procedure at item-level 

PCM  partial credit model 

PRO  patient-reported outcome 

RMT  Rasch measurement theory 

ROSALI RespOnse Shift ALgorithm for Item Response Theory 

RS  response shift 

SEM  structural equation modelling 

UR  uniform recalibration 
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Introduction 

 

The growing incorporation of patients’ perspective in clinical trials and cohort studies has 

largely increased the use of longitudinal Patient-Reported Outcome (PRO) measures in 

which different items are usually grouped in several dimensions (physical, emotional, 

social…). The report of patients’ experience is essential to understand the impact of 

disease burden and treatment over the course of illness and can be crucial for shared 

clinical decision-making and in daily clinical practice (1,2). When assessing change in 

PRO data, longitudinal measurement invariance is usually assumed suggesting that 

patients respond consistently to the PRO instrument and that patients’ item responses are 

directly comparable over time, which can be questioned. Indeed, the meaning in patients’ 

self-evaluations of the target construct is likely to change over time and this change may 

cause longitudinal non-invariance of the measurement model parameters (3–5). On one 

hand, this change in meaning, known as response shift (RS) (6) in health sciences, is a 

concern as it can bias the estimation of longitudinal change in PRO data. On the other 

hand, RS is also viewed as a change (7) that should be identified and quantified because 

of its possible link with patients' adaptation processes (6,8) triggered by the disease itself, 

treatments or interventions such as educational programs or support for disease self-

management. Three types of response shifts have been defined (6): recalibration (change 

in the patient’s internal standards of measurements), reprioritization (change in the 

patient’s values), and reconceptualization (change in the patient’s definition of the 

measured concept). 
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Until recently, all statistical methods for RS detection in longitudinal PRO data were 

developed and applied at dimension-level regarding the relationship between dimensions 

and the construct of interest. Amongst the statistical methods proposed to detect and 

account for dimension-level RS, the Oort’s procedure (9) based on structural equation 

modelling (SEM) is now applied in a majority of studies (in 20/47 articles in a recent 

scoping review of response shift methods (10)). The widespread application of Oort’s 

procedure is probably related to its advantages to not only detect the different types of RS 

but also to quantify and account for RS in estimating the longitudinal change in PRO, if 

appropriate.  

Lately, the importance and significance of RS at item-level (relationship between item-

level responses and the construct of interest within a dimension) was raised (11). As 

item-level RS began to be considered as providing interesting and complementary insight 

into the understanding of RS, Oort’s procedure was applied at item-level in different 

ways according to the technical aspects of applying SEM models to dichotomous or 

ordinal data (12–16). At the same time, statistical methods based on item response theory 

(IRT) (17–19) were also applied as this approach is naturally suitable for item-level 

detection of RS. In addition to SEM (Oort’s procedure) and IRT approaches, methods 

coming from Rasch Measurement Theory (RMT) (20) could also be valuable at item-

level. Indeed, RMT models possess the specific objectivity property that allows obtaining 

consistent estimations of the parameters associated to the latent trait independently from 

the items used for these estimations (21). Consequently, as previously shown in 

simulation studies (22–24), unbiased estimation of the latent trait can be obtained even 
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when some items are missing, in an ignorable way or not. Hence, RMT models could be 

more appropriate in case of missing data. 

Although the performance of the Oort’s procedure based on SEM was evaluated once 

(12) in a simulation study in the context of dichotomous data, the lack of evaluation of 

SEM and IRT approaches for RS detection at item-level has been highlighted (10). Since 

now, these approaches were mostly published and applied on real data. Hence, it seems 

important to assess their performance in order to know if the results of RS detection of 

SEM and IRT approaches are trustworthy. It is also of interest to evaluate if these 

approaches are really able to detect RS when it occurs and to distinguish the different 

types of RS. In this article, we present in detail three approaches for item-level RS 

detection: Oort’s procedure (SEM), the ROSALI algorithm (IRT) and propose a version 

of ROSALI based on RMT. The aim of this study is to compare and evaluate the 

performance of SEM, IRT and RMT approaches for item-level RS detection using a 

simulation study. 

 

Methods 

Original Oort’s Procedure 

 

All statistical methods evaluated in this study are based on the algorithm of the 4-step 

Oort’s procedure initially proposed at dimension level (9) for testing measurement 

invariance between two times of measurement using SEM. In SEM, the different types of 

RS are operationalized as change in patterns of factor loadings (reconceptualization), in 
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values of factor loadings (reprioritization, abbreviated as RP), item intercepts (uniform 

recalibration, abbreviated as UR) and residual variances (non-uniform recalibration, 

abbreviated as NUR). Reconceptualization of one target construct is only appraisable in 

comparison with other constructs and its detection should therefore take place in a 

multidimensional context. This study pertains to a unidimensional setting and 

reconceptualization will not be assessed. Focusing on reprioritization and uniform or non-

uniform recalibration, RS parameters are then factor loadings, intercepts and residual 

variances at both times of measurement.  

In step 1 of the Oort’s procedure, an appropriate measurement model (longitudinal SEM, 

model 1) is established in which no constraints on RS parameters across time are 

imposed. Failing to establish a measurement model with satisfactory fit is indicative of 

reconceptualization. In step 2, all RS parameters are constrained to be equal across time 

constituting a model assuming no RS i.e. longitudinal measurement invariance (model 2). 

The fit of model 2 and model 1 are compared using a Likelihood ratio test (LRT). If the 

LRT is not significant, no RS is assumed and the procedure goes directly to step 4. If the 

LRT is significant, a global occurrence of RS is assumed and the procedure goes on to 

step 3 to identify the types of RS on the affected dimensions. Step 3 consists of a step-by-

step improvement of model 2 by relaxing one by one RS parameters constraints leading 

to model 3 accounting for all detected RS. In step 4, the final model or model 4 (last 

updated model 3 if the LRT was significant, model 2 otherwise) assesses differences in 

latent trait means across time, adjusted for identified RS if appropriate, to evaluate 

longitudinal change. Unlike the Oort’s procedure investigating RS at dimension level, 

methods that focus on item-level RS detection are applied on a single dimension.  
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Oort’s Procedure at Item Level (OPIL) 

 

The Oort’s procedure at item-level (OPIL) method follows the same 4 previously 

described steps but is based on longitudinal SEM models modeling the relationship 

between item responses of a single dimension and a latent variable. Let   
   

 be the vector 

of observed item responses of patient i (i=1,…,N) to the J items of the dimension 

(j=1,…,J) at time t={1,2}, the measurement model (model 1- OPIL) can be written as 

follows:  

  
   

     
   

      
   

 
 

            
   

   
   

 

where      is the vector of intercepts at time t,      is the matrix of factor loadings at time 

t,   
   

 is the unobserved latent variable and   
   

 is the vector of unobserved residual errors 

of patient i at time t (    
   

   ). The latent variable and the residual errors are 

assumed to be uncorrelated. In steps 2, 3 and 4, RS constraints (equality across time) on a 

given item can be imposed on: residual variances  
  
   
  for NUR, item intercepts   

   
 for 

UR (     vector components) and factor loadings   
   

 (     matrix components) for RP. 

