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Abstract8

The connection between the Call-By-Push-Value lambda-calculus introduced by Levy and Linear9

Logic introduced by Girard has been widely explored through a denotational view reflecting the10

precise ruling of resources in this language. We take a further step in this direction and apply Taylor11

expansion introduced by Ehrhard and Regnier. We define a resource lambda-calculus in whose12

terms can be used to approximate terms of Call-By-Push-Value. We show that this approximation13

is coherent with reduction and with the translations of Call-By-Name and Call-By-Value strategies14

into Call-By-Push-Value. 1
15
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1 Introduction21

Linear Logic [15] has been introduced by Girard as a refinement of Intuitionistic Logic that22

take into account the use, reuse or erasing of formulas. In order to mark formulas that can be23

reused or erased, Girard introduced the exponential !X and considered a linear implication24

X ( Y . Following the proof/program correspondence paradigm, Linear Logic can be used to25

type λ-calculus according to a chosen reduction strategy as Call-By-Name or Call-By-Value.26

Abstraction terms λxM usually typed by X ⇒ Y will be typed as !X ( Y when following a27

Call-By-Name evaluation strategy and by !(X ( Y ) when following a Call-By-Value strategy.28

Therefore, both evaluation strategies can be faithfully encoded in Linear Logic.29

Levy followed a related goal when he introduced Call-By-Push-Value [21] : having a lambda30

calculus where both Call-By-Name and Call-By-Value can be taken into account. Since its31

introduction this calculus has been related to the Linear Logic approach [4, 12, 6, 22, 20]. We32

adopt this latest presentation which differentiates two kinds of types: positive and general33

types used for typing two kinds of terms: values and general terms respectively. The marker34

!I is used to transform a general type I into a value type !I which can be erased, used and35

duplicated. The idea behind ! is to stop the evaluation of the terms typed by !I by placing36

them into thunks (i.e. putting them into boxes).37

The purpose of this article is to push further the relations between Call-By-Push-Value and38

Linear Logic and to underline the resource consumption at play. For this we use syntactical39

Taylor expansion, that reflects Taylor expansion into semantics. Indeed, several semantics of40

Linear Logic and λ-calculus are interpreting types as topological vector spaces and terms41

1 The authors thank the ANR project Rapido, together with Lionel Vaux and Thomas Ehrhard for their
useful advises and fertile discussions.
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as smooth functions that enjoy Taylor expansion [5, 7, 8, 18]. Indeed, those functions can42

be written as power series whose coefficients are computed thanks to a derivative operator.43

The syntactical Taylor expansion enable the representation of terms as a combination of44

approximants named resource terms.45

Taylor expansion has first been introduced by Ehrhard and Regnier while they presented46

the differential λ-calculus [9], they noticed that it was possible to give a syntactical version47

of Taylor formula, and that this object was defined on the multilinear fragment of differential48

λ-calculus. It consists in associating to a λ-term an infinite series of resource terms, that49

enjoy a linearity property, in the following sense: resource calculus is endowed with an50

operational semantics similar to λ-calculus, but with no duplication nor erasing of subterms51

during reduction. As, in analysis analytic maps are approximated by series of monomials,52

here λ-terms are approximated by series of resource terms. Taylor expansion gives a natural53

semantics, where the reduction rules of resource calculus aim to identify the terms having54

the same interpretation in a denotational model. In particular, the normal form of Taylor55

expansion (or Taylor normal form) is a pleasant notion of approximation of normal forms56

in various λ-calculi, and is strongly linked to the notion of Böhm trees, since Ehrhard and57

Regnier’s seminal works [10]. This link has been extended in several direction, see e.g.58

Vaux [27] for algebraic λ-calculus, Kerinec, Manzonetto and Pagani [17] for Call-By-Value59

calculus, or Dal Lago and Leventis [19] for probabilistic λ-calculus. Let us also mention60

two other related approachs to approximation of λ-calculus with polyadic terms instead61

of resource terms [23, 24]. Taylor expansion has also been studied for the Bang Calculus,62

an untyped analogue of Call-By-Push-Value, by Guerrieri and Ehrhard [13] and then by63

Guerrieri and Manzonetto [16].64

We propose, following that fertile discipline, a syntactical Taylor expansion for Λpv, which65

is the Linear Logic-oriented presentation of Call-By-Push-Value we use (and corresponds to66

Λhp in Ehrhard’s paper [12]).67

A first difficulty we have to tackle, is the fact that designing a convenient resource68

calculus, say ∆pv, that respects Λpv dynamics is not trivial. In particular, in a redex, the69

argument is a value but is not necessary of exponential type. Then, the argument of a70

resource redex shall not be necessarily a multiset, while it is always the case in Call-By-Name71

and Call-By-Value resource calculi, as it ensures the reductions are linear. The semantical72

reason of that phenomenon is that in a quantitative model of Λpv, all values with a positive73

type are freely duplicable, thanks to the coalgebras morphisms associated to those types’74

interpretation. The solution we adopt is to give a syntactical account to those morphisms in75

the reduction rules, so as to ∆pv stays consistent with Call-By-Push-Value operational and76

denotational semantics, while keeping the resource reduction linear.77

We can then consider a Taylor expansion, as a function from Λpv to sets of terms in78

∆pv, that consists of approximants. Once this framework is set, we are able to show that79

the properties of Call-By-Push-Value, relative to the embeddings of various strategies of80

evaluation, can be transported at the resource level.81

The principal result of the paper is the simulation of Λpv reductions in full Taylor82

expansion, where resource terms take coefficients in a commutative semiring. The key83

ingredients for this simulation to run are intrinsic to the properties of ∆pv: the dynamics84

of reduction must reflect the reduction of Λpv, and the mechanisms of the calculus must85

enjoy combinatorial properties, so that the coefficients commute with the simulation. More86

precisely, it means that for M,N ∈ Λpv such that M reduces to N , if Taylor expansion of M87

is equal to
∑
i∈I aimi, where ai are coefficients taken in a semiring, and mi are resource terms88

approximating M , then we have a notion of reduction such that
∑
i∈I aimi ⇒

∑
j∈I ajnj ,89
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and for each resource term n, its coefficient in the latter combination is the same as its90

coefficient in the Taylor expansion of N .91

Contents of the paper92

We first present (Section 2) Λpv as the starting point of our study, describing its operational93

semantics, provide examples of its expressive power, and give elements of its denotational94

semantics relative to coalgebras. We introduce and develop in Section 3 the resource calculus95

