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Abstract
Developing of theoretical tools can be very helpful for supporting new pollutant detection. Nowadays, a combination of mass
spectrometry and chromatographic techniques are the most basic environmental monitoring methods. In this paper, two organ-
ochlorine compound mass spectra classification systems were proposed. The classification models were developed within the
framework of artificial neural networks (ANNs) and fast 1D and 2Dmolecular descriptor calculations. Based on the intensities of
two characteristic MS peaks, namely, [M] and [M-35], two classification criterions were proposed. According to criterion I, class
1 comprises [M] signals with the intensity higher than 800 NISTunits, while class 2 consists of signals with the intensity lower or
equal than 800. According to criterion II, class 1 consists of [M-35] signals with the intensity higher than 100, while signals with
the intensity lower or equal than 100 belong to class 2. As a result of ANNs learning stage, five models for both classification
criterions were generated. The external model validation showed that all ANNs are characterized by high predicting power;
however, criterion I-based ANNs are much more accurate and therefore are more suitable for analytical purposes. In order to
obtain another confirmation, selected ANNs were tested against additional dataset comprising popular sunscreen agents disin-
fection by-products reported in previous works.

Keywords Mass spectra . Fragmentation .Organochlorine pollutants .Molecular descriptors .Artificial neural networks . Binary
classification . Disinfection by-products . Sunscreen

Introduction

Chlorine-containing organic compounds are probably one of
the most commonly reported environmental pollutants

causing serious problems from decades. There are several ma-
jor sources of these species including industrial sewage and
municipal wastewater (Lee et al. 2006; Antoniou et al. 2006;
Sánchez-Avila et al. 2009), pesticides (Karlsson et al. 2000;
Carvalho 2017; Harmouche-Karaki et al. 2018; Salvarani
et al. 2018; Nambirajan et al. 2018), combustion gases
(Morton and Pollak 1987; Hu et al. 2010), or water disinfec-
tion by-products (Richardson 2003; Kawaguchi et al. 2005;
Moradi et al. 2010). Organochlorine compounds have been
frequently detected in surface (Chen et al. 2011; Navarrete
et al. 2018; Ali et al. 2018), ground (Shukla et al. 2006;
Jayashree and Vasudevan 2007; Chaza et al. 2018) and pota-
ble waters (Aydin and Yurdun 1999; Gelover et al. 2000;
Palmer et al. 2011), soil (Fang et al. 2017; Thiombane et al.
2018), wastewater, sewage sludge (Bester 2005; Clarke et al.
2010), and marine organisms (Smalling et al. 2010; Gonul
et al. 2018; Luellen et al. 2018). Interestingly, there are also
natural, non-anthropogenic sources of these compounds such
as higher plants, ferns, certain fungi, algae, and phytoplankton
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(Gschwend et al. 1985; Engvild 1986; Harper et al. 1988;
Wuosmaa and Hager 1990; Gribble 1996).

It has been shown that a number of chloroorganic pollutants
exhibit carcinogenic and mutagenic potential causing irrevers-
ible damage to living organisms (Lampi et al. 1992; Høyer
et al. 1998; Ghosh et al. 2018). These persistent organic pol-
lutants are accumulated in fats and are resistant to biodegrada-
tion (Lee et al. 2014). Numerous studies showed that emerging
pollutants, such as personal care products or drugs, can enter
the environment and undergo conversion under water disinfec-
tion conditions to toxic organochlorine compounds (Boorman
1999; Hrudey 2009; Zhao et al. 2010; Hu et al. 2017; Manasfi
et al. 2017; Gackowska et al. 2018). In order to evaluate the
environmental risk posed by new chlorine-containing pollut-
ants, it is important to use relatively fast and accurate methods
of their identification. However, the choice of the method is
dependent on the type of the sample. One of the most widely
used techniques is GC or HPLC chromatography combined
with mass spectroscopy (MS) techniques. Analytical proce-
dures developed for organochlorine pesticide detection de-
serves special attention. Since pesticides are volatile and ther-
mally stable compounds, gas chromatography and mass spec-
trometry or tandemmass spectrometry (MS/MS) are common-
ly used to identify this group of compounds in complex envi-
ronmental samples. These techniques are particularly useful
for the simultaneous detection of compounds with different
physicochemical properties (Domínguez et al. 2016). There
are many interesting applications of chromatographic methods
utilizing mass spectrometry methods. As it was reported in
several studies, ultra-high performance liquid chromatography
(UHPLC) combined with quadrupole time-of-flight (TOF)
mass spectrometer was found to be an efficient and accurate
approach for complex wastewater matrices containing
pharmaceutics and their metabolites, mycotoxins, and pesti-
cides (Petrovic and Barceló 2006; Martínez Bueno et al.
2007; Ibáñez et al. 2009; Masiá et al. 2014; Jacox et al.
2017). Another interesting examples of advanced methods
are techniques combining linear ion trap Orbitrap analyzers
with chromatography (Bijlsma et al. 2013; Chen et al. 2017),
gas chromatography tandem mass spectrometry (GC-MS/MS)
(Raina and Hall 2008; Feo et al. 2011; Barón et al. 2014; Luo
et al. 2018; Wang et al. 2018), and liquid chromatography
coupled to high resolution mass spectrometry (LC-HR-MS)
(Aceña et al. 2015; Kruve 2018). It should be noted, however,
that high resolution spectrometers are relatively expensive both
to purchase and operate. Besides, these methods require a com-
plex validation processes, and hence are not widely used.
Another technique used to determine organochlorine com-
pounds is gas chromatography coupledwith selective detectors
such as electron capture detector (ECD) (Surma-Zadora and
Grochowalski 2008; Dąbrowski 2018), flame photometric de-
tector (FPD), and nitrogen phosphorous detector (NPD).
However, they are not appropriate for the simultaneous