Parameters of all SEM models in OPIL are estimated by maximum likelihood, assuming 

continuous and normally distributed item responses     
   

 . The mean and variance of the 

latent variable at time 1 are constrained to 0 and 1 for identifiability in all steps. In 

addition, the mean and variance of the latent variable at time 2 are constrained to 0 and 1 

for identifiability at step 1 only. 



 

9 

 

The fit of models 1 and 4 is assessed by inspecting fit indices. In OPIL, a model is 

considered to have an acceptable fit if the root-mean-square error of approximation is 

<0.08 or the comparative fit index is >0.90. Models with poor fit are improved by 

relaxing constraints on error covariance of the items measured at the same time. If the fit 

indices cannot be improved for Model 1 or Model 4, the dataset is not retained for the 

analysis of performance of OPIL. 

In step 3, OPIL method takes into account the hierarchy of measurement invariance for 

RS (13,25). In longitudinal SEM, factorial invariance is tested to ensure meaningful 

comparisons of sample estimates as means and variances (3). The invariance testing 

strategy follows different steps to evaluate different levels of factorial invariance, from 

the less restricted model to the most restricted one. The hierarchy of the different 

response shifts detection in OPIL is derived from the levels of factorial invariance in 

longitudinal SEM. The constraints on RS parameters are relaxed sequentially in the order 

proposed in Nolte et al. (25): 

- Starting from the model 2, constraints on residual variances are relaxed item-by-

item (NUR detection) producing different models named models 3. In each model 

3, the relevance of relaxing the constraint is evaluated using a LRT (model 3 vs 

model 2). The retained model 3 is the one with the most significant LRT (NUR 

has been detected and will be accounted for on the item on which it was 

evidenced). Starting from the retained model 3, constraints on residual variances 

are again relaxed item-by-item on the remaining items until no more LRT are 

significant. 
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- Starting from the last model 3 accounting for all detected NUR, constraints on 

intercepts (UR detection) are relaxed item-by-item iteratively, retaining the most 

significant LRT and updating model 3 at each iteration of UR detection until no 

more LRT are significant. 

- Starting from the last model 3 accounting for all detected NUR and UR, similarly, 

RP detection is performed by relaxing constraints on factor loadings one-by-one.  

As multiple models are compared at each iteration of step 3, a Bonferroni correction 

(26) is applied to adjust the type I error rate for multiple testing. 

 

ROSALI-IRT 

 

The method called the RespOnse Shift ALgorithm for Item Response Theory (ROSALI-

IRT) (17) relies on an IRT model, the longitudinal generalized partial credit model 

(GPCM) (27). The polytomous items are assumed to have mj+1 response categories from 

0 to mj. The measurement model (model 1, ROSALI-IRT) between two times of 

measurement (t={1,2}) can be written as follows: 

     
   

     
      

        
              

    
   

       

   
 

 
      

       
   

          
   

  
     

       
       

   
          

   
  

     
  

   

 

where   
   

, the latent trait level of patient i at time t, a realization of the random variable 

    .     
   

    
  follows a multivariate normal distribution with mean        
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and covariance matrix        
      

         

              
 

 .   
   

 is the discrimination power 

parameter of item j at time t (  
   

      ,     is the item difficulty and    
   

 the change 

in item difficulties between time 1 and time 2 for answer category p of item j (1≤p≤mj).  

In this approach, the different types of RS are operationalized as change in values of 

discrimination power parameters (  
   

   
   

   RP) and in item difficulties (   
   

  , 

recalibration). Recalibration is considered to be uniform if all difficulties of a given item 

change in the same direction and to the same extent (   
   

     , UR). Recalibration is 

considered to be non-uniform otherwise (                
   

     
   

, NUR). Parameters of 

all GPCM models are estimated by marginal maximum likelihood.      
   

 is constrained 

to 0 for identifiability. 

The ROSALI-IRT method is also based on the 4 previously described steps testing the 

global occurrence of RS using a LRT and possibly imposing RS constraints on a given 

item on: change in item difficulties    
   

 for NUR and UR and discrimination power 

parameters   
   

 for RP in steps 2,3 and 4. This method was automated with the 

NLMIXED procedure of the SAS software. To help reaching model convergence and 

reduce time for parameter estimation, a preliminary step estimating item difficulties in a 

partial credit model at first time of measurement was added. For all the next steps of 

ROSALI-IRT, the item difficulties     are fixed to their estimated values at this 

preliminary step. Step 3 in ROSALI-IRT is performed as described hereinbelow: 
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- Hierarchy of measurement invariance at step 3 is taken into account and an 

adjustment for multiple testing in applied. Wald tests of simple and composite 

hypotheses are used in step 3. 

- First, constraints on change in item difficulties    
   

 are relaxed one-by-one 

(recalibration detection). The relevance of relaxing the constraints on each item is 

tested (H0:    
   

     ) and a Bonferroni correction is applied. At each iteration 

of recalibration detection, before updating the model of step 3, the type of 

recalibration (NUR and UR) is tested at 5% significance level (H0:    
   

      ).  

- After detecting recalibration, a global test of reprioritization is performed at 5% 

significance level (H0:  
   

   
      ). If this test is significant, constraints on 

discrimination power parameters are relaxed one-by-one and tested (H0:   
   

 

  
    

) for each item also applying a Bonferroni correction for multiple testing. 

 

ROSALI-RMT 

 

Quite naturally, ROSALI-IRT can be adapted using longitudinal partial credit models 

(PCM) (28,29) in order to detect RS based on Rasch Measurement Theory (RMT). In the 

ROSALI-RMT method, the measurement model (model 1, ROSALI-RMT) between two 

times of measurement (t={1,2}) can be written as follows: 

    
   

     
              

    
   

       

   
  

       
   

          
   

  
    

        
   

          
   

  
    

  

   

 



 

13 

 

where   
   

, the latent trait level of patient i at time t, a realization of the random variable 

Θ.     
   

    
  is assumed to be normally distributed with mean       

    
   

    
   

  and 

covariance matrix       
     

        

            
 

 .     is the item difficulty and    
   

 the 

change in item difficulties between time 1 and time 2 for answer category p of item j 

(1≤p≤mj).  

Uniform or non-uniform recalibration is operationalized as change in item difficulties 

(   
   

  ) as for ROSALI-IRT. Discrimination power parameters are assumed to be 

equal to 1 and not to change over time. So, ROSALI-RMT is not able to detect 

reprioritization. Parameters of all PCM in ROSALI-RMT are estimated by marginal 

maximum likelihood.  