∆pv together with its operational semantics. Then, in Section 4, we define Taylor expansion96

for Λpv. First, in a qualitative way, with sets of approximants, where we show that it allows97

the simulation of Λpv reductions. We also describe how the embeddings of Call-By-Name98

and Call-By-Value into Call-By-Push-Value are transported at the resource level. Finally,99

we introduce quantitative Taylor expansion, with coefficients, and prove the commutation100

property between Taylor expansion and reduction that demonstrates that Taylor expansion101

is compatible with Λpv operational semantics.102

Terminology and notations103

We write N for the set of natural numbers, andSk for the group of permutations on {1, . . . , k}.104

For a term m, and a variable x, we denote as degx(m) the number of free occurrences of x105

in m. These occurrences might be written x1, . . . , xdegx(m), while all referring to x.106

Finite multisets of elements of a set X are written x = [x1, . . . , xk] for any k ∈ N, and107

are functions from X to N. We use the additive notation x+x′ for the multiset such that for108

all y ∈ X, (x+ x′)(y) = x(y) + x′(y). The size of x is written |x| and is equal to
∑
y∈X x(y).109

We denote as X ! the set of all finite multisets of elements of X. We might write (x, . . . , x)k110

for tuples or [x, . . . , x]k for multisets to denote k occurrences of the same element x.111

If σ is a linear combination of terms
∑
i∈I ai ·mi, we use the notation λxσ =

∑
i∈I ai ·λxmi,112

der(σ) =
∑
i∈I ai · der(mi), and σ! =

∑
k∈N

∑
i1,. . . ,ik∈I ai1 . . . aik · [mi1 , . . . ,mik ]. In113

the same way, if τ =
∑
j∈J aj · nj , we write (σ, τ) =

∑
i∈I
∑
j∈J aiaj · (mi, nj). 〈σ〉τ =114 ∑

i∈I
∑
j∈J aiaj · 〈mi〉nj . This notation corresponds to the linearity of syntactic constructors115

with respect to potentially infinite sums of terms that will appear in Taylor expansion.116

2 Call-By-Push-Value117

2.1 Syntax and operational semantics118

We consider a presentation of Call-By-Push-Value coming from Ehrhard [12], and convenient119

for its study through Linear Logic semantics.120

I Definition 1 (Call-By-Push-Value calculus Λpv).

Λpv : M ::= x | λxM | 〈M〉M | case(M,y ·M, z ·M) | fixx(M) | (M,M) | π1(M) | π2(M) |121

M ! | der(M) | ι1(M) | ι2(M)122123

We distinguish a subset of Λpv, the values :124

V ::= x |M ! | (V, V ) | ι1(M) | ι2(M)125

Positive types: A,B ::= !I | A⊗B | A⊕B126

General types : I, J ::= A | A( I | >127
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Γ, x : A ` x : A
Γ `M : I
Γ `M ! : !I

Γ, x : A `M : B
Γ ` λxM : A( B

Γ `M : A( I ∆ ` N : A
Γ,∆ ` 〈M〉N : I

Γ `M : A ∆ ` N : B
Γ,∆ ` (M,N) : A⊗B

Γ `M : A1 ⊗A2 i ∈ {1, 2}
Γ ` πi(M) : Ai

Γ `M : Ai i ∈ {1, 2}
Γ ` ιi(M) : A1 ⊕A2

Γ ` m : !A
Γ ` der(m) : A

Γ `M1 : A⊕B ∆ `M2 : I Θ `M3 : I
Γ,∆,Θ ` case(M1, y ·M2, z ·M3) : I

Γ, x : !I `M : I
Γ ` fixx(M) : I

Figure 1 Typing rules for Λpv

The typing rules are given in Figure 1 and reduction rules are given below:128

〈λxM〉V →pv M [V/x] der(M !)→pv M129

πi(V1, V2)→pv Vi fixx(M)→pv M [(fixx(M))!/x]130

case(ιi(V ), x1 ·M1, x2 ·M2)→pv Mi[V/xi]131
132

We define evaluation contexts E, for all terms M,N .133

E ::= [] | 〈M〉E | 〈E〉M | πi(E) | ιi(E) | (M,E) | (E,M) | case(E, x ·M,y ·N) | der(E)134

and we set as an additional reduction rule E[M ] →pv E[N ] for every M,N such that135

M →pv N .136

2.2 An overview of denotational semantics and coalgebras137

Let us give an overview of the denotational semantics of Call-By-Push-Value that justifies138

the introduction of the resource calculus below. This semantics is based on the semantics of139

Linear Logic that types the Call-By-Push-Value we are studying.140

Let us describe briefly what is a model of Linear Logic (see [25] for a detailed presentation).141

It is given by a category L together with a symmetric monoidal structure (⊗, 1, λ, ρ, α, σ)142

which is closed2 and we write X ( Y for the object of linear morphisms. It has a143

cartesian structure with cartesian product & and terminal object >. The category L144

is equipped with a comonad ! : L → L together with a counit derX ∈ L(!X,X) and145

a comultiplication digX ∈ L(!X, !!X). This comonad comes with a symmetric monoidal146

structure3 from (L,&) to (L,⊗), that is two natural isomorphisms m0 ∈ L(1, !>) and147

m2 ∈ L(!X ⊗ !Y, !(X & Y )).148

By using isomorphisms m0 and m2; the functoriality of the comonad ! and the cartesian149

structure, we can build a structure of comonoid on any !X, which enable erasing and150

duplication of resources as we will see below.151

erase!X ∈ L(!X, 1) split2
!X ∈ L(!X, !X ⊗ !X)152

A coalgebra4 (P, hP ) is made of an object P and a morphism hP ∈ L(P, !P ) which153

2 Most model we consider are also ∗-autonomous: there is a ⊥ such that X is isomorphic to (X ( ⊥) ( ⊥
3 The two isomorphims m0 and m2 correspond to the so-called Seely isomorphisms.
4 We want the semantics we use to interpret Call-By-Push-Value to be compatible with Taylor expansion.

