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ON TARSKI’'S PROBLEM FOR VIRTUALLY FREE GROUPS

SIMON ANDRE

ABsTRACT. We give a complete classification of finitely generated virtually free groups
up to V3-elementary equivalence. As a corollary, we give an algorithm that takes as input
two finite presentations of virtually free groups, and decides whether these groups have
the same V3-theory or not.

1. INTRODUCTION

The problem of classifying algebraic structures up to elementary equivalence emerged in
the middle of the twentieth century. Around 1945, Tarski asked whether all non-abelian
finitely generated free groups are elementarily equivalent. Two decades later, Merzlyakov
made an important step forward by proving that free groups have the same positive theory,
i.e. satisfy the same first-order sentences without inequalities (see [Mer66]). Sacerdote
subsequently generalized Merzlyakov’s result and proved in [Sac73a| that all groups that
split as a non-trivial free product have the same positive theory, except the infinite dihedral
group Do, = Z/27 % 7/27. In the same year, Sacerdote proved in [Sac73b| that free
groups have the same V3-theory, meaning that they satisfy the same sentences of the form
VxIyy(x,y), where x and y are two tuples of variables, and v is a quantifier-free formula
in these variables. Merzlyakov and Sacerdote’s proofs rely heavily on small cancellation
theory.

Another major breakthrough towards the resolution of Tarski’s problem was the study of
systems of equations defined over a free group, due to Makanin and Razborov (see [Mak82],
[Mak84] and [Raz84]).

A positive answer to Tarski’s question was eventually given by Sela in [Sel06b] and by
Kharlampovich and Myasnikov in [KMO06|, as the culmination of two voluminous series of
papers.

Sela further generalized his work and classified torsion-free hyperbolic groups up to
elementary equivalence. His solution involves a study of the V3-theory of a given hyperbolic
group (see [Sel04] and [Sel09]), combined with a quantifier elimination procedure down to
V3-sentences (see [Sel05] and [Sel06a]). The theory of group actions on real trees plays a
crucial role in his approach (see for instance [GLP94], [RS94]|, [BF95], [Sel97]).

In this paper, we give a complete classification of finitely generated virtually free groups
up to Vd-elementary equivalence, i.e. we give necessary and sufficient conditions for two
finitely generated virtually free groups G' and G’ to have the same V3-theory, denoted
by Thy3(G) = Thys(G’). Recall that a group is said to be wvirtually free if it has a free
subgroup of finite index. For instance, it is well-known that SLy(Z) has a subgroup of
index 12 isomorphic to the free group Fs.

Among virtually free groups, a wide variety of behaviours can be observed from the
point of view of first-order logic. Here is an interesting illustration: on the one hand, all
non-abelian free groups are elementarily equivalent (see [Sel06b| and [KMO6]), while at the
other extreme, it can be proved that two co-Hopfian virtually free groups are elementarily
equivalent if and only if they are isomorphic. Recall that a group is said to be co-Hopfian if



2

every monomorphism from this group into itself is bijective. One example of a co-Hopfian
virtually free group is GL2(Z). Between these two extremes, the picture is much more
varied, and our goal in this paper is to give a description of it.

In fact, in the class of virtually cyclic groups, we already have a glimpse of the unexpected
influence of torsion on the first-order theory, as shown by the following example.

Example 1.1. Consider the following two Z/25Z-by-Z groups:
N={(a,t]|a®=1, tat7 ' =a% and N =(d,t'|ad?® =1, t'dt'™! =dt).

These groups are non-isomorphic, but N x Z and N’ x Z are isomorphic. It follows from
a theorem of Oger (see [Oge83|) that N and N’ are elementarily equivalent.

This example is a particular manifestation of a more general phenomenon that plays an
important role in our classification. Here below is an informal version of our main result;
see Theorem 1.17 for a precise statement.

Main result (see Theorem 1.17). Two finitely generated virtually free groups G and G’
are Y3-elementarily equivalent if and only if there exist two isomorphic groups I' O G and
IV D G’ obtained respectively from G and G’ by performing a finite sequence of specific HNN
extensions over finite groups (called legal large extensions) or replacements of virtually
cyclic subgroups by virtually cyclic overgroups (called legal small extensions).

As a corollary of this classification, we give an algorithm that takes as input two finite
presentations of virtually free groups, and decides whether these groups have the same
V3-theory or not. This algorithm relies on the main algorithm of [DG11], that takes as
input two finite presentations of hyperbolic groups, and decides whether these groups are
isomorphic or not.

Moreover, Theorem 1.23 gives three other characterizations of V3-elementary equivalence
among virtually free groups. In fact, it is worth noting that some of our results are proved in
the more general context of hyperbolic groups (see in particular Theorem 1.9 and Theorem
1.14), and we except that they will be useful in a future classification of hyperbolic groups
(possibly with torsion) up to elementary equivalence.

In addition, in some cases, we establish results stronger than V3-elementary equivalence,
namely the existence of elementary embeddings (or rather 3vV3-elementary embeddings, see
Defintion 2.4). We refer the reader to Theorem 1.10.

Before stating precise results, we need to introduce some definitions. Throughout the
paper, all virtually free groups are assumed to be finitely generated, and we shall not repeat
this assumption anymore.

Legal large extensions. By [KPS73| (see also [SW79] Theorem 7.3), a finitely generated
group is virtually free if and only if it splits as a finite graph of finite groups, i.e. acts
cocompactly by isometries on a simplicial tree with finite vertex stabilizers. Hence, every
finitely generated virtually free group can be obtained from finite groups by iterating
amalgamated free products and HNN extensions over finite groups. As a consequence, one
of the basic questions we have to answer is the following: how amalgamated free products
and HNN extensions over finite groups do affect the Y3-theory of a virtually free group, or
more generally of a hyperbolic group?
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It can easily be seen that the number of conjugacy classes of finite subgroups of a given
group is determined by its V3-theory. Thus, if a virtually free group G splits as G = Ax¢ B
over a finite group C, then G and A, B have distinct V3-theories provided that A or B is
not isomorphic to C x F,, in which case the amalgamated product can be written as a
multiple HNN extension. Hence, we can restrict our attention to the case where G = Ax¢,
with C finite, which is more subtle: sometimes, the V3-theory is preserved when performing
an HNN extension over finite groups, as shown by the following example.

Example 1.2. Let G be a virtually free group (and more generally a hyperbolic group)
without non-trivial normal finite subgroup, for instance Fy or PSLy(Z) = Z/3Z % Z/27.
Then, by Theorem 1.9 below, we have Thy3(G) = Thys (G*{l}).

But sometimes, performing an HNN extension over finite groups modifies the V3-theory
of a (non-elementary) virtually free group (and even its universal theory).

Example 1.3. Let G = I, x Z/27Z. The universal sentence VaVy (22 = 1) = (zy = yx)
is satisfied by G, but not by Gy = G * Z. A fortiori, G and Gxy) do not have the
same V3-theory. More generally, if G is hyperbolic and if the normalizer Ng(C) of a finite
subgroup C' C G normalizes a finite subgroup C’ that contains C strictly, then Gx¢ and
G have different V3-theories.

This raises the following problem.

Problem 1.4. Given a hyperbolic group G, characterize the HNN extensions Gx, over
finite groups such that Thy3(G) = Thy3(G*4).

In order to solve this problem (whose solution is given by Theorem 1.9 below), let us
consider an isomorphism « : C; — Cy between two finite subgroups of a hyperbolic group
G, and suppose that G and the HNN extension G*, = (G,t | a(c) = tet™!, Ve € C) have
the same V3-theory. Let us derive some easy consequences from this assumption.

First, note that G must be non-elementary. Indeed, a hyperbolic group is finite if and
only if it satisfies the first-order sentence Va (2 = 1) for some integer N > 1, and virtually
cyclic if and only if it satisfies VaVy ([zV,y"] = 1) for some integer N > 1.

Then, observe that C; and Cy are necessarily conjugate in GG, because the number of
conjugacy classes of finite subgroups is an invariant of the V3-theory. Therefore, one can
assume without loss of generality that Cy = Cy := C.

In addition, denoting by Auts(C) the subgroup

{o € Aut(C) | 3g € N¢(C), o = ad(g)|C}

of Aut(C), where ad(g) denotes the inner automorphism z ~ grg~! and Ng(C) denotes
the normalizer of C, it can be observed that we have |[Autg(C)| = |Autgs, (C)|. We refer
the reader to Proposition 5.4 for further details. This means that there exists an element
g € G such that ad(g)|c = a.

Before giving two other consequences of the equality Thy3(G) = Thy3(Gx*,,), let us recall
the following result, proved by Olshanskiy in [Os93].

Proposition 1.5. Let G be a non-elementary hyperbolic group, and let H be a non-
elementary subgroup of G. There exists a unique maximal finite subgroup of G normalized
by H. This group is denoted by Eq(H).



One can prove (see Proposition 5.4) that the equality Thy3(G) = Thy3(Gx*,) implies
that the normalizer Ng(C') of C' in G is non-elementary, and that C' is the unique maximal
finite subgroup of G normalized by Ng(C), i.e. that Eq(Ng(C)) = C. The importance of
this last condition is illustrated by Example 1.3 above.

This leads us to the following definition.

Definition 1.6 (Legal large extension). Let G be a non-elementary hyperbolic group, and
let C1,C5 be two finite subgroups of GG. Suppose that C and C5 are isomorphic, and let
a: C1 — Ca be an isomorphism. The HNN extension G, = (G,t | ad(t)|c, = «) is said
to be legal if the following three conditions hold.

(1) There exists an element g € G such that gC1g~! = Cs and ad(g)|c, = .
(2) Ng(Ch) is non-elementary.
(3) Eq(Na(Ch)) =Ch.

A group I is said to be a legal large extension of G if it splits as a legal HNN extension
I' = G*,. Sometimes we need to keep track of the order m of the finite group over which
the HNN extension is performed, and we say that I" is a m-legal large extension of G

Remark 1.7. Up to replacing ¢t by g~ 't in the presentation above, one can assume without
loss of generality that the presentation has the following form: (G, | ad(t)|c, = id¢,).

Example 1.3 is a typical illustration of a non-legal extension. Indeed, the third con-
dition of the previous definition is clearly violated. By contrast, Example 1.2 (that is
PSLy(Z)x* {1}) is a legal large extension. Here is another example of a legal large extension
(to be compared to Example 1.3).

Example 1.8. Let G = Fy x Z/2Z. The HNN extension Gy,/97 = G *7,97 (Z/2Z X Z) is
legal.

If G and G*, have the same V3-theories, the previous discussion shows that Gx, is a
legal large extension of G (see Proposition 5.4). One of our main results is that the converse
also holds: if G, is a legal large extension of G, then we have Thy3(Gx*,) = Thy3(G).

Theorem 1.9. Let G be a non-elementary hyperbolic group, and let G, be an HNN
extension over finite groups. Then, Thyz(G*o) = Thy3(G) if and only if Gx,, is a legal
large extension of G in the sense of Definition 1.6.

The proof of this result relies on a generalization of the key lemma of [Sac73b|, using
techniques introduced by Sela for torsion-free hyperbolic groups and extended by Reinfeldt
and Weidmann to hyperbolic groups with torsion in [RW14], in particular the shortening
argument. We also refer the reader to [Heil8] for some results about V3-sentences in
hyperbolic groups (possibly with torsion), namely a generalization of Merzlyakov’s formal
solutions.

In fact, we shall prove the following result, which is stronger than Theorem 1.9.

Theorem 1.10. Let G be a non-elementary hyperbolic group, and let Gxo be an HNN
extension over finite groups. Then, the inclusion of G into Gx, is a IV3I-elementary
embedding (see Definition 2.4) if and only if Gx is a legal large extension of G.
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Legal small extensions. Perhaps more surprisingly, another phenomenon of a different
nature plays a crucial role in our classification of virtually free groups up to V3-elementary
equivalence, as illustrated by Example 1.1. This phenomenon is not limited to infinite
virtually cyclic groups: more generally, if G is a hyperbolic group, we will prove that one
can replace a virtually cyclic subgroup N C G by a virtually cyclic overbgroup N/ > N
without modifying the V3-theory of G, as soon as certain additional technical conditions
are satisfied (in particular, N has to be the normalizer of a finite subgroup of G). Before
giving a precise statement (Theorem 1.14 below), we need some definitions.

