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Asymptotically Optimal Size-Interval Task
Assignments

Jonatha Anselmi and Josu Doncel

Abstract—Size-based routing provides robust strategies to improve the performance of computer and communication systems with
highly variable workloads because it is able to isolate small jobs from large ones in a static manner. The basic idea is that each server
is assigned all jobs whose sizes belong to a distinct and continuous interval. In the literature, dispatching rules of this type are referred
to as SITA (Size Interval Task Assignment) policies. Though their evident benefits, the problem of finding a SITA policy that minimizes
the overall mean (steady-state) waiting time is known to be intractable. In particular it is not clear when it is preferable to balance or
unbalance server loads and, in the latter case, how. In this paper, we provide an answer to these questions in the celebrated limiting
regime where the system capacity grows linearly with the system demand to infinity. Within this framework, we prove that the minimum
mean waiting time achievable by a SITA policy necessarily converges to the mean waiting time achieved by SITA-E, the SITA policy that
equalizes server loads, provided that servers are homogeneous. However, within the set of SITA policies we also show that SITA-E can
perform arbitrarily bad if servers are heterogeneous. In this case we prove that there exist exactly C! asymptotically optimal policies,
where C denotes the number of server types, and all of them are linked to the solution of a single strictly convex optimization problem.
It turns out that the mean waiting time achieved by any of such asymptotically optimal policies does not depend on how job-size
intervals are mapped to servers. Our theoretical results are validated by numerical simulations with respect to realistic parameters and
suggest that the above insights are also accurate in small systems composed of a few servers, i.e., ten.

Index Terms—Dispatching policies, size-based routing, performance, asymptotic optimality

F

1 INTRODUCTION

THE distributed architecture under investigation in this
paper has the structure illustrated in Figure 1, where

M ≥ 1 denotes the number of dispatchers and K � 1
the number of servers. Work units, or jobs in the following,
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Fig. 1. Architecture of the parallel and distributed system under investi-
gation for assigning jobs to servers.

join the dispatchers over time and are routed to servers
for processing according to some dispatching policy. This
is a typical scenario encountered in data centers, server
farms, supercomputing systems and call centers. A fun-
damental performance-related question is how to allocate
jobs to servers to achieve low latency when job sizes or
processing times are highly variable. This is particularly

• J. Anselmi is with INRIA Bordeaux Sud Ouest, Team: CQFD, 33405
Talence, France and Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP,
LIG, 38000 Grenoble, France. E-mail: jonatha.anselmi@inria.fr

• J. Doncel is with the University of the Basque Country, UPV/EHU, Barrio
sarriena s/n, 48940 Leioa, Spain. E-mail: josu.doncel@ehu.eus

Manuscript received April 19, 2005; revised August 26, 2015.

interesting when servers locally schedule jobs in a first-come
first-served (FCFS) manner, where a single long job may
block many short jobs behind, thus deteriorating the overall
average latency significantly.

A number of dispatching algorithms are based on feed-
back information dynamically flowing over time from the
servers to the dispatchers, e.g., join-the-shortest-queue [1],
power-of-d-choices schemes [2], pull-based techniques [3],
[4], or across the servers themselves, e.g., job replication
and/or redundancy [5], work-stealing and/or job migration
[6]. Though dynamic information allows one to develop
low latency dispatching schemes in large-scale clusters, the
intrinsic price that these algorithms have to pay stands
in the unavoidable communication overhead due to con-
trol messages together with the development of an ad-hoc
communication protocol. Tradeoffs between communication
overhead and latency have been recently investigated in [7].

Rather, we are interested in static assignment policies:
routing decisions do not depend on past or current obser-
vations of system states, e.g., server idleness, queue lengths,
workloads, and do not require the management of a local
dynamic memory. Essentially, existing static policies try
to exploit the fact that determinism minimizes the mean
waiting time in the G/G/1 queue [8], [9]. This is achieved
by reducing the variance of either the arrival or service
process associated with each server: approaches such as
Round-Robin (RR) [10] or generalized RR strategies [11],
[12], [13] make the sequence of interarrival times at each
server as regular as possible, while size-based routing [14],
[15], [16] attempts to make the sequence of service times at
each server as deterministic as possible. In principle, if the
job sizes are more variable than the interarrival times, then
size-based routing strategies are preferable, and vice versa.
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With respect to the architecture in Figure 1, RR is widely
applicable but it performs poorly in the case of multiple
dispatchers because it becomes difficult to control the arrival
process at each server. On the other hand, size-based routing
is versatile enough to be implemented in a decentralized
manner across multiple dispatchers without compromising
performance. This can be proven analytically, e.g., under
Poisson assumptions for the arrival processes.

1.1 Size-Interval Task Assignment

In this paper, we focus on a class of size-based routing
policies referred to as SITA (Size Interval Task Assignment)
policies; see, e.g., [14]. The basic idea is that each server
is assigned all jobs whose sizes belong to a distinct and
continuous interval. From a practical standpoint, a SITA
policy can be implemented in several ways, depending
on the underlying architecture [17], [18]: for instance, each
job may submit to the dispatcher an upper bound on its
duration (as in, e.g., supercomputing), or the dispatcher
itself may either know the identities of the servers hosting
jobs of a given size (as in, e.g., web files transfers) or just be
able to directly observe job sizes.

The main benefits of SITA policies are attributed to
their ability to isolate small jobs from long ones, which
reduces the variance of the service processes of all servers.
This is particularly noticeable in large-scale clusters because
the length of each interval shrinks more and more as the
number of servers increases. It is well known that they
can outperform dynamic policies such as Join-the-Shortest-
Workload, in which a job is assigned to the server with
the least remaining work [14], [15], [19], [20], [21]. A com-
prehensive analytical comparison between the performance
of SITA policies and Join-the-Shortest-Workload is shown
in [21], where the authors present several scenarios where
one approach can be better than the other.

The problem of finding a SITA policy that minimizes the
overall mean steady-state waiting time is known to be in-
tractable [16], [22], [23], [24], [25]. In particular, it is not clear
when it is preferable to balance or unbalance server loads
and, in the latter case, how. From an analytical standpoint,
this problem is already difficult with only two homogeneous
servers: in [26], some conditions are given to establish when
the short or long job host should be underloaded.

To find the optimal SITA policy, one should solve a
two-level optimization problem. First, one needs to under-
stand whether ‘short’ or ‘long’ jobs should be mapped to
the fastest or slowest servers. Then, fixed such mapping,
one needs to find the associated optimal cutoffs, which is
equivalent to solving a continuous nonlinear optimization
problem. IfK is the number of servers, possibly operating at
different processing speeds, then K−1 is the number of cut-
offs and K! is the number of mappings, in fact permutations,
between cutoff intervals and servers. For any choice of the
cutoffs, a brute force approach to finding a corresponding
optimal permutation is computationally expensive. It turns
out that the optimal permutation, i.e., the permutation that
achieves the lowest mean waiting time, strongly depends
on the job size distribution [16]; this will be discussed in
Section 4.2. To the best of our knowledge, the only analytical
results available in the literature that determine whether

one permutation is better, with respect to the overall mean
waiting time, than another are [24, Theorem 6.6], which is
only valid for the Bounded Pareto distribution, and [16,
Proposition 6], which is only valid for two queues.

