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The connection between the Call-By-Push-Value lambda-calculus introduced by Levy and Linear Logic introduced by Girard has been widely explored through a denotational view reflecting the precise ruling of resources in this language. We take a further step in this direction and apply Taylor expansion introduced by Ehrhard and Regnier. We define a resource lambda-calculus in whose terms can be used to approximate terms of Call-By-Push-Value. We show that this approximation is coherent with reduction and with the translations of Call-By-Name and Call-By-Value strategies into Call-By-Push-Value.

Introduction

Linear Logic [START_REF] Girard | Linear logic[END_REF] has been introduced by Girard as a refinement of Intuitionistic Logic that take into account the use, reuse or erasing of formulas. In order to mark formulas that can be reused or erased, Girard introduced the exponential !X and considered a linear implication X Y . Following the proof/program correspondence paradigm, Linear Logic can be used to type λ-calculus according to a chosen reduction strategy as Call-By-Name or Call-By-Value.

Abstraction terms λxM usually typed by X ⇒ Y will be typed as !X Y when following a Call-By-Name evaluation strategy and by !(X Y ) when following a Call-By-Value strategy.

Therefore, both evaluation strategies can be faithfully encoded in Linear Logic.

Levy followed a related goal when he introduced Call-By-Push-Value [START_REF] Levy | Call-by-push-value: Decomposing call-by-value and call-by-name[END_REF] : having a lambda calculus where both Call-By-Name and Call-By-Value can be taken into account. Since its introduction this calculus has been related to the Linear Logic approach [START_REF] Curien | A theory of effects and resources: adjunction models and polarised calculi[END_REF][START_REF] Ehrhard | Call-by-push-value from a linear logic point of view[END_REF][START_REF] Egger | The enriched effect calculus: syntax and semantics[END_REF][START_REF] Marz | Full Abstraction and Universality via Realisability[END_REF][START_REF] Laurent | About Translations of Classical Logic into Polarized Linear Logic[END_REF]. We adopt this latest presentation which differentiates two kinds of types: positive and general types used for typing two kinds of terms: values and general terms respectively. The marker !I is used to transform a general type I into a value type !I which can be erased, used and duplicated. The idea behind ! is to stop the evaluation of the terms typed by !I by placing them into thunks (i.e. putting them into boxes).

The purpose of this article is to push further the relations between Call-By-Push-Value and Linear Logic and to underline the resource consumption at play. For this we use syntactical Taylor expansion, that reflects Taylor expansion into semantics. Indeed, several semantics of Linear Logic and λ-calculus are interpreting types as topological vector spaces and terms as smooth functions that enjoy Taylor expansion [START_REF] Danos | Probabilistic coherence spaces as a model of higher-order probabilistic computation[END_REF][START_REF] Ehrhard | On köthe sequence spaces and linear logic[END_REF][START_REF] Ehrhard | Finiteness spaces[END_REF][START_REF] Kerjean | Mackey-complete spaces and power series -a topological model of differential linear logic[END_REF]. Indeed, those functions can be written as power series whose coefficients are computed thanks to a derivative operator.

The syntactical Taylor expansion enable the representation of terms as a combination of approximants named resource terms.

Taylor expansion has first been introduced by Ehrhard and Regnier while they presented the differential λ-calculus [START_REF] Ehrhard | The differential lambda-calculus[END_REF], they noticed that it was possible to give a syntactical version of Taylor formula, and that this object was defined on the multilinear fragment of differential λ-calculus. It consists in associating to a λ-term an infinite series of resource terms, that enjoy a linearity property, in the following sense: resource calculus is endowed with an operational semantics similar to λ-calculus, but with no duplication nor erasing of subterms during reduction. As, in analysis analytic maps are approximated by series of monomials, here λ-terms are approximated by series of resource terms. Taylor expansion gives a natural semantics, where the reduction rules of resource calculus aim to identify the terms having the same interpretation in a denotational model. In particular, the normal form of Taylor expansion (or Taylor normal form) is a pleasant notion of approximation of normal forms in various λ-calculi, and is strongly linked to the notion of Böhm trees, since Ehrhard and Regnier's seminal works [START_REF] Ehrhard | Uniformity and the Taylor expansion of ordinary lambda-terms[END_REF]. This link has been extended in several direction, see e.g.

Vaux [START_REF] Vaux | Taylor expansion, β-reduction and normalization[END_REF] for algebraic λ-calculus, Kerinec, Manzonetto and Pagani [START_REF] Kerinec | Revisiting Call-by-value Böhm trees in light of their Taylor expansion[END_REF] for Call-By-Value calculus, or Dal Lago and Leventis [START_REF] Dal | On the Taylor expansion of probabilistic λ-terms[END_REF] for probabilistic λ-calculus. Let us also mention two other related approachs to approximation of λ-calculus with polyadic terms instead of resource terms [START_REF] Mazza | An infinitary affine lambda-calculus isomorphic to the full lambda-calculus[END_REF][START_REF] Mazza | Polyadic approximations, fibrations and intersection types[END_REF]. Taylor expansion has also been studied for the Bang Calculus, an untyped analogue of Call-By-Push-Value, by Guerrieri and Ehrhard [START_REF] Ehrhard | The bang calculus: an untyped lambda-calculus generalizing call-by-name and call-by-value[END_REF] and then by Guerrieri and Manzonetto [START_REF] Guerrieri | The bang calculus and the two girard's translations[END_REF].

We propose, following that fertile discipline, a syntactical Taylor expansion for Λ pv , which is the Linear Logic-oriented presentation of Call-By-Push-Value we use (and corresponds to Λ hp in Ehrhard's paper [START_REF] Ehrhard | Call-by-push-value from a linear logic point of view[END_REF]).