Definition 1.11. Given an infinite virtually cyclic group N and an integer p, we denote
by Dp(N) the definable subset D,(N) = {n” | n € N}.

Let Ky be the maximal order of a finite subgroup of N. One can easily prove that
for every integer K > K, the set Dogi(N) is a normal subgroup of N (see Lemma 6.5).
Note that the quotient group N/Dsg (V) is finite. This finite group is determined by the
V3-theory of N.

Definition 1.12. Let N and N’ be two infinite virtually cyclic groups. Let Ky and
Ky denote the maximal order of a finite subgroup of N and N’ respectively, and let
K > max(Ky, Ky/) be an integer. A homomorphism ¢ : N — N’ is said to be K-nice if
it satisfies the following three properties.

e ( is injective.

e If C; and Cy are two non-conjugate finite subgroups of N, then ¢(Cy) and ¢(Cs)

are non-conjugate in N’
e The induced homomorphism @ : N/Dyg1(N) — N'/Dog(N) is injective.

Definition 1.13 (Legal small extension). Let G be a hyperbolic group. Let Kg denote
the maximal order of a finite subgroup of GG. Suppose that G splits as A x¢ B or Ax¢ over
a finite subgroup C' whose normalizer N is infinite virtually cyclic and non-elliptic in the
splitting. Let N’ be a virtually cyclic group such that Ky < K and let ¢ : N < N’ be
a Kg-nice embedding (in the sense of Definition 1.12 above). The amalgamated product

G'=Gxy N =(G,N'| g=1ug), Vg€ N)

is called a legal small extension of G if there exists a Kg-nice embedding ¢/ : N/ < N.
Sometimes we need to keep track of the cardinality m of the edge group C, and we say
that ' is a m-legal extension of G.

For instance, the two virtually cyclic groups of Example 1.1 are legal small extensions
of each other: in this example, C is the cyclic group (a) ~ Z/25Z, and one can define
t:N—=Nbyriar—d,t—t?and/: N < Nby!:d— a,t — t2

We will prove the following result.

Theorem 1.14. Let G be a hyperbolic group that splits as A x¢ B or Axc over a finite
subgroup C whose normalizer N is infinite virtually cyclic and non-elliptic in the splitting.
Let Kg denote the mazimal order of a finite subgroup of G. Let N’ be a virtually cyclic
group such that Ky < K¢, and let v : N < N’ be a Kg-nice embedding. The amalgamated
product

G' =Gxy N =(G,N" | g=1(g), Vg € N)
is a legal small extension in the sense of Definition 1.13 if and only if Thy3(G’) = Thya(G).
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Remark 1.15. In general, the group G is not 3V-elementarily embedded into G’ (note the
difference with Theorem 1.10, which generalizes Theorem 1.9). For instance, in Example
1.1, the element a € N satisfies the following 3V-formula 6(a):

0(a) : ItVu (tat™! = a®) A (t # u?),

while it can be easily seen that any monomorphism ¢ : N — N’ maps a to a’? for some
integer p satisfying ged(p, 25) = 1, and that 6(a'?) is false is N'.

A remark about the terminology. Suppose that G’ is a legal large or small extension
of a hyperbolic group G. Then, in both cases, G’ can be written as an amalgamated free
product G = G *y N’, where N is the normalizer of a finite subgroup C of G, and N’ is
an overgroup of N in which C is the maximal normal finite subgroup. The terminology
"large" or "small" refers to the size of N and N’: in the case where the legal extension
is large, the groups N and N’ are non-elementary, and in the case where the extension is
small, N and N’ are infinite virtually cyclic.

Classification of virtually free groups up to V3-elementary equivalence. Our main
result, Theorem 1.17, asserts that the two kinds of extensions defined above are the only
ones we need in order to classify virtually free groups up to V3-equivalence.

Definition 1.16. Let G be a hyperbolic group. A group I is called a multiple legal
extenston of G if there exists a finite sequence of groups G = Gog C G; C --- C G, ~ T
where G4 is a legal (large or small) extension of G; in the sense of Definitions 1.6 or 1.13,
for every integer 0 < ¢ <n — 1.

Here is our main result (see also Theorem 1.23).

Theorem 1.17. Two finitely generated virtually free groups G and G’ have the same
V3-theory if and only if there exist two multiple legal extensions T' and T of G and G’
respectively, such that T ~T".

Example 1.18. One can deduce from Theorem 1.17 that a virtually free group G has the
same V3-theory as SLa(Z) = Z/6Z 7,97 Z/AZ if and only if G splits as

(Z)6Z 7,27, Z|AL) %797, (L[ 27 X Fy,),
where F), denotes the free group of rank n > 0.

Theorem 1.23, which extends Theorem 1.17 above, gives three other characterizations of
V3-equivalence among virtually free groups. Before stating this result, we need to generalize
the definition of a nice homomorphism (see Definition 1.12).

Definition 1.19. Let G and G’ be two hyperbolic groups. Let K¢ (resp. K¢gr) denote
the maximal order of a finite subgroup of G (resp. G'). Suppose that Kg > Kg. A
homomorphism ¢ : G — G’ is said to be special if it satisfies the following three properties.

e [t is injective on finite subgroups.

o If 1 and () are two non-conjugate finite subgroups of G, then ¢(C1) and ¢(Cs)
are non-conjugate in G'.

e If C' is a finite subgroup of G whose normalizer is infinite virtually cyclic maximal,
then Ng/(p(C)) is infinite virtually cyclic, and the restriction

PINe(c) : Na(C) = Nar(¢(C))



is Kg-nice in the sense of Definition 1.12 (in particular, PYING(C) 18 injective).
Remark 1.20. Note that if G and G’ have the same universal theory, then Kg = K¢.

Remark 1.21. If G and G’ are infinite virtually cyclic, then a homomorphism ¢ : G — G’
is special if and only if it is Kg-nice.

Definition 1.22. Let G and G’ be two hyperbolic groups. A special homomorphism
¢ : G — @G is said to be strongly special if the following holds: for every finite subgroup
C of G, if the normalizer Ng(C') of C in G is not virtually cyclic, then N/ (¢(C)) is not
virtually cyclic and ¢(Eq(Ng(C))) = Eq'(Na (¢(C))).

Recall that a sequence of homomorphisms (¢, : G — G'),en is said to be discriminating
if the following holds: for every g € G\ {1}, vn(g) is non-trivial for every integer n
sufficiently large.

We associate to every virtually free group G a sentence (¢ € Thay(G) (see Section 4)
such that the following result holds.

Theorem 1.23. Let G and G’ be two finitely generated virtually free groups. The following
five assertions are equivalent.
(1) Thys(G) = Thya(G").
(2) G' = Ca and G = Co.
(3) There exist two discriminating sequences (¢n : G — G')nen and (@), : G' = G)pen
of special homomorphisms .
(4) There exists two strongly special homomorphisms ¢ : G — G' and ¢' : G' — G.
(5) There exist two multiple legal extensions T' and T" of G and G’ respectively, such
that T ~ T".

Remark 1.24. A classical and easy result claims that two finitely presented groups G and
G’ have the same existential theory if and only if there exist two discriminating sequences
of homomorphisms (¢, : G = G')peny and (¢), : G’ = G)pen (see for instance [And18al,
Proposition 2.1). This should be compared with the third assertion above: from this
perspective, as a consequence of Theorem 1.23, the only difference between the existential
and V3 theories is that one cannot talk about the conjugacy classes of finite subgroups
with only one quantifier, whereas it is possible with two quantifiers.

It seems reasonable to make the following conjecture, which generalizes the famous
Tarski’s problem about the elementary equivalence of non-abelian free groups (see [Sel06b]
and [KMO06]).

Conjecture 1.25. Two virtually free groups have the same Y3-theory if and only if they
are elementarily equivalent.

Remark 1.26. As a consequence of Sela’s work on the first-order theory of hyperbolic groups
without torsion (see [Sel09]), the above conjecture is known to be true if one replaces
"virtually free" by "hyperbolic without torsion". Moreover, thanks to Sela’s result on the
first-order theory of free products, the conjecture is known to be true if the two virtually
free groups in question are free products of finite groups with a free group.



8

1.1. Outline of the proof of Theorem 1.23. We shall prove the following series of
implications.

Note that (1) = (2) is obvious. Implications (1) = (3), (2) = (4) and (3) = (4)
consist mainly in proving that our definitions are expressible by means of V3-sentences or
JV-sentences.

The proof of (5) = (1) is a consequence of Theorems 1.9 and 1.14 (see Section 7). The
proof of Theorem 1.9 (as well as of Theorem 1.10) consists in revisiting and generalizing
the key lemma of Sacerdote’s paper [Sac73b| dating from 1973, using some of the tools
developed since then by Sela and others (in particular, the theory of group actions on real
trees, the shortening argument and test sequences). The proof of Theorem 1.14 makes also
important use of these techniques, but involves more technicalities.

We prove (4) = (5) in three steps: first, we assume that all edge groups in reduced
Stallings splittings of G and G’ are equal. Then, we deal with the case where all edge
groups have the same cardinality, by using a construction called the tree of cylinders,
introduced by Guirardel and Levitt. In the general case, different cardinalities of edge
groups may coexist in reduced Stallings splittings of G and G’. The proof is by induction
on the number of edges in these splittings.

The existence of an algorithm that takes as input two finite presentations of virtually free
groups and decides if these groups have the same V3-theory is established by proving that
one can bound the number of legal (small or large) extensions involved in the construction
of I" and I” (with the notation of Theorem 1.17), and that this bound is computable from
finite presentations of G' and G'.

Acknowledgements. I am very grateful to Vincent Guirardel for his valuable help. I
would also like to thank Frédéric Paulin for his careful reading of a previous version of this
paper, which led to many improvements.
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2. PRELIMINARIES
2.1. First-order logic. For detailed background, we refer the reader to [Mar(2].

Definition 2.1. A first-order formula in the language of groups is a finite formula using the
following symbols: V, 3, =, A, V, =, #, 1 (standing for the identity element), ~! (standing
for the inverse), - (standing for the group multiplication) and variables z,y, g, z ... which
are to be interpreted as elements of a group. A variable is free if it is not bound by any
quantifier V or 4. A sentence is a formula without free variables.

Definition 2.2. Given a formula 9 (z1,...,z,) with n > 0 free variables, and n elements
g1,---,9n of a group G, we say that ¥ (gi,...,gn) is satisfied by G if its interpretation is
true in G. This is denoted by G = ¥(g1,...,9n). For brevity, we use the notation i (x)
where x denotes a tuple of variables.

Definition 2.3. The elementary theory of a group G, denoted by Th(G), is the collection
of all sentences that are true in G. The wuniversal-existential theory of G, denoted by
Thy3(G), is the collection of sentences true in G of the form

Vay ... VeuJyr ...y, W(x1, .o T, Y1y -+ -5 Yn)

where m,n > 1 and 9 is a quantifier-free formula with m + n free variables. In the same
way, we define the universal theory of G, denoted by Thy(G), its existential theory Th3(G),
etc. We say that two groups G and G’ are elementarily equivalent (resp. V3-elementarily

equivalent) if Th(G) = Th(G’) (resp. Thy3(G) = Thya(G")).

To keep track of quantifiers and make the first-order formulas more readable, we will
often use notations such as Formula} () for universal formulas, Formula3 () for existential
formulas, and so on.

Definition 2.4. Let G and I' be two groups. An elementary embedding of GG into I is a map
i : G — I such that, for every first-order formula 0(z1, ..., z,) with n free variables and for
every tuple (g1,...,9n) € G", the group G satisfies 6(g1,...,gn) if and only if T' satisfies
0(i(g1),---,i(gn)). We define IV-elementary embeddings and IV3-elementary embeddings
in the same way, by considering only 3V-formulas and 3V3-formulas respectively, i.e. first-
order formulas of the form JxVyi)(x,y,t) and JxVyIzy(x,y, z,t) respectively, where x,
vy, z and t are tuples of variables, and 1 is a quantifier-free formula in these variables.