The ROSALI-RMT method is also based on the 4 previously described steps testing the 

global occurrence of RS using a LRT and possibly imposing RS constraints on a given 

item on change in item difficulties    
   

 for NUR and UR in steps 2,3 and 4. Parameter 

estimation was faster and model convergence was easier to reach in ROSALI-RMT than 

in ROSALI-IRT. Thus, item difficulties     were freely estimated in ROSALI-RMT and 

no preliminary step was used.  

The main consequence of using PCM is to skip RP detection in step 3. Hierarchy of 

measurement invariance is therefore meaningless in ROSALI-RMT. In step 3, 

recalibration detection follows the same process than in ROSALI-IRT: a Bonferroni 

correction is applied to compare the results of the Wald tests of the different models 
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(recalibration detection) and the Wald test to determine if recalibration is uniform or not 

is performed at 5% significance level.  

 

Data simulation 

 

Item responses 

 

Data were simulated with a longitudinal generalized partial credit model including RS or 

not. The latent variable  
   

 is assumed to be normally distributed with mean    
 

    
  

and covariance matrix    
    
    

 . The negative average change of the latent 

variable over time (simulated at                 represents a deterioration of the 

concept of interest over time (of quality of life for example, if a high level on the latent 

trait represents a high level of quality of life). Datasets are composed of simulated item 

responses to a dimension of a questionnaire composed of J polytomous items with mj+1 

response categories of N individuals at two measurement occasions. The effect of the 

sample size, the number of items and the number of answer categories were studied by 

simulating different values for these parameters. The choice of values for these 

parameters was guided by what can be encountered in practice in clinical research: small 

to moderate sample sizes (N=100, 200 or 300 individuals), sizes of dimensions of 

widespread questionnaires evaluating health-related quality of life (30,31) or anxiety (32) 

for example (J=4 or 7 items, M=4 or 7 answer categories). 
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Response shift 

 

Item difficulties were chosen to reflect the situation where the questionnaire is suitable 

for a population with a normally distributed latent trait (item difficulties regularly spaced 

on the latent trait continuum, overlaid distributions of item and latent trait). For the first 

answer category of each item, item difficulties were drawn from the percentiles of the 

item distribution defined as a standard normal distribution. For other answer categories 

(p>1), item difficulties were regularly spaced from the first item difficulty with     

         
 

   
. All item difficulties are then centered on the mean of item 

difficulties      so that item difficulties are centered on the same mean as the latent trait 

distribution. All discrimination power parameters were equal to 1 at first measurement 

occasion (  
   

      . 

When no RS was simulated, all discrimination power parameters and item difficulties 

were the same over time (  
   

   
   

    
   

       ). When RS was simulated, all the 

individuals of the dataset were affected by only one type of RS (UR or NUR or RP). The 

number of affected items and the size of the RS also varied to analyze the effect of these 

parameters. The number of items affected by RS for each dataset could vary from 1 to 3 

items. The affected items have been randomly selected among the set of items. For the 

datasets with 4 (7) items, the maximum number of affected items was set at 2 (3 

respectively). Reprioritization was simulated by changing values of discrimination power 

parameters at time 2 (  
   

=1.5 or 2). Recalibration was simulated by affecting values to 

change in item difficulties (   
   

  ). For uniform recalibration, all item difficulties of 
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the affected item were shifted by -1 at time 2 (   
   

      ). For non-uniform 

recalibration, item difficulties were shifted with different values regularly spaced 

between [-0.5 and 0.5] or between [-1.5 and 1.5]. Results are presented for the unique 

value of uniform recalibration and higher values of reprioritization (  
   

=2) and of non-

uniform recalibration (shift between [-1.5 and 1.5]). 

 

Comparison criteria 

 

The combination of the different values of the simulated parameters (sample size, number 

of items and answer categories in the dimension, dataset affected by RS or not and, in 

case of simulated RS, type of RS, size of RS and number of affected items) leads to 

consider 162 different cases. 500 simulated datasets were replicated for each case and 

then analyzed using OPIL, ROSALI-IRT, and ROSALI-RMT. Performance of the 

methods were evaluated at step 4 (model 4) with the rate of false detection of RS and the 

rates of most flexible, flexible and perfect RS detection (presented in figure 1). The rate 

of false detection (proportion of datasets for which some RS was detected and accounted 

for, when RS was not simulated), indicates in what proportion the method has concluded 

to the presence of RS mistakenly. This rate can be based either on the significance of the 

test of Model 1 (M1) versus Model 2 (M2) at step 2 (LRT) or on the proportion of 

datasets where RS was detected and accounted for in model 4 (model of step 4 assessing 

longitudinal change adjusted for identified RS if appropriate). As the LRT was performed 

at 5% significance level, the rate of false detection based on the LRT is expected to be 

close to 5%. The rate of false detection based on model 4 can be lower or equal than the 
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rate of false detection based on the LRT. A lower rate of false detection based on model 4 

indicates that for some datasets where overall presence of RS was evidenced based on the 

LRT at step 2, no RS was detected on any item during step 3 correcting the wrong 

decision based on the LRT. To quantify the correction at step 3, the ratio between the 

difference in rates based on the LRT and on model 4 over the rates based on the LRT 

were computed. 

 

Figure 1: Rates of RS detection from the least strict (most flexible) to the strictest 

(perfect). Rates are computed as the proportion of datasets meeting requirements at step 4 

among datasets with simulated RS. 

 

To define the different criteria of right RS detection, the term correct item(s) refers to the 

detection of RS on the item(s) on which RS was simulated in the following sections. The 

rate of most flexible RS detection (proportion of datasets where RS was detected and 

Datasets with simulated RS 

MOST FLEXIBLE 

• RS detected (any type) 

• On the correct items +/- on any item 

FLEXIBLE 

• RS detected (any type) 

• On the correct items only 

PERFECT 

• RS detected (correct type) 

• On the correct items only 
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accounted for on at least the correct items, when RS was simulated) indicates in what 

proportion the method was able to identify at least the correct items among others. The 

rate of flexible RS detection indicates the proportion of datasets where RS was detected 

and accounted for on the correct items only, when RS was simulated. The difference 

between the rates of most flexible and flexible RS detection indicates in what proportion 

the method has identified more items affected by RS than simulated. Finally, the rate of 

perfect detection (proportion of datasets where only the correct type of RS on the correct 

items was detected and accounted for, when RS was simulated) indicates in what 

proportion the method has detected exactly the simulated RS. The difference between the 

rates of flexible and perfect RS detection indicates in what proportion the method has 

concluded for the wrong type of RS on the correct items that were identified.  