A first difficulty we have to tackle, is the fact that designing a convenient resource calculus, say ∆ pv , that respects Λ pv dynamics is not trivial. In particular, in a redex, the argument is a value but is not necessary of exponential type. Then, the argument of a resource redex shall not be necessarily a multiset, while it is always the case in Call-By-Name and Call-By-Value resource calculi, as it ensures the reductions are linear. The semantical reason of that phenomenon is that in a quantitative model of Λ pv , all values with a positive type are freely duplicable, thanks to the coalgebras morphisms associated to those types' interpretation. The solution we adopt is to give a syntactical account to those morphisms in the reduction rules, so as to ∆ pv stays consistent with Call-By-Push-Value operational and denotational semantics, while keeping the resource reduction linear.

We can then consider a Taylor expansion, as a function from Λ pv to sets of terms in ∆ pv , that consists of approximants. Once this framework is set, we are able to show that the properties of Call-By-Push-Value, relative to the embeddings of various strategies of evaluation, can be transported at the resource level.

The principal result of the paper is the simulation of Λ pv reductions in full Taylor expansion, where resource terms take coefficients in a commutative semiring. The key ingredients for this simulation to run are intrinsic to the properties of ∆ pv : the dynamics of reduction must reflect the reduction of Λ pv , and the mechanisms of the calculus must enjoy combinatorial properties, so that the coefficients commute with the simulation. More precisely, it means that for M, N ∈ Λ pv such that M reduces to N , if Taylor expansion of M is equal to i∈I a i m i , where a i are coefficients taken in a semiring, and m i are resource terms approximating M , then we have a notion of reduction such that i∈I a i m i ⇒ j∈I a j n j , and for each resource term n, its coefficient in the latter combination is the same as its coefficient in the Taylor expansion of N .

Contents of the paper

We first present (Section 2) Λ pv as the starting point of our study, describing its operational semantics, provide examples of its expressive power, and give elements of its denotational semantics relative to coalgebras. We introduce and develop in Section 3 the resource calculus ∆ pv together with its operational semantics. Then, in Section 4, we define Taylor expansion for Λ pv . First, in a qualitative way, with sets of approximants, where we show that it allows the simulation of Λ pv reductions. We also describe how the embeddings of Call-By-Name and Call-By-Value into Call-By-Push-Value are transported at the resource level. Finally, we introduce quantitative Taylor expansion, with coefficients, and prove the commutation property between Taylor expansion and reduction that demonstrates that Taylor expansion is compatible with Λ pv operational semantics.

Terminology and notations

We write N for the set of natural numbers, and S k for the group of permutations on {1, . . . , k}.

For a term m, and a variable x, we denote as deg x (m) the number of free occurrences of x in m. These occurrences might be written x 1 , . . . , x degx(m) , while all referring to x.

Finite multisets of elements of a set X are written x = [x 1 , . . . , x k ] for any k ∈ N, and are functions from X to N. We use the additive notation x + x for the multiset such that for all y ∈ X, (x + x )(y) = x(y) + x (y). The size of x is written |x| and is equal to y∈X x(y).

We denote as X ! the set of all finite multisets of elements of X. We might write (x, . . . , x) k for tuples or [x, . . . , x] k for multisets to denote k occurrences of the same element x.

If σ is a linear combination of terms i∈I a i •m i , we use the notation λxσ = i∈I a i •λxm i , der(σ) = i∈I a i • der(m i ), and

σ ! = k∈N i1,. . . ,i k ∈I a i1 . . . a i k • [m i1 , . . . , m i k ].
In the same way, if τ = j∈J a j • n j , we write (σ, τ ) = i∈I j∈J a i a j • (m i , n j ). σ τ = i∈I j∈J a i a j • m i n j . This notation corresponds to the linearity of syntactic constructors with respect to potentially infinite sums of terms that will appear in Taylor expansion.

2

Call-By-Push-Value

Syntax and operational semantics

We consider a presentation of Call-By-Push-Value coming from Ehrhard [START_REF] Ehrhard | Call-by-push-value from a linear logic point of view[END_REF], and convenient for its study through Linear Logic semantics.

Definition 1 (Call-By-Push-Value calculus Λ pv ).

Λ pv : M ::= x | λxM | M M | case(M, y • M, z • M ) | fix x (M ) | (M, M ) | π 1 (M ) | π 2 (M ) | M ! | der(M ) | ι 1 (M ) | ι 2 (M )
We distinguish a subset of Λ pv , the values :

V ::= x | M ! | (V, V ) | ι 1 (M ) | ι 2 (M )
Positive types: A, B ::

= !I | A ⊗ B | A ⊕ B General types : I, J ::= A | A I | Γ, x : A x : A Γ M : I Γ M ! : !I Γ, x : A M : B Γ λxM : A B Γ M : A I ∆ N : A Γ, ∆ M N : I Γ M : A ∆ N : B Γ, ∆ (M, N ) : A ⊗ B Γ M : A 1 ⊗ A 2 i ∈ {1, 2} Γ π i (M ) : A i Γ M : A i i ∈ {1, 2} Γ ι i (M ) : A 1 ⊕ A 2 Γ m : !A Γ der(m) : A Γ M 1 : A ⊕ B ∆ M 2 : I Θ M 3 : I Γ, ∆, Θ case(M 1 , y • M 2 , z • M 3 ) : I Γ, x : !I M : I Γ fix x (M ) : I Figure 1 Typing rules for Λpv
The typing rules are given in Figure 1 and reduction rules are given below:

λxM V → pv M [V /x] der(M ! ) → pv M π i (V 1 , V 2 ) → pv V i fix x (M ) → pv M [(fix x (M )) ! /x] case(ι i (V ), x 1 • M 1 , x 2 • M 2 ) → pv M i [V /x i ]
We define evaluation contexts E, for all terms M, N .