2.2. Virtually cyclic groups. Recall that an infinite virtually cyclic group G can be
written as an extension of exactly one of the following two forms:

1-C—->G—>Z—=1 or 15C—>G— Dy —1,

where C'is finite and Dy, = Z/27 * Z/27 denotes the infinite dihedral group. In the first
case, G has infinite center and splits as G = C' x Z. We say that G is of cyclic type. In
the second case, G has finite center, and we say that G is of dihedral type. It splits as an
amalgamated free product A x¢c B with [A: O] =[B:C] =2.

We need to describe under which conditions the normalizer of a finite edge group in a
splitting is a virtually cyclic group.

Lemma 2.5. Let G be a group. Suppose that G splits as an amalgamated free product
G = A x¢ B over a finite group C, and that Ng(C') is not contained in a conjugate of A
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or B. Then Ng(C) is infinite virtually cyclic if and only if C' has index 2 in Nao(C) and
in Ng(C). In this case, Ng(C) is of dihedral type, equal to No(C) xc Np(C).

Lemma 2.6. Let G be a group. Suppose that G splits as an HNN extension G = Axc over
a finite group C. Let C1 and Cy denote the two copies of C' in A and t be the stable letter
associated with the HNN extension. Suppose that Ng(C') is not contained in a conjugate
of A. Then Ng(C) is infinite virtually cyclic if and only if one of the following two cases
holds.

(1) If C1 and Cy are conjugate in A and Na(C1) = Ci, then the normalizer Ng(Ch)
is of cyclic type, equal to C1 x (at), where a denotes an element of A such that
aCsea™t = CY.

(2) If C1 and Cy = t~1Cht are non-conjugate in G and Cy has index 2 in Nao(C1) and
Nia-1(Cy), then the normalizer Ng(Ch) is of dihedral type, equal to

Na(C1) ¢y Neag—1(Ch).

2.3. Maximal infinite virtually cyclic subgroups. Let G be a hyperbolic group. If
g € G has infinite order, we denote by g™ and g~ the attracting and repellings fixed points
of g on the boundary 9,.G of G. The stabilizer of the pair {g*, g~} is the unique maximal
virtually cyclic subgroup of G containing g. We denote this subgroup by M(g). If h and
g are two elements of infinite order, either M (h) = M (g) or M(h) N M(g) is finite; in the
latter case, the subgroup (h,g) is non-elementary. The following easy lemma shows that
M(g) is definable by means of a quantifier-free formula.

Lemma 2.7. Let g be an element of G of infinite order. Let K denote the mazimum order
of an element of G of finite order.

(1) For every element h € G, we have
h belongs to M(g) < [¢%' hg®™'h™ 1] = 1.
(2) For every element h € G of infinite order, we have
h belongs to M(g) < [¢" nE'] =1.

Proof. We only prove the first point, the proof of the second point is similar. If h belongs to
M(g), then hgh~! belongs to M(g). Therefore, g% and (hgh™')%X' commute, since M(g)
has a cyclic subgroup of index < K. Conversely, if ¢%' and hg®'h~! commute, hg®'h~1
fixes the pair of points {g™, g™}, so h fixes {g", g~} as well. Thus, h belongs to M(g). U

Corollary 2.8. Let g,h be two elements of G of infinite order. The subgroup (g,h) is
elementary if and only if [¢"", hE"] = 1.

Recall that if H is a non-elementary subgroup of G, there exists a unique maximal finite
subgroup Eg(H) of G normalized by H. The following fact is proved by Olshanskiy in
[Os93].

Proposition 2.9 ([0s93] Proposition 1). The finite subgroup Eq(H) admits the following
description:
Eo(H)= (] M(n)
heHO
where H® denotes the set of elements of H of infinite order.
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2.4. Small cancellation condition. Let G be a hyperbolic group, let (X, d) be a Cayley
graph of GG, and let § be its hyperbolicity constant. Let g be an element of GG of infinite
order. We define the translation length of g as

— inf .
lgll xlgxd(x,gm)

The quasi-axis of g, denoted by A(g), is the union of all geodesics joining g~ and g*.
By Lemma 2.26 in [Coul3| (see also Remark below Definition 2.8, loc. cit.), the quasi-axis
A(g) is 118-quasi-convex. If ¢’ is another element of G of infinite order, A(g, ¢’) is defined
as follows:

Ag,g') = diam (A(g) 1% 0 A(g') %) € NU {00},

where A(g)*10% is the 1005-neighbourhood of A(g) in (X,d), and A(g')*1%% is defined
similarly. It is well-known that there exists a constant N(g) > 0 such that every element
h € G satisfying A(g, hgh™!) > N(g) belongs to M(g).

The small-cancellation condition defined below will play a crucial role in the proof of
the implication (5) = (1) of Theorem 1.23 (for further details, see Section 5).

Definition 2.10. Let G be a hyperbolic group. Let € > 0. An element g of infinite order
satisfies the e-small cancellation condition if the following holds: for every h € G, if

A(g, hgh™") > ellgll,
then h and g commute (so h belongs to M (g)). In particular, g is central in M(g).

2.5. Actions on real trees. Recall that a real tree is a geodesic metric space in which
every triangle is a tripod. A group action by isometries on a real tree is minimal if it has
no proper invariant subtree. Note that if an action of a finitely generated group on a real
tree has no global fixed point, then there is a unique invariant minimal subtree, which is
the union of all translation axes. A subtree T” of a real tree T is said to be non-degenerate
if it contains more than one point.

2.5.1. Stable and superstable actions. General results about group actions on real trees
involve hypotheses on infinite sequences of nested arc stabilizers (see for instance Theorem
2.13 and Theorem 2.19 below). An action of a group on a real tree is said to be stable in the
sense of Bestvina and Feighn (see [BF95]) if the pointwise stabilizer of any arc eventually
stabilizes when this arc gets smaller and smaller. Here is a formal definition.

Definition 2.11. Let T be a real tree. A non-degenerate subtree T” of T is stable if, for
every non-degenerate subtree T” C T’, the pointwise stabilizers of T and T’ coincide.
Otherwise, T" is called unstable. An action on a real tree is stable if any non-degenerate
arc contains a non-degenerate stable subarc.

In [Gui08|, Guirardel introduced the notion of a superstable action on a real tree.

Definition 2.12. An action on a real tree is M -superstable if every arc whose pointwise
stabilizer has order > M is stable.

Let T be a real tree, and let « be a point of T'. A direction at x is a connected component
of T\ {z}. We say that x is a branch point if there are at least three directions at z. The
following result is a work in preparation by Guirardel and Levitt (improving [Gui01]).
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Theorem 2.13. Let L be a finitely generated group acting on a real tree T'. Suppose that the
action is M -superstable, with finitely generated arc stabilizers. Then every point stabilizer
18 finitely generated, the number of orbit of branch points in T is finite, the number of orbit
of directions at branch points in T is finite.

2.5.2. The Bestvina-Paulin method. In the sequel, w denotes a non-principal ultrafilter,
i.e. a finitely additive probability measure w : P(N) — {0, 1} such that w(F') = 0 whenever
F C N is finite.

Let G be a hyperbolic group, and let (X, d) be a Cayley graph of G. Let G’ be a finitely
generated group, equipped with a finite generating set S. Let (¢, : G — G)uen be a
sequence of homomorphisms. We define the displacement of ¢, as

A =max d(1, pn(s)).
ses

Suppose that (A, )neny € RY tends to infinity. Let d,, denote the modified metric d/\, on
X. The following result is sometimes called the Bestvina-Paulin method in reference to
[Bes88| and [Paug8|.

Theorem 2.14. The ultralimit (X, d,,) of the metric spaces (X, dp)nen s a real tree en-
dowed with an action of G', and there exists a unique minimal G'-invariant non-degenerate
subtree T C X,,. Moreover, some subsequence of the sequence ((X,dy))nen converges to T
in the Gromov-Hausdorff topology.

2.5.3. The Rips machine. Under certain conditions, group actions on real trees can be
analysed using the so-called Rips machine, which enables us to decompose the action into
tractable building blocks. We shall use the following version of the Rips machine, proved
by Guirardel in [Gui08] (Theorem 5.1). See also [GLP94[, [RS94], |BF95], [Sel97].

Given a group G and a family #H of subgroups of G, an action of the pair (G,H) on a
tree T is an action of G on T such that each H € H fixes a point.

Theorem 2.15. Let G be a finitely generated group. Consider a minimal and non-trivial
action of (G, H) on an R-tree T by isometries. Assume that

(i) T satisfies the ascending chain condition: for any decreasing sequence of non-
degenerate arcs It D Iy D ... whose lengths converge to 0, the sequence of their
pointwise stabilizers Stab(l;) C Stab(I) C ... stabilizes.

(ii) For any unstable arc I C T,

(a) Stab(I) is finitely generated,
(b) Yg € G, gStab(I)g~! C Stab(I) = gStab(I)g~! = Stab(I).

Then either (G, H) splits over the pointwise stabilizer of an unstable arc, or over the point-
wise stabilizer of a non-degenerate tripod whose normalizer contains Fy, or T has a decom-
position into a graph of actions where each vertex action G, ~'Y, is either

(1) simplicial: G, Y, is a simplicial action on a simplicial tree;

(2) of Seifert type: the vertex action G, ~ Y, has kernel Ny, and the faithful action
Gy/Ny ~ Yy is dual to an arational measured foliation on a compact conical 2-
orbifold with boundary;

(3) azxial: Y, is a line, and the image of G, in Isom(Y,) is a finitely generated group
acting with dense orbits on Y.
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2.5.4. Transverse covering. We will use the following definitions (see [Gui04], Definitions
4.6 and 4.8).

Definition 2.16. Let T be a real tree endowed with an action of a group G, and let (Y;);es
be a G-invariant family of non-degenerate closed subtrees of T'. We say that (Y});cs is a
transverse covering of T if the following two conditions hold.

o Transverse intersection: if Y; N'Y; contains more than one point, then Y; =Yj.
o Finiteness condition: every arc of T is covered by finitely many Yj.

Definition 2.17. Let T be a real tree, and let (Y}); e be a transverse covering of 7. The
skeleton of this transverse covering is the bipartite simplicial tree S defined as follows:
(1) V(S) = V(S) U Vi(S) where Vi(S) = {Y; | j € J} and Vy(95) is the set of points
x € T that belong to at least two distinct subtrees Y; and Y;. The stabilizer of a
vertex of S is the global stabilizer of the corresponding subtree of T
(2) There is an edge € = (Y}, x) between Y; € Vi(S) and z € V{(S5) if and only if z,
viewed as a point of 7', belongs to Y}, viewed as a subtree of T'. The stabilizer of
€ is Gyi NG,.
Moreover, the action of G on S is minimal provided that the action of G on T is minimal
(see [Gui04] Lemma 4.9).

2.6. G-limit groups and the shortening argument. Let G be a hyperbolic group, and
let G’ be a finitely generated group. A sequence of homomorphisms (¢, : G/ = G)pen is
termed stable if, for every element x € G’, either @, (x) is trivial for every n large enough,
or ¢, () is non-trivial for every n large enough. The stable kernel of the sequence is defined
as follows:

ker((¢n)nen) = {x € G' | pn(x) = 1 for every n large enough}.

The quotient L = G’/ ker((¢n)nen) is called the G-limit group associated with the sequence
(¢n). This group acts on the tree 7" given by Theorem 2.14. The class of G-limit groups
admits several equivalent descriptions.

Theorem 2.18. Let G be a hyperbolic group, and let L be a finitely generated group. The
following three assertions are equivalent.
o L is a G-limit group.
o L is fully residually G, meaning that there exists a sequence of homomorphisms
(¢n) € Hom(L, G)N such that, for every non-trivial element x € L, p,(x) is non-
trivial for every n large enough. Such a sequence is said to be discriminating.
° Tha(L) - Thg(G)

The third point justifies why G-limit groups play a crucial role in Sela’s resolution of the
Tarski’s problem [Sel06b]|, and more generally in his classification of torsion-free hyperbolic
groups up to elementary equivalence [Sel09|.

Given w and (¢n)nen, the action of the limit group on the real tree given by Theorem
2.14 has nice properties. The following result generalizes a theorem proved by Sela for
torsion-free hyperbolic groups.