That is why, we have chosen to resolve the comonad using the Eilenberg-Moore resolution. The resulting
category can be not well-pointed as for example the relational model described below. Another option,
which is simpler and should be explored, is to use the Fam resolution [1].
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is compatible with the comonad structure as derPhP = Id and digPhP = !hPhP . Every154

coalgebra inherits the comonoid structure of !P , that is it is equipped with: eraseP ∈ L(P, 1)155

and split2
P ∈ L(P, P ⊗ P ) defined as:156

eraseP : P
hP−−→ !P wP−−→ 1 split2

P : P
hP−−→ !P cP−−→ !P ⊗ !P derP⊗derP−−−−−−−−→ P ⊗ P.157

Using similar computation, we can define splitkP ∈ L(P, P ⊗ · · · ⊗ P︸ ︷︷ ︸
k

).158

Notice that the structure of comonad of ! induces a coalgebras structure on !X. Moreover,159

every construction of positive type preserves the coalgebra structure. To define the coalgebraic160

structure of P ⊗Q where P and Q are both coalgebras, let us first define the morphisms161

µ0 ∈ L(1, !1) and µ2 ∈ L(!X ⊗ !Y, !(X ⊗ Y )) as162

µ0 : 1 m0

−−→ !> dig>−−−→ !!> !(m0)−1

−−−−−→ !1163

µ2 : !X ⊗ !Y m2
−−→ !(X & Y ) digX&Y−−−−−→ !!(X & Y ) !(m2)−1

−−−−−→ !(!X ⊗ !Y ) !(derX⊗derY )−−−−−−−−→ !(X ⊗ Y ).164
165

Then, we can define hP⊗Q : P ⊗Q hP⊗hQ−−−−−→ !P ⊗ !Q µ2

−→ !(P ⊗Q). The coalgebraic structure of166

the coproduct is entirely defined by the morphisms for i ∈ {1, 2}: Pi
hPi−−→ !Pi

!ini−−→ !(P1 ⊕ P2)167

if the category has coproducts.168

Thus, we can deduce that every positive type is interpreted as a coalgebra.169

Example170

The relational model is closely related to the Taylor expansion of the λ-calculus. Indeed,171

every λ-term is interpreted as the set of the interpretation of the resource terms that appear172

in its Taylor expansion. We can state that Taylor expansion is the syntactical counterpart of173

the relational model.174

Let us describe some of these constructions on the relational model of linear logic. The175

category Rel is made of sets and relations. The tensor product is given by the set cartesian176

product and its unit is the singleton set whose unique element is denoted ∗. The product is177

given by disjoint union and the terminal object is the emptyset. Rel can be equipped with178

the comonad of finite multisets. The comonadic structure of !X is179

derX = {([a], a)|a ∈ X} digX = {(m, [m1, . . . ,mk])|m1 + · · ·+mk = m}.180

The comonoidal structure of !X is181

erase!X = {([], ∗)} split2
!X = {(m, (m1,m2))|m1 +m2 = m}.182

A positive type is a finite combination of ⊕,⊗, !. For instance if P = (!X1⊕!X2)⊗(!Y ⊗!Z),183

then P is a coalgebra (see Figure 2):184

185

hP = {(((i,mi)) , (mY ,mZ)), [((i, x1
i ), (y1, z1)), . . . , ((i, xki ), (yk, zk))]|186

mi = x1
i + · · · + xki ,mY = y1 + · · · + yk,mZ = z1 + · · · + zk},187

188

and is equipped with the comonoidal structure:189

eraseP = {(((i, []), ([], []), ∗)}190

split2
P = {((i,mi), (mY ,mZ)) , ((i, (m1

i +m2
i )), ((m1

Y +m2
Y ), (m1

Z +m2
Z)))|191

m1
i +m2

i = mi,m
1
Y +m2

Y = mY ,m
1
Z +m2

Z = mZ}}.192
193

Remark that the structural morphisms are the same as those of !X but at the leaves of the194

tree structure describing the formula P .195
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((i,mi), (mY ,mZ))

(i,mi) (mY ,mZ)

mi mY mZ

hP→
[
((i, x1

i ), (y1, z1)),

(i, x1
i ) (y1, z1)

x1
i y1

z1

. . . ((i, x1
k), (yk, zk))

](i, xk
i ) (yk, zk)

xk
i yk

zk

where
∑k
j=1 x

j
i = mi,

∑k
j=1 y

j = mY , and
∑k
j=1 z

j = mZ .

Figure 2 Action of the coalgebra morphism hP on a positive type

3 Resource calculus for Call-By-Push-Value196

We introduce a typed resource calculus, able to simulate the operational semantics of Λpv.197

The conditional construction is considered through tests of equality, and there is no explicit198

fixpoint. The main difference with other resource calculi, like Call-By-Name or Call-By-Value,199

is that redexes of shape 〈λxm〉n are not enough to entail Λpv reduction. Indeed, the notion200

of value is too wide to be entirely captured in multisets of approximants: 〈λxM〉(V1, V2) is a201

redex in Λpv, then we must be able to reduce terms like 〈λxm〉(v1, v2) in the resource setting,202

while keeping it sensitive to resource consumption. We proceed so with the introduction of a203

splitting operator, which allows us to duplicate a value using the structure of its positive204

type.205

I Definition 2 (Call-By-Push-Value resource calculus ∆pv). The syntax of types is the same206

as the syntax of Λpv.207

∆pv : m ::= x | 1 | 2 | λxm | 〈m〉m | (m = m) ·m | (m,m) | π1(m) | π2(m)208

| [m, . . . ,m] | der(m)209
210

We distinguish the values of the calculus:211

v ::= x | 1 | 2 | [m, . . . ,m] | (v, v)212

Γ, x : A ` x : A
Γ ` mi : I, i ∈ {1, . . . , k}

Γ ` [m1, . . . ,mk] : !I
Γ, x : A ` m : B

Γ ` λxm : A( B
Γ ` m : A( I ∆ ` n : A

Γ,∆ ` 〈m〉n : I
Γ ` m : !A

Γ ` der(m) : A
Γ ` m : A ∆ ` n : B

Γ,∆ ` (m,n) : A⊗B
Γ ` m : A1 ⊗A2 i ∈ {1, 2}
Γ ` πi(m) : Ai

Γ ` m : Ai i ∈ {1, 2}
Γ ` (i,m) : A1 ⊕A2

Γ ` m1 : A1 ⊕A2 ∆ ` m2 : Ai Θ ` m3 : I
Γ,∆,Θ ` (m1 = (i,m2)) ·m3 : I

Figure 3 Typing rules for ∆pv

In order to set the operational semantics of the resource calculus just defined, we introduce213

a new construction splitk. Its operational semantics is the duplication of ground values such214

as integers or variables and the split of the leaves of tree structure induced by pairs and215

injections, as exemplified in Figure 4. This splitting operator is the syntactical counterpart216
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⊗

⊕ ⊗

! ! !
m m′ m′′

(i,m) (m′,m′′)

((i,m), (m′,m′′)) splits into:
⊗

⊕ ⊗

! ! !
m1 m′

1 m′′
1

(i,m1) (m′
1,m

′′
1 )(

( (i,m1), (m′
1,m

′′
1 )), . . . ⊗

⊕ ⊗

! ! !
mk m′

k m′′
k

(i,mk) (m′
k,m

′′
k)

, ((i,mk), (m′
k,m

′′
k))
)

where
∑k
i=1mi = m,

∑k
i=1m

′
i = m′, and

∑k
i=1m

′′
i = m′′.