E ::= [] | M E | E M | π i (E) | ι i (E) | (M, E) | (E, M ) | case(E, x • M, y • N ) | der(E)
and we set as an additional reduction rule

E[M ] → pv E[N ] for every M, N such that M → pv N .

An overview of denotational semantics and coalgebras

Let us give an overview of the denotational semantics of Call-By-Push-Value that justifies the introduction of the resource calculus below. This semantics is based on the semantics of Linear Logic that types the Call-By-Push-Value we are studying.

Let us describe briefly what is a model of Linear Logic (see [START_REF] Melliès | Categorical semantics of linear logic[END_REF] for a detailed presentation).

It is given by a category L together with a symmetric monoidal structure (⊗, 1, λ, ρ, α, σ)

which is closed2 and we write X Y for the object of linear morphisms. It has a cartesian structure with cartesian product & and terminal object . The category L is equipped with a comonad ! : L → L together with a counit der X ∈ L(!X, X) and a comultiplication dig X ∈ L(!X, !!X). This comonad comes with a symmetric monoidal

structure 3 from (L, &) to (L, ⊗), that is two natural isomorphisms m 0 ∈ L(1, ! ) and m 2 ∈ L(!X ⊗ !Y, !(X & Y )).
By using isomorphisms m 0 and m 2 ; the functoriality of the comonad ! and the cartesian structure, we can build a structure of comonoid on any !X, which enable erasing and duplication of resources as we will see below.

erase

!X ∈ L(!X, 1) split 2 !X ∈ L(!X, !X ⊗ !X)
A coalgebra 4 (P, h P ) is made of an object P and a morphism h P ∈ L(P, !P ) which is compatible with the comonad structure as der P h P = Id and dig P h P = !h P h P . Every coalgebra inherits the comonoid structure of !P , that is it is equipped with: erase P ∈ L(P, 1) and split 2 P ∈ L(P, P ⊗ P ) defined as:

erase P : P h P --→ !P w P --→ 1 split 2 P : P h P --→ !P c P --→ !P ⊗ !P der P ⊗der P --------→ P ⊗ P.
Using similar computation, we can define split k P ∈ L(P,

P ⊗ • • • ⊗ P k ).
Notice that the structure of comonad of ! induces a coalgebras structure on !X. Moreover, every construction of positive type preserves the coalgebra structure. To define the coalgebraic structure of P ⊗ Q where P and Q are both coalgebras, let us first define the morphisms

µ 0 ∈ L(1, !1) and µ 2 ∈ L(!X ⊗ !Y, !(X ⊗ Y )) as µ 0 : 1 m 0 --→ ! dig ---→ !! !(m 0 ) -1 -----→ !1 µ 2 : !X ⊗ !Y m 2 --→ !(X & Y ) dig X&Y -----→ !!(X & Y ) !(m 2 ) -1 -----→ !(!X ⊗ !Y ) !(der X ⊗der Y ) --------→ !(X ⊗ Y ).
Then, we can define h P ⊗Q : P ⊗ Q

h P ⊗h Q -----→ !P ⊗ !Q µ 2 -→ !(P ⊗ Q).
The coalgebraic structure of the coproduct is entirely defined by the morphisms for i ∈ {1, 2}:

P i h P i --→ !P i !ini --→ !(P 1 ⊕ P 2 )
if the category has coproducts.

Thus, we can deduce that every positive type is interpreted as a coalgebra.

Example

The relational model is closely related to the Taylor expansion of the λ-calculus. Indeed, every λ-term is interpreted as the set of the interpretation of the resource terms that appear in its Taylor expansion. We can state that Taylor expansion is the syntactical counterpart of the relational model.

Let us describe some of these constructions on the relational model of linear logic. The category Rel is made of sets and relations. The tensor product is given by the set cartesian product and its unit is the singleton set whose unique element is denoted * . The product is given by disjoint union and the terminal object is the emptyset. Rel can be equipped with the comonad of finite multisets. The comonadic structure of !X is

der X = {([a], a)|a ∈ X} dig X = {(m, [m 1 , . . . , m k ])|m 1 + • • • + m k = m}. The comonoidal structure of !X is erase !X = {([], * )} split 2 !X = {(m, (m 1 , m 2 ))|m 1 + m 2 = m}. A positive type is a finite combination of ⊕, ⊗, !. For instance if P = (!X 1 ⊕!X 2 )⊗(!Y ⊗!Z),
then P is a coalgebra (see Figure 2):

h P = {(((i, m i )) , (m Y , m Z )), [((i, x 1 i ), (y 1 , z 1 )), . . . , ((i, x k i ), (y k , z k ))]| m i = x 1 i + • • • + x k i , m Y = y 1 + • • • + y k , m Z = z 1 + • • • + z k },
and is equipped with the comonoidal structure:

erase P = {(((i, []), ([], []), * )} split 2 P = {((i, m i ), (m Y , m Z )) , ((i, (m 1 i + m 2 i )), ((m 1 Y + m 2 Y ), (m 1 Z + m 2 Z )))| m 1 i + m 2 i = m i , m 1 Y + m 2 Y = m Y , m 1 Z + m 2 Z = m Z }}.
Remark that the structural morphisms are the same as those of !X but at the leaves of the tree structure describing the formula P . In order to set the operational semantics of the resource calculus just defined, we introduce a new construction split k . Its operational semantics is the duplication of ground values such as integers or variables and the split of the leaves of tree structure induced by pairs and injections, as exemplified in Figure 4. This splitting operator is the syntactical counterpart