As the ROSALI-RMT method is not able to detect RP, the analysis of datasets affected 

by this type of RS was considered as an assessment of the robustness of this method to 

model deviation. For ROSALI-RMT, the rates of most flexible and flexible detection of 

RS were computed but the rate of perfect detection of RS when RP was simulated cannot 

be assessed. However, the proportion of the different possible combinations of the types 

of RS detected at step 3 (uniform only, non-uniform only, both uniform and non-uniform 

or no recalibration) among the datasets where RS was accounted for on the correct items 

only were assessed. 

Data simulation and analyses were performed using Stata. 

 

Results 
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Results for lower values of reprioritization (  
   

    ) and of non-uniform recalibration 

(shift between -0.5 and 0.5) are not presented here due to bad performances of all 

approaches for these values. 

 

Response shift detection when no RS was simulated 

 

Rates of false detection of RS for each method are presented in Table 1. The rates of false 

detection of RS based on the LRT range between 5% and 23% for OPIL, between 48% 

and 95% for ROSALI-IRT and between 4% and 7% for ROSALI-RMT. Therefore, only 

ROSALI-RMT shows rates of false detection based on the LRT close to the expected 

value of 5%. OPIL performs well for small values of the simulation parameters whereas 

ROSALI-IRT always shows dramatically high rates of false detection. For OPIL and 

ROSALI-IRT, rates of false detection increase with the sample size (N), number of items 

(J) and number of answer categories (M). 

The rates of false detection of RS in model 4 (final model accounting for detected 

response shifts) range between 4% and 22% for OPIL, between 39% and 81% for 

ROSALI-IRT and between 1% and 3% for ROSALI-RMT. For all methods, the rates of 

false detection based on model 4 are lower than the rates based on the LRT. Thus, for 

some datasets where overall presence of RS was concluded based on the LRT at step 2, 

no RS was detected on any item during step 3 correcting the wrong decision made by the 

LRT. To quantify the correction at step 3, the ratio between the difference in rates based 

on the LRT and on model 4 over the rates based on the LRT were computed. For 

example, OPIL shows a correction of 20% for N=100, J=4 and M=4 meaning that RS 
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was not considered in model 4 in 20% of the datasets where overall presence of RS was 

wrongly detected by the LRT. The wrong decision based on the LRT was very often 

corrected in ROSALI-RMT (between 40% and 91%), less often in ROSALI-IRT 

(between 17% and 31%) and quite rarely in OPIL (between 0 and 20%).  
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Table 1: Rates of false Response Shift (RS) detection based on the test M1 versus M2 at 

step 2 (LRT) or on model 4 according to simulation values of sample size (N), number of 

items (J) and number of answer categories (M) for datasets with no simulated RS 

   

OPIL ROSALI-IRT ROSALI-RMT 

N J M Nb LRT M4 Corr. Nb LRT M4 Corr. Nb LRT M4 Corr. 

100 4 4 499 5.0% 4.0% 20.0% 500 51.0% 41.8% 22.0% 500 6.0% 2.6% 56.7% 

200 4 4 500 5.2% 4.2% 19.2% 500 47.8% 39.2% 21.9% 500 4.0% 2.4% 40.0% 

300 4 4 500 6.0% 5.6% 6.7% 500 47.8% 40.2% 18.9% 500 5.6% 2.8% 50.0% 

100 7 4 500 6.0% 5.6% 6.7% 500 68.6% 53.4% 28.5% 500 6.4% 1.4% 78.1% 

200 7 4 500 5.8% 5.8% 0.0% 500 66.6% 51.0% 30.6% 500 6.0% 1.4% 76.7% 

300 7 4 500 7.8% 7.4% 5.1% 500 68.4% 53.4% 28.1% 500 5.0% 2.6% 48.0% 

100 4 7 498 7.6% 7.4% 2.6% 499 74.4% 62.3% 19.3% 500 6.6% 0.6% 90.9% 

200 4 7 500 9.2% 9.0% 2.2% 500 71.6% 58.6% 22.2% 500 5.8% 2.2% 62.1% 

300 4 7 500 11.8% 11.2% 5.1% 500 73.0% 60.8% 20.1% 500 5.2% 1.6% 69.2% 

100 7 7 500 8.6% 7.6% 11.6% 495 94.6% 80.6% 17.3% 500 4.8% 0.8% 83.3% 

200 7 7 500 14.8% 14.6% 1.4% 500 95.4% 79.6% 19.9% 500 5.4% 1.6% 70.4% 

300 7 7 500 23.0% 22.2% 3.5% 500 94.6% 80.0% 18.3% 500 5.6% 1.4% 75.0% 

Nb: number of analyzed datasets. Models excluded from the results: models with poor fit 

for OPIL or convergence not achieved for ROSALI-IRT 

LRT: false detection rate based on test M1 vs M2 (step 2) 

M4: false detection rate based on model 4 

Corr.: correction at step 3 computed as the difference of false detection rates divided by 

the false detection rate based on the LRT – corr.=(LRT-M4)/LRT 

 

Response shift detection when RS was simulated 

 

Due to high rates of false RS detection, all rates of most flexible, flexible and perfect 

detection of RS for ROSALI-IRT presented below should be interpreted with caution. 

However, presenting the different rates of RS detection for ROSALI-IRT allows giving 

some insight on steps that are problematic in the procedure (determining the items 

affected by RS, distinguishing between the types of RS). 

 

Datasets with one item affected by uniform or non-uniform recalibration 
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Rates of most flexible, flexible and perfect detection of RS for each method are presented 

in Table 2.  

 

 Most flexible RS detection rates 

The rates of most flexible RS detection range between 48% and 100% for OPIL, between 

97% and 100% for ROSALI-IRT and between 74% and 100% for ROSALI-RMT. In 

most of the cases, all methods were able to identify at least the item affected by RS. The 

lowest rates of most flexible RS detection were observed for small sample sizes (N=100) 

and small number of answer categories (M=4).  

In cases where non-uniform recalibration was simulated, ROSALI-IRT has the highest 

most flexible rates and OPIL the lowest whereas in cases where uniform recalibration 

was simulated ROSALI-IRT also has the highest rates whereas OPIL and ROSALI-RMT 

have nearly the same. Rates of most flexible RS detection in case of uniform recalibration 

are generally quite close to non-uniform recalibration rates for ROSALI-IRT and 

ROSALI-RMT. However, for OPIL non-uniform recalibration rates are remarkably 

smaller than uniform recalibration (differences range from 34% to 40%) when the sample 

size and the number of answer categories are small (N=100, M=4). This effect was also 

observed for ROSALI-RMT but to a lesser extent when N=100 (differences range from 

10% to 19%). 