analysis of a wide range of chloroorganic pollutants. For these
reasons, simple mass spectrometry (MS) is still commonly
used. As it was reported, the application of efficient isolation
methods such as pressurized liquid extraction (PLE) and solid-
phase extraction (SPE) along with GC/MS enables for detec-
tion of a wide range of chloroorganic pesticides and
polychlorinated biphenyls in soil and sediments (Dąbrowski
et al. 2002; Dąbrowska et al. 2003). Furthermore, combination
of simple liquid-liquid extraction with GC/MS was successful-
ly used for popular sunscreen agents 2-ethylhexyl-4-
me t hoxyc i nnama t e (EHMC) and 2 - e t hy l h exy l
4-(dimethylamino)benzoate (ODPABA) disinfection by-
products detection (Nakajima et al. 2009; Santos et al. 2012;
Gackowska et al. 2014, 2016; Studziński et al. 2017).

The development of mass spectral interpretation, including
spectra prediction, classification, and new fragmentation
rules, provides helpful tools for organic compounds identifi-
cation. This is particularly relevant in case of environmental
monitoring comprising detection of analytes in complex ma-
trices. Noteworthy, in many cases, there are no reference stan-
dards and no reference spectra available in the literature. There
have been several attempts to use theoretical models for EI-
MS spectra analysis (Gray et al. 1980; Gasteiger et al. 1992;
Copeland et al. 2012; Ásgeirsson et al. 2017; Spackman et al.
2018). According to our best knowledge, 1D and 2D
descriptor-based models devoted to the organochlorine com-
pounds have never been reported in the literature. This ap-
proach appears to be attractive due to the low computational
cost. Recently, many studies have demonstrated that constitu-
tional and topological molecular indices can be successfully
applied for predicting different physicochemical properties
and biological activities (Duchowicz et al. 2017; Cysewski
and Przybyłek 2017; Toropov et al. 2018; Przybyłek and
Cysewski 2018). In this paper, a new approach of organochlo-
rine compounds’ MS spectra classification was proposed and
the aim is to develop computationally efficient and reliable
predictive models using fast QSPR/QSAR descriptors and
ANNs methodology. Based on this approach, one can confirm
the reliability of proposed hypothetical structure by verifica-
tion of class membership determined using ANNs.
Additionally, the analysis of descriptors appearing in the mod-
el enables the assessment of the molecular features relevant
for the fragmentation behavior of organochlorines.

Methods

Mass spectra selection for ANNs’ binary classification
models generation

The mass spectra data were obtained from NIST database
(NIST Chemistry WebBook 2018). The list of compounds
along with corresponding [M] and [M-35] peak intensities is
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provided in online resource S1 (Table S1). The dataset con-
sists of chlorinated hydrocarbons and oxygen-, sulfur-, nitro-
gen-, and phosphorus-containing organochlorine compounds.
Additionally, a different collection comprising disinfection
by-products of several sunscreen agents was used as second
external test set for models with the highest predicting power.

Molecular descriptors calculation

Firstly, the IUPAC International Chemical Identifiers
(InChIKeys) corresponding to each MS spectra data records
were obtained from NIST database. Then, the SMILES codes
were generated from InChIKeys with an aid of PubChem
Identifier Exchange Service (https://pubchem.ncbi.nlm.nih.
gov/idexchange). Finally, these data were used for molecular
descriptor calculation taking advantage from PaDEL-
Descriptor software (Yap 2011). This was performed using
default computation settings.

Artificial neural network designing and statistical
analysis details

All classification models were generated and statistically an-
alyzed using STATISTICA 12 Software (Statsoft, USA). In
this study, multilayer perceptron (MLP) algorithm was used
and default dataset splitting settings, i.e., 70% for training set,
15% for validation set, and 15% for test set. Training and
validation sets are the collections of data used for model gen-
eration and its improvement during learning procedure. Test
set is the external data collection which was randomly exclud-
ed prior to the model generation.