Figure 4 Splitting a value, the tree of its positive type labelled by resource components.

of the semantical morphism associated to each coalgebra P interpreting a positive type:217

splitkP ∈ L(P, P ⊗ · · · ⊗ P︸ ︷︷ ︸
k

) (see Section 2.2).218

I Definition 3 (Split). splitk(m) is defined as a set of k-tuples of values of same shape219

than m. It is defined when m is a value itself.220

splitk(m) = {(m1, . . . ,mk) |
∑k
i=1mi = m}221

splitk(x) = {(x, . . . , x)k}222

splitk(i) = {(i, . . . , i)k} for i ∈ {1, 2}.223

splitk((m,n)) = {((m1, n1), . . . , (mk, nk)) | (m1, . . . ,mk) ∈ splitk(m), (n1, . . . , nk) ∈224

splitk(n)}.225

We define now the reduction rules associated to ∆pv, by adding the distinguished term 0226

to the calculus.227

〈λxm〉n→rpv m[n1/x1, . . . , nk/xk] for degx(m) = k and all (n1, . . . , n
′
k) ∈ splitk(n).228

(v = (i, v′)) · n→rpv n if v = (i, v′). (v = (i, v′)) · n→rpv 0 otherwise.229

der([m1, . . . ,mk])→rpv m1 if k = 1, and der([m1, . . . ,mk])→rpv 0 otherwise.230

πi((m1,m2))→rpv mi231

We define evaluation contexts e, for all terms t, u of ∆pv :232

e ::= [] | 〈e〉m | 〈m〉e | λxe | (e,m) | (m, e) | (e = m) · n | (m = e) · n | der(e)233

and set the additional rule e[m]→rpv e[n] if m→rpv n by one of the above rules, with e[0] = 0234

for all context e.235

We cannot define a reduction for tests of equality that produces non values-terms, because236

we would lost confluence: for example, if we allow to reduce m(π1(m1,m2) = m1) · n, then237

m reduces to 0, and it reduces as well to (m1 = m1) · n, which reduces to n.238

I Proposition 4 (Subject Reduction). For any terms m,n and general type I, if m : I and239

m→rpv n, then n : I.240

Proof. By induction on m.241

If m = (πi(m1,m2)) and if n = mi, then there exist A1, A2 such that mi : Ai, and we242

have m : Ai and n : Ai.243

If m = der([n]), then there is a type J such that n : J , and we have [n] : !J and m : J .244

If m = (v1 = (i, v2)) · n, then if n : J for some type J , then m : J .245

If m = 〈λxm′〉v and n = m′[v1/x1, . . . , vk/xk] for k = degx(m′) and (v1, . . . , vk) ∈246

splitk(v), then x : A, v : A,m′ : J, λxm′ : A ( J , for some types A, J . Then m : J , in247

order to conclude n : J , it remains to ensure that for all i ∈ {1, . . . , k}, vi : A which is248
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done easily by an induction on v, and that it implies m′[v1/x1, . . . , vk/xk] : A. That last249

point follows from a standard argument.250

If m = e[m′] and n = e[n′] for n→rpv n
′, we conclude by induction hypothesis.251

J252

We define for all k ∈ N, all variable x and m ∈ ∆pv, a set of terms fixkx(m) as follows,253

with fix0
x(m) = {m[[]/x1, . . . , []/xdegx(m)]}:254

fixk+1
x (m) =

{
m
[
m1/x1, . . . ,mdegx(m)/xdegx(m)

]
| ∀i ≤ degx(m) : mi ∈ (fixkx(m))!}.255

4 Taylor expansion256

Taylor expansion consists in taking infinitely many approximants of a given object. As analytic257

maps can be understood as infinite series of polynomials that approximate it, Λpv terms can258

be considered through all resource terms that are also multilinear (in the computational259

sense) approximants. We first introduce a qualitative version, with sets, through which260

we show a first simulation property (Proposition 9), and we prove that the embeddings of261

Call-By-Name and Call-By-Value behave well at the resource level (Property 2). Then, we262

introduce coefficients so as to consider full quantitative Taylor expansion. Lemma 10 ensures263

that it does not lead to divergence issues through a finiteness property of antireduction.264

Finally, we prove the full simulation of Λpv reduction in Taylor expansion, showing that265

coefficients commute with reduction, in Theorem 17.266

4.1 Definition and Simulation267

I Definition 5 (Support of Taylor expansion). We define the sets of resource terms corres-268

ponding to the support of Taylor expansion of Λpv:269

Tpv(x) = {x} Tpv〈M〉N = {〈m〉n | m ∈ Tpv(M), n ∈ Tpv(N)}
Tpv(ιi(M)) = {(i,m) | m ∈ Tpv(M)} Tpv(der(M)) = {der(m) | m ∈ Tpv(M)}
Tpv(M !) = Tpv(M)! Tpv((M,N)) = {(m,n) | m ∈ Tpv(M), n ∈ Tpv(N)}
Tpv(πi(M)) = {πi(m) | m ∈ Tpv(M)} Tpv(fixx(M)) = {fixk

x(m) | m ∈ Tpv(M), k ∈ N}
Tpv(λxM) = {λxm | m ∈ Tpv(M)} Tpv(case(M, z1 ·N1, z2 ·N2)) = {(m = (i,m′))·ni[m′/zi]

| i ∈ {1, 2},m ∈ Tpv(M), ni ∈ Tpv(Ni),m′ ∈ ∆pv}

270

B Property 1. Let M ∈ Λpv, m ∈ Tpv(M), and k ∈ N. splitk(m) is defined if and only if M271

is a value.272

Proof. One can check that the syntax of resource terms v that are in Tpv(V ) for a value273

V matchs exactly the resource values of Definition 2. It is easy to verify that splitk(v) is274

always defined, and that if m ∈ Tpv(M) is not such a resource value, then splitk(m) is not275

defined. J276

The following corollary shows that ∆pv is consistent with Λpv in the following sense: an277

approximant of a redex in Λpv is always a redex in ∆pv, and a redex in ∆pv which is an278

approximant of a term in Λpv, is the approximation of a redex. This is mostly trivial, but for279

redexes of shape 〈λxm〉n (respectively 〈λxM〉N), where it is a consequence of Property 1,280

as stated in the following corollary:281

I Corollary 6. Let 〈λxm〉n ∈ Tpv((λxM)N). There is a term m′ such that 〈λxm〉n→rpv m
′

