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Corrosion defects affect the structural integrity of onshore pipelines making them prone to a Loss of 
Containment (LOC). LOCs may trigger significant consequences over the surrounding people and 
environment. Therefore, In-Line (ILI) inspections are commonly implemented to measure indicators of the 
metal loss along the pipe due to corrosion to support future intervention decisions. However, ILI tools are 
subject to detection uncertainties that hide the real number of defects because of the accuracy of the 
technique and the complexity of the spatially distributed corrosion degradation. This paper presents a 
framework in which a corroding pipeline is assessed spatially and temporally based on ILI measurements. 
This framework includes new defects generated over time, which are clustered with those already detected, 
degraded, and assessed regarding the reliability. To this end, the number of new defects is estimated with a 
Homogeneous Poisson Process. The defects are clustered with the DNV RP-F101 criterion, and their 
degradation is predicted using Lévy processes. Finally, reliability is assessed temporally and spatially using 
Monte Carlo simulations based on a dynamic segmentation and a failure region. Following a real case study, 
the approach results allow us to identify critical segments of the pipeline. 

1. Introduction 

Management of corroded pipelines is one of the main objectives for pipeline operators considering the 
possible threats a Loss of Containment (LOC) may pose to the surrounding people and environment. Pipeline 
integrity is a performance-based process that manages pipeline serviceability and failure prevention 
considering the hazardousness of the transported materials. This process includes pipeline inspection, 
integrity assessment, and pipeline maintenance. For corroded pipelines, In-Line (ILI) inspections are 
commonly used to follow corrosion evolution. ILI tests provide valuable geometric and localized information of 
the defects identified along the pipeline using tools such as MFL (Magnetic Flux Leakage) and UT (Ultrasonic) 
(POF, 2009).  
Based on ILI inspections, a metal loss can be assessed by several approaches following deterministic, 
empirical, numerical or probabilistic models. However, ILI inspections are subject of uncertainties during the 
defect detection (i.e., non-detected defects and false alarms), location, and sizing (i.e., tool resolution), so 
probabilistic approaches are useful to deal with these uncertainties comprehensively. Available probabilistic 
approaches usually focus on plastic collapse, yielding, or leak failure criteria. The plastic collapse is evaluated 
through burst pressure approaches like ASME B31G, DNV RP-F101, CSA Z662 or the model proposed by 
Netto et al., (2005). Yielding criteria can be described based on longitudinal and circumferential stresses 
included in a Von Mises approach (Amirat et al., 2006). A leak failure criterion is based on a critical defect-
depth, which is commonly taken as 85 % of the pipeline wall thickness (Kale et al., 2004). Overall, these 
failure criteria are assessed through safety margins -or limit states- using operating or mechanical parameters 
to estimate pipeline failure probability. Nevertheless, maintenance decisions require to identify critical 
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segments along the pipeline, which can be associated, for instance, with soil corrosivity (Sahraoui & 
Chateauneuf, 2016). 
Segmentation is the process of defining pipe sectors with similar characteristics (external or internal) that can 
be used as units for integrity evaluation. Segmentation can be static (i.e., predefined distance), or dynamic -
i.e., adaptable to mechanical/external conditions. Static segmentations use fixed distances defined arbitrarily 
(e.g., one mile) or they are defined by specific mechanical elements of particular interest such as valves. In 
static segmentation, there is considerable variability in the results of risk assessment and may increase 
intervention costs due to unnecessary evaluations. Furthermore, critical zones can be hidden if risks are 
weighted throughout a long segment. In the dynamic segmentation, the length is not relevant, but the feature 
on which the segmentation is evaluated remain constant (Muhlbauer, 2004). From these two approaches, 
static segmentations are commonly implemented; some examples of integrity evaluations can be found in 
Hasan et al. (2002); Teixeira et al. (2008); however, a dynamic segmentation seems to be more reasonable 
for corroded pipelines, where localized defects are common along the pipeline. 
This paper presents a framework in which critical segments are obtained using information from ILI 
inspections. The framework starts with a generation of new (undetected) defects and a clustering process 
based on their closeness with those already detected. Afterwards, these clusters are deteriorated with 
continuous Lévy Processes, and their reliability is assessed using a pressure failure criterion. Finally, critical 
segments are found using a dynamic segmentation, a failure region, and acceptable predefined thresholds.  