 

 Flexible RS detection rates 

Contrary to the rate of most flexible RS detection where RS could have been accounted 

for on several items including the correct one, the rate of flexible RS detection indicates 
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the proportion of datasets where RS was accounted for on the correct item only. The rates 

of flexible RS detection range between 28% and 83% for OPIL, between 21% and 60% 

for ROSALI-IRT and between 71% and 97% for ROSALI-RMT. In almost all cases, 

ROSALI-RMT performs better than OPIL followed by ROSALI-IRT. Therefore, a large 

difference was observed between the rates of most flexible and flexible RS detection for 

ROSALI-IRT (between 40% and 76%) indicating that this method very often concluded 

to the presence of RS on the correct item plus other items when RS was simulated on 

only one item. This effect was also observed for OPIL but to a lesser extent (difference 

from 13% to 56%).The differences between most flexible and flexible RS detection rates 

for ROSALI-IRT increase with J and M.  

As for rates of most flexible RS detection, rates of flexible RS detection in case of 

uniform recalibration are generally close to rates in case of non-uniform recalibration, 

except for OPIL when N=100 and M=4 and for ROSALI-RMT when N=100.  

 

 Perfect RS detection rates 

The rates of perfect RS detection range between 0% and 81% for OPIL, between 14% 

and 59% for ROSALI-IRT and between 71% and 97% for ROSALI-RMT. In all cases, 

ROSALI-RMT has the best performance to detect exactly what has been simulated, i.e. 

the correct type of response shift on the correct item only. Furthermore, the rates of 

perfect RS detection of OPIL and ROSALI-IRT depend on the type of recalibration. In 

fact, OPIL performs better than ROSALI-IRT in case of simulated uniform recalibration 

with rates ranging between 42% and 81% and between 14% and 47% respectively. On 

the opposite, ROSALI-IRT performs better than OPIL in case of simulated non-uniform 
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recalibration with rates ranging between 21% and 59% and between 0% and 21% 

respectively. The difference in performance of OPIL according to the type of 

recalibration can be related to the observed differences between rates of flexible and 

perfect detection. Large differences between rates of flexible and perfect detection were 

observed in case of non-uniform recalibration (between 26% and 72%) but smaller 

differences for uniform recalibration (between 7% and 13%). Thus, when non-uniform 

recalibration was simulated, OPIL very often concluded to either another type of RS than 

non-uniform recalibration or to non-uniform recalibration jointly with another type of RS 

on the same item. But OPIL was rather able to conclude to uniform recalibration when it 

was simulated. 
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Table 2: Rates of RS detection according to simulation values of sample size (N), number 

of items (J) and number of answer categories (M) for datasets with RS (uniform 

recalibration and non-uniform recalibration) simulated on 1 item 

    

Uniform recalibration Non-uniform recalibration 

N J M   OPIL 
ROSALI-

IRT* 

ROSALI-

RMT 
OPIL 

ROSALI-

IRT* 

ROSALI-

RMT 

100 4 4 Most flexible 93.3% 98.4% 94.0% 59.5% 97.4% 83.8% 

  

  

Flexible 78.6% 56.8% 89.6% 46.6% 55.7% 80.6% 

  

  

Perfect 75.8% 45.1% 83.2% 20.8% 54.6% 80.6% 

200 4 4 Most flexible 100.0% 100.0% 100.0% 96.0% 100.0% 99.8% 

  

  

Flexible 83.0% 58.9% 96.0% 82.0% 59.8% 96.2% 

      Perfect 81.4% 46.6% 91.0% 21.0% 59.2% 96.2% 

300 4 4 Most flexible 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

  

  

Flexible 78.0% 56.9% 95.2% 79.6% 58.0% 95.4% 

      Perfect 75.8% 46.7% 92.0% 7.6% 57.8% 95.4% 

100 7 4 Most flexible 87.4% 99.6% 92.4% 47.6% 98.8% 73.8% 

  

  

Flexible 62.0% 47.6% 88.6% 28.0% 42.4% 71.4% 

  

  

Perfect 59.8% 37.2% 84.4% 10.0% 42.2% 71.2% 

200 7 4 Most flexible 100.0% 100.0% 100.0% 89.8% 100.0% 98.6% 

  

  

Flexible 70.8% 43.6% 96.8% 64.4% 44.6% 95.2% 

      Perfect 70.2% 35.4% 92.0% 11.4% 44.4% 95.2% 

300 7 4 Most flexible 100.0% 100.0% 100.0% 99.2% 100.0% 100.0% 

  

  

Flexible 62.8% 43.4% 95.0% 70.8% 49.0% 95.4% 

  

  

Perfect 62.4% 33.9% 91.0% 4.4% 48.8% 95.4% 

100 4 7 Most flexible 100.0% 100.0% 99.8% 95.6% 99.6% 92.4% 

  

  

Flexible 76.0% 33.8% 96.6% 75.0% 34.3% 90.6% 

      Perfect 72.8% 23.5% 93.6% 5.7% 33.3% 89.6% 

200 4 7 Most flexible 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

  

  

Flexible 65.9% 36.6% 96.8% 75.2% 38.2% 94.8% 

  

  

Perfect 61.9% 23.8% 92.6% 0.0% 37.8% 94.8% 

300 4 7 Most flexible 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

  

  

Flexible 57.6% 37.3% 95.4% 66.2% 39.0% 97.4% 

      Perfect 52.8% 24.0% 90.8% 0.0% 38.0% 97.4% 

100 7 7 Most flexible 100.0% 100.0% 99.6% 86.8% 100.0% 89.8% 

  

  

Flexible 65.8% 21.0% 95.4% 56.2% 21.6% 84.2% 

  

  

Perfect 64.6% 14.2% 91.2% 3.2% 21.4% 84.0% 

200 7 7 Most flexible 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

  

  

Flexible 48.8% 25.0% 97.0% 62.4% 30.0% 96.8% 

      Perfect 48.0% 16.1% 92.6% 0.0% 30.0% 96.8% 

300 7 7 Most flexible 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

  

  

Flexible 43.6% 24.1% 96.4% 55.6% 24.0% 96.8% 

      Perfect 42.4% 15.2% 93.6% 0.0% 23.4% 96.8% 
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Most flexible RS detection: proportion of datasets where the method was able to identify 

at least the correct item among others, when RS was simulated 

Flexible RS detection: proportion of datasets where any type of RS was detected and 

accounted for on the correct item only, when RS was simulated 

Perfect RS detection: proportion of datasets where the method has detected exactly the 

simulated RS (correct type of RS on the correct item only), when RS was simulated 

* Due to high rates of false RS detection, results for ROSALI-IRT should be interpreted 

with caution 

 

Datasets with one item affected by reprioritization 

 

Rates of most flexible, flexible and perfect detection of reprioritization for OPIL and 

ROSALI-IRT are presented in Table 3. Only rates of most flexible and flexible RS 

detection are presented for ROSALI-RMT as this method is unable to detect RP. 