282

by reducing the most external redex if and only if N is a value. Recall moreover that283

(λxM)N →pv M [N/x] if and only if N is a value.284
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I Lemma 7. If M is a value, k ∈ N, m ∈ Tpv(M) and (m1, . . . ,mk) ∈ splitk(m) then for285

all i ∈ {1, . . . , k}, mi ∈ Tpv(M).286

Proof. By induction on M , using Property 1 :287

If M = x, then m = x and splitk(m) = (x, . . . , x)k. We conclude since Tpv(x) = {x}.288

If M = N !, then m = [n1, . . . , nl], and for all i ∈ {1, . . . , l}, ni ∈ Tpv(N). We have289

(m1, . . . ,mk) = (n1, . . . , nk) with
∑k
i=1 ni = [n1, . . . , nl]. Then, each ni is a multiset of290

elements in Tpv(N), and ni ∈ Tpv(N !) = Tpv(M).291

If M = (N,N ′), then m = (n, n′) for n ∈ Tpv(N) and n′ ∈ Tpv(N ′). (m1, . . . ,mk) =292

((n1, n
′
1), . . . , (nk, n′k)) with (n1, . . . , nk) ∈ splitk(N) and (n′1, . . . , n′k) ∈ splitk(N ′). By293

induction hypothesis, for all i ∈ {1, . . . , k}, ni ∈ Tpv(N) and n′i ∈ Tpv(N ′). Then for all i,294

(ni, n′i) ∈ Tpv(N,N ′) = Tpv(M).295

If M = ιj(N), then m = (j, n) for n ∈ Tpv(N) and splitk(m) = ((j, n1), . . . , (j, nk)) with296

(n1, . . . , nk) ∈ splitk(n). By induction hypothesis, for all i ∈ {1, . . . , k}, ni ∈ Tpv(N).297

Then for all i, (j, ni) ∈ Tpv(ιj(N)) = Tpv(M).298

J299

The following substitution lemma is crucial to ensure that Taylor expansion is compatible300

with reduction. It will be used for proving simulation, in Proposition 9.301

I Lemma 8 (Substitution). Let m ∈ Tpv(M), k = degx(m), and n1, . . . , nk ∈ Tpv(N), for302

M,N ∈ Λpv. We have m[n1/x1, . . . , nk/xk] ∈ Tpv(M [N/x]).303

Proof. The proof is by induction on M . We only consider representative cases, the other304

following by similar applications of induction hypothesis.305

If M = x, then m = x, k = 1, m[n1/x1] = n1, and M [N/x] = N . Then m[n1/x1] ∈306

Tpv(M [N/x]).307

If M = λyM ′, then degx(M) = degx(M ′),m = λym′ for m′ ∈ Tpv(M ′). By induc-308

tion hypothesis, m′[n1/x1, . . . , nk/xk] ∈ Tpv(M ′[N/x]). Since m[n1/x1, . . . , nk/xk] =309

λym′[n1/x1, . . . , nk/xk], we conclude.310

If M = 〈M1〉M2, then m = 〈m1〉m2 for mi ∈ Tpv(Mi), and degx(m) = l1 + l2 for311

l1 = degx(m1) and l2 = degx(m2). By induction hypothesis, m1[n1/x1, . . . , nl1/xl1 ] ∈312

Tpv(M1[N/x]) andm2[nl1+1/x, . . . , nl1+l2/x] ∈ Tpv(M2[N/x]). Sincem[n1/x1, . . . , nk/xk] =313

〈m1[n1/x1, . . . , nl1/xl1 ]〉m2[nl1+1/x, . . . , nl1+l2/x], and M [N/x] = 〈M1[N/x]〉M2[N/x],314

we conclude.315

If M = M ′!, then m = [m′1, . . . ,m′l] with m′i ∈ Tpv(M ′) for all i, and degx(m) =
∑l
i=1 ki316

where ki = degx(m′i). By induction hypothesis,m′i[nki−1+1/xki−1+1, . . . , nki−1+ki
/xki−1+ki

] ∈317

Tpv(M ′[N/x]) for all i ∈ {1, . . . , l} (setting k0 = 0). Then, M [N/x] = (M ′[N/x])!, and318

we can conclude as before.319

In M = case(M ′, z1 ·N1, z2 ·N2), then m = (m′ = (i,m′′)) ·ni[m′′/zi] for i ∈ {1, 2},m′ ∈320

Tpv(M ′), ni ∈ Tpv(Ni),m′′ ∈ ∆pv. We conclude by induction hypothesis as above.321

J322

Notice that only the case where N is a value will be used, since the other cases do not323

appear in the operational semantics.324

We can finally prove the first simulation property:325

I Proposition 9 (Simulation). If M →pv M
′, then for any m ∈ Tpv(M), either m→rpv 0 or326

there is m′ ∈ Tpv(M ′) such that m→=
rpv m

′, where →=
rpv is the reflexive closure of →rpv.327

Proof. By induction on M :328
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If M = πi((M1,M2)) and M ′ = Mi, then m = πi((m1,m2)) for mi ∈ Tpv(Mi). We329

conclude since M →pv Mi and m→rpv mi.330

If M = der(N !) and M ′ = N , then m = der([n1, . . . nk]), with ni ∈ Tpv(N) for all331

i ∈ {1, . . . , k}. We conclude since M →pv N and m →rpv n1 if k = 1 and m →rpv 0332

otherwise.333

If M = fixx(N) and M ′ = N [(fixx(N))!/x], then it is easy to verify that Tpv(M) =334

Tpv(M ′), using Lemma 8 and unfolding the definition of Taylor expansion of fixpoint. We335

need a reflexive reduction for this case.336

If M = (λyN)V and M ′ = N [V/y], then m = 〈λyn〉v for n ∈ Tpv(N) and v ∈ Tpv(V ). By337

