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Abstract— A Telemac study is a computationally intensive 
application for the real cases and in the context of quantifying or 
optimizing uncertainties, the running times can be too long. This 
paper is an example of an approximation of the Telemac results 
by a more abstract but significantly faster model. It shows how 
a metamodel can be easily built with low computational costs, 
and how it can help to understand and improve some global 
results of Telemac. 

I. INTRODUCTION 
Many sources of uncertainty lie in the real-world 

problems. Telemac as any model (i.e. approximation of 
reality) is error prone since uncertainties appear in the initial 
or boundary conditions, the system parameters, the modelling 
simplification or the numerical calculations themselves. 
Therefore, it is difficult to say with confidence if the design of 
a Telemac model has met all the requirements to be optimal. 
Calibration consists of tuning the model parameters so that the 
results are in better agreement with a set of observations. This 
phase is crucial before any further study can be conducted by 
avoiding a meaningless analysis or prediction based on false 
or too inaccurate results. This paper presents a statistical 
calibration of a Telemac 2D model (Gironde Estuary in 
France) with the learning of Telemac errors by a metamodel 
(i.e. a model of the simulation errors) to make the best use of 
limited observations data over a short time period. The 
metamodel here is a simplified version of Telemac behaving 
the same for all the locations where observation points are 
available. If the metamodel is correct, it will be able to 
compute as Telemac would do but with a highly reduced 
computational cost. 

While doing an analysis of the simulation errors it is shown 
how a metamodel (or surrogate, i.e. methods like Kriging, 
Polynomial Chaos, Neural Networks, etc.) can be designed 
with a low number of calls to Telemac. The minimal number 
of calculations to have a good approximation can be 
empirically defined [1][2][3] by: 

!"#$$% ≅ 10 × !*#+#,-.-+% 

The strength of the metamodel is highlighted with the 
reduction of the modelling discrepancy between the 
simulation and the observations by considering different errors 
globally or locally depending on the goal(s) to achieve, see 
Fig. 1. For instance, a multi-objective calibration can be 
quickly conducted with a metamodel even when the optimizer 
is a meta-heuristic requiring many runs like a NSGA-II based 
algorithm [4]. The optimal solution obtained after many calls 

to the metamodel is systematically validated by checking its 
expected performance with a last call to Telemac. 

 
Figure 1. Workflow of the metamodel use 

II. FORWARD MODEL 
Telemac 2D is used to solve the shallow waters equations 

on the real case of the Gironde Estuary in southwestern 
France, see Fig. 2. This estuary is important because of its 
large size involving many economic and environmental 
considerations. 

Several Telemac studies of the estuary have been carried 
out for the last decade mainly concerning the hydrodynamic 
[5][6] and morphodynamic [7][8][9]. In these studies, the 
importance of the calibration phase is systematically 
emphasized to achieve operational performance. Are 
concerned the Telemac computation time and robustness but 
also the accuracy of the water levels for tide forecasts.  

 
Figure 2. Gironde estuary with Telemac. Location of observation stations, 

bathymetry, friction zones and mesh size 
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The Gironde is a navigable estuary formed from the 
junction of rivers Dordogne and Garonne just downstream of 
the center of Bordeaux city, it is the largest estuary in western 
Europe. The hydraulic model used in this work covers 
approximatively 195 km between the fluvial upstream and the 
marine boundary conditions downstream representing an area 
of around 635 km2. The mesh of 173,781 nodes varies with 
cell lengths of 40 m within the areas of interest (navigation 
channel) to 750 m offshore (western and northern sectors of 
the model). This model has been built by CEREMA in the 
framework of the Gironde XL project [10]. 

The boundary condition along with the marine border of 
the model has been set up using depth-averaged velocities and 
water levels coming from the dataset of Legos numerical 
model TUGO (46 harmonic constants). Surge data, describing 
the difference between the tidal signal and the observed water 
level, is taken into account using results from the Hycom2D 
model of SHOM [11]. Surface wind data is also considered for 
simulating flows under windy conditions.  