1.2 Our Contribution
Motivated by the size of large-scale clusters, in this paper
we investigate the performance of SITA policies in the
celebrated limiting regime where the system capacity grows
linearly with the system demand to infinity. In our first
result, we prove that the minimum mean waiting time
achievable by a SITA policy necessarily converges to the
mean waiting time achieved by SITA-E, the SITA policy
that equalizes server loads, provided that servers are ho-
mogeneous. In other words, SITA-E is the unique asymptot-
ically optimal SITA policy. Then, we consider heterogeneous
systems and prove that in this case there exist exactly
C! asymptotically optimal policies, where C denotes the
number of server types, and all of them are linked to the
solution of a single strictly convex optimization problem. It
turns out that the mean waiting time achieved by any of
these asymptotically optimal policies does not depend on
the particular permutation chosen between cutoff intervals
and servers, though each of these permutations provides
permutation-dependent cutoffs. Finally, we also evaluate the
ratio between the mean waiting time achieved with SITA-E
and the one of an asymptotically optimal policy. By means
of a competitive analysis, we show that this efficiency ratio,
when applied to a heterogeneous system, can be arbitrarily
large, though in the average case is surprisingly close to one.

Our results provide efficient methods for computing
near-optimal SITA policies in the prelimit and are validated
by numerical simulations with respect to realistic parame-
ters, suggesting that the above insights are also valid for
small systems composed of a few servers, i.e., ten.

The closest reference to our work is [27], where the
authors follow a similar approach to investigate the perfor-
mance of SITA policies. The main difference with respect
to our work is that we study the limit of the optimal
policy instead of the optimal policy in the limit. Technically
speaking, we are interested in a “lim inf-problem” rather
than an “inf lim-problem”, which is more difficult as the
latter always provides an upper bound on the former. Our
proof is also based on different arguments. Nonetheless, our
results for homogeneous servers are consistent with those
of that reference, which indicates that both the inf and lim
operators can be exchanged.

1.3 Organization
The rest of the paper is organized as follows. In Section 2,
we present the dispatching model, define SITA policies for
homogeneous servers and state the technical problem. In
Section 3, we show and prove our first result, Theorem 1,
i.e., the asymptotic optimality of SITA-E in case of homoge-
neous servers. Section 4, devoted to heterogeneous servers,
discusses the impact of the mapping between size intervals
and servers, and presents our second result, Theorem 2,
which gives the structure of asymptotically optimal SITA
policies. Finally, Section 5 presents numerical results and
Section 6 draws the conclusions of our work.
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2 DISPATCHING MODEL

We consider a parallel system composed of K servers (or
queues), namely {1, . . . ,K}, and one central controller that
is in charge of routing jobs to servers according to some
policy, or decision rule; in fact, our model will be analyt-
ically equivalent to the setting in Figure 1 with multiple
dispatchers. Jobs arrive to the central controller following a
Poisson process of rate λK . Servers are modeled by FCFS
queues, or any other discipline which does not affect the
distribution of the number of jobs in the queue at any time,
and operate at constant speed µ = 1; in Section 4, we will
deal with the case where speeds are different.

Let (Xi)i be the sequence of i.i.d random variables repre-
senting the sizes of the incoming jobs, assumed independent
of the arrival process at the controller. We also assume that
the Xi’s have the same distribution of a random variable X
and a density function f(x) defined over [xm, xM ], with
0 < xm < xM < ∞, such that on this interval 1

xf(x) is
Lipschitz. This implies that xm and xM are the minimum
and maximum sizes of the incoming jobs, respectively. We
also assume that

ρ
def
=

λE[X]

µ
< 1,

which will be necessary for stability of the Markov process
underlying the K-th system. Let also F (x) = P (X ≤ x).

2.1 SITA Policies

The dispatching rule adopted by the controller is assumed to
only depend on the size of each incoming job. In particular,
it is assumed that each server is assigned all jobs whose
sizes belong to a distinct and continuous interval. Following
queueing theory parlance, we refer to these deterministic
dispatching rules as SITA policies, defined as follows.

Definition 1. For a system with K servers, a SITA policy is a
surjective mapping RK : [xm, xM ]→ { 1

K ,
2
K , . . . , 1} such that

R−1K (i/K) is an interval, for all i ∈ {1, . . . ,K}.

In other words, a SITA policyRK is a piece-wise constant
function with exactly K − 1 points of discontinuity, and the
interpretation is that a controller implementing RK sends a
job of size x ∈ [xm, xM ] to server KRK(x).

Let xK,0
def
= xm and xK,K

def
= xM . For i = 1, . . . ,K − 1,

let xK,i
def
= xK,i(RK) denote the i-th discontinuity point

of RK . Given RK , the points (xK,i)
K−1
i=1 are said thresholds

(or cutoffs) of RK . If XK,i denotes the random variable
representing the size of jobs joining queue i, then after
conditioning we obtain that the distribution of XK,i is

FK,i(x)
def
=

∫ x
xK,i−1

f(x) dx

F (xK,i)− F (xK,i−1)
(1)

and

E[Xn
K,i] =

∫ xK,i
xK,i−1

xnf(x) dx

F (xK,i)− F (xK,i−1)
. (2)

Since the arrival process at the dispatcher is Poisson,
a trivial consequence of the SITA policy RK is that the
arrival process at each server i is a Poisson process with
rate (F (xK,i) − F (xK,i−1))λK . Furthermore, using the

Pollaczek–Khinchine formula (see, e.g., [28]) and provided
that the (necessary and sufficient) stability condition

λK(F (xK,i)− F (xK,i−1))E[XK,i] < µ, ∀i = 1, . . . ,K
(3)

is satisfied, the mean steady-state waiting time experienced
by the incoming jobs and achieved with RK , say WK(RK),
is given by

WK(RK) =
λK

2µ2

K∑
i=1

(F (xK,i)− F (xK,i−1))2 E[X2
K,i]

1− λ
µK(F (xK,i)− F (xK,i−1))E[XK,i]

.

(4)

If (3) is not satisfied, we let WK(RK) = +∞.

2.2 Problem Statement

We are interested in finding the SITA policies that mini-
mize (4). As discussed in the Introduction, this is a known
difficult problem and we aim at providing answers in the
large-network limiting regime where K → ∞. Towards
this purpose, we will use the assumption below, which
constructs the set of SITA policies of interest with respect
to a sequence of systems indexed by K .