Property 1, splitk(v) is defined for any k ∈ N, then m→rpv n[v1/yf(1), . . . , vk/yf(k)] for338

degy(n) = k and (v1, . . . , vk) ∈ splitk(v). By Lemma 7, for all i ∈ {1, . . . , k}, vi ∈ Tpv(V ),339

and by the substitution Lemma 8, n[v1/y1, . . . , vk/yk] ∈ Tpv(N [V/y]).340

If M = case(ιi(V ), x1 ·M1, x2 ·M2) and M ′ = Mi[V/xi], then, m = ((i, v) = (j, n)) ·341

mi[v/xi] for i, j ∈ {1, 2}, v ∈ Tpv(V ), n ∈ ∆pv,mi ∈ Tpv(Mi). Either m →rpv 0, either342

(i, v) = (j, n) and in this case m→rpv mi[n/xi] = mi[v/xi]. By the substitution Lemma 8343

we conclude, since we have M →pv Mi[V/xi] and mi[v/xi] ∈ Tpv(Mi[V/xi]).344

If M = E[N ] and M ′ = E[N ′], then we can easily show that there is a resource context e345

such that m = e[n] and n ∈ Tpv(N). By induction hypothesis, either n→rpv 0, and then346

e[n] = 0, or there exists n′ such that n →rpv n
′ and n′ ∈ Tpv(N ′). We can easily adapt347

the substitution Lemma to conclude e[n′] ∈ Tpv(E[N ′]).348

J349

4.2 Embeddings of CBV and CBN350

Call-By-Push-Value is known to subsume both Call-By-Name and Call-By-Value strategies.351

In particular, the two strategies can be embedded into Λpv. If we consider simply typed352

λ-calculus5 Λ, we set two functions ()v, ()n : Λ → Λpv, defined in Figure 7. We do not353

consider here calculi with products, or other constructors, in order to focus in a simple354

setting on the relation between exponentials and strategies of reduction (see Ehrhard and355

Tasson’s work [14] for more developments). Our embeddings ensure e.g. the following356

property: ((λxM)N)v →pv (M [N/x])v if and only if N is a variable or an abstraction, and357

((λxM)N)n →pv (M [N/x])n for any M,N .358

From the Taylor expansion point of view, let T n and T v be, respectively, usual Call-By-359

Name expansion, and Call-By-Value expansion (first defined by Ehrhard [11]). We can check360

the correctness of our construction of ∆pv and Tpv with respect to those embeddings, using361

T n and T v defined in Figure 6. The first one is defined on ∆n, which is the original Ehrhard362

and Regnier’s resource calculus [9], and the second one on ∆v, a Call-By-Value resource363

calculus, introduced by Ehrhard [11]. Both are described in Figure 5.364

B Property 2. For any pure λ-term M ∈ Λ, E(Tpv((M)v)) = T v(M) and E(Tpv((M)n)) =365

T n(M), where E is the function that erases all the derelictions (that do not exist in ∆n nor366

in ∆v) in a set of terms.367

Proof. The proof consists in a simple examination of the definitions. Let us start with368

Call-By-Value constructions: The variable case is immediate since Tpv(xv) = {der(x)}!, and369

5 We do not make types explicit, since the translation works in the same way with pure λ-calculus (e.g
when translated in Linear Logic proof nets). But since the target calculus is typed, this restriction is
necessary
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∆n ∆v

m,n ::= x | λxm | 〈m〉n m,n ::= [x1, . . . , xk] | [λxm1, . . . , λxmk] | 〈m〉n

〈λxm〉[n1, . . . , nk]→ m[n1/xf(1), . . . , nk/xf(k)] 〈[λxm]〉[n1, . . . , nk]→ m[n1/xf(1), . . . , nk/xf(k)]
if k = degx(m) andf ∈ Sk if k = degx(m) andf ∈ Sk

Figure 5 Call-By-Name and Call-By-Value resource calculi

Call-By-Name Taylor expansion Call-By-Value Taylor expansion
T n(x) = {x} T v(x) = {x}!

T n(MN) = {〈m〉n | m ∈ T n(M), n ∈ T n(N)!} T v(MN) = {〈m〉n | m ∈ T v(M), n ∈ T v(N)}
T n(λxM) = {λxm | m ∈ T n(M)} T v(λxM) = {[λxm1, . . . , λxmk] | mi ∈ T v(M)}

Figure 6 T v : Λ→ P (∆v) and T n : Λ→ P (∆n)

T v(x) = {x}!. Tpv((λxM)v) = {[λxm1, . . . , λxmk] | k ∈ N,mi ∈ Tpv(Mv)}, we conclude370

since by induction hypothesis, E(Tpv(Mv)) = T v(M) and T v(λxM) = {[λxm′1, . . . , λxm′l] |371

l ∈ N,m′i ∈ T v(M)}. The application case is managed with a similar argument with372

induction hypothesis, and with the fact that E(〈der(M)〉N) = 〈E(M)〉E(N).373

For Call-By-Name, we only consider the application case (the other being straightfor-374

ward): Tpv((MN)n) = {〈m〉n | m ∈ Tpv(Mn), n ∈ Tpv(Nn)!}. By induction hypothesis,375

E(Tpv(Mn)) = T n(M) and E(Tpv(Nn)) = T n(N), and we can conclude. J376

Together with the simulation property of Tpv (Property 9), Property 2 proves that Call-377

By-Push-Value subsumes both Call-By-Name and Call-By-Value strategies, and that remains378

valid at a resource level.379

4.3 Finiteness380

The following lemma ensures that one can consider a quantitative version of Taylor expansion381

Tpv, and extend the resource reduction to an infinite and weighted setting. The conditions of382

validity of this result have been widely studied in non uniform settings, Linear-Logic proof383

nets, or various strategies of reduction [2, 3, 26, 27]. This is necessary for proving Lemma 15384

that state that coefficients remain finite under reduction.385

I Lemma 10 (Finiteness of antireduction). Let n ∈ ∆pv and M in Λpv. {m ∈ Tpv(M) |386

m→=
rpv n} is finite.387

(sketch). We do not detail the proof, since we can adapt the first author’s work [2] for PCF.388

The idea is to extend Ehrhard and Regnier’s original proof [10], defining a coherence relation389

on resource terms in a way Tpv(M) is always a maximal clique for this relation. In particular,390 ⋃
k∈N fixkx(m) must be a clique.391

Then, it remains to show that the reduction preserves coherence, and that if m,m′ are392

coherent, and both reduce to n, then m = m′. We conclude that there cannot be several393

distinct resource terms in Tpv(M) reducing to a common term. J394

4.4 Taylor expansion with coefficients395

In the remainder of this section, we will consider infinite linear combinations of resource terms.396

Those terms will take coefficients in an arbitrary commutative semiring S with fractions: a397
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Call-By-Name translation Call-By-Value translation
(x)n = der(x) (x)v = der(x)!