Among 1444 1D and 2D descriptors calculated using
PaDEL-Descriptor, only those variables having significant in-
formation content, i.e., parameters computable for all mole-
cules and which variance is higher than 0.001, were included.
As a result of this analysis, 1056 relevant descriptors were
selected. However, this number of variables is still too large
to build a reasonable network. In order to avoid overfitting
problem, only descriptors with potentially the highest
predicting power were used for creating the final models ac-
cording to preliminary sensitivity analysis approach (Baczek
et al. 2004; Mendyk and Jachowicz 2005; Grossi et al. 2007;
Cutore et al. 2008; Tirelli and Pessani 2009; Olaya-Marín
et al. 2013; Yadav et al. 2014; Song et al. 2015; Rouchier
et al. 2016). Therefore, the following procedure was applied.
Firstly, five preliminary ANNs involving all 1056 descriptors
as input variables were generated automatically. Then, these
networks were used for ranking descriptors based on their
predicting power. As a result of this step, 100 descriptors with
the highest sensitivity were selected, which comprises only
4.5% of the number of considered MS spectra peaks in train-
ing set. At the next stage, learning procedure was repeated for
selected variables. As a result of this step, for each

classification criterion, five ANNs were generated and saved
as PMML files (online resource S2).

Results and discussion

Characteristics of MS spectra classification models

In case of majority organochlorine compounds, two character-
istic MS peaks can be distinguished, namely, molecular ion
peak [M] and [M-35] signal which is related to the most abun-
dant chlorine isotope 35Cl elimination (Krupčík et al. 1976;
Österberg and Lindström 1985; Webster and Birkholz 1985;
Nolte et al. 1993; Beil et al. 1997; Pollmann et al. 2001).
When [M] is not the base peak, fragmentation proceeds rap-
idly. On the other hand, high intensity of [M-35] peak denotes
relatively high stability of dechlorination products. In this pa-
per, the following two classification criterions were examined
and tested against their analytical applicability:

& Criterion I: class 1 (n = 1588) comprises [M] signals with
the intensity higher than 800 NIST units (according to
NIST database the intensity of base peak is 9999), while
class 2 (n = 1599) contains signals with the intensity lower
or equal than 800

& Criterion II: class 1 (n = 1592) comprises [M-35] signals
with the intensity higher than 100, while [M-35] signals
with the intensity lower or equal than 100 belong to the
class 2 (n = 1595)

By dividing the population in these ways, two large and
comparable subsets for each class are obtained. This is impor-
tant from the statistical viewpoint, since both classes are well
represented. The names of the compounds considered in this
study along with the classes assigned to them are summarized
in online resource S1, Table S1.

The majority of molecular peaks assigned to class 1 can be
observed on the MS spectra recorded for aromatic com-
pounds. This seems to be understandable, since π-
conjugation enhances the stability of chemical species includ-
ing ion radicals formed prior to the molecules fragmentation.
However, in case of sterically hindered compounds, e.g., 2-
chlorotoluene, 3,4-dichlorotoluene, and 2-chloro-1,4-
dimethylbenzene (online resource S1, Table S1), the intensity
of [M] peak is much lower than [M-35]. This indicates that
molecular ion undergoes dechlorination readily. Noteworthy,
in case of sterically hindered aliphatic compounds such as 1-
hydroxychlordene, 1,4,5,6,7,7-hexachlorobicyclo[2.2.1]hept-
5-ene-2,3-dicarboxylic acid, 1,2-dichlorohexane, trichlorfon,
1,1-dichlorocyclohexane, and 1,1,1,5-tetrachloropentane,
there are no molecular peaks on the EI-MS spectra. This
means that, due to the low stability of molecular ions, the
fragmentation proceeds very fast. The influence of steric
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hindrance on rapid fragmentation has been well documented
bymany studies (Grützmacher and Tolkien 1977; Shukla et al.
2003; Henderson et al. 2009; Li et al. 2009; Demarque et al.
2016). The absence of molecular peak was observed for 784
compounds of dataset (supplementary Table S1, online
resource S1). Some examples are bis(chloromethyl)ether,
α,α-Dichloromethyl methyl ether, and carbon tetrachloride.

The brief characteristics of generated networks (ANNs’
architecture, learning algorithm and applied error, and activa-
tion functions) is summarized in Table 1. In case of all net-
works, Broyden-Fletcher-Goldfarb-Shanno (BFGS) learning
algorithm was applied which is a very popular tool in solving
non-linear optimization problems, due to their reliability and
good effectiveness (Li et al. 2018). During the learning pro-
cedure, the accuracy of the neural network is being gradually
improved. Therefore, error function plays an important role.
The two types of error functions were applied in the models,
sum of squares and entropy. These functions are necessary for
modifying neural nets’ weights during learning procedure by
evaluating the prediction quality of models at particular step
(Bishop 1995). Another key features characterizing ANNs are
activation functions. The exponential function was found to
be the most frequently appearing in case of both hidden and
output layers (Table 1).