Theorem 2.19 ([RW14|, Theorem 1.16). Let G be a hyperbolic group, and let L be a
G-limit group. Let T be the corresponding real tree. The following hold, for the action of
LonT:
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e the pointwise stabilizer of any non-degenerate tripod is finite;

e the pointwise stabilizer of any non-degenerate arc is finitely generated and finite-
by-abelian,

e the pointwise stabilizer of any unstable arc is finite.

Remark 2.20. Note that the action of L on T is M-superstable, where M denotes the
maximal order of a finite subgroup of L (which is bounded from above by the maximal
order of a finite subgroup of G). In particular, Theorem 2.13 is applicable, so the number
of orbit of branch points in 7" for the action of L is finite. This fact will be useful later.
Note also that the tree T satisfies the ascending chain condition of Theorem 2.15 since any
ascending sequence of finite-by-abelian subgroups of a hyperbolic group stabilizes.

In order to study the set Hom(L, G), Sela introduced a technique called the shortening
argument, later generalized to hyperbolic groups possibly with torsion by Reinfeldt and
Weidmann in [RW14]. In this paper, we need a relative version of this argument.

Definition 2.21. Let G be a hyperbolic group and let H be a finitely generated subgroup
of G. Suppose that G is one-ended relative to H. We denote by Auty(G) the subgroup of
Aut(U) consisting of all automorphisms o such that the following two conditions hold:
(1) o1y = idjp;
(2) for every finite subgroup F' of G, there exists an element g € G such that oy =
8Ld<9)|F-

Definition 2.22. Let G and I'" be two hyperbolic groups, and let H be a finitely gen-
erated subgroup of G. Suppose that G is one-ended relative to H and that there exists
a monomorphism i : H < I'. Let S be a finite generating set of G. A homomorphism
¢ : G — I' such that ¢y = ad(y) oi for some v € I is said to be short if its length
£(p) := maxgeg d(1, o(s)) is minimal among the lengths of homomorphisms in the orbit of
¢ under the action of Auty(G) x Inn(T").

Proposition 2.23. We keep the same notations as in the previous definition. Let (¢, :
G — T)nen be a stable sequence of distinct short homomorphisms. Then the stable kernel
of the sequence is non-trivial.

For a proof of this result, we refer the reader to [And18b| (based on [Per08| and [RW14]).
Here below are two very useful consequences of the shortening argument whose proofs
can be found in [RW14] (see [Sel09] for the torsion-free case).

Theorem 2.24 (Descending chain condition for G-limit groups). Let G be a hyperbolic
group. Let (Ly)nen be a sequence of G-limit groups. If (¢ : Ly — Lnt1)nen 1S a sequence
of epimorphisms, then @, is an isomorphism for all n sufficiently large.

Definition 2.25. A group L is said to be equationally noetherian if, for any system of
equations in finitely many variables X, there exists a finite subsystem g of ¥ such that
Sol(X) = Sol(3g) in L.

Theorem 2.26. Let G be a hyperbolic group, and let L be a G-limit group. Then L is
equationally noetherian.
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2.7. Tree of cylinders. Let k > 1 be an integer, let G be a finitely generated group, and
let T be a splitting of G over finite groups of order exactly k. Recall that the deformation
space of T is the set of G-trees which can be obtained from 7T by some collapse and
expansion moves, or equivalently, which have the same elliptic subgroups as T'. In [GL11],
Guirardel and Levitt construct a tree that only depends on the deformation space of T
This tree is called the tree of cylinders of T', denoted by T.. This tree will play a crucial role
in our proof of the implication (4) = (5) of Theorem 1.23 (see Section 8). We summarize
below the construction of the tree of cylinders 7.

First, we define an equivalence relation ~ on the set of edges of T'. We declare two edges
e and €’ to be equivalent if G, = G./. Since all edge stabilizers have the same order, the
union of all edges having a given stabilizer C' is a subtree Y¢, called a cylinder of T'. In
other words, Y is the subset of T pointwise fixed by C'. Two distinct cylinders meet in
at most one point. The tree of cylinders T, of T is the bipartite tree with set of vertices
Vo(T,) U Vi(T,) such that Vy(T%) is the set of vertices x of T" which belong to at least two
cylinders, Vi(T¢) is the set of cylinders of T, and there is an edge ¢ = (z,Yr) between
x € Vo(T,) and Yo € Vi(Te) in T, if and only if € Y. In other words, one obtains T,
from T by replacing each cylinder Y by the cone on its boundary (defined as the set of
vertices of Yo belonging to some other cylinder). If Yo belongs to Vi (T¢), the vertex group

Gy, is the global stabilizer of Y in T', i.e. the normalizer of C' in G.

2.8. JSJ splittings over finite groups. A splitting T of a group G is said to be reduced
if there is no edge of T' of the form e = [v, w] with G, = Ge.

Let m > 1 be an integer. A finitely generated group is termed (< m)-rigid if it does
not split non-trivially over a finite subgroup of order < m.

Let G be a finitely generated virtually free group. Let F be the set of finite subgroups
of G, and let F,;, be the set of finite subgroups of G of order < m. A splitting of G over F
all of whose vertex stabilizers are finite is called a Stallings splitting of G, and a splitting
of G over F,, all of whose vertex stabilizers are m-rigid is called a m-JSJ splitting of G. A
m-JSJ splitting is not unique, but the conjugacy classes of vertex and edge groups do not
depend on the choice of a reduced m-JSJ splitting. A vertex group of a reduced m-JSJ
splitting is called a m-factor.

Note that a Stallings splitting is a m-JSJ splitting whenever m > M, where M denotes
the maximal order of a finite subgroup of G. Note also that one gets a m-JSJ splitting
from any m/-splitting of G, with m’ > m, by collapsing all edges whose stabilizer has order
>m.

2.9. An extension lemma.

Lemma 2.27. Let G and G’ be two groups. Let o : G — G’ be a homomorphism. Consider
a splitting of G as a graph of groups A. For every vertex v of A, let G be an overgroup of
Gy, and let @y, : G — G’ be a homomorphism. Let G denote the group obtained from G
by replacing each G, by Gv m A. For every vertexr v € A and every edge e incident to v,
suppose that there exists an element g, ,, € G' such that

(@o)ic. = ad(g..) © ¢ia.-
Then, there exists a homomorphism  : G — G’ such that, for every vertex v of A,

o~

Pa, = ad(g,) o @, for some g, € G'.
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Proof. We proceed by induction on the number of edges of the graph of groups A. It is
enough to prove the lemma in the case where A has only one edge.

First case. Suppose that G = G, x¢ G. By hypothesis, there exist two elements
g1, g5 € G’ such that

(@u)jc =ad(gy) o and  (Pw)jc = ad(gz) 0 pic-
One can define 3 : G — G’ by
P, =ad(gi )o@, and g =ad(gh ) o Pu
Second case. Suppose that
G = Gyxc = (Gy,t | tet™! = afe), Ve e O).
By hypothesis, there exist two elements g}, g5 € G’ such that
(@v)\c =ad(gy) o ¢ic and (@v)|t0t—1 = ad(gy) o Plce—1-

One can define 3 : G — G’ by

-~ ~ ~ —1
Pig, = Pv and $(t) = gop(t)gr -

3. PROOF OF (1) = (3)

Definition 3.1. For any hyperbolic group G, we denote by Kg the maximal order of a
finite subgroup of G.

Proposition 3.2. Let G = (s1,...,sp) be a hyperbolic group. There exists a universal
formula

Special” (z1,. .. , Tp)
such that, for every hyperbolic group G’ satisfying Ko < Kq, and for every tuple g’ =
(91,---»9p) of elements of G', the following two assertions are equivalent:

(1) the group G' satisfies Special” (g’);
(2) the map pgr : {s1,...,sp} — G’ defined by s; — g, for 1 < i < p extends to a
special (see Definition 1.19) homomorphism from G to G'.

Proof. Let G = (s1,...,5p | 2(81,...,5,) = 1) be a finite presentation of G, where
Y(s1,...,8p) = 1 denotes a finite system of equations in p variables. Let {C1,...,Cq}
be a set of representatives of the conjugacy classes of finite subgroups of G, and let I be
the subset of [1, ¢] such that Ng(C;) is infinite virtually cyclic maximal if and only if i € I.

Observe that there is a one-to-one correspondence between the set of homomorphisms
Hom(G, G’) and the set Solgr(X) = {9’ € G | £(g') = 1}.

For 1 < i < g, the injectivity of the homomorphism ¢4 : s — g’ on C; can be expressed
by a quantifier-free formula Inj}(g’).

For i € I, the injectivity of ¢g on N; can be expressed by a quantifier-free formula
Inj?(g’'). Indeed, it is enough to say that g is injective on finite subgroups and that
¢g'(N;) has infinite order. The latter point is easily expressible, since an element ¢’ of G’
has infinite order if and only if ¢’%¢' # 1, because Kg > K.
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If 1 <i# j < g, the assertion that ¢y (C;) and g (C;) are non-conjugate translates
into a universal formula NonConjiv’j (g').

If i belongs to I, since the quotient N;/Dak1(NN;) is finite, one can choose a finite
collection of representatives gi,...,g, € N; of the cosets of Dyg,1(N;). Each element gy,
can be written as a word gi(s), and the injectivity of the induced homomorphism

@g « Ni/Darc1(Ni) = Ner(0g/(Ci))/ Dokt (Nar (g (Ci))),
well-defined since K¢ < K, translates into a universal formula InjDY(g’) expressing the

fact that g, *(g')ge(g') does not belong to Dax1(Ngr(pg/(Ch))) if k # £.
Now, let us define the formula Special” () by

q
Special” () : (X(x) = 1) A /\ /\ NonConjy ;(z) A /\(Inj}(g') ATnj?(g') A InjDY (x)).
i=1 j#i iel
For any g’ € G, the group G’ satisfies Special”(g’) if and only if the homomorphism
g : G — G': s g is special. O
The following result is a slight variation of the previous proposition.

Proposition 3.3. Let G = (s1,...,sp) be a hyperbolic group. For every integer n > 1,
there exists a universal formula

Specialy (1, ..., xp)

such that, for every hyperbolic group G’ satisfying Ko < K¢, and for every tuple g’ =
(91,---»9p) of elements of G', the following two assertions are equivalent:

(1) the group G' satisfies Special’ (g’);

(2) the map pgr : {s1,...,sp} = G’ defined by s; — g, for 1 < i < p estends to a
special (see Definition 1.19) homomorphism from G to G' injective on the ball of
radius n in G, with respect to {s1,...,sp}.

Proof. We keep the same notations as in the proof of the previous proposition.

The injectivity of the homomorphism ¢g : s = (s1,...,5,) — g’ € Sole(X) on the ball
of radius n centered at 1 in G for the generating set {s1,...,s,} is expressible by means
of a finite system of inequations in p variables B, (g’) # 1.

The universal sentence Special’ () defined by

Special! () : Special” () A (B, (x) # 1)
has a witness g’ € G'? if and only if the homomorphism ¢g : G — G’ : s — g’ is special
and injective on the ball of radius n in G. O

Corollary 3.4. Let G and G’ be two hyperbolic groups. If Thay(G) C Thay(G’), then
there exists a discriminating sequence of special homomorphisms (pn : G — G')pen.

Proof. Note that for every integer n > 1, the group G satisfies the FV-sentence
Cn : 3z Special’ (x),

since the identity of G is a special homomorphism. Then, Thay(G) being contained in
Thay(G’), the group G’ satisfies the sentence ¢, as well. Since G and G’ have the same
existential theory, we have Kg = K¢, hence Proposition 3.3 above applies and tells us
that there exists a special homomorphism ¢,, : G — G’ injective on B,,. ]
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The following corollary is immediate.

Corollary 3.5 (Implication (1) = (3) of Theorem 1.23). Let G and G’ be two hyperbolic
groups. If Thay(G) = Thay(G"), then there exists two discriminating sequences of special
homomorphisms (¢n : G = G')pen and (¢}, : G' = G)pen.

4. DEFINITION OF (G AND PROOFS OF (2) < (4) AND (3) = (4)
4.1. Preliminary results.

Definition 4.1. Let G be a hyperbolic group. A G-chain is a tuple (g1, ..., g.) of elements
of GG of infinite order such that the inclusions

M(g1) O (M(g1) " M(g2)) > 2> (M(g1) N---NM(ge))
are all strict.