(MN)n = 〈Mn〉(Nn)! (MN)v = 〈der(M)〉N
(λxM)n = λxMn (λxM)v = (λxMv)!

Figure 7 Both translations are functions from Λ to Λpv.

semiring in which every natural number k 6= 0 ∈ N admits a multiplicative inverse, written398

1
k . For a combination ϕ =

∑
i∈I ai ·mi ∈ S∆pv , and for a resource term m ∈ ∆pv, we denote399

by (ϕ)m the coefficient of m in ϕ, that correspond to
∏
mi=m ai.400

All the constructors of ∆pv are linear, in the sense that we can write e.g. λx
(∑

i∈I ai ·mi

)
=401 ∑

i∈I ai · λxmi, (see Introduction for those notations). This allows us to give the definition402

of full Taylor expansion with coefficients as follows:403

I Definition 11 (Full Taylor expansion). Let S be any commutative semiring with fractions.404

We define quantitative Taylor expansion, which is a function ()∗ : Λpv → S∆pv , and consists405

in linear combinations of elements in Tpv.406

x∗ = x.407

(λxM)∗ = λxM∗408

(〈M〉N)∗ = 〈M∗〉N∗409

((M,N))∗ = (M∗, N∗)410

(ιi(M))∗ = (i,M∗)411

(πi(M))∗ = πi((∗M))412

case(M,x1 ·N1, x2 ·N2)∗ =
∑
i∈{1,2}

∑
r∈∆pv

((M∗) = (i, r)) · (Ni[M/xi])∗413

(M !)∗ =
∑
k∈N

1
k! [M

∗, . . . ,M∗]k414

(der(M))∗ = der(M∗)415

Taylor expansion of fixpoints is defined inductively. We set a combination fixx(M)∗k for all416

k ∈ N, which corresponds to k unfoldings of M in x, as a quantitative version of the sets417

fixkx(m) of Definition 5.418

(fixx(M))∗0 = (M [[]/x])∗419

420

(fixx(M))∗k+1 =
∑

m∈Tpv(M)

∑
−→
m∈(fixk

x(M))!

(M∗)m
degx(m)∏
i=1

((fixx(M))∗k)!
mi
·421

m[m1/x1, . . . ,mdegx(m)/xdegx(m)]422
423

and we set (fixx(M))∗ =
∑
k∈N (fixx(M))∗k.424

We also need to give a quantitative version of the splitting operator, in order to make425

one step-reduction commute with quantitative Taylor expansion defined above.426

I Definition 12 (Quantitative split). We define for all k ∈ N and all resource value v the427

weighted finite sum splitk+(v) as follows : if v ∈ {1, 2} or v = x, then splitk+(v) = (v, . . . , v)k.428

If v = m, then splitk+(v) =
∑

m1+. . .+mk=m

|m|!
|m1|!. . . |mk|!

· (m1, . . . ,mk). If v = (v1, v2), then429

splitk+(v) is defined as following, setting −→v i = (vi,1, . . . , vi,k) :430 ∑
(v1,1,. . . ,v1,k)

∈|splitk
+(v1)|

∑
(v2,1,. . . ,v2,k)

∈|splitk
+(v2)|

(
splitk+(v1)

)
−→v 1

(
splitk+(v2)

)
−→v 2
· ((v1,1, v2,1), . . . , (v1,k, v2,k))431
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We now introduce a reduction rule that takes into account the coefficients of definition 12.432

I Definition 13 (Quantitative resource reduction →rpv+). Let m ∈ ∆pv and k = degx(m).433

〈λxm〉v →rpv+

∑
(v1,. . . ,vk)∈∆k

pv

(
splitk+(v)

)
(v1,. . . ,vk)

m[v1/x1, . . . , vk/xk]434

If m→rpv n by reducing a redex of another shape than 〈λxm〉n, then we also set m→rpv+ n.435

Notice that if m→rpv+
∑k
i=1 ai · ni, then for all i ∈ {1, . . . , k} such that ai 6= 0, we have436

m→rpv ni.437

I Definition 14 (Reduction between combinations). We define a reduction ⇒⊆ S∆pv × S∆pv .438

Given a family of resource terms (mi)i∈I and a family of finite sums of resources terms439

(νi)i∈I such that for all i ∈ I, and for all n ∈ |νi| the set {j ∈ I | mj →=
rpv+ n} is finite.440

In that case, we set
∑
i∈I ai ·mi ⇒

∑
i∈I ai · ni as soon as mi →=

rpv ni for all i ∈ I.441

I Lemma 15. Let M ∈ Λpv with M∗ =
∑
i∈I ai · mi and ϕ =

∑
i∈I ai · νi such that442

mi →=
rpv+ νi for all i ∈ I. Then, for all i ∈ I and for all n ∈ |νi|, n has a finite coefficient in443

ϕ.444

In other words, the reduction ⇒ is always defined on Taylor expansion.445

Proof. This is an immediate consequence of Lemma 10 and Definition 13. J446

I Lemma 16. Let m ∈ ∆pv, with degx(m) = k, and V a value of Λpv.447 ∑
v∈Tpv(V )

∑
(v1,. . . ,vk)

∈splitk(v)

(V ∗)v
(
splitk+(v)

)
(v1,. . . ,vk)

·m[v1/x1, . . . , vk/xk]448

=
∑

(v1,. . . ,vk)
∈Tpv(V )k

k∏
i=1

(V ∗)vi
·m[v1/x1, . . . , vk/xk]449

450

Proof. The proof is by induction on V .451

If V is a variable, then all the coefficients (V ∗)vi
are equal to 1, and the result is trivial.452

If V = N !, then we want to establish the following, for any k ∈ N:453

∑
n

∈Tpv(N)!