As we can see from Table 1, in case of all networks
representing criterion I and II classification systems, the over-
all prediction quality which includes both classes is high.
However in case of criterion I, exceptionally good accuracy
was achieved. Therefore, these models are the most useful
from the analytical application perspectives. Testing proce-
dure showed that MLP 100-19-2 ANN is characterized by
the highest predicting power. Among 228 mass spectra be-
longing to class 1, 204 were classified properly (true

positives). A slightly better result was achieved for class 2
(237 true positives and 13 false positives).

The relationships between sensitivity (true positive rate)
and specificity (true negative rate) can be illustrated by the
receiver operating characteristics (ROC) plots. An exemplary
ROC charts were summarized on Fig. 1. The ROC plot can be
quantitatively characterized using area under the curve (AUC)
parameter (Bradley 1997; Mandrekar 2010; Hajian-Tilaki
2013). In case of perfect prediction, the AUC is 1. When
AUC is near to 0.5, the quality of the model is poor. In case
of criterion I, the AUC values range from 0.9898 to 0.9973 for
training set and from 0.9557 to 0.9636 for validation set,
which indicates good data fitting achieved during learning
procedure. However, the quality of prediction can be evaluat-
ed based on the analysis of test set examples, which were
excluded prior to the model generation procedure. The AUC
values determined for this collection are also very high in case
of all ANNs, since they range from 0.9477 to 0.9709. An
additional insight into the models’ characteristics is provided
by the gain plots. On Fig. 2, the cumulative gain plots for the
most accurate criterion I-based model (MLP 100-19-2) were
presented. As one can see, these plots are typical for good
quality binary classification models. Gain charts illustrate the
relationship between classified by the model cases and the
percentage of true positives. For instance, if we chose half of
the compounds assigned by the MLP 100-19-2 model to class
1, more than 90% will be properly classified.

Considering the environmental relevance, several interest-
ing groups of pollutants can be distinguished in the test set. An
important class are polychlorinated biphenyls (PCBs). The
test set contains 18 PCBs including compounds containing
two (PCB 4, PCB 8), three (PCB 33), four (PCB 66, PCB
77, PCB 42, PCB 40, PCB 79), five (PCB 84, PCB 92, PCB

Table 1 Selected details of created ANNmodels. In the parentheses the percentages of properly assigned spectra corresponding to class 1 and 2 were
presented

ANN Learning algorithm Error function Activation function Model accuracy [%]

Hidden layer Output layer Training Testing Validation

Criterion I ([M] peak classification models)

MLP 100-19-2 BFGS 135 Sum of squares Exponential Exponential 96.68 (96.62; 96.75) 92.26 (89.47; 94.80) 92.47 (90.30; 94.61)

MLP 100-23-2 BFGS 129 Sum of squares Exponential Exponential 96.73 (96.88; 96.57) 91.84 (89.91; 93.60) 92.05 (90.72; 93.36)

MLP 100-15-2 BFGS 47 Entropy Tanh Softmax 98.74 (98.49; 99.01) 92.05 (92.98; 91.20) 92.47 (91.56; 93.36)

MLP 100-25-2 BFGS 105 Sum of squares Exponential Linear 97.09 (96.53; 97.65) 91.42 (90.35; 92.40) 92.05 (89.45; 94.61)

MLP 100-21-2 BFGS 43 Entropy Tanh Softmax 97.62 (97.69; 97.56) 91.00 (88.16; 93.60) 92.89 (92.41; 93.36)

Criterion II ([M-35] peak classification models)

MLP 100-25-2 BFGS 36 Sum of squares Tanh Logistic 91.08 (91.84; 90.30) 86.19 (86.30; 86.10) 83.68 (87.40; 79.74)

MLP 100-22-2 BFGS 73 Sum of squares Exponential Linear 90.86 (91.39; 90.31) 85.98 (86.30; 85.71) 86.19 (87.40; 84.91)

MLP 100-22-2 BFGS 72 Sum of squares Exponential Exponential 88.79 (89.53; 88.04) 85.98 (85.39; 86.49) 86.61 (88.62; 84.48)

MLP 100-22-2 BFGS 48 Sum of squares Tanh Linear 86.96 (86.78; 87.14) 84.94 (83.56; 86.10) 86.19 (88.62; 83.62)