((i, mi), (mY , mZ )) (i, mi) (mY , mZ ) mi mY mZ h P → ((i, x 1 i ), (y 1 , z 1 )), (i, x 1 i ) (y 1 , z 1 ) x 1 i y 1 z 1 . . . ((i, x 1 k ), (y k , z k )) (i, x k i ) (y k , z k ) x k i y k z k where k j=1 x j i = m i , k j=1 y j = m Y , and 
k j=1 z j = m Z .
Γ m : A i i ∈ {1, 2} Γ (i, m) : A 1 ⊕ A 2 Γ m 1 : A 1 ⊕ A 2 ∆ m 2 : A i Θ m 3 : I Γ, ∆, Θ (m 1 = (i, m 2 )) • m 3 : I
⊗ ⊕ ⊗ ! ! ! m m m (i, m) (m , m ) ((i, m), (m , m ))
splits into:

⊗ ⊕ ⊗ ! ! ! m1 m 1 m 1 (i, m1) (m 1 , m 1 ) ( (i, m1), (m 1 , m 1 )), . . . ⊗ ⊕ ⊗ ! ! ! m k m k m k (i, m k ) (m k , m k ) , ((i, m k ), (m k , m k ))
where

k i=1 m i = m, k i=1 m i = m , and k i=1 m i = m .
Figure 4 Splitting a value, the tree of its positive type labelled by resource components.

of the semantical morphism associated to each coalgebra P interpreting a positive type:

split k P ∈ L(P, P ⊗ • • • ⊗ P k ) (see Section 2.2).
Definition 3 (Split). split k (m) is defined as a set of k-tuples of values of same shape than m. It is defined when m is a value itself.

split k (m) = {(m 1 , . . . , m k ) | k i=1 m i = m} split k (x) = {(x, . . . , x) k } split k (i) = {(i, . . . , i) k } for i ∈ {1, 2}. split k ((m, n)) = {((m 1 , n 1 ), . . . , (m k , n k )) | (m 1 , . . . , m k ) ∈ split k (m), (n 1 , . . . , n k ) ∈ split k (n)}.
We define now the reduction rules associated to ∆ pv , by adding the distinguished term 0 to the calculus. If m = der([n]), then there is a type J such that n : J, and we have [n] : !J and m : J.

λxm n → rpv m[n 1 /x 1 , . . . , n k /x k ] for deg x (m) = k and all (n 1 , . . . , n k ) ∈ split k (n). (v = (i, v )) • n → rpv n if v = (i, v ). (v = (i, v )) • n → rpv 0 otherwise. der([m 1 , . . . , m k ]) → rpv m 1 if k = 1,
If m = (v 1 = (i, v 2 ))
• n, then if n : J for some type J, then m : J.

If m = λxm v and n = m [v 1 /x 1 , . . . , v k /x k ] for k = deg x (m ) and (v 1 , . . . , v k ) ∈
split k (v), then x : A, v : A, m : J, λxm : A J, for some types A, J. Then m : J, in order to conclude n : J, it remains to ensure that for all i ∈ {1, . . . , k}, v i : A which is done easily by an induction on v, and that it implies m [v 1 /x 1 , . . . , v k /x k ] : A. That last point follows from a standard argument.

If m = e[m ] and n = e[n ] for n → rpv n , we conclude by induction hypothesis.

We define for all k ∈ N, all variable x and m ∈ ∆ pv , a set of terms fix k x (m) as follows,

with fix 0 x (m) = {m[[]/x 1 , . . . , []/x deg x (m) ]}: fix k+1 x (m) = m m 1 /x 1 , . . . , m deg x (m) /x deg x (m) | ∀i ≤ deg x (m) : m i ∈ (fix k x (m)) ! .

Taylor expansion

Taylor expansion consists in taking infinitely many approximants of a given object. As analytic maps can be understood as infinite series of polynomials that approximate it, Λ pv terms can be considered through all resource terms that are also multilinear (in the computational sense) approximants. We first introduce a qualitative version, with sets, through which we show a first simulation property (Proposition 9), and we prove that the embeddings of Call-By-Name and Call-By-Value behave well at the resource level (Property 2). Then, we introduce coefficients so as to consider full quantitative Taylor expansion. Lemma 10 ensures that it does not lead to divergence issues through a finiteness property of antireduction.

Finally, we prove the full simulation of Λ pv reduction in Taylor expansion, showing that coefficients commute with reduction, in Theorem 17.

Definition and Simulation

Definition 5 (Support of Taylor expansion). We define the sets of resource terms corresponding to the support of Taylor expansion of Λ pv :

Tpv(x) = {x} Tpv M N = { m n | m ∈ Tpv(M ), n ∈ Tpv(N )} Tpv(ιi(M )) = {(i, m) | m ∈ Tpv(M )} Tpv(der(M )) = {der(m) | m ∈ Tpv(M )} Tpv(M ! ) = Tpv(M ) ! Tpv((M, N )) = {(m, n) | m ∈ Tpv(M ), n ∈ Tpv(N )} Tpv(πi(M )) = {πi(m) | m ∈ Tpv(M )} Tpv(fixx(M )) = {fix k x (m) | m ∈ Tpv(M ), k ∈ N} Tpv(λxM ) = {λxm | m ∈ Tpv(M )} Tpv(case(M, z1 •N1, z2 •N2)) = {(m = (i, m ))•ni[m /zi] | i ∈ {1, 2}, m ∈ Tpv(M ), ni ∈ Tpv(Ni), m ∈ ∆pv} Property 1. Let M ∈ Λ pv , m ∈ T pv (M ), and k ∈ N. split k (m) is defined if and only if M is a value.
Proof. One can check that the syntax of resource terms v that are in T pv (V ) for a value V matchs exactly the resource values of Definition 2. It is easy to verify that split k (v) is always defined, and that if m ∈ T pv (M ) is not such a resource value, then split k (m) is not defined.