Definition 4.2. Let G be a hyperbolic group, and let H be a non-elementary subgroup
of G. The complexity ¢(H) of H is the maximal size of a G-chain of elements of H.

Remark 4.3. If (g1, g2) is a G-chain, then M (g1)NM (g2) is finite. It follows that ¢(H) < oo.

The following lemma is an immediate consequence of the fact that Eq(H) = (,c o0 M (h),
where H? denotes the set of elements of H of infinite order.

Lemma 4.4. If (h1,...,hem)) € HH) s a G-chain of length c(H), then

(H)
Eq(H) = (1) M(hs).
=1

Lemma 4.5. Let N > 1 and K > 1 be two integers. There exists an existential formula
Chain]av(m) with N free variables such that, for any hyperbolic group G all of whose finite
subgroups have order < K, a tuple g € GV is a G-chain if and only if G |= Chain?\,(g).

Proof. Let g € GN. The fact that every g, has infinite order translates into gf )
Recall that M(gx) = {g € G | [¢/', 99/'971] = 1}. The N-tuple g is a chain if and only
if, for every 1 < k < N, there exists an element zj in ﬂ,’f:l M (g;) that does not belong
to M(gx+1). This condition is clearly expressible by means of an existential sentence
Chainz;(g). O

Strongly special homomorphisms are not definable by means of a V3-sentence. For that
reason, we introduce below a weaker definition.

Definition 4.6. Let G and G’ be hyperbolic groups. A special homomorphism ¢ : G — G’
is said to be pre-strongly special if, for every finite subgroup C of G, the following conditions
hold.

(1) If the normalizer Ng(C) is virtually cyclic, then ¢ is injective in restriction to
Na(C).
(2) If the normalizer Ng(C) is not virtually cyclic, then
(a) the normalizer Ng/(¢(C)) is not virtually cyclic, and
(b) there exists a G-chain (hq,...,h.), with h; € Ng(C) and ¢ := ¢(Ng(C)) (see
Definition 4.2), such that (¢(h1),...,¢(he)) is a G'-chain.



19

In the case where two pre-strongly special homomorphisms ¢ : G — G’ and ¢’ : G' — G
exist simultaneously, then these two homomorphisms are in fact strongly special, as shown
by the following lemma.

Lemma 4.7. Let G and G’ be hyperbolic groups. Let ¢ : G — G’ and ¢’ : G' — G be
pre-strongly special homomorphisms. Then ¢ and @' are strongly special.

Proof. Let C' be a finite subgroup of G such that Ng(C) is non-elementary. By definition of
a pre-strongly special homomorphism, there exists a G-chain (hy, ..., h.), with h; € Ng(C)
and ¢ := ¢(Ng(C)), such that (p(h1),...,¢(he)) is a G'-chain of elements of N/ (¢(C)).
As a consequence, the maximal size of a G’-chain of elements of Ng/(¢(C)) is > ¢, so

¢ = ¢(Na(C)) < e(Nar((0)))-
Similarly, for every finite subgroup C’ of G’, the following inequality holds:
c¢(Ner (C)) < e(Na(¢'(C)).-
Now, note that the homomorphisms ¢ and ¢’ induce two bijections between the conjugacy
classes of finite subgroups of G and G’, because ¢ and ¢’ are special. It follows that the

previous inequalities are in fact equalities. In particular, (p(h1),...,¢(he)) is a maximal
(’-chain of elements of Ng/(p(C)). So we have

[
D
=
5
=

E:= Eg(Ng(C)) = (| M(hi) and E':= Eq(Ne(9(C)))
=1

i=1
It follows that
C C
p(E) C () e(M(hi)) € [ M(p(hi)) = E'.
i=1 i=1
By symmetry, these inclusions are in fact equalities. ]

4.2. Definition of (. Recall that the universal formula Special”(z) is defined in Propo-
sition 3.2.

Proposition 4.8. Let G = (s1,...,5sp) be a hyperbolic group. There exists an existential
formula

PreStrong?(z1, . .., 2,)
such that, for every hyperbolic group G’ satisfying Ko < Kg, and for every tuple g’ =
(91,---,9p) of elements of G', the following two assertions are equivalent:

(1) the group G' satisfies Special” (g’) A PreStrong®(g’);
2) the map ©qr : {51,...,8,} — G’ defined by s; — ¢. for 1 < i < p extends to a
¥Pg P 7
pre-strongly special homomorphism from G to G'.

Proof. Let G = (s1,...,8p | 3(s1,...,5p) = 1) be a finite presentation of G, where
Y(s1,...,8p) = 1 denotes a finite system of equations in p variables. Let {C1,...,Cy}
be a set of representatives of the conjugacy classes of finite subgroups of G. Let I be the
subset of [1,¢] such that N; = Ng(C;) is virtually cyclic if and only if ¢ € I.

For i ¢ I, there exists a quantifier-free formula NonVC;(x) such that, for every g’ in
Solgr (%), the group Ner(pg (C;)) is not virtually cyclic if and only if G’ = NonVC;(g’).
This uses the fact that K¢ < K¢, which implies that two elements g7, g5 of G’ of infinite
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order generate a non virtually cyclic subgroup if and only if [¢] Ke!, géKG!] # 1 (see Corollary
2.8).

For ¢ ¢ I, let E; := Eq(Ng(C;)) and ¢; := ¢(Ng(E;)) (see Definition 4.1). Consider
h; € Ng(E;)% a G-chain. This chain can be written as a ¢;-tuple of words h;(s).

We define the existential formula PreStrong> (x1,...,xp) as follows:
PreStrong™(z) : /\ (NonVCi(m) A Chain?(hi(a:))) ,
i1

where Chain? (h;) denotes the 3-formula given by Lemma 4.5.
For any g’ € G'P, the group G’ satisfies Special’(g’) A PreStrong(g’) if and only if the
homomorphism ¢g : G — G’ : s — g’ is pre-strongly special. ([l

Corollary 4.9 below, which follows immediately from Proposition 4.8 above, tells us that
the existence of a pre-strongly special homomorphism from G to a hyperbolic group G’
such that K < K¢ is captured by a single 3V-sentence (¢ that does not depend on G'.

Corollary 4.9. Let G be a hyperbolic group. Let us define the AV-sentence (g by
(g : 3z Special’(x) A PreStrong™(x).

Note that this sentence is satisfied by G since the identity of G is a pre-strongly special
homomorphism. For every hyperbolic group G’ such that Ko < K¢, the following two
assertions are equivalent:

(1) the group G’ satisfies (q;

(2) there exists a pre-strongly special homomorphism from G to G'.

4.3. Proof of (2) & (4). The equivalence (2) < (4) of Theorem 1.23 follows immediately
from Corollary 4.9 together with Lemma 4.7.

Corollary 4.10 (Equivalence (2) < (4) of Theorem 1.23). Let G and G’ be hyperbolic
groups. There exist strongly special homomorphisms ¢ : G — G' and ¢’ : G' — G if and

only if G' = (g and G = (.

Proof. Suppose that the morphisms ¢ and ¢’ exist. Since they are injective on finite
groups, we have Kg = Kg. Hence Corollary 4.9 applies and guarantees that G satisfies
(qr and G’ satisfies (g.

Conversely, suppose that G satisfies (¢ and G’ satisfies (. Up to exchanging G and G,
one can assume without loss of generality that Ko < K. By Corollary 4.9, there exists a
pre-strongly special homomorphism ¢ : G — G’. As a consequence, since ¢ is injective on
finite groups, we have K = K. Then again by Corollary 4.9, there exists a pre-strongly
special homomorphism ¢’ : G/ — G. O

4.4. Proof of (3) = (4).

Proposition 4.11 ((3) = (4)). Let G and G’ be hyperbolic groups. Let (¢n : G — G')pnen
and (¢, : G' = G)pen be two discriminating sequences of special homomorphisms. Then,
for n large enough, ¢, : G — G’ and ¢, : G' — G are strongly special.

Note that K¢ = K¢, with G and G’ as above. Indeed, ¢, and ¢}, are injective on
finite groups for n large enough. So Proposition 4.11 is an immediate consequence of the
following result combined with Lemma 4.7.
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Proposition 4.12. Let G and G’ be two hyperbolic groups, and let (o : G = G )pen be
a discriminating sequence of special homomorphisms. Suppose that Kg = Kgr. Then o,
18 pre-strongly special, for n large enough.

Proof. We keep the same notations as in the proof of Proposition 4.9 above. Note that
the existential formula PreStrong®(z) is satisfied by the generating set s = « of G. So,
for n large enough, the statement PreStrong? (¢, (s)) is satisfied by G’ since the sequence
(¢n)nen is discriminating. Moreover, the morphism ¢, being special, the tuple ¢y, (s)
satisfies the universal formula Specialv(a:). Thus, the group G’ satisfies the statement
Special” (o, (s))APreStrong (¢, (s)). It follows from Proposition 4.8 that ¢, is pre-strongly
special. ]

Remark 4.13. Under the hypotheses of Proposition 4.12 above, ¢, is not necessarily
strongly special for n large enough. More precisely, ¢, (Fq(Ng(C))) is not necessarily
equal to Eg/(Ng(pn(C))) for n large enough, as shown by the following example. Let

G=(c|c=1)xFy and G = (Gt ] [t,c*] = 1),

Note that Eg(Ng(c?)) = Eq(G) = (c), and that Eg/(Ng/(c?)) = Eq(G') = (c?). Thus,
the inclusion ¢ of G into G’ satisfies

¢(Ea(Na(c?))) ¢ Ear(No(9(c?))).
Note that, in this example, there is no discriminating sequence (¢}, : G’ — G) since the
commutator [t, ¢] is killed by any homomorphism ¢’ : G/ — G.

5. PROOF OF THEOREMS 1.9 AND 1.10

In this section, we prove Theorem 1.9 and Theorem 1.10. The proof of these theorems
consists mainly in revisiting and generalizing the key lemma of Sacerdote’s paper [Sac73b|
dating from 1973, using some of the tools developed since then by Sela and others (theory
of group actions on real trees, shortening argument, test sequences).

5.1. Legal large extensions. Let G be a hyperbolic group, and let C7, Cy be two finite
subgroups of G. Suppose that C; and C5 are isomorphic, and let a : C'y — Ca be an
isomorphism. We want to find necessary and sufficient conditions under which Thy3(G) =
Thy3(G*4). As observed in the introduction, if G and G*, have the same V3-theory, then
G is non-elementary. Indeed, a hyperbolic group is finite if and only if it satisfies the
first-order sentence Vo (' = 1) for some integer N > 1, and virtually cyclic if and only if
it satisfies VaVy ([zV,yN] = 1) for some integer N > 1. We therefore restrict attention to
non-elementary hyperbolic groups. We will prove the following result.

Theorem 5.1 (see Theorems 1.9 and 1.10). Let G be a non-elementary hyperbolic group,
and let C1 and Co be two finite isomorphic subgroups of G. Let a : C1 — Co be an
isomorphism. Let us consider the HNN extension I' = G*o = (G,t | ad(t)|c, = ). The
following three assertions are equivalent.
(1) The inclusion of G into I" is a IVI-elementary embedding (see Definition 2.4).
(2) Thyz(T') = Thya(G).
(3) The group T' = Gx,, is a legal large extension of G in the sense of Definition 1.6,
i.e. there exists an element g € G such that gC1g~' = Cy and ad(g)|c, = a, the
normalizer Ng(C1) is non-elementary, and Eq(Ng(Cy)) = Ch.
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The implication (1) = (2) of Theorem 5.1 is obvious. In order to prove the implication
(2) = (3), the first step consists in finding some V3-invariants of hyperbolic groups, i.e.
some numbers that are preserved by VJ-equivalence among hyperbolic groups.

Definition 5.2. Let G be a hyperbolic group. We associate to G the following five integers:

the number n1(G) of conjugacy classes of finite subgroups of G,
e the sum na(G) of |Autg(Cy)| for 1 < k < ny(G), where the Cj, are representatives
of the conjugacy classes of finite subgroups of G, and

Autg(Cy) = {a € Aut(Cy) | 39 € Na(Cy), ad(g)c = at,

e the number n3(G) of conjugacy classes of finite subgroups C of G such that Ng(C')
is infinite virtually cyclic,

e the number ny(G) of conjugacy classes of finite subgroups C of G such that Ng(C')
is non-elementary,

e the number n5(G) of conjugacy classes of finite subgroups C' of G such that Ng(C)
is non-elementary and E(Ng(C)) # C.