MLP 100-24-2 BFGS 65 Sum of squares Exponential Linear 89.02 (88.00; 89.85) 85.36 (84.02; 86.49) 85.98 (86.99; 84.91)
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86, PCB 83, PCB 114), six (PCB 139, PCB 147), seven (PCB
189, PCB 178), and nine (PCB 206) chlorine atoms. The
majority of them were properly classified by all networks.
According to criterion I, most of these compounds belong to
class 1, which means that they do not easily undergo

fragmentation. As it was mentioned, this behavior is typical
for π-conjugated aromatic systems. Noteworthy, the high sta-
bility of PCBs and hence long half-life times is closely related
to their persistence in the environment (Robertson and Hansen
2001; Hens and Hens 2017). Another groups of pollutants are
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Fig. 1 Receiver operating characteristic (ROC) plots for training (a),
validation (b), and test sets (c) of [M] peak classificationmodels (criterion
I)
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Fig. 2 Cumulative gain charts for training (a), validation (b), and test sets
(c) of MLP 100-19-2 network developed for criterion I classification
system
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pesticides and insecticides (oxychlordane, endrin, heptachlor).
Interestingly, these compounds are characterized by very low
or even zero molecular peak intensities (online source S4,
Table S4), suggesting fast fragmentation (class 2). Another
interesting examples of the class 2 are acid chlorides. The
low stability of these compounds, which can be attributed to
the presence of highly reactive (C=O)Cl group, does not ex-
clude their significant impact on the environment.
Noteworthy, toxic activity of these compounds on the aqueous
organisms was well documented (Nabholz et al. 1993).
Several acid chlorides can be found in the test set including
2-propenoyl chloride, 3-methyl-butanoyl chloride, octanoyl
chloride, and 2-ethylhexanoyl chloride. All of them were
properly classified by all models. Interestingly, according to
the second criterion, these compounds belong to class 1
(Table S5), which means that the intensities of their [M-35]
peaks are high. This suggest that the abstraction of chlorine
atom proceeds rapidly. An interesting group of chloroorganics
are also chlorinated aliphatic compounds. Several examples
found in the test set are ethyl chloride, 5-chloropent-1-ene,
2,3-dichlorobutane, and 3-chloro-3-methyl-pentane. When
analyzing criterion I-based models, chlorinated aliphatics are
generally well classified by most of ANNs.

In order to evaluate the impact of each descriptor on the
accuracy of the models, sensitivity analysis was performed.
When considering molecular peak classification models (cri-
terion I), three of themost important variables (online resource
S3, Table S2) are atom type electrotopological state (E-state)
descriptors, minaasC, nsssN, and maxdO developed by Hall
and Kier (Hall and Kier 1995; Gramatica et al. 2000; Liu et al.
2001). These indices express minimum E-state value on aasC
atom types, the number of sssN atoms in the molecule, and
maximum E-state values on dO atoms, respectively. Another
parameters of a high significance are C2SP2 (carbon type
descriptor corresponding to sp2 carbon atom attached to two
other carbon atoms), path counts indices, piPC8 and piPC9
(Todeschini and Consonni 2009) and E-state parameters
maxaasC, maxsssCH, maxaaCH, and minaaCH.
Noteworthy, most of the parameters found among ten the most
important, namely, minaasC, C2SP2, piPC8, piPC9,
maxaasC, maxsssCH, maxaaCH, and minaaCH, are related
to carbon atoms features and π-conjugation. The appearance
of these molecular indices seems to be directly related to the
stability of molecular peak. As it was mentioned, chlorinated
aromatic hydrocarbons analogues such as PCBs, are less sus-
ceptible for fragmentation than aliphatic ones. This observa-
tion was confirmed by previous studies and can be explained
by high stability of π-conjugated systems (Mohler et al. 1958;
Sharma 2007; Nicolescu 2017). The role of particular descrip-
tors in non-linear model is often not straightforward and easy
to interpret. Nevertheless, some information can be inferred
from their distributions. On Fig. 3, the box plots of ten of the
most important variables, according to the sensitive analysis

were presented. Interestingly, as evidenced by the parametric
T test and non-parametric Mann-Whitney U and
Kolmogorov–Smirnov tests (p < 0.05), the statistically impor-
tant differences in distributions were observed for all descrip-
tors except nsssN. This is of course a rough description.
However, it shows that simple analysis of a particular variable
regarded separately from the rest of parameters may be mis-
leading, since according to the sensitive analysis, nsssN is
ranked as the second most important variable (online
resource S3, Table S2). Nevertheless, the good separation of
classes 1 and 2 can be observed for other descriptors (Fig. 3).
As it can be inferred, minaasC values are generally higher in
case of compounds belonging to class 1. Since the highest
minaasC values correspond to polychlorinated aromatic com-
pounds, this seems to be consistent with the previously ob-
served high intensity of PCBs’ molecular peaks. The high
stability of molecular ions containing several chlorine atoms
can be explained by effective delocalization of unpaired elec-
tron on chlorine substituents attached to hydrocarbon π-
conjugated systems. In general, the effect of resonance stabi-
lization of molecular ion and characteristic for aromatic com-
pounds can be illustrated by C2SP2 descriptor analysis. The
highest C2SP2 was observed for compounds containing sev-
era l a romat ic r ings . Some examples are t r i s (3-
chlorophenyl)phosphine, chlorophacinone, and 2-chloro-1,4-
dibenzamidobenzene. As it can be expected, compounds be-
longing to class 1 generally exhibit higher values of C2SP2
(Fig. 3). Another interesting descriptor is maxdO. In most
cases, this parameter takes higher values for class 2 indicating
fast fragmentation. Therefore, it can be considered as molec-
ular ion instability measure. The maxdO descriptor is high for
compounds containing relatively reactive carbonyl groups
such as ketones, amides, and esters. On the other hand, it takes
zero value for compounds containing no oxygen atoms.
Noteworthy, molecular ions of esters and ketones are known
to fragmentate readily via many paths such as inductive cleav-
age of the C–C bond next to carbonyl group, McLafferty
rearrangement, or carbon monoxide elimination (Demarque
et al. 2016).