Let S denote the set of differentiable, increasing and Lip-
schitz functions R : [xm, xM ]→ [0, 1] such that R(xm) = 0,
R(xM ) = 1 and

sup
K

sup
i=1,...,K

λK

∫ R−1

(
i
K

)
R−1

(
i−1
K

) xf(x)dx < µ. (5)

Assumption 1. The thresholds of the K-th system are given by
xK,i = R−1(i/K), for all i = 1, . . . ,K − 1, for some R ∈ S .

Given R ∈ S , the previous assumption allows us
to construct a sequence of SITA policies indexed by K :
the SITA policy for the K-th system is a cadlag, piece-
wise constant function RK : [xm, xM ] → { 1

K ,
2
K , . . . , 1}

with exactly K − 1 points of discontinuity and such that
R−1K (i/K) = R−1(i/K), for all i ∈ {1, . . . ,K}.

The fact that R is assumed increasing is not a loss of
generality because the processing speeds of the servers are
identical for now. In fact, given a SITA policy RK for the K-
system, it is always possible to find a permutation of servers
such that the resulting mapping between job sizes and
servers is increasing without changing the mean waiting
time WK(RK). The requirement (5), obtained by using (2)
and Assumption 1 in (3), is necessary and sufficient for
stability, and allows us to use (4) for the mean waiting time.

We also notice that our construction of SITA policies
is meant to exclude the set of the so called nested SITA
policies [16], where size intervals may overlap. This is not
a loss of generality for homogeneous systems because the
optimal nested SITA policy provides the same mean waiting
time of the optimal SITA policy with non-overlapping size
intervals [16, Theorem 3].

Remark 1. With a slight abuse of notation, given R ∈ S we
will write WK(R) to refer to WK(RK) where RK is such that
R−1K (i/K) = R−1(i/K).

Our objective is to establish asymptotic optimality re-
sults within the set of SITA policies satisfying Assumption 1.
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Specifically, we are interested in the problem of finding a
function R∗ ∈ S such that

lim
K→∞

WK(R∗) = lim
K→∞

inf
R∈S

WK(R). (6)

To the best of our knowledge, this mathematical problem
has not been investigated in the literature; see the Introduc-
tion for related works.

3 ASYMPTOTIC OPTIMALITY OF SITA-E
A particular SITA policy is obtained when server loads are
equalized. When servers are homogeneous, such condition
identifies a unique SITA policy, usually referred to as SITA-
E in the literature, which for the K-th system we denote by
R∗K . The thresholds of R∗K , namely (x∗K,i)

K−1
i=1 , are uniquely

determined by the following set of equations:∫ x∗K,i

x∗K,i−1

xf(x)dx =

∫ x∗K,1

xm

xf(x)dx, ∀i = 2, . . . ,K. (7)

The next result shows that SITA-E is the asymptotically
optimal SITA policy in the limiting regime where K →∞.

Theorem 1. Let R∗−1 be the unique solution of the initial value
problem

zf(z)z′ = E[X] (8a)
z(0) = xm. (8b)

Then,
R∗K
−1( iK ) = R∗−1( iK ), ∀i = 1, . . . ,K (9)

and

lim
K→∞

inf
R∈S

WK(R) = lim
K→∞

WK(R∗) =
λ

2

E[X]2

1− ρ
. (10)

Furthermore, no R ∈ S \ {R∗} exists such that

lim
K→∞

WK(R) = lim
K→∞

WK(R∗).

Proof. For i = 0, 1, 2, let

Mi(x)
def
=

∫
xif(x)dx (11)

Given R(·) and substituting xK,i = R−1(i/K) in (2), we
obtain

E[Xn
K,i] =

∫ R−1( iK )
R−1( i−1

K )
xnf(x)dx

F (R−1
(
i
K

)
)− F (R−1

(
i−1
K

)
)
.

and substituting in (4), we rewrite the mean waiting time
achieved by the K-th system as

WK(R) =

λ

2

K∑
i=1

K

∏
j∈{0,2}

(
Mj(R

−1 ( i
K

)
)−Mj(R

−1 ( i−1
K

)
)
)

1− λK
(
M1(R−1

(
i
K

)
)−M1(R−1

(
i−1
K

)
)
) . (12)

Since F and R are differentiable, for j = 0, 1, 2 we have

Mj(R
−1 ( i−1

K

)
) =Mj(R

−1 ( i
K

)
)− 1

K

dMj(R
−1(x))

dx

∣∣∣∣
x= i

K

+O(K−2) (13)

where

dMj(R
−1(x))

dx
=
(
R−1(x)

)j
f
(
R−1(x)

) dR−1(x)
dx

. (14)

Substituting (13) in (12) and using that the O(K−2) terms
in (13) are uniformly bounded in i for fixed K (recall that R
is Lipschitz continuous and defined on a compact set), we
obtain

lim
K→∞

inf
R∈S

WK(R) (15)

=
λ

2
lim
K→∞

inf
R∈S

K∑
i=1

1

K

∏
j∈{0,2}

d
dxMj(R

−1(x))
∣∣
x= i

K

1− λ d
dxM1(R−1(x))

∣∣
x= i

K

(16)

=
λ

2
lim
K→∞

inf
R∈S

K∑
i=1

1

K

g2( iK )

1− λg( iK )
(17)

where

g(x)
def
=

dM1(R
−1(x))

dx
= R−1(x)f

(
R−1(x)

) dR−1(x)
dx

.

(18)

Letting u(x) def
= x2

1−λx , we have

inf
R∈S

K∑
i=1

1

K

g2( iK )

1− λg( iK )
= inf
α∈R+

inf
R∈S:

K∑
i=1

1
K g(

i
K )=α

K∑
i=1

u
(
g
(
i
K

))
K

(19)

≥ inf
α∈R+

inf
R∈S:

g( iK )=α,∀i

K∑
i=1

u
(
g
(
i
K

))
K

(20)
= inf
α∈R+

inf
R∈S:

g( iK )=α,∀i

u(g(1)) (21)

= inf
R∈S:

g( 1
K )=g(

2
K )=···=g(1)

u(g(1)). (22)

In (19), we have used that g(x) ≥ 0 because R, and
thus R−1, is increasing. In (20), we have used the convex-
ity of u and applied Karamata’s inequality as the vector
(g
(

1
K

)
, g
(

2
K

)
, . . . , g(1)) majorizes the vector (α, . . . , α),

provided that
K∑
i=1

1
K g

(
i
K

)
= α; this is the key observation

of our proof.
Now, let S∗ def

= {R ∈ S : g(x) is constant}. We notice
that R ∈ S∗ if and only if R ∈ S and for some c ∈ R+

g(x) = R−1(x)f
(
R−1(x)

) dR−1(x)
dx

= c. (23)

Given c and since 1
xf(x) is Lipschitz continuous by assump-

tion, the Picard–Lindelöf theorem ensures that the ODE
problem zf (z) z′ = c, with z(0) = xm, admits a unique
solution. This implies that there exists a unique R−1, and
thus a unique R, that satisfies (23), say R = Rc to stress the
dependency on c. We notice that Rc is a member of S∗ if
and only if Rc(xM ) = 1. Since the derivative of R−1c (x) is
positive and proportional to c, there exists a unique c, say
c = h, such that Rc(xM ) = 1. This proves that S∗ is com-
posed of one element only, say R∗. Now, given K , fix R ∈ S
such that g( 1