∑
(n1,. . . ,nk)

∈splitk(n)

(
splitk+(n)

)
(n1,. . . ,nk)

|n|∏
i=1

(N∗)ni

1
|n|! ·m[n1/x1, . . . , nk/xk]454

=
∑

(n1,. . . ,nk)
∈Tpv(N !)k

1
|n1|!. . . |nk|!

k∏
i=1

|ni|∏
j=1

(N∗)ni,j
·m[n1/x1, . . . , nk/xk]455

456

Where for all i ≤ k, ni = [ni,1, . . . , ni,|ni|].457

This equation is verified by looking at the definition of splitk+.
(
splitk+(n)

)
(n1,. . . ,nk)

is458

equal to |n|!
|n1|!. . . |nk|! , which is enough to simplify the above equation and conclude this459

case.460
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If V = (V1, V2). Then we want to establish:461 ∑
(v1,v2)

∈Tpv((V1,V2))

∑
(u1,. . . ,uk)

∈splitk((v1,v2))

(V1, V2)∗(v1,v2)

(
splitk+((v1, v2))

)
(u1,. . . ,uk)

·m[u1/x1, . . . , uk/xk]462

=
∑

(u1,. . . ,uk)
∈Tpv((V1,V2))k

k∏
i=1

(V ∗1 )v1,i

k∏
j=1

(V ∗2 )v2,j
·m[u1/x1, . . . , uk/xk]463

464

Where (u1, . . . , uk) = ((v1,1, v2,1), . . . , (v1,k, v2,k)), for (vi,1, . . . , vi,k) ∈ splitk(vi).465

By induction hypothesis, we have for i ∈ {1, 2}:466 ∑
vi∈Tpv(Vi)

∑
(vi,1,. . . ,vi,k)

∈splitk(vi)

(V ∗i )vi

(
splitk+(vi)

)
(vi,1,. . . ,vi,k)

·m[vi,1/x1, . . . , vi,k/xk]467

=
∑

(vi,1,. . . ,vi,k)

∈Tpv(Vi)k

k∏
j=1

(V ∗i )vi,j
·m[vi,1/x1, . . . , vi,k/xk]468

469

Which allows us to conclude this case since ((V1, V2)∗)(v1,i,v2,j) = (V ∗1 )v1,i
× (V ∗2 )v2,j

and470 (
splitk+((v1, v2)

)
(u1,. . . ,uk)

=
∏2
i=1

(
splitk+(vi)

)
(vi,1,. . . ,vi,k)

471

The case V = ιi(V ′) is proved in the same way by induction hypothesis.472

J473

B Property 3. (M [N/x])∗ =474

∑
m∈Tpv(M)

∑
(n1,. . . ,nk)∈Tpv(N)k

(M∗)m
k∏
i=1

(N∗)ni
·m[n1/x1, . . . , nk/xk]475

where k = degx(m).476

Proof. Easy induction on M . J477

We can finally state the main result of this section and of the paper: Theorem 17478

establishes the simulation of Λpv operational semantics in Taylor expansion with coefficients.479

I Theorem 17. Let M,M ′ ∈ Λpv, if M →pv M
′, then M∗ ⇒M ′∗.480

Proof. We use Proposition 9, and verify that it extends to full Taylor expansion, keeping all481

coefficients in the right place.482

If M = 〈λxN〉V and M ′ = N [V/x], then M∗ =483 ∑
n∈Tpv(N)

∑
v∈Tpv(V )

(N∗)n(V ∗)v · 〈λxn〉v484

⇒
∑

n∈Tpv(N)

∑
v∈Tpv(V )

∑
(v1,. . . ,vk)

∈splitk(v)

(N∗)n(V ∗)v
(
splitk+(v)

)
(v1,. . . ,vk)

· n[v1/x1, . . . , vk/xk]485

=
∑

n∈Tpv(N)

∑
(v1,. . . ,vk)∈Tpv(V )k

(N∗)n
k∏
i=1

(V ∗)vi · n[v1/x1, . . . , vk/xk]486

487

The last equality is obtained by Lemma 16, and is equal to N [V/x]∗ by Property 3.488
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If M = case((ιi(V ), x1 ·M1, x2 ·M2)) and M ′ = Mi[V/xi], then M∗ =489 ∑
j∈{1,2}

∑
r∈∆pv

((i, V )∗ = (j, r)) ·N∗j [V ∗/xj,1, . . . , V ∗/xj,k]490

⇒ N∗i [V ∗/xi,1, . . . , V ∗/xi,k]491
492

Which is equal to (N [V/x])∗ by Property 3.493

If M = der(N !) and M ′ = N , then we verify immediately (der(N !))∗ = der((N !)∗) =494

der((N∗)!) = N∗, since der([n1, . . . , nk])→rpv 0 if k 6= 1.495

If M = fixx(N), then, M∗ = (M [(fixxM)!/x])∗. Property 3 and an examination of the496

definition of Taylor expansion of fixpoint is sufficient to verify this point.497

The projections rules are obtained by a straightforward application of the definitions.498

J499

5 Conclusions500

We have introduced a new resource calculus reflecting Call-By-Push-Value resource handling501

and based on Linear Logic semantics. We have then defined Taylor expansion for Call-By-502

Push-Value as an approximation theory of Call-By-Push-Value encounting for resources.503

Then, we have shown that it behaves well with respect to the original operational semantics:504

Taylor expansion with coefficients commutes with reduction in Λpv. For future work, three505

directions shall be explored:506

The calculus can be extended in order to define inductive and coinductive datatypes.507

Integers, for instance, could be defined by adding to our syntax (): 0 = ι1(), k + 1 = ι2(k),508

and all integers defined in this way have the type ι = (1⊕ ι). The successor suc can then509

be defined as the second injection. Then, if x has no free occurrence in N1, the term510

case(M,x ·N1, y ·N2) is an adequate encoding of an “if zero” conditional If(M,N1, y ·N2)511

(where the value to which M evaluates is passed to the following computation).512

The coinductive datatype of streams can also be defined: let A be a positive type,513

SA = !(A⊗ SA) is the type of lazy streams of type A (the tail of the stream being always514

encapsulated in an exponential, the evaluation is postponed). We can construct a term515

of type SA ( ι( A which computes the k-th element of a stream:516

fixf (λxλy(If(y, π1(der(x)), z · 〈der(f)〉π2〈der(x)〉z)))517

and a term of type !(ι( A) ( SA:518

fixf
(
λg
(
der(g)0, 〈der(f)〉(λx〈der(g)〉suc(x))!))

519

which builds a stream by applying inductively a function to an integer. There are other520

classical constructions, such as lists, that can be constructed with these ingredients. For521

a more detailed presentation, see Ehrhard and Tasson’s work [14]. We have good hope522

that this kind of extensions can be incorporated in our resource driven-constructions.523

Extend our constructions in a probabilistic setting, to fit with existing quantitative524

models like probabilistic coherence spaces. Indeed Lemma 10, which is crucial to define525

reduction on quantitative Taylor expansion, strongly relies on the uniformity of the526

calculus, i.e we use the fact that all resource terms appearing in the Taylor expansion of527

a Call-By-Push-Value term have the same shape (there is a correspondance between their528

syntactic trees). The extension seems highly non trivial. But, Dal Lago and Leventis’529

recent work [19] might be a starting point.530
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