Although classification models based on criterion II are
less accurate, they can be useful for additional fragmentation
behavior analysis. Noteworthy, many studies showed that the
appearance of [M-35] peak on the spectra corresponding to
the abstraction of chlorine atom from molecular ion is sensi-
tive to the molecular structure features (Smith et al. 1972,
1973; Levy and Oswald 1976; Xu et al. 2000). The inspection
of Table S3 (Supplementary material S3) shows that ten of the
most important descriptors are atom type E-state indices
(maxHaaCH, maxwHBd, maxHCHnX, nHCsatu ,
minHCsats, and nHBAcc) (Hall and Kier 1995; Gramatica
et al. 2000; Liu et al. 2001), Barysz matrix descriptors
(VE1_Dzm and VE1_DzZ) (Todeschini and Consonni
2009) , one ex tended topochemica l a tom index
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Fig. 3 The distribution of the most important descriptors appeared in the criterion I-based model
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Table 2 Classification of selected MS spectra of sunscreens degradation and chlorination products performed using MLP 100-19-2 (model 1), MLP
100-23-2 (model 2), MLP 100-15-2 (model 3), MLP 100-25-2 (model 4) and MLP 100-21-2 (model 5)

No. Proposed compound [M] Class
(exp.)

Source Class (calc.)

1 2 3 4 5

1 2-Ethylhexyl 3,5-dichloro-4-(dimethylamino)benzoate, SMILES:
CCCCC(CC)COC(=O)C1=CC(=C(N(C)C)C(=C1)Cl)Cl

430 2 (Sakkas et al.
2003)

2 2 1 2 1

2 2-Ethylhexyl 3-chloro-4-(methylamino)benzoate, SMILES:
CCCCC(CC)COC(=O)C1=CC=C(NC)C(Cl)=C1

571 2 (Sakkas et al.
2003)

2 2 2 2 2

3 2-Ethylhexyl 3,5-dichloro-4-(methylamino)benzoate, SMILES:
CCCCC(CC)COC(=O)C1=CC(Cl)=C(NC)C(Cl)=C1

761 2 (Sakkas et al.
2003)

2 2 2 2 2

4 2-Ethylhexyl 4-amino-3-chlorobenzoate, SMILES:
CCCCC(CC)COC(=O)C1=CC=C(N)C(Cl)=C1

430 2 (Sakkas et al.
2003)

2 2 2 2 2

5 2-Ethylhexyl 4-amino-3,5-dichlorobenzoate, SMILES:
CCCCC(CC)COC(=O)C1=CC(Cl)=C(N)C(Cl)=C1

538 2 (Sakkas et al.
2003)

2 2 2 2 2

6 2-Ethylhexyl (2E)-3-(3-chloro-4-methoxyphenyl)prop-2-enoate,
SMILES: CCCCC(CC)COC(=O)\C=C\C1=CC=C(OC)C(Cl)=C1

1099 1 (Gackowska et al.
2016)

2 2 2 2 2

7 2-Ethylhexyl (2E)-3-(3,5-dichloro-4-methoxyphenyl)
prop-2-enoate, SMILES: CCCCC(CC)COC
(=O)\C=C\C1=CC(Cl)=C(OC)C(Cl)=C1

68 2 (Gackowska et al.
2016)

2 2 2 2 2

8 3-chloro-4-methoxycinnamic acid, SMILES:
COC1=C(C=C(C=C1)C=CC(=O)O)Cl

9999 1 (Gackowska et al.
2014)

1 1 1 1 1

9 3-chloro-4-methoxybenzaldehyde, SMILES:
COC1=C(Cl)C=C(C=O)C=C1

9999 1 (Gackowska et al.
2014)

1 1 1 1 1

10 3,5-dichloro-4-methoxybenzaldehyde, SMILES:
COC1=C(C=C(C=C1Cl)C=O)Cl

9999 1 (Gackowska et al.
2014)

1 1 1 1 1

11 3-chloro-4-methoxyphenol, SMILES:
COC1=C(C=C(C=C1)O)Cl

7079 1 (Gackowska et al.
2014)

1 1 1 1 1

12 2,5-dichloro-4-methoxyphenol, SMILES:
COC1=C(C=C(C(=C1)Cl)O)Cl

5599 1 (Gackowska et al.
2014)