The period of interest concerns two days of August 2015 
with six stations providing water levels every minute [6]. The 
time step for Telemac is 10 seconds and the ratio between the 
simulated and execution times is about 120 on 56 Intel Xeon 
cores @ 2.4 GHz. 

The calibration will aim to decrease water level differences 
between Telemac and the observation stations by optimizing 
some Root Mean Squared Errors over the two-day period: 

/%(1) = 4
1

!.
5(67

%(1) − 97
%):

;<

7=>

																							(1)

∀A	BC	(1. . !%)																																																	

 

where: 
• !% is the number of stations; 
• !. is the number of time steps; 
• /% is the RMSE for station A; 
• 1 is a vector of physical parameters; 
• 6 is the water level computed by Telemac; 
• 9 is the corresponding observation. 

If /%(1) is minimized for a certain value of 1 = 1E*., the 
Telemac model is assumed to be well calibrated for the station 
A on average over two days. Finding 1E*. implies the use of a 
specific algorithm with many trials and calls to Telemac to 
define an optimality path. These repeated model evaluations 
put a heavy workload on CPUs, and it makes more sense to 
replace /%(1) by an estimate /F%(1) with the help of a 
metamodel to be less resource intensive, see Fig. 1. 

Therefore, the problem can be written as a bound 
constrained optimization: 

GBCBGBHI				/F%(1) ≅ /%(1)																									(2)
AKLMINO	OP				1$Q ≤ 1 ≤ 1SQ																																				

 

where the vector 1 is made of three tidal parameters (T, V, W) 
and six friction coefficients XY7 for B in (1. .6), see Fig. 2, with 
bound constraints on the values of variables. 

A. Tidal parameters 
Tidal characteristics are imposed using a database of 

harmonic constituents to force the open boundary conditions. 
For each harmonic constituent, the water depth ℎ and 
horizontal components of velocity K and \ are calculated, at 
point ] and time O by: 

⎩
⎪
⎨

⎪
⎧ b(], O) =5b7(], O)

7

																																																											(3)

b7(], O) = d7(O)efg(]) cosk
2lO

67
− mfg(]) + o7

p + q7(O)r

 

where b is either the water level (referenced to mean sea 
level) H% or one of the horizontal components of velocity K 
or	\, B refers to the considered constituent, 67 is the period of 
the constituent, efg is the amplitude of the water level or one 
of the horizontal components of velocity, mfg is the phase, 
d7(O) and q7(O) are nodal factors and o7p is the phase at the 
original time of the simulation. 

The water level and velocities of each constituent are then 
summed to obtain the water depths and velocities for the open 
boundary conditions: 

⎩
⎪⎪
⎨

⎪⎪
⎧		ℎ = T5H%g − Hs + H,-#t

7

+ 	W																																		

K = V5K7
7

																																																														(4)

\ = V5\7																																																																					
7

 

where Hs is the bottom elevation and H,-#t the mean 
reference level. In (4), the multiplier coefficients of the tidal 
range and velocity, respectively T and V, at boundary 
locations and the sea level correction W are the coordinates of 
1 in (1) corresponding to tidal parameters. 

Upper and lower bounds (1$Q, 1SQ) for the tidal parameters 
are [6]: 

TABLE 1: BOUNDS FOR TIDAL PARAMETERS  

Parameter Lower bound vwx Upper bound vyx 
T 0.8 1.2 
V 0.8 1.2 
W 0.35 0.54 

 

B. Friction coefficients 
Friction terms come into the momentum equation of the 

shallow system are treated in a semi-implicit form in Telemac 
2D. The bed friction in | and } directions can be written as a 
function of the Strickler coefficient X%: 

 

b~ =
K√K: + \:

X%:ℎ
Ä
ÅÇ

bÉ =
\√K: + \:

X%:ℎ
Ä
ÅÇ

																																(5) 
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where ℎ is the water depth and (K, \) the velocity 
components. Bounds for the friction coefficients are [6]: 

TABLE 2: BOUNDS FOR FRICTION COEFFICIENTS 

Parameter Lower bound vwx Upper bound vyx 
XY> 30 46 
XY: 64 96 
XYÅ 80 100 
XYÄ 20 30 
XYÖ 64 96 
XYÜ 36 54 

 

III. METAMODELLING 
This part explains how to pass from /%(1) to /F%(1) in (2) 

by a training of the Telemac errors on the water levels given 
the space defined in Table 1 and 2.  