2. Proposed framework 

2.1 Generation, location, and clustering of corrosion defects 

Although Smart PIGs (Pipeline Inspection Gauges) cover pipelines extensively, their inspections as any other 
measuring device are not perfect. According to Dann & Dann (2017), one uncertainty that limits the 
assessment of the pipeline is a detection threshold. ILI sensors detect and measure defects above a given 
threshold, which is commonly taken as 10 % of wall thickness. Hence, the real number of defects would be 
higher than the reported from the ILI report, so a generation rate should be considered for the future reliability 
predictions. In this paper, the number and initiation time of new defects were determined based on the 
suggestions of Zhang & Zhou (2014). Denote the number of defects up to the time ݐ by ܰ(ݐ) with (ݐ = 0 the 
time of installation). Consider also a continuous time-dependent function (ݐ)߉ that is associated with the 
expected number of defects generated over	[0,  Zhang & Zhou (2014) suggested a general form of this .[ݐ
function as (ݐ)߉ = ׬ ௧଴	߬݀(߬)ߣ with (ݐ)ߣ  the instantaneous rate of new defects; however, in this paper this 
function was estimated using the mean increment of the number of defects (per segment) from two 
consecutive ILI inspections. Given the function (ݐ)߉, the number of defects up to time ݐ ( ௧ܰ) follows a Poisson 
distribution with the mass probability shown in Eq(1). 

݂൫ ௧ܰ ∣∣ Λ(ݐ) ൯ = Λ(ݐ)ே೟ exp൫−Λ(ݐ)൯௧ܰ! , ݎ݋݂ ݐ > 0 (1) 

Once the number of defects is determined, the next steps are to calculate the time in which these defects 
initiate their degradation process and to locate them along the pipeline. The first step is explained in detail by 
Zhang & Zhou (2014). Regarding the location, it depends on two parameters, namely, abscissa and clock-
position. The latter corresponds to the relative orientation of the pipeline using a 12 hour-clock analogy. In this 
paper, the new defects were randomly spread using the current location distributions along the abscissa and 
the clock position. 

After the new and detected defects were obtained and located, these defects were clustered in the inner and 
outer walls of the pipeline using the DNV RP-F101 criterion. This criterion was selected because of its 
interesting results against other limit distance criteria and supervised/unsupervised learning methods reported 
in Amaya-Gómez et al. (2016). This criterion uses the following longitudinally (݈௟௜௠) and circumferentially (ܿ௟௜௠) 
limit distances between two defects as a function of the pipeline diameter (ܦ): ݈௟௜௠ = and ܿ௟௜௠ ݐܦ√2 =   .ݐ	ܦ√ߨ
2.2 Degradation process and reliability assessment 

For the degradation process, a Lévy process (LP) was considered per cluster. A LP is defined as follows: 
Given a filtered probability space (Ω, ℱ, ॲ, ℙ), an adapted process ሼܺ௧ሽ௧ୀ଴ஶ  with ܺ଴ = 0 almost surely is a LP if 
(Riascos-Ochoa et al., 2016): (i) ሼܺ௧ሽ௧ஶ	 has independent increments from the past; namely, ܺ௧ − ܺ௦  is 
independent of ܨ௦  with 0 ≤ ݏ	 ≤ ݐ	 ≤ ∞. (ii) ሼܺ௧ሽ௧ஶ  has stationary increments, namely, ܺ௧ − ܺ௦  has the same 
distribution as  ܺ௧ି௦ with 0 ≤ ݏ	 ≤ ݐ	 ≤ ∞. (iii) ܺ௧ is continuous in likelihood, namely, lim௧→௦ℙ(ܺ௧ ∈	⋅) = ℙ(ܺ௦ ∈	⋅). 
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For systems that degrade continuously, the LP can be described by a deterministic drift and a Lévy measure, 
using the Lévy-Ito decomposition and neglecting the Gaussian quadratic process. Then based on its 
characteristic function and the corresponding characteristic exponent, the lifetime and its expected value 
(Mean Time To Failure, MTTF) can be determined (Riascos-Ochoa et al., 2016). For this paper, a Gamma 
Process (Lévy sub-process) was considered because the lifetime and MTTF can be easily calculated. 
The pipeline reliability was evaluated through a burst pressure failure criterion by using the approach reported 
by Netto et al. (2005). This approach was chosen because is less conservative among other approaches such 
as ASMEB31G or CSA Z-662 (Amaya-Gómez et al., 2016). This criterion approximates the burst pressure of a 
pipeline based on the material yield strength, pipeline diameter, wall thickness, defect depth, and defect length 
(Netto et al., 2005). This burst pressure is then used in the limit state function: ݃௉ = ௕ܲ௨௥௦௧ − ௢ܲ௣, where ௕ܲ௨௥௦௧ 
and ௢ܲ௣ are the burst and operating pressures, respectively. A failure occurs when ݃ ≤ 0, whereas the pipeline 
is in a safe zone for ݃ > 0. The failure probability was then calculated with Monte Carlo simulations by 
assuming the operating pressure is Gumbel distributed -following the recommendations of CSA (2007)- and 
the method discussed in Hasan et al. (2002) to estimate their parameters.  