The following corollary shows that ∆ pv is consistent with Λ pv in the following sense: an approximant of a redex in Λ pv is always a redex in ∆ pv , and a redex in ∆ pv which is an approximant of a term in Λ pv , is the approximation of a redex. This is mostly trivial, but for redexes of shape λxm n (respectively λxM N ), where it is a consequence of Property 

∆ n ∆ v m, n ::= x | λxm | m n m, n ::= [x1, . . . , x k ] | [λxm1, . . . , λxm k ] | m n λxm [n1, . . . , n k ] → m[n1/x f (1) , . . . , n k /x f (k) ] [λxm] [n1, . . . , n k ] → m[n1/x f (1) , . . . , n k /x f (k) ] if k = deg x (m) andf ∈ S k if k = deg x (m) andf ∈ S k
T n (x) = {x} T v (x) = {x} ! T n (M N ) = { m n | m ∈ T n (M ), n ∈ T n (N ) ! } T v (M N ) = { m n | m ∈ T v (M ), n ∈ T v (N )} T n (λxM ) = {λxm | m ∈ T n (M )} T v (λxM ) = {[λxm1, . . . , λxm k ] | mi ∈ T v (M )} Figure 6 T v : Λ → P (∆ v ) and T n : Λ → P (∆ n ) T v (x) = {x} ! . T pv ((λxM ) v ) = {[λxm 1 , . . . , λxm k ] | k ∈ N, m i ∈ T pv (M v )}, we conclude since by induction hypothesis, E(T pv (M v )) = T v (M ) and T v (λxM ) = {[λxm 1 , . . . , λxm l ] | l ∈ N, m i ∈ T v (M )}.
The application case is managed with a similar argument with induction hypothesis, and with the fact that E( der(M ) N ) = E(M ) E(N ).

For Call-By-Name, we only consider the application case (the other being straightforward):

T pv ((M N ) n ) = { m n | m ∈ T pv (M n ), n ∈ T pv (N n ) ! }. By induction hypothesis, E(T pv (M n )) = T n (M ) and E(T pv (N n )) = T n (N )
, and we can conclude.

Together with the simulation property of T pv (Property 9), Property 2 proves that Call-By-Push-Value subsumes both Call-By-Name and Call-By-Value strategies, and that remains valid at a resource level.

Finiteness

The following lemma ensures that one can consider a quantitative version of Taylor expansion T pv , and extend the resource reduction to an infinite and weighted setting. The conditions of validity of this result have been widely studied in non uniform settings, Linear-Logic proof nets, or various strategies of reduction [START_REF] Chouquet | Taylor expansion, finiteness and strategies[END_REF][START_REF] Chouquet | An application of parallel cut elimination in unit-free multiplicative linear logic to the taylor expansion of proof nets[END_REF][START_REF] Pagani | Strong normalizability as a finiteness structure via the Taylor expansion of lambda-terms[END_REF][START_REF] Vaux | Taylor expansion, β-reduction and normalization[END_REF]. This is necessary for proving Lemma 15 that state that coefficients remain finite under reduction.

Lemma 10 (Finiteness of antireduction

). Let n ∈ ∆ pv and M in Λ pv . {m ∈ T pv (M ) | m → = rpv n} is finite.
(sketch). We do not detail the proof, since we can adapt the first author's work [START_REF] Chouquet | Taylor expansion, finiteness and strategies[END_REF] for PCF.

The idea is to extend Ehrhard and Regnier's original proof [START_REF] Ehrhard | Uniformity and the Taylor expansion of ordinary lambda-terms[END_REF], defining a coherence relation on resource terms in a way T pv (M ) is always a maximal clique for this relation. In particular,

k∈N fix k x (m) must be a clique.
Then, it remains to show that the reduction preserves coherence, and that if m, m are coherent, and both reduce to n, then m = m . We conclude that there cannot be several distinct resource terms in T pv (M ) reducing to a common term.

Taylor expansion with coefficients

In the remainder of this section, we will consider infinite linear combinations of resource terms.

Those terms will take coefficients in an arbitrary commutative semiring S with fractions: a
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Call-By-Name translation Call-By-Value translation (x) n = der(x) semiring in which every natural number k = 0 ∈ N admits a multiplicative inverse, written

(x) v = der(x) ! (M N ) n = M n (N n ) ! (M N ) v = der(M ) N (λxM ) n = λxM n (λxM ) v = (λxM v ) !
1 k . For a combination ϕ = i∈I a i • m i ∈ S ∆pv
, and for a resource term m ∈ ∆ pv , we denote by (ϕ) m the coefficient of m in ϕ, that correspond to mi=m a i .

All the constructors of ∆ pv are linear, in the sense that we can write e.g. λx i∈I a i • m i = i∈I a i • λxm i , (see Introduction for those notations). This allows us to give the definition of full Taylor expansion with coefficients as follows:

Definition 11 (Full Taylor expansion). Let S be any commutative semiring with fractions.

We define quantitative Taylor expansion, which is a function () * : Λ pv → S ∆pv , and consists in linear combinations of elements in T pv .

x * = x.