A.  Definition 
A metamodel is a CPU time inexpensive mathematical 

function that can replace a more complex model by 
approximation. Indeed, many simulation codes have become 
accurate for complex problems in physics as with 3D 
modelling. On the other hand, the simulation times have not 
necessarily decreased, and this makes some engineering 
studies difficult if they require for example an uncertainty 
quantification, a sensitivity analysis or optimization that rely 
on these models. A way out of this difficulty is to build a 
metamodel [12] with a limited number of simulations, i.e. a 
low number of outputs from the original model. 

Metamodels can be based on different methods like 
support vector machines, regression trees, proper orthogonal 
decomposition, neural networks, polynomial chaos, kriging 
and so on. Recent examples of metamodels with the Telemac-
Mascaret system use the polynomial chaos [13][14][15] or 
Gaussian Process [15][16] for a steady state hydraulics. 

B. Design 
A design of experiments is the first step to build a 

metamodel. It is used to sample the space of input parameters. 
In this way, the space filling design has been developed to 
address the issues of numerical simulation. This approach tries 
to best distribute a minimal number of samples in the input 
parameter space in order to capture the non-linear behaviour 
of output parameters. 

One of the most used design of experiments is the method 
called Latin Hypercube Sampling (LHS). This method 
generates well-distributed and non-redundant samples. It also 
addresses a wide variety of problems in terms of size of the 
input and output parameter spaces [17]. 

Fig. 3 shows two designs of experiments for a simple case 
with 50 points. The first design on the left is based on a random 
sampling while the second on the right is based on LHS. Input 
parameters space is better explored with LHS. For the case of 
the Gironde estuary, the LHS is built with 90 points as the 
length of 1 is 9. This is a minimal size according to [1][2][3]. 

 
Figure 3. Comparison of two designs of experiments 

C. Kriging Example 
Kriging is method of geostatistics, a family of techniques 

building response surfaces from a limited number of samples 
and estimating values at unknown locations. This method is 
named in honor of engineer D. G. Krige [18] by G. Matheron 
[19] who formalized the approach a few years later. 

The method approximates the deterministic function á by 
áà as the sum of a trend and a stationary stochastic process: 

áà =5â7ä7(1)

ã

7=>

+ å(1)																												(6)

NP\çå(17), å(1é)è = ê:ëí17, 1éì																	

 

where: 
• the trend ∑ â7ä7(1)

ã
7=>  can be seen as a regression 

model with â the regression parameter vector and ä7 
the basis functions; 

• å(1) is a realization of a stochastic process with zero 
mean and spatial covariance function; 

• ê: is the process variance; 
• ë is a correlation function; 
• ï is the number of samples from LHS (ï = 90). 

D. Validation 
An out-of-sample testing is used to validate the Kriging for 

assessing how the metamodel performs for unknown data. Ten 
points are added for testing the metamodel. Looking at the 
mean error over the six stations, the metamodel interpolates 
the test data with a mean squared error of 2.22 ∙ 10óÖ m2 and 
a coefficient of determination ë: of 0.996. Thus, the quality 
of the metamodel as estimator is considered satisfactory. 

IV. APPLICATIONS 
Paragraph § A is a distribution analysis of the errors in (1) 

after propagating the LHS design with Telemac. The 
paragraphs § B and § C are two applications of the metamodel 
that require many function evaluations /F%(1). 
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It should be noted here that the time required for the 
construction or use of Kriging is not significant compared to 
the calculation time of a Telemac run. Thus, the repeated 
metamodel evaluations are not an issue. 

A. Error Analysis 

 
Figure 4. Scatter plot matrix of /(1) for the LHS 

 
Fig. 4 plots the distribution of RMSE in (1) after 

propagating the LHS. For each station, the distribution looks 
like a Gaussian and two parts can be clearly identified 
depending on the geographical location and the distance from 
the sea, see Fig. 2. The errors on the Fort Médoc, Bassens and 
Bordeaux stations have a similar behaviour and clearly 
different from other stations closer to the sea. 