1 1 1 1 1

13 1-Chloro-4-methoxybenzene, SMILES:
COC1=CC=C(C=C1)Cl

9999 1 (Gackowska et al.
2016)

1 1 1 1 1

14 1,3-Dichloro-2-methoxybenzene, SMILES:
COC1=C(C=CC=C1Cl)Cl

9499 1 (Gackowska et al.
2016)

1 1 1 1 1

15 2-Ethylhexyl chloroacetate, SMILES:
CCCCC(CC)COC(=O)CCl

0 2 (Gackowska et al.
2016)

2 2 2 2 2

16 2,4-Dichlorophenole, SMILES:
C1=CC(=C(C=C1Cl)Cl)O

9999 1 (Gackowska et al.
2016)

1 1 1 1 1

17 2,6-Dichloro-1,4-benzoquinone, SMILES:
C1=C(C(=O)C(=CC1=O)Cl)Cl

7699 1 (Gackowska et al.
2016)

1 1 1 1 1

18 1,2,4-Trichloro-3-methoxybenzene, SMILES:
COC1=C(C=CC(=C1Cl)Cl)Cl

6199 1 (Gackowska et al.
2016)

1 1 1 1 1

19 2,4,6-Trichlorophenole, SMILES:
C1=C(C=C(C(=C1Cl)O)Cl)Cl

9999 1 (Gackowska et al.
2016)

1 1 1 1 1

20 3,5-Dichloro-2-hydroxyacetophenone, SMILES:
OC1=C(Cl)C=C(Cl)C=C1Cl

769 2 (Gackowska et al.
2016)

1 1 1 1 1

21 2-chloro-1-(4-methoxyphenyl)ethan-1-one,
SMILES: COC1=CC=C(C=C1)C(=O)CCl

851 1 (Kalister et al.
2016)

1 1 1 1 1

22 1-(4-t-butylphenyl)-2-chloro-3-(4-methoxyphenyl)
propane-1,3-dione, SMILES: COC1=CC=C
(C=C1)C(=O)C(Cl)C(=O)C1=CC=C(C=C1)C(C)(C)C

194 2 (Trebše et al.
2016)

2 2 2 2 2

23 1-(4-t-butylphenyl)-2,2-dichloro-3-(4-methoxyphenyl)
propane-1,3-dione, SMILES: COC1=CC=C(C=C1)C
(=O)C(Cl)(Cl)C(=O)C1=CC=C(C=C1)C(C)(C)C

0 2 (Trebše et al.
2016)

2 2 2 2 2

24 2-benzoyl-4-chloro-5-methoxyphenol, SMILES:
COC1=CC(O)=C(C=C1Cl)C(=O)C1=CC=CC=C1

1515 1 (Zhang et al.
2016)

1 1 1 1 1

25 6-benzoyl-2,4-dichloro-3-methoxyphenol, SMILES:
COC1=C(Cl)C(O)=C(C=C1Cl)C(=O)C1=CC=CC=C1

1512 1 (Zhang et al.
2016)

1 1 1 1 1

26 2,4,6-trichloro-3-methoxyphenol, SMILES:
COC1=C(Cl)C(O)=C(Cl)C=C1Cl

1000 1 (Zhang et al.
2016)

1 1 1 1 1

Environ Sci Pollut Res (2019) 26:28188–28201 28195



(ETA_Shape_Y) (Roy and Ghosh 2004; Roy and Das 2011),
and one topological charge descriptor (GGI8) (Todeschini and
Consonni 2009). Similarly as in the case of criterion I-based
model, descriptors related to carbon atom features and
aliphatic/aromatic character can be also found in the criterion
II-based model. Several of them, namely, maxHaaCH,
maxHCHnX, nHCsatu, and minHCsats, were highly ranked
by the sensitivity analysis. Other less important molecular
indices are carbon types (C2SP2, C1SP2, C1SP3) and path
counts indices (piPC8, piPC9, piPC10) (Todeschini and
Consonni 2009).

Exemplary application of models

In our previous works (Gackowska et al. 2014, 2016;
Studziński et al. 2017), degradation of popular UV filters in
the presence of different oxidizing and chlorinating agents
was studied. Sunscreen agent contamination deserves special
attention, due to the widespread use of organic UV filters in
personal care products (Santos et al. 2012). Furthermore, these
compound are relatively stable and therefore resistant to the
wastewater treatment (Ramos et al. 2015, 2016). In this sec-
tion, mass spectra of several sunscreen agents, 2-ethylhexyl-4-
m e t h o x y c i n n a m a t e ( E HMC ) , 2 - e t h y l h e x y l
4-(dimethylamino)benzoate (ODPABA), avobenzone, and
oxybenzone chlorination by-products were analyzed. Due to
the large variety of detected compounds, these results can be
useful for additional validation of proposed classification net-
works. Presented in Table 2, data comprises molecular peaks
intensities reported by our group and by other authors. In order
to apply the proposed classification criterion, the MS peak
intensities were scaled to a NIST units. In some cases, the
intensity values were obtained from graphic data. This can
be easily done using ImageJ (Schneider et al. 2012), which
is a comprehensive software dedicated for image analysis.