K ) = g( 2
K ) = · · · = g(1) and R /∈ S∗. For all
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K ′ > K large enough, it is clear that such R will not be
an element of

{
R ∈ S : g( 1

K′ ) = g( 2
K′ ) = · · · = g(1)

}
. This

proves that we can exclude such functions in the infimum of
the RHS term of (22). Therefore, given that S∗ is a singleton,
we obtain

lim
K→∞

inf
R∈S

WK(R) ≥ λ

2
lim
K→∞

inf
R∈S:

g( 1
K )=g( 2

K )=···=g(1)

g2(1)

1− λg(1)

(24a)

=
λ

2
lim
K→∞

inf
R∈S∗

g2(1)

1− λg(1)
(24b)

=
λ

2

h2

1− λh
. (24c)

Integrating (23) when c = h and using a change of variable,
we observe that

h =

∫ 1

0
R∗−1f(R∗−1)dR∗−1(x) (25a)

=

∫ R∗−1(1)

R∗−1(0)
xf(x)dx =

∫ xM

xm

xf(x)dx = E[X]. (25b)

Thus, we obtain the lower bound

lim
K→∞

inf
R∈S

WK(R) ≥ λ

2

E[X]2

1− ρ
. (26)

To conclude the proof, we exhibit a matching upper
bound. Towards this purpose, it is enough to show that
(R∗−1(i/K))i, for all i = 1, . . . ,K − 1, are the thresholds of
R∗K , the SITA-E policy applied to theK-th system. Given (7),
this amounts to prove that R∗ satisfies∫ R∗−1( iK )

R∗−1( i−1
K )

xf(x)dx =

∫ R∗−1( 1
K )

xm

xf(x)dx, ∀i = 2, . . . ,K.

(27)

i.e., for all i = 2, . . . ,K

M1(R
∗−1( i−1K ))−M1(R

∗−1( iK ))

=M1(R
∗−1( 1

K ))−M1(xm) (28)

Given (18) and (23), the derivative w.r.t. x of M1(R
∗−1(x))

is constant and therefore (28) must hold true.

Theorem 1 provides a constructive method to find the
asymptotically optimal SITA policy, SITA-E, by solving the
ODE system (8). A general explicit expression for its solution
depends on the probability distribution of the job sizes F (x).
For instance, if F (x) is the Bounded Pareto distribution with
shape parameter t ∈ R, meaning that

f(x) =
b

xt+1
, b

def
=

txtm

1−
(
xm
xM

)t (29)

then R∗ takes a simple form. Integrating both sides of (8),
assuming for simplicity t 6= 1, we obtain that R∗−1(x) must
satisfy the equation

xE[X] =
b

1− t

(
R∗−1(x)

1−t
− x1−tm

)
, (30)

which holds true if and only if

R∗−1(x) =
(
x1−tm + (x1−tM − x1−tm )x

) 1
1−t . (31)

K

SITA-E

1

K

1
SITA-E

K/M

...

...

M
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K/M
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...

...

K
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e
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e
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Fig. 2. Queueing systems for economies of scale.

We notice that the thresholds (31) are identical to the ones
identified in [14, Theorem 3], though in that reference they
have been obtained with a different method. Finally, invert-
ing the previous function, we obtain

R∗(x) =
x1−t − x1−tm

x1−tM − x1−tm
. (32)

The case t = 1 is treated similarly to obtain

R∗(x) =
xm
E[X]

(
1− xm

xM

)−1
ln

x

xm
.

3.1 Comparison with Round-Robin

We stress that SITA-E reduces the variance of the service
process at each server: as K grows, the length of each
size interval converges to zero so that in the limit each
server sees deterministic job sizes coming in. The ‘com-
plementary’ approach is given by the Round-Robin (RR)
policy, another static policy that routes the n-th job to server
1 + (n mod K). In fact, RR does exactly the opposite: it
reduces the variance of the arrival process at each server.
In the limit where K → ∞, each server sees jobs coming
in at deterministic interarrival times. It is well-known that
the resulting limiting mean waiting time,WRR, corresponds
to the mean waiting time of D/G/1 queue. Using a classic
heavy-traffic approximation, see [29, Formula 2.10], this
gives WRR ≈ λ

2
Var(X)
1−ρ . Comparing this formula with the

asymptotic mean waiting time of SITA-E (the RHS of (10)),
WSITA def

= limK→∞WK(R∗), we obtain

WRR

WSITA
≈ E[X2]

E[X]2
− 1. (33)

Thus, in the limit, SITA-E outperforms RR if and only if
the square coefficient of variation of X , i.e. E[X2]/E[X]2, is
greater than or equal to 2, which is indeed the case if X is
highly variable.

3.2 Economies of Scale

In [30], the economies of scale in a parallel system com-
posed of a single dispatcher operating under SITA-E are
investigated when K → ∞ by means of the degradation
factor, DK,M . This is meant to compare the ratio between
the delays achieved by the queueing systems depicted on
the right and on the left of Figure 2. This is equivalent to
the ratio between the mean waiting time of a system with
K/M servers (assuming that M divides K) and arrival rate
λK/M and the mean waiting time of a system with K
servers and arrival rate λK . It is shown that DK,M ≤ DK,K
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and the main conclusion is that the worst case degradation
factor can increase without bound with the variability of
the job size distribution. However, an explicit form for the
degradation factor is not given and the previous conclusion
is only shown with respect to some distribution functions.
The following corollary of Theorem 1 is straightforward and
gives the explicit structure of the worst-case degradation
factor for any distribution.

Corollary 1.

lim
K→∞

DK,K =
E[X2]

E[X]2
. (34)

Proof. By definition, DK,K corresponds to the ratio between
the mean waiting time of a M/G/1 queue with arrival rate
λ and service time X and W (R∗K). Using the Pollaczek-
Khinchine formula for the numerator, we obtain

DK,K =
λ

2

E[X2]

1− ρ
× 1

W (R∗K)
→ E[X2]

E[X]2
. (35)

Since SITA-E is asymptotically optimal (Theorem 1),
E[X2]/E[X]2 is also an upper bound on the degradation
factor obtained when dispatchers operate under any SITA
policy.

4 HETEROGENEOUS SERVERS

In this section, we treat the case where servers may have
different processing speeds. In this case, we will show that
SITA-E is no longer asymptotically optimal. However, we
will use Theorem 1 to identify asymptotically optimal SITA
policies by means of convex programming.

Let α0 = 0 and α1, . . . , αC ∈ Q+ such that
∑C
c=1 αc = 1.