The rates of most flexible RS detection range between 5% and 62% for OPIL, between 

13% and 89% for ROSALI-IRT and 0% and 19% for ROSALI-RMT; the rates increase 

with the sample size (N) and decreased with the number of items (J). The rates of most 

flexible RS detection are lower in case of simulated RP than those observed for UR or 

NUR which is unexpected for OPIL and ROSALI-IRT that are supposed to be able to 

detect RP. OPIL and ROSALI-IRT also had difficulties in identifying which item was 

affected by RS contrary to ROSALI-RMT. The rates of flexible RS detection range 

between 3% and 51% for OPIL, between 5% and 34% for ROSALI-IRT and between 0% 

and 17% for ROSALI-RMT; the rates increase with the sample size and decrease with J 

in most cases. A larger difference between most flexible and flexible rates were observed 

for ROSALI-IRT as compared to OPIL indicating that ROSALI-IRT more often 

concluded that RS affected other items jointly with the correct item. The rates of perfect 

RS detection are dramatically low and range between 0% and 8% for OPIL and between 
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0% and 21% for ROSALI-IRT. OPIL and ROSALI-IRT were hardly ever able to 

conclude that reprioritization occurred when it was simulated. A larger difference 

between flexible and perfect rates were observed for OPIL than for ROSALI-IRT 

because most of the time OPIL identified non-uniform recalibration instead of 

reprioritization or jointly to reprioritization. 

 

Table 3: Rates of RS detection according to simulation values of sample size (N), number 

of items (J) and number of answer categories (M) for datasets with RS (high values of 

reprioritization) simulated on 1 item.  

   

OPIL ROSALI- IRT* ROSALI-RMT 

N J M Most flexible Flexible Perfect Most flexible Flexible Perfect Most flexible Flexible Perfect 

100 4 4 13.9% 9.9% 0.0% 21.0% 10.2% 0.0% 4.0% 3.8% NA 

200 4 4 42.0% 32.0% 0.4% 57.2% 29.4% 6.2% 12.4% 11.2% NA 

300 4 4 62.0% 51.4% 0.0% 79.6% 33.4% 9.0% 19.4% 17.4% NA 

100 7 4 5.2% 2.6% 0.8% 12.8% 5.4% 0.0% 0.2% 0.2% NA 

200 7 4 13.8% 7.0% 1.8% 32.0% 12.6% 5.6% 0.8% 0.6% NA 

300 7 4 29.6% 16.2% 4.6% 70.0% 34.4% 21.4% 1.6% 1.2% NA 

100 4 7 15.2% 10.4% 0.2% 28.9% 9.4% 0.8% 3.0% 2.8% NA 

200 4 7 31.8% 23.8% 0.2% 70.4% 21.2% 6.4% 8.8% 8.2% NA 

300 4 7 51.4% 36.6% 0.0% 88.6% 30.6% 7.4% 16.6% 16.0% NA 

100 7 7 5.6% 3.0% 1.4% 22.3% 5.6% 0.2% 0.4% 0.4% NA 

200 7 7 23.6% 8.6% 4.2% 52.4% 11.8% 4.6% 0.6% 0.6% NA 

300 7 7 39.2% 15.0% 7.6% 85.2% 21.6% 13.2% 2.0% 1.8% NA 

Most flexible RS detection: proportion of datasets where the method was able to identify 

at least the correct item among others, when RS was simulated 

Flexible RS detection: proportion of datasets where any type of RS was detected and 

accounted for on the correct item only, when RS was simulated 

Perfect RS detection: proportion of datasets where the method has detected exactly the 

simulated RS (correct type of RS on the correct item only), when RS was simulated 

NA: not applicable 

* Due to high rates of false RS detection, results for ROSALI-IRT should be interpreted 

with caution 

 

As ROSALI-RMT cannot account for RP, only UR or NUR can be detected at step 4.The 

proportion of each type of detected recalibration among datasets meeting flexible rate 

requirements (correct item where RS was simulated) at step 4 for ROSALI-RMT are 
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presented in Table 4. For datasets with J=4 items, ROSALI-RMT accounted more often 

for uniform recalibration whereas non-uniform recalibration was more often accounted 

for with 7 items. 

 

Table 4: Type of detected recalibration among datasets meeting flexible rate requirements 

according to simulation values of sample size (N), number of items (J) and number of 

answer categories (M) for datasets with RS (high values of reprioritization) simulated on 

1 item.  

   

ROSALI-RMT 

N J M Flexible UR NUR 

100 4 4 3.8% 68.4% 31.6% 

200 4 4 11.2% 83.9% 16.1% 

300 4 4 17.4% 83.9% 16.1% 

100 7 4 0.2% 0.0% 100.0% 

200 7 4 0.6% 33.3% 66.7% 

300 7 4 1.2% 66.7% 33.3% 

100 4 7 2.8% 64.3% 35.7% 

200 4 7 8.2% 56.1% 43.9% 

300 4 7 16.0% 66.3% 33.8% 

100 7 7 0.4% 0.0% 100.0% 

200 7 7 0.6% 0.0% 100.0% 

300 7 7 1.8% 44.4% 55.6% 

Flexible RS detection: proportion of datasets where RS was detected and accounted for 

on the correct item only, when RS was simulated 

UR (NUR): proportion of Model 4 with only uniform (non-uniform) recalibration 

accounted for among significant tests 

 

Datasets with two or three items affected by RS 

 

Globally, all methods perform similarly for simulated datasets where two or three items 

were affected by RS (results not shown) as compared to datasets where only one item 

was affected by RS. For simulated uniform and non-uniform recalibrations, ROSALI-IRT 

still shows the highest most flexible RS detection rates whereas ROSALI-RMT performs 

better than OPIL and ROSALI-IRT according to flexible and perfect detection rates. 
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Largest differences between the rates of most flexible and flexible RS detection were 

observed for ROSALI-IRT indicating that this method very often concluded to the 

presence of RS on the correct items plus other items. On the opposite, large differences 

between rates of flexible and perfect detection were observed in case of non-uniform 

recalibration for OPIL when non-uniform recalibration was simulated indicating that 

OPIL very often concluded to NUR jointly with RP on the same item. Last, the different 

rates of reprioritization detection are dramatically low for OPIL and ROSALI-IRT. 