One can easily see that these numbers are preserved by elementary equivalence. However,
proving that they are preserved by V3-equivalence is a little bit more tedious.

Lemma 5.3. Let G and G’ be two hyperbolic groups. Suppose that Thy3(G) = Thy3(G').
Then ni(G) = n;(G), for 1 <i <5.

As usual, we denote by K¢ the maximal order of a finite subgroup of GG. Since G and
G’ have the same existential theory, we have Kg = Kg.

Proof. Let n > 1 be an integer. If n1(G) > n, then the following JV-sentence, written in
natural language for convenience of the reader and denoted by 61 ,,, is satisfied by G there
exist n finite subgroups Fi,..., F, of G such that, for every g € G and 1 < i # j < n,
the groups gFijg~! and Fj are distinct. Since G and G’ have the same IV-theory, the
sentence 61 ,, is satisfied by G’ as well. As a consequence, n1(G’) > n. It follows that
n1(G’) > n1(G). By symmetry, we have n1(G) = n1(G’).

In the rest of the proof, we give similar sentences 62, ...,05, such that the following
series of implications hold: n;(G) > n = G satisfies 0; , = G’ satisfies 0; , = n;(G') > n.

If no(G) > n, then G satisfies 03 ,,: there exist ¢ finite subgroups Fi, ..., Fy of G and a
finite subset {g; j }1<i<r, 1<j<n; of G, with ny +---+mny = n, such that for every g € G and
1 < p+# q </, the groups ngg_1 and Fj are distinct, and for every 1 <i < ¢, we have:

e for every 1 < j < n;, the element g; ; normalizes Fj,
e and for every 1 < j # k < n;, the automorphisms ad(g;)|r, and ad(gy)|r, of F; are
distinct.

If n3(G) > n, then G satisfies 03 ,,: there exist n finite subgroups F1, ..., F, of G such
that, for every g € G and 1 < i # j < n, the groups gF;g~! and F} are distinct, and for
every 1 <i<mn and g,h € Ng(F;), we have [gK¢' hEc!] = 1.

If n4(G) > n, then G satisfies 64,,: there exist n finite subgroups Fi, ..., F, of G and
a finite subset {g; j}1<i<n, 1<j<2 of G such that, for every g € G and 1 < p # ¢ < n, the
groups nggF1 and Fy are distinct, and for every 1 < ¢ < n, we have:

e g;1 and g; o normalize Fj,
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Kg! Kg!
e and [gi’lG »91',20] # 1.

If n5(G) > n, then G satisfies 05, there exist 2n finite subgroups Fi,...,F, and
F{,...,F] of G and a finite subset {g; j}1<i<n, 1<j<2 of G such that, for every g € G and
1 < p# q < n, the groups ngg_1 and F, are distinct, and for every 1 <i < n, we have:

e g;1 and g; o normalize Fj,

Kg! Kg!
® [gi,1G >gi,2G | #1,

e for every h € G, if h normalizes F; then h normalizes F},
e and F; is strictly contained in F}.

This concludes the proof of the lemma. O
As an application, we prove the implication (2) = (3) of Theorem 5.1.

Proposition 5.4 (Implication (2) = (3) of Theorem 5.1). We keep the same notations as
in Theorem 5.1. If Thy3(G) = Thyg(T"), then T is a legal large extension of G.

Proof. Thanks to the previous lemma, we know that n;(G) = n;(T') for 1 < i < 5. Recall
that I' = (G,t | ad(t)|c, = «), where a : C1 — C3 is an isomorphism. The equality
n1(G) = n1(T) implies that gC1g~! = Cy for some g € G. It follows that ¢!t induces an
automorphism of Cf.

Then, observe that for every finite subgroup F' of G, we have |Autp(F)| > |Autg(F)|.
Thus, the equality n2(G) = no(I') guarantees that |Autr(Ci)| = |Autg(Ch)|. Hence,
since ad(g~'t)|c, belongs to Autp(C1), there exists an element g’ € Ng(C1) such that
ad(g')jc, = ad(gflt)‘cl. Therefore, g¢’ € G induces by conjugacy the same automorphism
of C7 as t, which proves that the first condition of Definition 1.6 holds.

The equalities n3(G) = n3(I") and ng(G) = ny(T") ensure that Ng(C1) is non-elementary.
Indeed, if Ng(C1) were finite, then Np(C1) would be infinite virtually cyclic and n3(T")
would be at least n3(G) + 1; similarly, if Ng(C4) were infinite virtually cyclic, then Np(Ch)
would be non-elementary and n4(T') > n4(G)+1. Hence, the second condition of Definition
1.6 is satisfied.

Lastly, it follows from the fact that ns(G) = ns(I") that Eq(Ng(C1)) = Cy, otherwise
ns(I') > ns(G) + 1, since Ep(Np(Cy)) = C;. Thus, the third condition of Definition 1.6
holds. As a conclusion, I" is a legal large extension of G. (|

We shall now prove the difficult part of Theorem 5.1, namely the following result.

Proposition 5.5 (Implication (3) = (1) of Theorem 5.1). We keep the same notations as
in Theorem 5.1. If I is a legal large extension of G, then the inclusion of G into I is a
dv3-elementary embedding.

First, we define a notion of test sequences adapted to our context.
5.2. Test sequences.
Definition 5.6. Let G be a non-elementary hyperbolic group, and let
I'=(G,t|ad(t)c =ide)

be a legal extension of G over a finite subroup C. Let (¢, : I' = G)nen be a sequence of
homomorphisms. For every integer n, let t,, := ¢, (t). The sequence (¢, )nen is called a
test sequence if the following conditions hold:
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(1) for every n, the morphism ¢, is a retraction, i.e. p,(g) = g for every g € G;

(2) the translation length ||¢,|| of t,, goes to infinity when n goes to infinity;

(3) there exists a sequence (&,,)nen converging to 0 such that, for every n, the element
t, satisfies the e,-small cancellation condition (see Definition 2.10), and M(t,) =
(tn) x C. Therefore, the image of t,, in M(t,)/C has not root.

Remark 5.7. Note that any subsequence of a test sequence is a test sequence as well.
The following easy lemma will be useful in the sequel.

Lemma 5.8. Let (pn)nen be a test sequence. For every infinite subset A C N, we have

() M(tn) = C.

neA

Proof. Suppose that g belongs to M (t,) for every n € A. Then, there exists an integer k,
and an element ¢, € C such that g = tFrc,, for every n € A. Now, observe that k, must
be equal to 0 for every n large enough, otherwise (up to extracting a subsequence) ||tkn||
goes to infinity, and so does the constant ||g||, which is a contradiction. It follows that g
belongs to C. g

The following result is well-known, however we are not aware of a reference in the
literature.

Lemma 5.9. Let G be a §-hyperbolic group, and let C be a finite subgroup of G. Then the
centralizer Ca(C) of C is quasi-convex in G.

Proof. Let ¢ € C, and let h € Cg(c). Let x be a vertex on the geodesic [1, k] in the Cayley
graph of G, for a given finite generating set S of G. Let dg be the induced metric on
G. Since the elements ¢ and x~'cx are conjugate, there exists an element y such that
v tex = yey™! and dg(1,y) < 2ds(1,¢) + R(6,|S|) =: K according to Proposition 2.3 in
[BHO5|, where R(d,|S]|) is a constant that only depends on § and [S|. Observe that xy
centralizes ¢, and that dg(x,zy) = dg(1,y) < K. This shows that C(c) is K-quasi-convex
in G. Now, recall that the intersection of two quasi-convex subgroups of a hyperbolic group
is still quasi-convex (see for instance [Sho91]). Hence, since C' is finite, the intersection
Ca(C) = NeecCa(c) is quasi-convex in G. O

We now build a test sequence.

Proposition 5.10. Let G be a non-elementary hyperbolic group, and let
I = (Gt ] ad(t)c = ide)

be a legal extension of G over a finite subroup C. Then, there exists a test sequence
(pn : T = G)nen.

Proof. We proceed in two stages.

(1) First, we define a subgroup (a, b) of the centralizer C(C) of C'in G that is free of
rank 2 and quasi-convex in G.

(2) Then, we build a sequence of elements (t,),en that satisfies the (1/n) -small cancel-
lation condition in the free group (a, b), and check that, for every n, the retraction
n: ' = G :t—t, is well-defined and has the expected properties.
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Recall that Eq(Ng(C)) = C. So, by [0s93] Lemma 3.3, there exists an element a €
Ca(C) of infinite order such that M(a) = (a) x C' in G. Recall that Ng(C) is non-
elementary, by definition of a legal large extension. As a finite-index subgroup of Ng(C),
the centralizer C¢(C') is non-elementary as well. By [Chal2| Corollary 1.1.9, there exists
an element b € Cg(C) of infinite order such that the subgroup of Cg(C) generated by
{a,b,C} is quasi-convex in Cg(C) and isomorphic to (a,C) ¢ (b,C) = C x ({a) * (b)).
Hence, the subgroup (a,b) is quasi-convex in Cg(C'), and free of rank 2. By Lemma 5.9,
the centralizer C(C) of C is quasi-convex in G. Thus, the free group (a, b) is quasi-convex
in G as well. For any integer n > 0, we set t, = a”ba™t'b---a?"b. Let ¢, : I' = G be
the retraction defined by ¢, (t) = t, and ¢,(g) = g for all g € G, which is well-defined
since t,, centralizes C. We will prove that (¢,,)nen is a test sequence. Since the definition
of a test sequence is clearly invariant by a change of choice of a finite generating set of G,
let us consider a convenient finite generating set S of G that contains the two elements a
and b introduced above. Let (X, d) denote the Cayley graph of G for this generating set.
Let 7,, be the path of X that links 1 to ¢, and is labeled with the word ¢,, in a and b,
and consider the bi-infinite path 7,, = UkethLTn. A standard argument shows that 7, is
a quasi-geodesic in (X, d), for some constants that do not depend on n. Consequently, 7,
lies in the A-neighborhood of A(t,) for some constant A > 0 independent from n. Similarly,
let a be the edge of X linking 1 to a, let @ denote the quasi-geodesic @ = Upcza*a and let
i be a constant such that @ lies in the p-neighborhood of A(a).

Let d’ denote the metric in the free group (a, b) for the generating set {a, b}. Since ¢, is
cyclically reduced in {(a,b), ||tn||la = d'(1,t,) ~ (3/2)n?. Since (a,b) is quasi-convex in G
by construction, there is a constant R > 0 such that ||t,|| > Rn? for all n large enough.

It remains to prove the third condition of Definition 5.6. Classically, since the element
a has infinite order, there exists a constant N > 0 such that, for every element g € G, if
A(a,gag=') > N, then g belongs to M(a) = (a) x C (see paragraph 2.4). Let ng be an
integer such that Rng is large compared to N = N + 2046 + 2\ + 2u. We will show that
for every n > ng, the element t,, satisfies the (1/n)-small cancellation condition. Let n be
an integer greater than ng. Consider an element g € G such that A(t,, gtng™!) > ||t.l|/n.
We will show that g belongs to the subgroup (t,) x C.

We first show that g belongs to the subgroup (a,b) x C. Since

A(tn, gtng™t) > |[tal|/n > Rn > Rng >> N,
we can choose two subpaths v, and p, of 7,, and g7, respectively, of length N’ and labeled
by ™', such that diam((,)t(1009+2) A (1,,)+(1000+3)) > N’ Denoting by x, and y, the
initial points of v, and p, respectively, we have diam(z,a(1000+A) g FHA000+A)) > N7,

It follows that diam(A(a)t(1000+A1) A g1y A(q)F(1000+4A+1)) > N’ By Lemma 2.13 in
[Coul3|, we have:

Ala, w;lynaxglynfl) > diam(A(a) 000X g =1y A(q) TAOFATR)) _ (2048 + 2\ + 241)
> N' — (2046 + 2\ +2p) = N.