Let also βc
def
=
∑c
c′=0 αc′ , for all c = 0, . . . , C . We assume

that there are K servers in total and that they belong to C
types, in the sense that we let servers1 βc−1K + 1, . . . , βcK
operate at constant speed µc, for all c = 1, . . . , C . We
also assume that λE[X] <

∑
c αcµc, which is necessary for

stability.

4.1 Construction of SITA Policies and Assumptions
In the case of heterogeneous servers, the construction of
the SITA policies of interest is not trivial. Given (a, b] ⊆
[xm, xM ], let Rc[a,b] denote the set of differentiable, increas-
ing and Lipschitz functions R : (a, b]→ (βc−1, βc] such that
R(a)

def
= limx↓aR(x) = βc−1, R(b) = βc and

sup
K

sup
i=βc−1K+1,...,βcK

λK

∫ R−1

(
i
K

)
R−1

(
i−1
K

) xf(x)dx < µc. (36)

Let

Y def
=

{
(y0, . . . , yC) ∈ RC+1

+ : λ

∫ yc

yc−1

xf(x)dx ≤ µcαc,∀c

and xm = y0 ≤ y1 ≤ · · · ≤ yC = xM

}
,

1. We assume that βcK ∈ Z+ for all c. When taking limits as K →
∞, for simplicity we will implicitly consider subsequences such that
βcK ∈ Z+ for all c, which exist because the βc’s are rational numbers.

which will be interpreted as the set of threshold vectors
associated to queues of different types: jobs of size in
(yc,1, yc] will be only sent to queues of type c′, for some c′

not necessarily equal to c.
Given y ∈ Y and a permutation π over {1, . . . , C}, let

Ry,π
def
=
{
R : [xm, xM ]→ [0, 1] : R is bijective and

R|(yc−1,yc] ∈ R
π(c)
(yc−1,yc]

, ∀c = 1, . . . , C
}

where R|A denotes the restriction of R to A ⊆ R.

Finally, let Ry
def
=
⋃
πRy,π and R def

=
⋃
y∈Y Ry .

Assumption 2. The thresholds of the K-th system are given by
xK,i = R−1(i/K), for all i = 1, . . . ,K − 1, for some R ∈ R.

As done in Section 2.2, the previous assumption defines
the set of SITA policies of interest for the K-th system and
we will establish asymptotic optimality results within the
set of SITA policies satisfying Assumption 2. Again, the fact
that R ∈ Ry,π is assumed increasing when restricted over
[yc−1, yc] is not a loss of generality because all the thresholds
included in [yc−1, yc] belong to type-π(c) servers only.

Using the Pollaczek–Khinchine formula and the nota-
tion (11), the mean steady-state waiting time experienced by
the incoming jobs and achieved with R ∈ Ry,π , say WK(R),
is given by

WK(R) =
λ

2

C∑
c=1

1

µ2
π(c)

βπ(c)K∑
i=βπ(c)−1K+1

K
∏
j∈{0,2}

(
Mj(R

−1 ( i
K

)
)−Mj(R

−1 ( i−1
K

)
)
)

1− λ
µπ(c)

K
(
M1(R−1

(
i
K

)
)−M1(R−1

(
i−1
K

)
)
) (37)

because the stability condition

λK
(
M1

(
R−1

(
i
K

))
−M1

(
R−1

(
i−1
K

)))
< µπ(c) (38)

is satisfied for all i = βπ(c)−1K+1, . . . , βπ(c)K by construc-
tion.

4.2 On the Impact of Permutations

Figure 3 illustrates the role of permutations when C = 2,
where the two possible permutations are π(c) = c and
$(c) = 3 − c, and α1 = α2 = 1

2 . Fixed y ∈ Y , the function
Rπ , represented by a continuous line, is an element of Ry,π
that forces jobs of size x ∈ [xm, y1] to be mapped to servers
1, . . . , β1K and jobs of size x ∈ [y1, xM ] to be mapped to
servers β1K + 1, . . . ,K . However, for the same y, we can
also map jobs of size x ∈ [xm, y1] to servers β1K +1, . . . ,K
with profile α1 + Rπ|(xm,y1] and jobs of size x ∈ [y1, xM ]
to servers 1, . . . , β1K with profile Rπ|(y1,xM ] − α1. This
constructs a SITA policy in Ry,$, represented in Figure 3
by a dashed line. To take into account all these different
allocations given y, it is clear that one should handle all
the possible mappings between the server types and the
intervals [yc−1, yc] for all c.

The construction above ends up with two different al-
locations with, in principle, different mean waiting times.
This is also true if y depends on the particular chosen
permutation, as the following remark states.
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Fig. 3. Profiles of two SITA policies: Rπ ∈ Ry,π (continuous line)
and R$ ∈ Ry,$ (dashed line), where π(c) = c and $(c) = 3 − c,
respectively.

Remark 2. The optimal mean waiting time achieved with one
permutation is generally different from the optimal mean waiting
time achieved with another permutation.

Assuming two servers such that µ1 ≤ µ2, Section 4 of
[16] presents numerical results suggesting that the optimal
mean waiting time achieved with the descending permuta-
tion, i.e., π(c) = 3− c, is always less than the optimal mean
waiting time achieved with the ascending permutation,
i.e., π(c) = c, provided that X follows a Bounded-Pareto
distribution with shape parameter t > 1; this property has
been proven in [24, Theorem 6.6]. Contrariwise, if X is
Weibull distributed, then the ascending permutation works
better than the descending one, and if X follows a lognor-
mal distribution, then both permutations do not produce
significantly different results; these additional properties are
conjectured in [16].

This highlights that the optimal permutation strongly de-
pends on the job size distribution, at least when K is finite.
Since the cardinality of the space of permutations is C!, an
exhaustive search is clearly intractable, unless C is small.

Remark 3. We anticipate here a property shown in the following:
when K → ∞, the optimal mean waiting time is insensitive to
server-type permutations, for any job size distribution.

4.3 Asymptotic Optimality Results

Let

%c,a,b
def
=

λ

αcµc

∫ b

a
xf(x)dx, (39)

interpreted as the aggregate load at all type-c servers pro-
vided that they only accept jobs of size in [a, b].

The next proposition provides a combinatorial opti-
mization framework for computing an asymptotically op-
timal SITA policy; we recall that π is a permutation over
{1, . . . , C}.

Proposition 1.

lim
K→∞

inf
R∈R

WK(R) = min
y∈Y,π

C∑
c=1

απ(c)
2λ

%2π(c),yc−1,yc

1− %π(c),yc−1,yc

. (40)

Proof. By construction of the functions in Ry,π , we first
notice that

inf
R∈R

WK(R)

= inf
y∈Y,π

inf
R∈Ry,π

WK(R)

= inf
y∈Y,π

C∑
c=1

inf
R∈Rπ(c)

[yc−1,yc]

βπ(c)K∑
i=βπ(c)−1K+1

λ

2

1

µ2
π(c)

×

K
∏
j∈{0,2}

(
Mj(R

−1 ( i
K

)
)−Mj(R

−1 ( i−1
K

)
)
)

1− λ
µπ(c)

K
(
M1(R−1

(
i
K

)
)−M1(R−1

(
i−1
K

)
)
) .