The cases where 2 items over 4 were affected by uniform recalibration have to be 

interpreted separately. In these cases, a pair of items was affected by RS and a pair of 

items was not affected by RS. The different rates of detection for datasets with 2 items 

affected by UR were surprisingly lower than for datasets with 2 items affected by NUR 

and lower than for datasets with 1 item affected by UR. It appeared that, in datasets with 

2 items affected by UR, all methods most frequently identified the pair of items on which 

no RS was simulated. For example, in datasets with items 1 and 2 affected by UR, the 

different rates of detection computed regarding the pair of items on which no RS was 

simulated (items 3 and 4) were higher than the different rates of detection computed 

regarding the pair of items on which RS was simulated (items 1 and 2). Detection of RS 

on the simulated pair or on the other pair of items gives equivalent model and we had to 

consider the rates of perfect detection on the other pair of items as well. Rates of RS 

perfect detection of the simulated pair of items (items 1 and 2) and of the other pair of 

items (items 3 and 4) for each method are presented in Table 5. Summing perfect 

detection rates computed on the pair of items on which RS was simulated and perfect 

detection rates computed on the pair of items on which no RS was simulated (“sum” 
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column when assessing change) gave an idea of the total proportion of equivalent models. 

This sum gave similar rates and trends than for datasets with 1 item affected by UR. 

Therefore, it seems that all methods perform similarly for this particular case with a 

higher performance of ROSALI-RMT. 

 

Table 5: Rates of RS perfect detection according to simulation values of sample size (N), 

number of items (J) and number of answer categories (M) for datasets with RS (uniform 

and non-uniform recalibration) simulated on 2 items. 

   

Non-uniform recalibration Uniform recalibration 

   

OPIL 

ROSALI-

IRT* 

ROSALI-

RMT OPIL ROSALI-IRT* ROSALI-RMT 

N J M Perfect Other Perfect Other Perfect Other Perfect Other Sum Perfect Other Sum Perfect Other Sum 

100 4 4 10.5% 0.0% 54.2% 0.2% 72.0% 0.0% 24.3% 48.2% 72.5% 13.6% 22.2% 35.8% 31.4% 38.0% 69.4% 

200 4 4 3.2% 0.0% 58.5% 0.0% 94.0% 0.0% 20.0% 50.1% 70.1% 15.8% 29.0% 44.8% 36.4% 51.4% 87.8% 

300 4 4 0.0% 0.0% 66.3% 0.0% 96.2% 0.0% 17.1% 36.6% 53.7% 15.6% 22.8% 38.4% 38.0% 47.6% 85.6% 

100 7 4 3.2% 0.0% 43.2% 0.0% 72.4% 0.0% 53.6% 0.0% 53.6% 25.0% 0.0% 25.0% 81.0% 0.0% 81.0% 

200 7 4 0.2% 0.0% 46.4% 0.0% 96.4% 0.0% 32.2% 0.0% 32.2% 24.0% 0.0% 24.0% 84.2% 0.0% 84.2% 

300 7 4 0.0% 0.0% 45.6% 0.0% 95.4% 0.0% 17.6% 0.0% 17.6% 23.2% 0.0% 23.2% 85.6% 0.0% 85.6% 

100 4 7 1.6% 0.0% 39.4% 0.0% 75.2% 0.0% 20.1% 38.8% 58.8% 4.3% 7.6% 11.9% 32.0% 55.6% 87.6% 

200 4 7 0.0% 0.0% 44.4% 0.0% 95.8% 0.0% 7.6% 23.7% 31.3% 3.0% 9.6% 12.6% 31.6% 51.2% 82.8% 

300 4 7 0.0% 0.0% 41.8% 0.0% 95.0% 0.0% 4.2% 14.8% 19.0% 0.8% 11.4% 12.2% 25.0% 53.4% 78.4% 

100 7 7 0.0% 0.0% 21.0% 0.0% 76.8% 0.0% 25.6% 0.0% 25.6% 4.8% 0.0% 4.8% 84.8% 0.0% 84.8% 

200 7 7 0.0% 0.0% 24.4% 0.0% 95.6% 0.0% 8.2% 0.0% 8.2% 5.2% 0.0% 5.2% 84.4% 0.0% 84.4% 

300 7 7 0.0% 0.0% 29.8% 0.0% 95.8% 0.0% 0.8% 0.0% 0.8% 7.4% 0.0% 7.4% 86.6% 0.0% 86.6% 

Perfect criterion: proportion of datasets where the method has detected exactly the 

simulated RS (correct type of RS on the correct pair of item only), when RS was 

simulated 

Other criterion: proportion of datasets where the method has detected the correct type of 

RS on the other pair of item only, when RS was simulated 

Sum: sum of perfect and other criteria 

Gray cells: Rates for other criterion is higher than rates for perfect criterion 

* Due to high rates of false RS detection, results for ROSALI-IRT should be interpreted 

with caution 

 

Discussion 
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This study compared the performance of SEM (OPIL method), IRT (ROSALI-IRT 

method) and RMT (ROSALI-RMT method) approaches for item-level RS detection. 

ROSALI-RMT performs better than OPIL and ROSALI-IRT in the light of rates of false 

detection, flexible detection and perfect RS detection when either UR or NUR was 

simulated. Consequently, if a partial-credit model fits the data, the RMT-based approach 

should be preferred for investigating only recalibration RS at item-level.  

For all methods, a Bonferroni correction was applied at step 3 to adjust for multiple 

testing which is not a frequent correction in Oort’s procedure and its extensions. 

However, adjusting for multiple testing seems adequate as the rates of false detection of 

RS based on the LRT at step 2 in datasets with no RS simulated were corrected during 

step 3 leading to lower rates of false detection of RS based on model 4. 

Results for lower values of reprioritization (  
   

    ) and of non-uniform recalibration 

(shift between -0.5 and 0.5) were not shown. For all methods, rates of RS detection were 

much lower for these values of simulated RS parameters indicating that these values are 

certainly too small to be detectable by OPIL, ROSALI-IRT and ROSALI-RMT with the 

sample sizes that were simulated. 

 

ROSALI-IRT method showed high most flexible RS detection rates when either UR or 

NUR was simulated. These high rates might be misinterpreted as an indicator of good 

performance. Indeed, ROSALI-IRT also presented high rates of false detection and large 

differences between most flexible and flexible rates of RS detection rates that tend to 

indicate that very often ROSALI-IRT overdetected RS by concluding to RS when no RS 

was simulated or identified items that were not affected by RS when RS was simulated. 
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The preliminary step used to help reaching model convergence and reduce time for 

parameter estimation with the NLMIXED procedure could have been detrimental to 

ROSALI-IRT. In fact, the item difficulties at the first time of measurement were fixed to 

their estimated values at the preliminary step for all the next steps of the algorithm. This 

might have been unfair as the main interest in RS analysis is based on the change in item 

difficulties over time. Hence, ignoring the uncertainty related to the estimation of item 

difficulties in the preliminary step in further steps might have led to an underestimation 

of the variance of RS parameters and to reject the null hypothesis too often in the Wald 

tests of step 3. Thus, this preliminary step might be the cause of over detection of RS 

when no RS was simulated and to over detection of RS on items unaffected by RS when 

RS was simulated. 