(λxM ) * = λxM * ( M N ) * = M * N * ((M, N )) * = (M * , N * ) (ι i (M )) * = (i, M * ) (π i (M )) * = π i (( * M )) case(M, x 1 • N 1 , x 2 • N 2 ) * = i∈{1,2} r∈∆pv ((M * ) = (i, r)) • (N i [M/x i ]) * (M ! ) * = k∈N 1 k! [M * , . . . , M * ] k (der(M )) * = der(M * )
Taylor expansion of fixpoints is defined inductively. We set a combination fix x (M ) * k for all k ∈ N, which corresponds to k unfoldings of M in x, as a quantitative version of the sets fix k x (m) of Definition 5.

(fix x (M )) * 0 = (M [[]/x]) * (fix x (M )) * k+1 = m∈Tpv(M ) - → m∈(fix k x (M )) ! (M * ) m deg x (m) i=1 ((fix x (M )) * k ) ! mi • m[m 1 /x 1 , . . . , m deg x (m) /x deg x (m) ]
and we set (fix

x (M )) * = k∈N (fix x (M )) * k .
We also need to give a quantitative version of the splitting operator, in order to make one step-reduction commute with quantitative Taylor expansion defined above.

Definition 12 (Quantitative split). We define for all k ∈ N and all resource value v the weighted finite sum

split k + (v) as follows : if v ∈ {1, 2} or v = x, then split k + (v) = (v, . . . , v) k . If v = m, then split k + (v) = m1+. . . +m k =m |m|! |m 1 |!. . . |m k |! • (m 1 , . . . , m k ). If v = (v 1 , v 2 ), then split k + (v) is defined as following, setting - → v i = (v i,1 , . . . , v i,k ) : (v 1,1 ,. . . ,v 1,k ) ∈|split k + (v1)| (v 2,1 ,. . . ,v 2,k ) ∈|split k + (v2)| split k + (v 1 ) - → v 1 split k + (v 2 ) - → v 2 • ((v 1,1 , v 2,1 ), . . . , (v 1,k , v 2,k ))
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We now introduce a reduction rule that takes into account the coefficients of definition 12.

Definition 13 (Quantitative resource reduction → rpv + ). Let m ∈ ∆ pv and k = degx(m).

λxm v → rpv + (v1,. . . ,v k )∈∆ k pv split k + (v) (v1,. . . ,v k ) m[v 1 /x 1 , . . . , v k /x k ]
If m → rpv n by reducing a redex of another shape than λxm n, then we also set m → rpv + n.

Notice that if m → rpv + k i=1 a i • n i , then for all i ∈ {1, . . . , k} such that a i = 0, we have

m → rpv n i .
Definition 14 (Reduction between combinations). We define a reduction ⇒⊆ S ∆pv × S ∆pv .

Given a family of resource terms (m i ) i∈I and a family of finite sums of resources terms In other words, the reduction ⇒ is always defined on Taylor expansion.

(ν i ) i∈I such
Proof. This is an immediate consequence of Lemma 10 and Definition 13.

Lemma 16. Let m ∈ ∆ pv , with deg x (m) = k, and V a value of Λ pv . v∈Tpv(V ) (v 1 ,. . . ,v k ) ∈split k (v) (V * ) v split k + (v) (v1,. . . ,v k ) • m[v 1 /x 1 , . . . , v k /x k ] = (v 1 ,. . . ,v k ) ∈Tpv(V ) k k i=1 (V * ) vi • m[v 1 /x 1 , . . . , v k /x k ]
Proof. The proof is by induction on V .

If V is a variable, then all the coefficients (V * ) vi are equal to 1, and the result is trivial.

If V = N ! , then we want to establish the following, for any k ∈ N: XX:14 Taylor expansion for Call-By-Push-Value

n ∈Tpv(N ) ! (n 1 ,. . . ,n k ) ∈split k (n) split k + (n) (n1,. . . ,n k ) |n| i=1 (N * ) ni 1 |n|! • m[n 1 /x 1 , . . . , n k /x k ] = (n 1 ,. . . ,n k ) ∈Tpv(N ! ) k 1 |n 1 |!. . . |n k |! k i=1 |ni| j=1 (N * ) ni,j • m[n 1 /x 1 , . . . , n k /x k ] Where for all i ≤ k, n i = [n i,1 , . . . , n i,|ni| ].
If V = (V 1 , V 2
). Then we want to establish:

(v 1 ,v 2 ) ∈Tpv((V1,V2)) (u 1 ,. . . ,u k ) ∈split k ((v1,v2)) (V 1 , V 2 ) * (v1,v2) split k + ((v 1 , v 2 )) (u1,. . . ,u k ) • m[u 1 /x 1 , . . . , u k /x k ] = (u 1 ,. . . ,u k ) ∈Tpv((V1,V2)) k k i=1 (V * 1 ) v1,i k j=1 (V * 2 ) v2,j • m[u 1 /x 1 , . . . , u k /x k ] Where (u 1 , . . . , u k ) = ((v 1,1 , v 2,1 ), . . . , (v 1,k , v 2,k )), for (v i,1 , . . . , v i,k ) ∈ split k (v i ).
By induction hypothesis, we have for i ∈ {1, 2}:

vi∈Tpv(Vi) (v i,1 ,. . . ,v i,k ) ∈split k (vi) (V * i ) vi split k + (v i ) (vi,1,. . . ,v i,k ) • m[v i,1 /x 1 , . . . , v i,k /x k ] = (v i,1 ,. . . ,v i,k ) ∈Tpv(Vi) k k j=1 (V * i ) vi,j • m[v i,1 /x 1 , . . . , v i,k /x k ]
Which allows us to conclude this case since

((V 1 , V 2 ) * ) (v1,i,v2,j ) = (V * 1 ) v1,i × (V * 2 ) v2,j and split k + ((v 1 , v 2 ) (u1,. . . ,u k ) = 2 i=1 split k + (v i ) (vi,1,. . . ,v i,k )
The case V = ι i (V ) is proved in the same way by induction hypothesis.