As one can see from Table 2, the majority of EI-MS spectra
belonging to the class 1 correspond to aromatic compounds
with chlorinated phenyl ring. However, the presence of aro-
matic moiety does not always indicate the appearance of high
molecular peak on the MS spectra. In several cases, including
aromatic compounds (2-ethylhexyl 3,5-dichloro-
4-(dimethylamino)benzoate, 2-ethylhexyl 4-amino-3-
chlorobenzoate, 2-ethylhexyl (2E)-3-(3,5-dichloro-4-
methoxyphenyl)prop-2-enoate, 2-ethylhexyl chloroacetate,
1-(4-t-butylphenyl)-2-chloro-3-(4-methoxyphenyl)propane-
1,3-dione, 1-(4- t-butylphenyl)-2,2-dichloro-3-(4-
methoxyphenyl)propane-1,3-dione), the intensity of molecu-
lar peak is very low (Table 2). This can be caused by the steric
hindrance effect which have been already described. The lack
of molecular peaks may cause some difficulties in degradation
product identification. Fortunately, most of these compounds
were properly classified. Interestingly, in case of 2-ethylhexyl
3,5-dichloro-4-(dimethylamino)benzoate, two proposed

models, MLP 100-15-2 and MLP 100-21-2, failed. This
shows that all five networks should be taken into account
when analyzing EI-MS spectra. As one can see form
Table 2, there are only two spectra wrongly classified by all
models, namely, 2-ethylhexyl (2E)-3-(3-chloro-4-
methoxyphenyl)prop-2-enoate and 3,5-dichloro-2-
hydroxyacetophenone. However, in case of 3,5-dichloro-2-
hydroxyacetophenone which was assigned to the class 1, the
intensity of molecular peak was slightly lower than classifica-
tion threshold (800 NIST units). In such cases, it is difficult to
unambiguously assign compounds, since depending on the
EI-MS spectra recording conditions, slightly different peak
intensities may be obtained. Another example of molecular
peak close to 800 NIST units can be observed for 2-chloro-
1-(4-methoxyphenyl)ethan-1-one. Fortunately, this com-
pound was properly assigned to class 1. It is worth to note
that, there is only one false-positive example of class 1 (2-
ethylhexyl (2E)-3-(3-chloro-4-methoxyphenyl)prop-2-
enoate). The intensity of molecular peak of this 2-
ethylhexyl-4-methoxycinnamate (EHMC) chlorinated disin-
fection by-product is 2500, which means that it should not
be classified to class 2.

Conclusions

Since simple EI-MS approach is still one of the most com-
monly used methods in pollutant environmental monitoring, it
is important to develop theoretical tools of MS spectra inter-
pretation. Detection of new compounds is often problematic
due to the lack of analytical standards and reference spectra in
theMS databases. However, there are many rules of molecular
ion fragmentation, which can be helpful in MS spectra analy-
sis. These rules are based on the structural features of the
molecules. For instance, there are characteristic fragmentation
pathways of aldehydes, esters, amines, etc. The rapid devel-
opment of QSPR methods allowing for the support of chem-
ical compounds identification was mainly focused on the re-
tention parameters modelling (Katritzky et al. 2000; Kaliszan
2007). However, several attempts of MS spectra modelling
appeared in the literature. Two major approaches can be dis-
tinguished, namely, predicting MS spectra features using
quantum-chemical computations (Cautereels et al. 2016;
Ásgeirsson et al. 2017; Spackman et al. 2018) and 2D struc-
ture and topology-based methods (Gray et al. 1980; Gasteiger
et al. 1992; Copeland et al. 2012). The latter approach can be
regarded as an extension of popular fragmentation rules. The
similar concept was presented in this paper. We have investi-
gated the applicability of chlorinated compounds MS spectra
classification model based on the 1D and 2D molecular de-
scriptors. The mass spectra were classified based on the two
characteristic [M] and [M-35] peak intensities. However the
first criterion due to the high accuracy of prediction was found
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to be more appropriate for analytical purposes. Apart from the
standard validation procedure, the selected models were tested
against some additional examples of chlorinated compounds
spectra reported in the literature. The majority of these spectra
were properly classified by all networks. This shows that the
approach presented in this study can be helpful for the identi-
fication of unknown chlorinated compounds. Although the
models does not generate the structure form the spectra, they
can be useful for confirmation of the hypothetical structure by
checking whether the theoretical classification of the potential
candidate meets the experimental results. It is worth to em-
phasize that in this study, only simple descriptors based on the
1D and 2D structure were taken into account. Therefore, the
presented approach can be probably developed by using more
advanced descriptors or dividing population into more than
two classes. Therefore, it seems to be reasonable to focus on
the further development of mass spectral prediction methods
based on neural networks and molecular descriptors.
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