 

The SEM-based method OPIL showed worse performances than ROSALI-RMT. Data 

simulated from a different measurement theory (GPCM coming from IRT) could have 

penalized OPIL. The size of simulated effects are not known in SEM and might be lower 

than in IRT/RMT leading to RS effects more difficult to detect.  

Of note, the parameters of OPIL were estimated with maximum likelihood in line with 

what has been frequently observed regarding the first applications of Oort’s procedure at 

item level (33,34). In case of ordinal data, obtaining estimations using maximum 

likelihood theory is problematic as assumption of multivariate normality of the item 

responses is violated. In particular, chi-squares are known to be biased and so likelihood 

ratio tests that use the chi-square values in OPIL may lead to erroneous conclusions. 

Hence, the performance of OPIL could be improved by using an alternative estimation 
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method. Some studies (35,36) suggest that for ordinal data with at least five answer 

categories and approximately normal distribution, the ML estimation performs well. 

Therefore, for simulated datasets with 7 response categories, we can be quite confident 

that the results were not much impacted by ML estimation. However, for datasets with 

less than 5 response categories, OPIL performances might be improved by using 

techniques to estimate SEM parameters for ordinal data recently implemented in Oort’s 

procedure (15,37) such as diagonally weighted least squares parameter estimation. 

Despite the fact that it should be encouraged to use these methods which are more 

suitable for ordinal data, in our study, it seemed that OPIL using maximum likelihood 

was pretty robust to the least favorable case (i.e. 4 response categories) because we could 

observe that the performance of OPIL were as good or even better with 4 as compared to 

7 response categories (e.g. for false and perfect detection rates).  

Apart from these technical points, large differences between flexible and perfect 

detection rates were observed when NUR was simulated but not when UR was simulated. 

It therefore seemed that either OPIL jointly detected another type of RS along with NUR 

on the correct item or detected another type of RS than NUR on the correct item. By 

looking more thoroughly into the RS detected in datasets with one item affected by NUR, 

it appeared that OPIL often concluded that only one item was affected by RS (the 

simulated item) but that this item was affected by NUR and RP simultaneously. 

 

While reprioritization is easily conceptualized at dimension level (e.g. the social 

dimension becoming a more important indicator of quality of life after a salient health 

event than before), the potential different meaning and interpretation of RP at item-level 



 

34 

 

from a methodological or conceptual point of view has already been raised (11). To even 

go further, the existence of the concept of RP at item-level can be questioned. If it is easy 

to conceptualize that the importance of some dimensions in the definition of a 

multidimensional concept can be subject to change over the disease course, it is not 

straightforward to expect that some items can become more important than others over 

time in the unidimensional context of a single dimension. The dramatically low rates of 

perfect detection of RP for OPIL and ROSALI-IRT are indicative of the inability of these 

approaches to detect RP. Although these low rates might be explained by the simulated 

size of RP, we can also note that due to the formulation of IRT models, a variation in 

discrimination power parameters (RP) might cause a variation in item difficulties 

(recalibration) and inversely. Hence, trying to simulate RP in the datasets could have led 

to simulate also recalibration. The same problem could have occurred in SEM as a 

variation of factor loadings parameters (RP) might cause a variation in residual variances 

(NUR) and inversely. Thus, OPIL and ROSALI-IRT could have adjusted for NUR 

instead of RP due to the link between the RS parameters. Observed differences between 

the rates of flexible RS detection and of perfect detection revealed that ROSALI-IRT was 

able to identify the items affected by RS but not the type of simulated RS on these items. 

Indeed, ROSALI-IRT often concluded that items were affected by UR or NUR (change 

in item difficulties) when RP (change in discrimination parameters) was simulated. 

Similarly, OPIL often concluded that items were affected by NUR (change in residual 

variances) when RP (change in factor loadings) was simulated. 

As expected, ROSALI-RMT showed low most flexible rates of detection for RP in 

particular for datasets with 7 items as RP is not operationalized in RMT. But, when RS 
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was accounted for in model 4, the item affected by RS was quite often correctly 

identified. 

 

Reconceptualization was not assessed in the simulation study. The SEM-based method 

OPIL is able to provide clues of reconceptualization as poor fit of measurement model in 

step 1 can indicate that the measurement model does not hold for both times of 

measurement. On the opposite, fit indices or tests are not available for longitudinal IRT 

or RMT models so that ROSALI-IRT and ROSALI-RMT cannot help investigating 

reconceptualization. Multidimensional IRT or RMT models would be required to do so. 

From a conceptual point of view, item-level reconceptualization means that some items 

can load on one factor (the dimension of interest) at one time of measurement and load on 

another factor (an already existing or new dimension) at another time of measurement. 

Thus, item-level reconceptualization will probably lead to dimension-level RS. As item-

level RS detection is operationalized in a unidimensional context, it seems important to 

also look at dimension-level RS to have a complementary insight and a comprehensive 

overview of RS and longitudinal change in PRO data. 

 

ROSALI-IRT and ROSALI-RMT were described as different methods for RS detection 

even though it could be argued that Rasch models are embedded within IRT and that they 

can be shown to be mathematically equivalent (e.g. Rasch as a “special case” of IRT with 

all discrimination power parameters fixed to one). However, it does not mean that the 

models are philosophically or conceptually equivalent, RMT was originally developed to 

find data that fits the model while IRT models were developed to be altered in order to fit 
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the data. The rationale for distinguishing item-level RS analysis with ROSALI-RMT as 

compared to ROSALI-IRT was that models coming from Rasch Measurement Theory 

possess the specific objectivity property that can be valuable when some items are 

missing, in an ignorable way or not. In this study, ROSALI-RMT has shown better 

performances in the context of complete data. Further simulation studies taking into 

account the shortcomings of the present study (e.g. using more suitable SEM-based 

methods for ordinal data, not fixing the item difficulties at the first time of measurement 

to their estimated values in ROSALI-IRT, including a generating model based on the 

SEM framework) are now needed to confirm that ROSALI-RMT performs better than 

OPIL and ROSALI-IRT in particular in case of non-ignorable missing items.  

RS detection relies on two strong hypotheses: all individuals of the sample are expected 

to experience RS the same way and RS is evaluated before and after a salient health 

event. We can easily understand that adaptation may not occur in the same manner for all 

individuals according to the various history and personality of patients even in a 

homogeneous sample at baseline and that RS should be evaluated at a more individual 

degree. Adaptation is also not likely to occur at the same time for all individuals 

especially as a health event of interest can have consequences at different times in the 

patient’s life or the health event can be a chronic disease which can be viewed as a 

complex sum of events at different times over the course of illness. Investigating RS at a 

more individual degree and over the disease course instead than between two times of 

measurement (38) are important future paths of research to help understanding adaptation 

and improving care with specific therapies for maladaptative patients and provide 

adequate support for a better adaptation of patients to their disease over time. 
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