Property 3. (M [N/x]) * = m∈Tpv(M ) (n1,. . . ,n k )∈Tpv(N ) k (M * ) m k i=1 (N * ) ni • m[n 1 /x 1 , . . . , n k /x k ]
where k = deg x (m).

Proof. Easy induction on M .

We can finally state the main result of this section and of the paper: Theorem 17 establishes the simulation of Λ pv operational semantics in Taylor expansion with coefficients.

Theorem 17. Let M, M ∈ Λ pv , if M → pv M , then M * ⇒ M * .
Proof. We use Proposition 9, and verify that it extends to full Taylor expansion, keeping all coefficients in the right place.

If M = λxN V and M = N [V /x], then M * = n∈Tpv(N ) v∈Tpv(V ) (N * ) n (V * ) v • λxn v ⇒ n∈Tpv(N ) v∈Tpv(V ) (v 1 ,. . . ,v k ) ∈split k (v) (N * ) n (V * ) v split k + (v) (v1,. . . ,v k ) • n[v 1 /x 1 , . . . , v k /x k ] = n∈Tpv(N ) (v1,. . . ,v k )∈Tpv(V ) k (N * ) n k i=1 (V * ) vi • n[v 1 /x 1 , . . . , v k /x k ]
The last equality is obtained by Lemma 16, and is equal to N [V /x] * by Property 3.
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If The projections rules are obtained by a straightforward application of the definitions.

M = case((ι i (V ), x 1 • M 1 , x 2 • M 2 )) and M = M i [V /x i ], then M * = j∈{1,2} r∈∆pv ((i, V ) * = (j, r)) • N * j [V * /x j,1 , . . . , V * /x j,k ] ⇒ N * i [V * /x i,1 , . . . , V * /x i,k ] Which is equal to (N [V /x

Conclusions

We have introduced a new resource calculus reflecting Call-By-Push-Value resource handling and based on Linear Logic semantics. We have then defined Taylor expansion for Call-By-Push-Value as an approximation theory of Call-By-Push-Value encounting for resources.

Then, we have shown that it behaves well with respect to the original operational semantics:

Taylor expansion with coefficients commutes with reduction in Λ pv . For future work, three directions shall be explored:

The calculus can be extended in order to define inductive and coinductive datatypes.

Integers, for instance, could be defined by adding to our syntax (): 0 = ι 1 (), k + 1 = ι 2 (k), and all integers defined in this way have the type ι = (1 ⊕ ι). The successor suc can then be defined as the second injection. Then, if x has no free occurrence in N 1 , the term case(M, x • N 1 , y • N 2 ) is an adequate encoding of an "if zero" conditional If (M, N 1 , y • N 2 ) (where the value to which M evaluates is passed to the following computation).

The coinductive datatype of streams can also be defined: let A be a positive type, S A = !(A ⊗ S A ) is the type of lazy streams of type A (the tail of the stream being always encapsulated in an exponential, the evaluation is postponed). We can construct a term of type S A ι A which computes the k-th element of a stream: fix f (λxλy(If (y, π 1 (der(x)), z • der(f ) π 2 der(x) z)))

and a term of type !(ι A) S A : fix f λg der(g)0, der(f ) (λx der(g) suc(x)) ! which builds a stream by applying inductively a function to an integer. There are other classical constructions, such as lists, that can be constructed with these ingredients. For a more detailed presentation, see Ehrhard and Tasson's work [START_REF] Ehrhard | Probabilistic call by push value[END_REF]. We have good hope that this kind of extensions can be incorporated in our resource driven-constructions.

Extend our constructions in a probabilistic setting, to fit with existing quantitative models like probabilistic coherence spaces. Indeed Lemma 10, which is crucial to define reduction on quantitative Taylor expansion, strongly relies on the uniformity of the calculus, i.e we use the fact that all resource terms appearing in the Taylor expansion of a Call-By-Push-Value term have the same shape (there is a correspondance between their syntactic trees). The extension seems highly non trivial. But, Dal Lago and Leventis' recent work [START_REF] Dal | On the Taylor expansion of probabilistic λ-terms[END_REF] might be a starting point.

Figure 2

 2 Figure 2 Action of the coalgebra morphism hP on a positive type

Figure 3

 3 Figure 3 Typing rules for ∆pv

Proposition 4 (
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  This equation is verified by looking at the definition of splitk + . split k + (n) (n1,. . . ,n k ) is equal to |n|! |n1|!. . . |n k |!, which is enough to simplify the above equation and conclude this case.

  ]) * by Property 3. If M = der(N ! ) and M = N , then we verify immediately (der(N ! )) * = der((N ! ) * ) = der((N * ) ! ) = N * , since der([n 1 , . . . , n k ]) → rpv 0 if k = 1. If M = fix x (N ), then, M * = (M [(fix x M ) ! /x]) * . Property 3 and an examination of the definition of Taylor expansion of fixpoint is sufficient to verify this point.

  that for all i ∈ I, and for all n∈ |ν i | the set {j ∈ I | m j → = rpv + n} is finite. In that case, we set i∈I a i • m i ⇒ i∈I a i • n i as soon as m i → = rpv n i for all i ∈ I. Let M ∈ Λ pv with M * = i∈I a i • m i and ϕ = i∈I a i • ν i such that m i → = rpv + ν i for all i ∈ I.Then, for all i ∈ I and for all n ∈ |ν i |, n has a finite coefficient in ϕ.
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Most model we consider are also * -autonomous: there is a ⊥ such that X is isomorphic to (X ⊥) ⊥

The two isomorphims m 0 and m 2 correspond to the so-called Seely isomorphisms.