The second sum in the RHS of previous equation has the
same structure of (12), and therefore the remainder of the
proof adapts the same arguments used in the proof of
Theorem 1.

Applying the same arguments used to prove (24), we
obtain

lim
K→∞

inf
R∈R

WK(R) (41)

≥ λ

2
lim
K→∞

inf
y∈Y,π

C∑
c=1

απ(c)
µ2
π(c)

inf
g2(βπ(c))

1− λ
µπ(c)

g(βπ(c))
(42)

=
λ

2
lim
K→∞

inf
y∈Y,π

C∑
c=1

απ(c)
µ2
π(c)

inf
R∈Rπ(c)

[yc−1,yc]
:

g(x) is constant

g2(βπ(c))

1− λ
µπ(c)

g(βπ(c))

(43)

=
λ

2
inf

y∈Y,π

C∑
c=1

απ(c)
µ2
π(c)

h2π(c),yc−1,yc

1− λ
µπ(c)

hπ(c),yc−1,yc

(44)

where

g(x)
def
=

d

dx
M1(R

−1(x)) = R−1(x)f
(
R−1(x)

) dR−1(x)
dx

,

(45)
the first inf is taken over all R ∈ Rπ(c)[yc−1,yc]

such that

g

(
βπ(c)−1K + 1

K

)
= g

(
βπ(c)−1K + 2

K

)
= · · · = g

(
βπ(c)

)
,

and hπ(c),yc−1,yc is the unique solution of the boundary
value problem

zf(z)z′ = hπ(c),yc−1,yc (46a)

z(βπ(c)−1) = yc−1, z(βπ(c)) = yc, (46b)

and thus independent of K . Now, let R∗−1 be the unique
solution of the initial value problem

zf(z)z′ = hπ(c),yc−1,yc (47a)

z(βπ(c)−1) = yc−1. (47b)

As similarly done in (25a), making a change of variable we
notice that

αchπ(c),yc−1,yc =

∫ βπ(c)

βπ(c)−1

R∗−1f(R∗−1)dR∗−1(x) (48a)

=

∫ R∗−1(βπ(c))

R∗−1(βπ(c)−1)
xf(x)dx =

∫ yc

yc−1

xf(x)dx,

(48b)
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and thus

λhπ(c),yc−1,yc = µπ(c)%π(c),yc−1,yc . (49)

We remark that the inequality sign in (41) can be replaced by
an equality because (R∗−1(i/K))i=βπ(c)−1K+1,...,βπ(c)K are
the thresholds of R∗K (when restricted over [yc−1, yc]). This
can be shown as done in (27) and (28). Finally, the inf in (44)
can be replaced by a minimum because of the continuity of
hπ(c),yc−1,yc with respect to the initial condition y ∈ Y (see
(48)), with Y compact. This and (49) give (40).

By Theorem 1, we notice that

1

2λ

%2π(c),yc−1,yc

1− %π(c),yc−1,yc

(50)

is interpreted as the asymptotic mean waiting time achieved
by SITA-E provided that job sizes belong to the inter-
val [yc−1, yc] and are mapped to servers βπ(c)−1K +
1, . . . , βπ(c)K . Therefore, Proposition 1 shows that an
asymptotically optimal SITA policy applies SITA-E to all
servers of a given type; this property is actually shown
in the proof of Theorem 2. However, such policy does
not necessarily equalize the loads of all servers: servers of
different types may have different loads. Below, we will
show that SITA-E is no more asymptotically optimal in the
case of heterogeneous servers.

In principle, the combinatorial optimization framework
given in Proposition 1 remains intractable because the
number of possible permutations is C!. What remains to
understand is which permutation π and which vector y
minimize the asymptotic mean waiting time.

The following result implies that all permutations be-
come “equivalent” in the limit where K → ∞. We recall
that this does not hold true when K is finite; see Section 4.2.

Theorem 2. For any pair of permutations π and $ over
{1, . . . , C},

lim
K→∞

inf
R∈R

WK(R) = min
y∈Y

C∑
c=1

απ(c)
2λ

%2π(c),yc−1,yc

1− %π(c),yc−1,yc

(51)

= min
y∈Y

C∑
c=1

α$(c)

2λ

%2$(c),yc−1,yc

1− %$(c),yc−1,yc

(52)

= min
v∈RC+

C∑
c=1

λ

2αcµ2
c

v2c
1− λvc

αcµc

(53)

s.t.:
C∑
c=1

vc = H(xM )−H(xm) (54)

λvc ≤ αcµc, ∀c (55)

where %π(c),yc−1,yc and %$(c),yc−1,yc are defined via (39), and

H(x)
def
=
∫
xf(x)dx. Furthermore, if yπ is an optimizer of (51),

then
v∗π(c) = H(yπc )−H(yπc−1), ∀c (56)

where and v∗ is the unique optimizer of the strictly convex
optimization problem (53)-(55).

Proof. First, we notice that

%π(c),yc−1,yc =
λ

απ(c)µπ(c)

∫ yc

yc−1

xf(x)dx (57)

=
λ

απ(c)µπ(c)
(H(yc)−H(yc−1)) . (58)

Let Wπ and W$ denote the optimal objective function value
of the minimizations in (51) and (52), respectively. Making a
change of variable and using that H(·) is strictly increasing,
we obtain

Wπ = min
v∈RC+

C∑
c=1

λ

2απ(c)µ
2
π(c)

v2c
1− λvc

απ(c)µπ(c)

(59)

s.t.:
C∑
c=1

vc = H(xM )−H(xm)

λvc ≤ απ(c)µπ(c), ∀c

i.e., a strictly convex optimization problem.
Let vπ be the (unique) minimizer of the last optimization

problem.
For simplicity, in the remainder of the proof we assume

that π(i) = i and $(i) = C +1− i, for all i = 1, . . . , C . This
is not a loss of generality because we do not require the µi’s
to follow a particular ordering a priori. We have

Wπ =
C∑
c=1

λ

2α$(c)µ
2
$(c)

(vπC−c+1)
2

1− λ
µ$(c)

vπC−c+1

≥
C∑
c=1

λ

2α$(c)µ
2
$(c)

(v$c )2

1− λ
µ$(c)

v$c
=W$

Repeating this argument exchanging π and $, we obtain
Wπ =W$.

Theorem 2 implies that there exist exactly C! asymp-
totically optimal SITA policies, one for each permutation.
The policy associated to the generic permutation π can be
iteratively constructed using (56) to find yπ ; the uniqueness
of v∗ and the monotonicity of H(·) imply that (56) uniquely
identifies yπ (once v∗ is given). Then, the thresholds of type-
π(c) servers are the ones of SITA-E when the minimum and
maximum job sizes are yπc−1 and yπc , respectively.