So z,, 'y, belongs to M(a) = {a) x C. Now, observe that x,, is a word in a and b since it
is on the quasi-geodesic 7,. Similarly, ¥, can be written as y, = gz, with z, a word in a
and b. It follows that g belongs to the subgroup (a,b) x C.

Up to replacing g with gc for some ¢ € C, we can now assume that g belongs to the
free group (a,b). This does not affect the condition A(t,,gtng™!) > ||ta||/n; indeed,



26
getnge™t = gt,g™!, since t, centralizes C. Recall in addition that the group (a,b) is
quasi-isometrically embedded into G. Denoting by A > 0 and B > 0 two constants such
that )

Zd,(l‘ay) -B< d(l‘,y) < Ad/(IE,y) + B

for all z,y € (a,b) x C, we can verify that the following inequality holds, in the Cayley
graph Y of the free group (a,b) equipped with the distance d’:

diam ((?n)-i-(A(lOO(H-B)-I-l) A (g?n)HA(lOOMB)H)) > d'(1,,)/(24%n).

Since the Cayley graph of (a,b) is a tree, this inequality tells us that the axes of ¢, and
gtng~! have an overlap of length larger than 4n — 2 in this tree.

To conclude, let us observe that two distinct cyclic conjugates of a™ba”t1b- - - a?"b have
at most their first 4n — 2 letters in common. Thus, if the axes of t,, and gt,g~' have a
common subsegment in Y of length > 4n — 2, then ¢, and gt,g~' have the same axis, so
t, and g have a common root. Now, observe that ¢, has no root. It follows that g is a
power of t,,, which concludes the proof. ]

Let G be a non-elementary hyperbolic group. Consider I' = (G,t | ad(t)c = id¢) a
legal extension of G, and (p, : I' = G),en a test sequence. Let IV be a finitely generated
overgroup of I'. Suppose that each ¢, extends to a homomorphism @, : I' — G. Let
L be the quotient of TV by the stable kernel of the sequence (@,)nen, and 7 : TV — L
the associated epimorphism. Since G is equationally noetherian (according to [Sel09] and
[RW14| Corollary 6.13), there exists (for n sufficiently large) a unique homomorphism
pn : L — G such that ¢, = pp,or. Let A\, = maxgeg d(1, p,(s)) be the displacement of py,,
where S is a finite generating set of L containing the image of ¢ in L. Let (X, d) denote
a Cayley graph of G, and consider the rescaled metric d,, = d/\,. Last, let w be a non-
principal ultrafilter and let (X,,,d,,) be the ultralimit of ((X,d,))nen. By Theorem 2.14,
X, is a real tree and there exists a unique minimal L-invariant non-degenerate subtree
T, C X. Moreover, some subsequence of the sequence ((X,d/\,))nen converges to T, in
the Gromov-Hausdorff topology.

Lemma 5.11. IfT" does not fiz a point in Ty, then the minimal subtree It is isometric to
the Bass-Serre tree T of the splitting G*¢, up to rescaling the metric on T'.

Proof. Suppose that I" does not fix a point of 77, and let us prove that Tt is isometric to
the Bass-Serre tree T” of the splitting Gx¢. Observe that G is elliptic in T}, by the first
assumption of Definition 5.6. More precisely, the point x := (1), € T}, is fixed by G. Note
that ||tn||/A\n does not approach 0 as n goes to infinity, otherwise I', which is generated
by G and t, would be elliptic in T,. Hence, t acts hyperbolically on 7r. In addition, the
translation axis of ¢t contains x. Therefore, up to rescaling the metric on T, there exists
a simplicial map f : 7" — Tr that is isometric in restriction to the axis of ¢. In order
to prove that f is an isometric embedding, let us prove that there is no folding. Note
that the surjectivity is automatically satisfied because 1T is minimal. Assume towards a
contradiction that there is a folding at the vertex v € T” fixed by G. Let w and w’ denote
two vertices of 7" adjacent to v such that f([v,w]) N f([v,w']) is non-degenerate. One can
assume without loss of generality that w = tv (up to translating w by an element of G and
replacing ¢ with t~1). Since tv and t~!v are on the axis of ¢, and since f is isometric on
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this axis, f([v,tv]) N f([v,t~0]) = {f(v)}. Therefore, the vertex w’ is of the form gtv or
gt~ v, for some element g € G that does not belong to C (indeed, if g € C, then gtv = tv
and gt~ lv = t~1v). Thus, the axes of t and gtg~! have an overlap I of length > 0 in the
limit tree T'. It follows that

Altn, pn(g)tnpn(g)_l) > NAn

for every n large enough, for some n > 0. But A, /||tn|| is greater than 1, and (ep)nen
approaches 0 when n goes to infinity. Thus, for n large enough, we have:

Altn, pr(9)tnpn(9) ™) = 1A > enlltal].

Then, since t,, satisfies the e,-small cancellation condition, the element p,(g) = g belongs
to M (t,). By Lemma 5.8, g belongs to C, which is a contradiction. Hence, Tt is isometric
to T". O

Corollary 5.12. Every test sequence is discriminating.

Proof. Let G be a non-elementary hyperbolic group. Consider I' = (G, t | ad(t)|c = id¢)
a legal extension of G, and (¢, : I' = G),en a test sequence. By taking I = L =T in the
previous lemma, 1T is isometric to the Bass-Serre tree T” of the splitting I' = G*¢. Let
~v € I be a non-trivial element.

If v belongs to a conjugate of G, then p,(vy) # 1 for every n since p, is the identity on
G.

If v does not belong to a conjugate of G, i.e. if v is not elliptic in the splitting 7", then
it acts hyperbolically on T, because T" and T are isometric. Thus, p,(7y) is non-trivial
for infinitely many n (otherwise v would be elliptic). It remains to prove that p,(7y) is
non-trivial for every n large enough. Assume towards a contradiction that some infinite
subsequence (pf(n)) kills v for every n. Applying the previous argument to (pf(n))neN
instead of (pn)nen, We get a contradiction. Hence, the sequence of morphisms (p,)nen is
discriminating. ([l

Corollary 5.13. With the same notations and the same hypotheses as in Lemma 5.11, Tt
is transverse to its translates, i.e. for every h € L\ T, hIt NI is at most one point. In
addition, if e is an edge of 1T, there are only finitely many branch points on e in T7y,.

Proof. Let h be an element of L such that h1r N1t is non-degenerate. Since 1T is isometric
to the Bass-Serre tree of the splitting G*¢ of I', we can find two elements u,v € I' such
that the axes of utu™! and h(vtv=!)h~! have a non-trivial overlap in the limit tree 77, so

A(tn, pr (W h0)tnpn (™ ho) 1) > enlftall

for n large enough. Hence, p,(u~'hv) belongs to M(t,) = C x (t,). So, for every n,
there is an element ¢, € C and an integer p, (possibly zero if u~'hv has finite order)
such that p,(u=thv) = c,th" = pp(catPr). Since C is finite, we can pass to a subsequence
and assume that ¢, = ¢ for all n. On the other hand, since ¢ acts hyperbolically on
Tt, the integer p, is bounded by a constant that does not depend on n. Otherwise, up
to extracting, ||pn(t)||/||pn(u"thv)|| tends to 0. Hence, since p,(u~thv)/\, is bounded,
| pn (t)|]/An tends to 0, contradicting that ¢ is hyperbolic. Up to extracting, one can assume
that p, = p for all n. So we have p,(u=thv) = p,(ctP) for all n. The sequence (pn)nen
being discriminating, h = uctPv=! € T, since u,v € T.
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Last, let e be an edge of Tr. Let us prove that there are only finitely many branch
points on e in T7. Let M denote the maximal order of a finite subgroup of G. Note
that M is also the maximal order of a finite subgroup of L. By Theorem 2.19, due to
Reinfeldt and Weidmann, the action of L on T, is M-superstable with finitely generated
arc stabilizers. By Theorem 2.13, due to Guirardel and Levitt, the number of orbits of
directions at branch points in 77, is finite. Assume towards a contradiction that there are
infinitely many branch points on e. Then there exist two non-degenerate subsegments [
and J in e, with I NJ = &, and an element g € G such that gI = J. But we proved that
Tt is transverse to its translates, so g belongs to I'. Since Tt is isometric to the Bass-Serre
tree of G, it follows that ¢ fixes e. This is a contradiction. U

5.3. Generalized Sacerdote’s lemma. We are now ready to prove a generalization of
the main lemma of [Sac73b|.

Proposition 5.14. Let I' be a legal large extension of G. Let (v : I' = G)pen be a test
sequence. Let g be a tuple of elements of G. Let ¥(x,y,g) = 1 AN ¥(x,y,g9) # 1 be a
conjunction of equations and inequations in the p-tuple & and the q-tuple y. Let v be a
p-tuple of elements of I'. Suppose that G satisfies the following condition: for every n,
there exists a q-tuple g, € G such that

Y(en(7),gn,9) =1 A ¥(on(V),gn,g9) # 1.

Then there exists a retraction v from I'y := (U,y | X(v,y,9) = 1) onto T such that
all components of the tuple r(V(vy,y,g)) are non-trivial. In particular, the q-tuple v :=
r(y) € T satisfies

(v,7,9) =1 A ¥(v,v,g9) # 1.

Before proving this result, whose proof is quite technical, we will use it to deduce that
the inclusion of G into I' is a IV3-elementary embedding. We begin by proving a corollary
to Proposition 5.14 above, which allows us to deal with disjunctions of systems of equations
and inequations.

Corollary 5.15. Let ' be a legal large extension of G, and let (o, : T' — G)pen be a test
sequence. Let g be a tuple of elements of G. Let

N

\/(Ek(m’yug) =1A \Ijk(w?yag) 7& 1)
k=1

be a disjunction of systems of equations and inequations in the p-tuple x and the q-tuple

y. Let ~v be a p-tuple of elements of I'. Suppose that G satisfies the following condition:
for every integer n, there exists a q-tuple g, € G4 such that

N

V Celen(1),9n,9) =1 A Vilon(¥),gn,9) # 1).
k=1

Then there exists a q-tuple v such that
N

V(v 9) =1 A Tp(y,7. ) #1).
k=1
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Proof. Up to extracting a subsequence of (¢,) (which is still a test sequence), one can
assume that there exists an integer 1 < k < N such that, for every n, there exists g, € G4
such that Xx(on(v),9n,9) = 1 and Vi (on(7Y),9n,9) # 1. Proposition 5.14 applies and
establishes the existence of a tuple 4" € I'? satisfying Y (v,4,9) = 1 and Vi (v,~’,g9) # 1,
which concludes the proof. ]

We deduce Proposition 5.5 from Corollary 5.15.
Proof of Proposition 5.5. Let 6(t) be a 3V3-formula with m free variables. This formula
has the following form:

N

H(t) : ElCvaElZ \/(Ek(wayvzat) =1A \Ijk(wayvzvt) 7é 1)
k=1

Let g be a tuple of elements of G such that G = 6(g), and let us prove that I' = 6(g).
There exists a tuple of elements of G, denoted by x, such that

N
(1) G ’: Vyﬂz \/(Ek(w7y7z7g) =1A \I/k(m,y,z,g) 7& 1)
k=1

Let us prove that
N

(2) r ': Vydz \/(Ek(w7y7zag) =1A \I’k(w7yaz7g) 7& 1)
k=1

Let y be a tuple of elements of I'. By (1), for every integer n, there exists a tuple z, of
elements of G such that

N
(3) GE (k@ ea(). 2,9) =1 A Uil 00(y). 20, 9) # 1).
k=1
By Corollary 5.15, there exists a tuple z of elements of I' such that
N
(4) F>: \/(Ek(wvy)zvg):]- A ‘l}k(w’yazag)#l)
k=1

We now prove Proposition 5.14, that is the generalized Sacerdote’s lemma.

Proof of Proposition 5.14. Let v € I'P. Suppose that, for every integer n, there exists
gn € G4 such that

X(en(7),9n,9) =1 A U(pn(v),9n,9) # 1.