We want the semantics we use to interpret Call-By-Push-Value to be compatible with Taylor expansion. That is why, we have chosen to resolve the comonad using the Eilenberg-Moore resolution. The resulting category can be not well-pointed as for example the relational model described below. Another option, which is simpler and should be explored, is to use the Fam resolution[START_REF] Abramsky | Call-by-value games[END_REF].

We introduce a typed resource calculus, able to simulate the operational semantics of Λ pv .The conditional construction is considered through tests of equality, and there is no explicit fixpoint. The main difference with other resource calculi, like Call-By-Name or Call-By-Value, is that redexes of shape λxm n are not enough to entail Λ pv reduction. Indeed, the notion of value is too wide to be entirely captured in multisets of approximants:λxM (V 1 , V 2 ) is aredex in Λ pv , then we must be able to reduce terms like λxm (v 1 , v 2 ) in the resource setting, while keeping it sensitive to resource consumption. We proceed so with the introduction of a splitting operator, which allows us to duplicate a value using the structure of its positive type.Definition 2 (Call-By-Push-Value resource calculus ∆ pv ). The syntax of types is the same as the syntax of Λ pv .∆ pv : m ::= x | 1 | 2 | λxm | m m | (m = m) • m | (m, m) | π 1 (m) | π 2 (m) | [m, . . . , m] | der(m)We distinguish the values of the calculus:v ::= x | 1 | 2 | [m, . . . , m] | (v, v) Γ, x : A x : A Γ m i : I, i ∈ {1, . . . , k} Γ [m 1 , . . . , m k ] : !I Γ, x : A m : B Γ λxm : A B Γ m : A I ∆ n : A Γ, ∆ m n : I Γ m : !A Γ der(m) : A Γ m : A ∆ n : B Γ, ∆ (m, n) : A ⊗ B Γ m : A 1 ⊗ A 2 i ∈ {1, 2} Γ π i (m) : A i

We do not make types explicit, since the translation works in the same way with pure λ-calculus (e.g when translated in Linear Logic proof nets). But since the target calculus is typed, this restriction is necessary
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Lemma 7.

If M is a value, k ∈ N, m ∈ T pv (M ) and (m 1 , . . . , m k ) ∈ split k (m) then for all i ∈ {1, . . . , k}, m i ∈ T pv (M ).

Proof. By induction on M , using Property 1 :

If M = x, then m = x and split k (m) = (x, . . . , x) k . We conclude since T pv (x) = {x}.

If M = N ! , then m = [n 1 , . . . , n l ], and for all i ∈ {1, . . . , l}, n i ∈ T pv (N ). We have (m 1 , . . . , m k ) = (n 1 , . . . , n k ) with k i=1 n i = [n 1 , . . . , n l ]. Then, each n i is a multiset of elements in T pv (N ), and n i ∈ T pv (N ! ) = T pv (M ).

. By induction hypothesis, for all i ∈ {1, . . . , k}, n i ∈ T pv (N ) and n i ∈ T pv (N ). Then for all i,

Then for all i, (j,

The following substitution lemma is crucial to ensure that Taylor expansion is compatible with reduction. It will be used for proving simulation, in Proposition 9.

Lemma 8 (Substitution

Proof. The proof is by induction on M . We only consider representative cases, the other following by similar applications of induction hypothesis.

we conclude.

we can conclude as before.

We conclude by induction hypothesis as above.

Notice that only the case where N is a value will be used, since the other cases do not appear in the operational semantics.

We can finally prove the first simulation property: T pv (M ), using Lemma 8 and unfolding the definition of Taylor expansion of fixpoint. We need a reflexive reduction for this case.

and by the substitution Lemma 8,

By the substitution Lemma 8

we conclude, since we have 

Embeddings of CBV and CBN

Call-By-Push-Value is known to subsume both Call-By-Name and Call-By-Value strategies.

In particular, the two strategies can be embedded into Λ pv . If we consider simply typed λ-calculus 5 Λ, we set two functions () v , () n : Λ → Λ pv , defined in Figure 7. We do not consider here calculi with products, or other constructors, in order to focus in a simple setting on the relation between exponentials and strategies of reduction (see Ehrhard and Tasson's work [START_REF] Ehrhard | Probabilistic call by push value[END_REF] for more developments). Our embeddings ensure e.g. the following property: ((λxM )N ) v → pv (M [N/x]) v if and only if N is a variable or an abstraction, and

From the Taylor expansion point of view, let T n and T v be, respectively, usual Call-By-Name expansion, and Call-By-Value expansion (first defined by Ehrhard [START_REF] Ehrhard | Collapsing non-idempotent intersection types[END_REF]). We can check the correctness of our construction of ∆ pv and T pv with respect to those embeddings, using

T n and T v defined in Figure 6. The first one is defined on ∆ n , which is the original Ehrhard and Regnier's resource calculus [START_REF] Ehrhard | The differential lambda-calculus[END_REF], and the second one on ∆ v , a Call-By-Value resource calculus, introduced by Ehrhard [START_REF] Ehrhard | Collapsing non-idempotent intersection types[END_REF]. Both are described in Figure 5.

Property 2. For any pure λ-term M ∈ Λ, E(T pv ((M ) v )) = T v (M ) and E(T pv ((M ) n )) =

T n (M ), where E is the function that erases all the derelictions (that do not exist in ∆ n nor in ∆ v ) in a set of terms.

Proof. The proof consists in a simple examination of the definitions. Let us start with Call-By-Value constructions: The variable case is immediate since T pv (x v ) = {der(x)} ! , and