Being v∗ the unique solution of a strictly convex opti-
mization problem, it can be efficiently computed in polyno-
mial time by applying standard algorithms [31].

Remark 4. The C! asymptotically optimal SITA policies induce
the same loads on servers (and the same mean waiting time) but
this is achieved with different thresholds.

Figure 4 illustrates the structure of the two asymptot-
ically optimal SITA policies achieved with permutations
π(c) = c and $(c) = 3 − c, R∗π(x) (continuous line)
and R∗$(x) (dashed line), respectively. It is assumed that
C = 2, X uniformly distributed over [0.5,1.5] and λ =
µ1 = µ2/2 = 1. The threshold points yπ1 = 0.919822 and
y$1 = 1.28605 have been obtained by numerically solving
the optimizations in (51). Though different, these two SITA
policies induce the same vector of loads: with π and $,
the loads of type-1 servers are 0.149018 and the loads of
type-2 servers are 0.175491. Both permutations induce an
asymptotic mean waiting time equal to 0.63324.
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Fig. 4. Profiles of the SITA policies R∗
π(x) (continuous line) and R∗

$(x)
(dashed line).

4.4 Suboptimality of SITA-E

The KKT conditions of (53) imply that the following equa-
tions, obtained by differentiating the associated Lagrangian
function, need to be satisfied by v ∈ RC+ to be optimal
(assuming that v is in the interior of the feasibility region):

λ2vc
αcµ2

c

2− λvc
αcµc(

1− λvc
αcµc

)2 = `, ∀c (60)

where ` ∈ R is the Lagrangian multiplier associated to (54).
By contradiction, if λvc

αcµc
= γ for all c, i.e., the loads are all

equal, this means that necessarily γ = λE[X]/
∑
c αcµc, and

previous conditions boil down to

λγ

µc

2− γ
(1− γ)2

= `, ∀c (61)

which holds true if and only if µc is constant. This proves
that SITA-E is no more asymptotically optimal when servers are
heterogeneous.

By means of a competitive analysis, we now investigate
how bad the performance of SITA-E can be. The following
result says that the ratio between the mean waiting time
achieved by SITA-E and the mean waiting time achieved
by an asymptotically optimal SITA policy can be made
arbitrarily large; in the case of heterogeneous servers, there
are multiple SITA policies able to equalize server loads,
as this depends on which mapping between servers and
intervals is used, and we let R∗K denote any of such policies.

Theorem 3. Let the number of server types, C , be fixed. Then,

sup
λ,α,µ,F

limK→∞W (R∗K)

limK→∞ infR∈RW (R)
≥ C. (62)

Proof. Let ρ def
= λE[X]/

∑
c αcµc, WE

def
= limK→∞W (R∗K)

and W ∗ def
= limK→∞ infR∈RW (R). Using (53)-(55),

W ∗ =
1

2λ
min
v∈RC+

C∑
c=1

λ2

αcµ2
c

v2c
1− λvc

αcµc

(63a)

s.t.:
C∑
c=1

vc = H(xM )−H(xm) (63b)

λvc ≤ αcµc, ∀c. (63c)

Assume λ = αc =
1
C for all c, µ1 = 1, µ2 = · · · = µC = ε,

and X uniformly distributed over [ 12 ,
3
2 ], so that E[X] = 1,

H(xM )−H(xm) = x2M −x2m = 1 and ρ = 1
(C−1)ε+1 . Within

these conditions, we obtain

WE =
1

2λ

ρ2

1− ρ
=
C

2

1

((C − 1)ε+ 1)

1

(C − 1)ε
, (64)

where to obtain the first equality we have added in (53)-
(55) the constraint that server loads are equal. Adding v2 =
· · · = vC to the constraints of the optimization problem in
(63), we also obtain

W ∗ ≤ 1

2
min

v1∈[0,1]
v2∈[0,ε]

v21
1− v1

+
v22
ε2
C − 1

1− v2
ε

(65)

s.t.: v1 + (C − 1)v2 = 1

=
1

2
min
v1

v21
1− v1

+
1

ε2
C − 1

1− 1
ε

1−v1
(C−1)

(1− v1)2

(C − 1)2
(66)

s.t.: 1− ε(C − 1) ≤ v1 ≤ 1.

For φ ∈ (0, 1), v1 = 1− φε(C − 1) is a feasible point for the
last optimization, and therefore for such choice we obtain

W ∗ ≤1

2

(1− φε(C − 1))2

φε(C − 1)
+

1

2

φ2(C − 1)

1− φ
(67)

=
1

2

(1− φε(C − 1))2 + φ3

(1−φ) (C − 1)2ε

φε(C − 1)
. (68)

Combining this with (64), we obtain

WE

W ∗
≥ C

(C − 1)ε+ 1

1

(C − 1)ε
×

φε(C − 1)

(1− φε(C − 1))2 + φ3

(1−φ) (C − 1)2ε

and therefore, fixed C

sup
λ,α,µ,F

limK→∞W (R∗K)

limK→∞ infR∈RW (R)
≥ sup
λ,α,µ,F

WE

W ∗

≥ sup
φ∈(0,1)

lim
ε→0

C

(C − 1)ε+ 1

φ

(1− φε(C − 1))2 + φ3(C−1)2ε
(1−φ)

= sup
φ∈(0,1)

Cφ = C.

This concludes the proof.

5 NUMERICAL RESULTS

We present numerical results to validate our theoretical
findings and understand whether they can be applied in
the prelimit where K is finite and relatively small. Unless
otherwise specified, in the following we let X follow the
Bounded-Pareto distribution with shape parameter t = 1.5
(see (29)) and such that E[X] = 1 and xM/xm = 104

as in [16]. The Bounded-Pareto distribution with parame-
ter t ∈ (1, 2) generates ‘highly variable’ job sizes and is
common in empirical measurements of computing systems;
see [14, Section 2.2].
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Fig. 5. Percentage relative error of the asymptotic approximation in
Theorem 1 w.r.t. the optimal mean waiting time of the K-th system.

5.1 Convergence Speed of Optimal Performance

We evaluate the asymptotic formula for the optimal mean
waiting time, the RHS of (10), say W ∗, as approximation of
the optimal mean waiting time for the (finite) K-th system,
say W ∗K . Though we are mainly interested in large systems,
K ≥ 103, we limit the presentation to moderate values of
K because the exact computation of W ∗K is expensive and
exhibits numerical instabilities. We assume homogeneous
servers operating at speed µ = 1.

On a logarithmic scale, Figure 5 plots the percentage
relative error of W ∗ with respect to W ∗K , defined as

EK
def
=
|W ∗ −W ∗K |

W ∗K
× 100%, (69)

by varying K and λ. It is quite surprising that the asymp-
totic approximation provides accurate results even when K
is very small. When K = 20, the percentage relative error
ranges between 3% and 6%. When K = 100, the asymptotic
formula almost matches the optimal performance.