 
Figure 5. PCA correlation circle of /(1) for the LHS 

A Principal Component Analysis (PCA) is a method of 
data mining that consists of reducing the dimensionality of the 
problem to extract information. It is a projection method into 
a smaller space that decreases the number of variables. A 
graphical diagnostic is possible on the reduced dimensions. 
Fig. 5 is a diagnostic example with the correlation circle of 
PCA for the two first dimensions (i.e. the most significant 
ones, 85% of the variance is explained here). Contributions to 
the dimensions differ according to the position of the stations. 
The group consisting of Fort Médoc, Bassens and Bordeaux is 
confirmed. The errors in this group do not have the same 
behaviour as the other stations. In particular, the behaviour of 
the Lamena station errors is orthogonal to that of Fort Médoc, 
which makes the global approaches less relevant. 

 
Figure 6. Box plot of /(1) for the LHS 

 
Fig. 6 shows the distribution of RMSE in (1) with 

quantiles. Errors are larger on average for the most inland 
stations. It should be noted that in this study only tidal and 
friction parameters are considered. The influence of the 
hydrological forcing of the two upstream rivers Garonne and 
Dordogne is not studied. This one can have an influence at 
least locally [5]. 

B. Sensitivity Analysis 
A global sensitivity analysis is carried out with a variance 

decomposition using the Sobol’ indices [20]. The analysis 
makes it possible to rank in order of importance the sources of 
uncertainty on the output /F%(1) of the metamodel. 

The first order Sobol’ index of variable 17 (i.e. linear effect 
of 17 on /F%) is: 

ô7 =
ö7

õúùí/F%ì

qBOℎ		ö7 = õúùçûí/F%ü17ìè

																											(7) 

The second order Sobol’ index of two variables 17 and 1é 
(i.e. cross influence on /F%) is: 

ô7é =
ö7é

õúùí/F%ì

qBOℎ		ö7é = õúùçûí/F%ü171éìè − ö7 − öé

														(8) 
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And the total Sobol’ index of variable 17 (linear and non-
linear effects on /F%) is: 

ô°7 = ô7 +5ô7é +5ô7éã +	∙∙∙	=
é¢ã

1 − ô~7											(9)
é

 

The computation of Sobol’ indices is often done with a 
numerical integration based on Monte Carlo method. This 
method is inexpensive here because the metamodel is 
extremely fast. 

Sobol’ indices are computed on the variance of the mean 
value RMSE over all the stations /F(1): 

/F(1) =
1

!%
5/F%(1)																												(10)

;§

%=>

 

 
Figure 7. Sobol’ indices (total and first order) of 1 on /F(1) 

 
According to Figure 7, only 4 of the 9 parameters are 

significant. The other parameters could have been ignored (i.e. 
fixed) because on average they have no influence on the water 
level errors. 

This result is in perfect agreement with the transient 
computation of Sobol’ indices as mentioned in [6]. 

C. Optimization 
Sensitivity analysis, calibration, design, reliability 

assessment and other studies require many function 
evaluations. In this section, several calibration examples using 
metamodel and optimization are presented. 

The first example is the minimization of /F(1) in (10). This 
is done with two different optimization algorithms, a 
metaheuristic (PSO [6]) and a gradient based method (Newop, 
available in the sources of the Telemac-Mascaret system). 
Newop requires less function evaluations than PSO to 
converge but its final result can depend on the initial guess. 

Fig. 8 shows the convergence of PSO and Newop with the 
values of /F(1) minimized. Both algorithms give exactly the 
same optimal result after convergence: 0.1259	G. This result 
is an average value of all the stations. 

To see if the metamodel is reliable enough, the 
corresponding optimal solution for 1 has been checked 
directly with Telemac. That one gives: 0.1265	G. The 
difference is 0.5%, less than 1	GG which is remarkable and 
confirms the good construction of the metamodel. 