2.3 Dynamic segmentation and failure region 

Consider a fix segment length ݀௦௘௚ in which the pipeline length ܮ௡ can be divided into ݊ =  ௡/݀௦௘௚ segmentsܮ
and estimate the failure probability of each segment. Once this task is carried out, segments are shifted a 
distance Δ݀௦௘௚ < ݀௦௘௚ ; i.e., Δ	݀௦௘௚ = ߞ ⋅ ݀௦௘௚ , where for example ߞ ൎ 	0.1 , and the failure probability is 
recalculated. Segments are shifted until they reach the location of an original segment; i.e., ݇ times with ݇ = ݀௦௘௚/Δ݀௦௘௚. Once the segment has been shifted ݇ times and the failure probabilities are calculated, the 
largest and shortest probabilities are used in a secant interpolation approach to determine upper and lower 
envelopes (Figure 1a). To this end, Matlab® functions developed by (Martin, 2010) and (Garcia, 2014) are 
considered. 

a) 

 

b)  

Figure 1: a) Dynamic Segmentation and b) Critical Region schemes 

Segment length ݀௦௘௚ is determined by maximizing the mean difference between the failure probability without 
segmentation ( ௙ܲಿ ೄ) and both envelopes (ࣟ௨,ࣟ௅) for a given segment length ࣣ: 
maxࣣ∈ୗ 1ܰ ෍หࣟ௎௝ (ࣣ) − ௙ܲಿೄหே

௝ୀଵ ൅ 1ܰ ෍หࣟ௅௝(ࣣ) − ௙ܲಿೄหே
௝ୀଵ  (2) 

where ܵ  is the set of possible segment lengths such that maxܵ = ߙ < ௡ܮ	 . Considering the entire joint 
replacement recommendation in case of a corrosion failure (ERCB, 2011), minܵ = ߚ ൒ ߭  where ߭  is the 
minimum joint length reported of the pipeline. Based on these length segments for each evaluating year, a 
critical region is proposed for a spatial/temporal evaluation. This critical region is obtained from the 
upper/lower envelopes quartiles, i.e., 50 and 75 % of the data (Figure 1b). Then, two critical regions are 
proposed to illustrate the pipeline condition temporally along the abscissa. 

3. Case study 

This example aims to identify possible time and segments to intervene the pipe. The case study evaluates a 
carbon steel pipeline grade API 5L X52 alloy with an outer diameter of 273.1 mm (10-inch nominal diameter), 
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with a length of 44 km, a MAOP of 1500 psig, SMYS of 52 psig, SMTS of 60 psig, and an average wall 
thickness of 6.35 mm. Two corrosion data sets were obtained from ILI runs, 2 years apart. In the first run, 
33,466 defects were identified and in the second 59,101. From these datasets, (i) almost 50 % of them are 
classified as pitting and the remaining are distributed mainly in circumferential slotting, and (ii) the metal loss 
defects are mostly located in the inner wall with around 80 % in both ILI measurements. Therefore, this paper 
focuses on the data obtained from the inner wall. 

4. Results 

4.1 Generation and degradation processes 

Based on the two real ILI inspections, the number of new defects was predicted using Eq(1) with an expected 
number of defects up-to-time ݐ (per kilometer) of Λ(ݐ) =  To illustrate how these defects are generated .ݐ	266.3
and located, Figure 2 depicts the obtained results for a segment of the pipeline in the last inspection (Figure 
2a) and 10 years after of generating defects (Figure 2b). Note that the distribution in Figure 2b is randomly 
placed with a predominant location where the defects have already existed; see for instance near 3800 km 
and a perimeter about 0.1 m. These figures show that new defects are more likely to be located close to the 
current defects of the pipeline, but a general or localized corrosion may also be incorporated. 

a) b)