Similar results are obtained when comparing the mean
waiting time achieved by SITA-E, W (R∗K), versus the one
of the optimal SITA policy, W ∗K . Figure 6 plots the ratio
W ∗K/W (R∗K) for increasing values of λ and K . It converges
to 1 uniformly over λ fast.

5.2 Insensitivity to Server-type Permutations

We now focus on heterogeneous servers and investigate the
insights given in Section 4.2 and Theorem 2 numerically. We
fix C = 2, α1 = α2 = 0.5, µ1 ≤ 0.5 and µ2 such that
µ1 + µ2 = 1. Furthermore, we let λ = 0.4 so that the system
is 80% loaded for all K ≥ 2. When K = 2, this setup is
equivalent to the one used in Section 4 of [16].

Since C = 2, there are only two possible permutations:
namely, the ascending mapping A(i) = i and the descend-
ing mapping D(i) = 3− i. Let W ∗K,π be the ‘optimal’ mean
waiting time achieved with permutation π; when K > 2,
the computation of the optimal mean waiting time is nu-
merically expensive and therefore we assume that SITA-E is
applied among servers of the same type. Figure 7 illustrates
the behavior of W ∗K,D/W

∗
K,A for increasing values of µ1

and K . For all K and µ1, we observe that the descending
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the optimal SITA policy, respectively W (R∗

K) and W ∗
K .
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Fig. 7. Comparison between the ascending and descending server-
type permutations: when K is large, both of them provide the optimal
performance.

permutation always performs better than the ascending one,
meaning that it is preferable to assign short (long) jobs to the
fastest (slowest) servers. This is consistent with the results
presented in [16], [24]. However, both permutations provide
more and more similar results when K increases, almost
identical already for K = 50. This is in agreement with
Theorem 2 and also suggests that the convergence speed of
the optimal SITA policy toR∗(x) is “fast” even when servers
are heterogeneous. Similar results can be obtained for other
values of the shape parameter t and other distribution
functions, which we omit.

5.3 Balancing vs Unbalancing
In Theorem 3, we have shown that SITA-E performs poorly
in the worst-case scenario and when servers are heteroge-
neous, as the efficiency ratio

E def
=

limK→∞W (R∗K)

limK→∞ infR∈RW (R)
(70)

is not uniformly bounded over the set of model parameters.
Since the argument used to prove this result is based on the
analysis of a very unbalanced system in heavy-traffic, which
may be pathological, we now investigate whether this holds
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Fig. 8. Boxplots for the efficiency ratio E by increasing the system load
(x-axis) and for different values of C (number of server types).

true in the average-case scenario. Specifically, our objective
is to understand whether the average efficiency ratio E
scales as well (linearly) with C or other model parameters.

Towards this purpose, we have conducted an extensive
numerical analysis based on thousands of randomly gener-
ated models. This analysis is enhanced by the simple form
of the optimization in (53)-(55). The shape parameter t has
been chosen in (1,2) and the µc’s over [0.01, 10], uniformly
at random, together with the αc’s.

Using the Matlab’s boxplot command, which indicates
the median, the outliers (‘+’ signs), the 25th and 75th per-
centiles, Figure 8 illustrates the statistical behavior of E by
varying the system load ρ and when C ∈ {2, 5, 10}. The
data contained in each box refer to 1,000 random models, so
that a total of 3× 19× 1000 models have been generated.

In average, it turns out that the efficiency ratio is almost
constant in C and surprisingly close to one. This makes
the question ‘balancing vs unbalancing’ more intriguing be-
cause in practice a balanced allocation may be more robust
to errors in the estimation of model parameters. We also
notice that E is slightly decreasing in ρ. This is not surprising
because our metric is the overall mean waiting time, i.e., a
function that approaches zero when ρ→ 0. Under light load
conditions, equalizing server loads is probably not the best
choice because all traffic should be sent to the fastest server.

Similar results for the efficiency ratio are obtained even
in the case of realistic parameters. The online repository [32],
which contains workload logs collected from large scale
parallel systems in production use in various places around
the world, allows us to parameterize our model with respect
to C , K , α, µ and X ; to handle the data contained in
the repository. We used data from the RICC and CEA
data centers, which appear to be the most unbalanced
in terms of processor speeds. This led to the following
parameterization. For the RICC data center: K = 9441,
C = 3, α = (0.9728, 0.0271, 0.0001), µ = (1.66, 2.93, 3),
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Fig. 9. Efficiency ratio with respect to realistic parameters.

xm = 1, xM = 259200, E[X] = 6.0907e+10 and E[X2] =
1.4546e+16. For the CEA data center: K = 18864, C = 3,
α = (0.6107, 0.1221, 0.2672), µ = (2.3, 2.66, 2.7), xm = 1,
xM = 79920, E[X] = 96299030 and E[X2] = 2.1329e+12.
Figure 9 shows the behavior of E w.r.t. such parameters.

6 CONCLUSIONS

We have studied a class of size-based routing strategies in
large-scale multi-server distributed queueing systems with
highly variable workloads. When servers have identical
processing speeds, we have shown that the minimum mean
waiting time achievable by a Size-Interval Task Assignment
(SITA) policy converges, in the limit where the system size
grows to infinity, to the mean waiting time achieved by
SITA-E, the SITA policy that equalizes server loads (Theo-
rem 1). On the other hand, we have also shown that SITA-E
can perform arbitrarily bad when servers are heterogeneous
(Theorem 3). In this case, we have proven that the mean
waiting time achieved by an asymptotically optimal policy
does not depend on how job-size intervals are mapped to
servers (Theorem 2), though optimal cutoffs do. We observe
that there might be practical reasons to prefer one permuta-
tion rather than another: for instance, in some architectures
it may be convenient to run long (short) jobs on more
(less) reliable servers. Theorem 2 also allows for the efficient
computation of the C! asymptotically optimal policies as
all of them are linked to the solution of a unique strictly
convex optimization problem composed of C variables only.
This problem may be further analyzed analytically and an
explicit solution may be found in heavy traffic.

An extensive numerical analysis supports the claim that
the insights found in the limitK →∞ hold true even for the
original system where K is finite and that SITA-E performs
almost optimally in the average-case scenario even when
servers are heterogeneous.

In our analysis, we have assumed that the job size ran-
dom variableX admits a density function. IfX takes a finite
number of values, one can always build an auxiliary random
variable X̃ , admitting a density function on a bounded
support, arbitrarily “close” to the original X to obtain the
framework considered in this work.

An other direction for further research consists in extend-
ing our asymptotic optimality results to nested SITA policies,
which allow for size intervals that overlap. In homogeneous
systems, it is known that the optimal nested SITA policy
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provides the same mean waiting time of the optimal SITA
policy with non-overlapping size intervals [16, Theorem 3]
(and thus Theorem 1 also holds true with respect to this
larger set of policies). However, this may not be the case
in heterogeneous systems for finite K , though we may
conjecture that an asymptotically optimal SITA policy with
non-overlapping intervals is also asymptotically optimal
within this larger set. This is left as future work.
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