 
Figure 8. Convergence of the optimization algorithms 

 

The result of this optimization for one period of a tidal 
wave is illustrated in Fig. 9. It corresponds to the worst result 
at Bordeaux station with an error value greater than 17.5	NG 
on two days. 

 
Figure 9. Tidal wave at Bordeaux after calibration (average goal) 

 
Instead of looking for an average goal for all the stations, 

it might be interesting to calibrate each station individually, 
that is, to minimize /F%(1) in (2) instead of /F(1) in (10). 

In Fig. 10 improvements per station are indicated in 
comparison of the previous optimization. For each station 
there is a different optimal solution for 1 (tidal and friction 
parameters) that minimizes the RMSE on a two-day period. 
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As might be expected, the optimization of a particular station 
is locally more interesting than the shared solution by all the 
stations. 

 
Figure 10. Improvement with an individual goal 

 
One can also think of another mono-objective like 

minimizing the standard deviation if the model must have the 
same performance whatever the station or minimizing the 
maximum error which is a non-differentiable problem but 
treatable with PSO as shown in Fig. 11. 

 
Figure 11. Minimizing /F%(1) for three different objectives 

 
RMSE for Fort Médoc and Lamena stations are 

orthogonal, see Fig. 5. Tackling the minimization of these two 
errors in the same mono-objective problem is risky because 
minimizing one is in conflict with the other. It is better to deal 
with two separated objectives simultaneously; it is the role of 
the multi-objective optimization. If the problem is nontrivial, 
it will find a number of nondominated solutions defining a 
Pareto front. This frontier is a trade-off between objectives. 

The multi-objective evolutionary algorithms are dedicated 
to find a set of Pareto optimal solutions. This family of 
algorithms requires a high number of function evaluations to 
converge but thanks to the metamodeling this drawback is no 
more an issue. One of the most used algorithms is NSGA-II 
[4]. The solutions of a Pareto front with NSGA-II for the 

simultaneous minimization of RMSE for Fort Médoc and 
Lamena stations is presented in Fig. 12. 

 
Figure 12. Pareto front of a two-objective minimization 

 
With a multi-objective approach, it is easy to confirm that 

the objectives in Fig. 11 are conflicting. Indeed, if a two-
objective minimization is launched with the pair (Max, Mean) 
or (Std, Mean), the result is again a Pareto front as illustrated 
in Fig. 13. 

 
Figure 13. Pareto fronts of 2 two-objective minimizations 

 
It is still possible to calibrate a model by supporting several 

objectives simultaneously, the number of objectives to be 
achieved may be greater than two. Other criteria than the 
RMSE could have been chosen, such as the bias or the Nash 
coefficient to evaluate the model efficiency. Following this 
idea, a new optimization with three objectives is carried out 
with always the metamodel based on the Kriging to evaluate 
the criteria. The results are shown in Fig. 14. 

	

•¶eô =
1
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1
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%														(11)

;<

7=>

;<

7=>

!eôß = 1 −
∑ (67

%(1) − 97
%):;<

7=>

∑ (67
%(1) − 9®%):;<

7=>

																								

																																	
∀A	BC	(1. . !%)																																															

 



XXVIth Telemac & Mascaret User Club Toulouse, FR, 16-17 October, 2019 
 
 

 

From Fig. 14 it is clear that Nash values are not 
significative because they are all close to value 1. The bias is 
always positive with a value around 3	NG. Bias and RMSE 
may conflict with the lowest error values. 

 
Figure 14. Pareto front of a three-objective minimization 

V. CONCLUSION 
The purpose of this article is to introduce practitioners of 

the Telemac system to the construction of a metamodel. A 
metamodel is explained on the example of an approximation 
of Telemac errors compared to observations on a real case. The 
metamodel is then used for various applications concerning 
the analysis and the sensitivity of the errors as well as the 
calibration by minimization of these same errors. 

A perspective of this work is to assess the validity period 
of a metamodel. Indeed, the behaviour of the physics can 
slightly change over time and it may be necessary to update 
the metamodel. This can be important for the implementation 
of data assimilation techniques. 
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