Figure 2. a) Initial (ILI) and b) after 10 years defect distribution 

For the case study, a 5-year generation process was added to the already detected defects in the last ILI 
inspection. This timespan was selected because the time between inspections is about 4 to 6 years. After 5 
years, a new inspection is expected to occur, updating the current number of defects. This new condition may 
trigger repair decisions that reduce Λ(ݐ); therefore, a higher generation time could be extremely conservative.  
From 113,677 defects in 44 km (over 59,000 defects generated), a total of 11,755 clusters were determined 
using the criterion of DNV, with an average number of 6 defects per cluster. Because of the amount of data, 
the degradation process was limited to homogeneous Lévy Processes for each cluster and another for 
isolated defects. For each cluster, their defect depths, the years of this inspection, and the installation year 
were used in a moment matching approach to calculate the degradation parameters, whereas for the isolated 
cases the mean degradation of the pipeline was used instead for this purpose (see van Noortwijk, (2009)). 
The degradation process allows decision-makers to estimate the MTTF of each defect using a defect depth of 
6.35 mm (i.e., the entire wall thickness) as the failure criterion. At the moment the pressure was not involved, 
so this failure represents a loss of the containment as in a leak, but it could also implicate a burst of the pipe. 
A preliminary result of the minimum MTTF along the pipeline every 50 m is shown in Figure 3. In this figure, 
two segments around 18 and 33 km have a MTTF about 10 years, whereas the remain defects depicted 
ranges near 20 to 50 years. Based on similar results, intervention decisions such as a monitoring or upcoming 
repairs could be supported in the next years to avoid a loss of containment in larger risk zones. 

 

Figure 3. Minimum MTTF for every 50 m 
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4.2 Reliability-based results 

The following parameters for the dynamic segmentation were considered based on the reported joints: ߚ = ߙ ,5 = 100, and Δ	݀௦௘௚ = 1. Based on a sensitivity analysis of ݀௦௘௚ using the indicator of Eq(2), it was determined 
that the more significant results be found in a segment length between 10 to 15 m; a segment length that 
matches with the case study joint length range (almost 78 % are between 10 and 14 m). These results would 
suggest that a great focus of corrosion defects are located near the pipeline joints. 

 

Figure 4. Dynamic Segmentation Results for 10 years and ݀௦௘௚ = 	9. 

To illustrate how this approach identifies critical zones along the pipeline, a dynamic segmentation at 10 years 
using ݀௦௘௚ = 9 m was obtained and depicted in Figure 4. This figure shows the failure probability without 
segmentation ௙ܲಿ ೄ around 0.02, the upper envelope as the solid red line, and the lower envelope as the dash-
dot green line, and the mean between these envelopes in the black dash line. The results of this illustrative 
example show that relevant differences were obtained between the two envelopes (upper and lower) and ௙ܲಿ ೄ 
near segments such as 13-16 km, 31-34 km, and 40-43 km, as it can be evidenced with the mean of these 
envelopes. Note that these segments have at most differences of one order of magnitude and that ௙ܲಿ ೄ is not 
within the two envelopes (see the first 5km). 
a) 

 

b) 

  

Figure 5. a) Critical Region Results and b) Density of the time to reach ௙ܲ = 10ିଷ 
Finally, the critical region was defined to evaluate pipeline condition over time (see Figure 1). Quartiles of the 
envelopes were used to generate two critical regions depending on the concentration of data from the 
obtained envelopes: i) 50 % and ii) 75 % (Figure 5a). These critical regions expose an important variability 
throughout the pipeline obtaining ranges greater than one order of magnitude, particularly for the range of 10 
to 15 years. To identify a possible time and segments to intervene, consider, for instance, the Low Safety 
Reliability level reported by DNV RP-F101 (< 10ିଷ) with the critical region. If the Lower Envelopes (50 % and 
75 %) are used, an intervention can be recommended in the next 6-7 years of the inspection because these 
envelopes exceed this threshold, which almost matches with the mean time to reach P୤ = 10ିଷ if the defects 
were treated separately (Figure 5b). Then, critical segments can be identified using the dynamic segmentation 
along the pipeline as it was described with the example in Figure 4. The proposed critical region is an 
interesting alternative to integrity evaluations that are commonly based on fixed segmentations. This approach 
follows a continuous-reliability assessment based on a corrosion degradation process that can be used with 
acceptability thresholds to support decision-making in future interventions. This approach can be used with 
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other spatial evaluations that include, but are not limited to soil aggressiveness (Sahraoui et al., 2016), 
population density, and high environmental impact with the aim to support risk-based decisions.  

5. Conclusions 

An integrity evaluation was proposed for corroded pipelines based on a dynamic segmentation and a failure 
region based on information provided from ILI inspections. The proposed approach aims to identify critical 
segments temporally and spatially along the pipeline lifetime to support intervention decision-making process. 
The dynamic segmentation was developed based on upper and lower envelopes from a set of shifted static 
segmentations. The failure region was determined using the quartiles of the obtained dynamic segmentation. 
In both cases, a plastic collapse failure and the clustering criterion of DNV RP-F101 were considered with 
Lévy-based degradation processes. Based on a real case study, it was possible to identify that an intervention 
should be considered the next 6 to 7 years of the ILI inspection, and special attention should be focused on 
the kilometers 10 to 15 and 30 to 35. 
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