Let I'y = (I'y | 2(v,y,9) = 1). Let ¢ denote the natural morphism from I" to I'y. By
hypothesis, for every n, there exists a homomorphism ¢, : I's — G mapping y to g, such
that @, o7 = ¢,. Note that the test sequence (¢, )nen is discriminating by Corollary 5.12.
As a consequence, the homomorphism i is injective. From now on, we omit mentioning
the morphism 2.

We shall construct a retraction r : I's — I" that does not kill any component of the tuple
U(vy,y,9). Let L =Tx/ker(($n)nen) and let m: I's — L be the associated epimorphism.



30

As a G-limit group, L is equationally noetherian (see [RW14] Corollary 6.13). It follows
that there exists a unique homomorphism p,, : L — G such that @, = p, o 7.

Since the sequence (¢ )nen is discriminating, we have @, (z) = pn(7(x)) # 1 for every
x € I' and every n large enough. In addition, by construction, the morphism @,, does not
kill any component of ¥ (¢, (v),gn,g). Thus, the homomorphism 7 : I' — L is injective
and does not kill any component of U (¢, (), gn,g). In the sequel, we identify I" and 7 (T).

In order to construct r, we will construct a discriminating sequence of retractions (7, :
L — T')pen. Then, we will conclude by taking r := r,, o 7 for n sufficiently large.

Let (X, d) be a Cayley graph of G. Let us consider a Stallings splitting A of L relative
to I', and let U be the one-ended factor that contains I'. Let S be a generating set of
U. Recall that Autp(U) is the subgroup of Aut(U) consisting of all automorphisms o
satisfying the following two conditions:

(1) or =idjr;
(2) for every finite subgroup F' of U, there exists an element u € U such that oF =
ad(u) |F-

Recall that a homomorphism ¢ : U — G is said to be short if its length ¢(p) =
maxses d(1, ¢(s)) is minimal among the lengths of homomorphisms in the orbit of ¢ under
the action of Autr(U) x Inn(G). Since ||t,|| goes to infinity, there exists a sequence of
automorphisms (0, )neny € Autr(U)N and a sequence of elements (1, )neny € G™ such that
the homomorphisms ad(x,,)op, o0, are short, pairwise distinct, and such that the sequence
(ad(xy) © pn o 0n)nen is stable (see paragraph 2.5.1), up to extracting a subsequence. Since
pn, coincides with the identity on G, we have ad(zy,) o p, 0 0, = py, 0 ad(zy) o 0, and, up
to replacing o, by ad(z,) o o, we can forget the postconjugation by z, and assume that
op|r 18 a conjugation by an element of G.

We claim that o, extends to an automorphism of L, still denoted by ¢,. By the second
condition above, ¢, is a conjugacy on finite subgroups of U. We proceed by induction on
the number of edges of A (the Stallings splitting of L relative to I' used previously in order
to define U). It is enough to prove the claim in the case where A has only one edge.

If L = U *c B with 0,c = ad(u), one defines 0, : L — G by op)y = 0y, and o p =
ad(u).

If L =Usc=(Ut]tt ' = ac),Ve e C) with oy)c = ad(u1) and oyjqc) = ad(uz),
one defines 0y, : L — G by o)y = 0y and oy,(t) = u;ltul.

In order to complete the proof of the generalized Sacerdote’s lemma, we will use the
following result.

Lemma 5.16. We keep the same notations as above. Let T be the limit tree of the sequence
of metric spaces (X, d/l(pn 0 0pn))nen. The following dichotomy holds:

e cither I' does not fix a point of T, in which case there exists a discriminating
sequence of retractions (rp : L — T')pen,

e or I' is elliptic, and there exist a proper quotient Ly of L, an embedding I' — L,
allowing us to identify I' with a subgroup of Ly, and two discriminating sequences
(pL : L1 = G)pen and (0L : L — Lq)nen such that the following three conditions
are satisfied:

(1) pnoon = py o0y
(2) pL coincides with p,, on T; in particular, (,0,1”F : ' = G)nen is a test sequence.
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(3) There exists an element g, € G such that o, and 0} coincides with ad(g,) on
T.

Before proving this lemma, we will use it to conclude the proof of Proposition 5.14. If
I" does not fix a point of T', we are done. If I" fixes a point of T, by iterating Lemma 5.16,
we get a sequence of proper quotients

Lo=L Ly L

such that, for every integer ¢ > 1, there exist two discriminating sequences of morphisms
(ph : Li = G)pen and (68 : L1 — L;)nen such that pitoo, = pi 06, pi coincides with
pi=l on I', and there exists an element g,, € G such that o, and 6, coincides with ad(gs)
on I'.

By the descending chain condition 2.24, the iteration eventually terminates. Let Lj be
the last quotient of the series. By Lemma 5.16, there exists a discriminating sequence of
retractions (r, : Ly — I')pen. For every finite set F' C L, one can find some integers
n1,...,ny such that the morphism r,, o Oﬁk 0---0 9}11 : L — T is injective on F. Moreover,
since every 0, is a conjugation on I' by an element of G, there exists an element v, € G
such that ad(vy,) o 7y, © szk o---06} : L —T is aretraction. This concludes the proof of
Lemma 5.14. ]

It remains to prove Lemma 5.16.

Proof of Lemma 5.16. Recall that U denotes the one-ended factor of L relative to I'. We
distinguish two cases.

First case. Suppose that I' fixes a point of T'. Let us prove that the stable kernel of
the sequence (py, © 0y )nen is non-trivial. Assume towards a contradiction that the stable
kernel is trivial. Then, by Theorem 1.16 of [RW14], the action of (U,T") on the limit tree
T has the following properties:

e the pointwise stabilizer of any non-degenerate tripod is finite;
e the pointwise stabilizer of any non-degenerate arc is finitely generated and finite-
by-abelian;
e the pointwise stabilizer of any unstable arc is finite.
In particular, the tree T satisfies the ascending chain condition of Theorem 2.15 since any
ascending sequence of finitely generated and finite-by-abelian subgroups of a hyperbolic
group stabilizes.

Then, it follows from Theorem 2.15 that either (U,I') splits over the stabilizer of an
unstable arc, or over the stabilizer of an infinite tripod, or 7" has a decomposition into a
graph of actions. Since U is one-ended relative to I', and since the stabilizer of an unstable
arc or of an infinite tripod is finite, it follows that 7" has a decomposition into a graph of
actions.

Now, it follows from Theorem 2.23 that there exists a sequence of automorphisms
(tn)nen € Autr(U)N such that (p, o 0,) © a, is shorter than p, o o, for n large enough.
This is a contradiction since the morphisms p, o o, are assumed to be short. Hence, the
stable kernel of the sequence (py, 0 0y )nen is non-trivial.

As in the proof of Lemma 5.14 above, since o, coincides with an inner automorphism
on each finite subgroup of U (by definition of Autp(U)), it extends to an automorphism
of L, still denoted by o,. Let L; := L/ker((p, o o0p)nen) and let m : L — Ly be the
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corresponding epimorphism. Observe that 7 is injective on I, allowing to identify I with
a subgroup of L.

As a G-limit group, L; is equationally noetherian (see [RW14| Corollary 6.13). It follows
that, for every integer n, there exists a unique homomorphism 7! : L1 — G such that
pnooyn = 7L om. There exists an element g,, € G such that o, coincides with ad(g,) on T.
Hence, since p, coincides with the identity on G, we can write p,, o o, = ad(gy,) © p}1 om
in such a way that pl := ad(g,!) o 7} coincides with the identity on G. For every n, let
0} = m 0(0,)7L, so that p, = ad(g,) o pl 0fL. The sequence (6. : L — L1),en is therefore
discriminating, and every homomorphism 6} coincides with ad(g, ') on T.

Second case. Suppose that I' is not elliptic in T. We will construct a discriminating
sequence of retractions (1, : L — I')pen. Let Tp C T be the minimal invariant subtree of
I'. By Lemma 5.11, we may assume up to rescaling that Tt is isometric to the Bass-Serre
tree of the splitting I' = G*¢.

Let ~ be the relation on T defined by x ~ y if [z,y] N uTT contains at most one point,
for every element u € U. Note that ~ is an equivalence relation. Let (Y});cs denote the
equivalence classes that are not reduced to a point. Each Y; is a subtree of T'. Let us prove
that (Yj)jes U {ulr | v € U/T} is a transverse covering of 7', in the sense of Definition
2.16.

o Transverse intersection. For every ¢ # j, the intersection Y; N'Yj is clearly empty.
For every ¢ and u € U, Y; Nu1T contains at most one point by definition. For every
u,u’ € U such that w'u=! ¢ T, [uTr Nu/'Tr| < 1 thanks to Lemma 5.13.

e Finiteness condition. Let x and y be two points of T. By Lemma 5.13, there exists
a constant € > 0 such that, for every u € U, if the intersection [z, y] NwTT is non-
degenerate, the length of [z, y]NuTT is bounded from below by . Consequently, the
arc [z, y] is covered by at most |d(z,y)/e] translates of Tt and at most |d(x,y)/e]+
1 distinct subtrees Y.

Hence, the collection (Y})jes U {ulr | uw € U} is a transverse covering of 7. One can
construct what Guirardel calls the skeleton of this transverse covering (see Definition 2.17),
denoted by T.. Since the action of U on T is minimal, the same holds for the action of
U on T, according to Lemma 4.9 of [Gui04]. The question is now to understand the
decomposition A, = T./U of U as a graph of groups.

We begin with a description of the stabilizer in U of an edge e of Tr. Let uw be an
element of U that fixes e. Then e is contained in Tt N uIT, so u belongs to I', thanks to
Lemma 5.13. It follows that u belongs to C, because the stabilizer of e in I' is equal to
C' (indeed, recall that Tt is isometric to the Bass-Serre tree of the splitting I' = G*¢, by
Lemma 5.11). Thus, the stabilizer of e in U is equal to C'.

We now prove that if one of the subtrees of the covering other than Tt intersects Tt
in a point, then this point is necessarily one of the extremities of a translate of the edge
e € Tr. Assume towards a contradiction that Y; or uTt with u ¢ I intersects Tt in a point
x that is not one of the extremities of e. Then, 7, contains an edge ¢ = (z,Tr) whose
stabilizer is Stab(x) NT" (where Stab(z) denotes the stabilizer of x in U), which is equal to
C by the previous paragraph. So the splitting A, of U is a non-trivial splitting over the
finite subgroup C, relative to I'. This is impossible since U is one-ended relative to I', by
definition of U. Hence, if Y; NTr = {z} or uTr NIt = {z} with u ¢ T, then the point z is
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one of the extremities of e in Tp. As a consequence, Stab(x) is a conjugate of G in T', and
every edge adjacent to Tt in T is of the form (yz,Tr) = ve with € = (x, T1).

Therefore, € is the only edge adjacent to 1T in the quotient graph A.. Its stabilizer is
G. By collapsing all edges of A, except €, one gets a splitting of U of the following form:
U =T xg U’ for some subgroup U’ C U. This splitting can be written as

U=U'xc=U"t]|[t,c]=1, YVeeO).

Since every finite subgroup of U is conjugate to a finite subgroup of U’, the group L
splits as L = U"x¢c = (U",t | [t,c] = 1, Ve € C) with G C U’ C U”. One now defines a
retraction ry, : L — I' by r,(t) =t and rp v = pnju, well-defined since p;, coincides with
the identity on G.

To conclude, let us prove that the sequence (ry,)nen is discriminating. Let ¢ be a non-
trivial element of L. This element can be written in reduced form, with respect to the
HNN extension L = U"x¢, as £ = uot® uit®ug - - - t°?up 1, with w; € U”. For every 1,
if & = —ei41, then u; ¢ C. Thus r,(u;) ¢ C for every n large enough (otherwise, up
to extracting a subsequence, one can assume that r,(u;) = uy(c) for every n, so u; = ¢
(since (7 yv) is discriminating), which is impossible). Hence, for every n large enough,
() = P (uo)t= pk (ug)t=2 pk (ug) - - - 157 p% (up11) is non-trivial. O

6. PROOF OF THEOREM 1.14
We will prove the following result.

Theorem 6.1 (see Theorem 1.14). Let G be a hyperbolic group that splits as A xc B or
Axc over a finite subgroup C whose normalizer N is infinite virtually cyclic and non-
elliptic in the splitting. Let Kg be the maximal order of a finite subgroup of G. Let N’ be
a virtually cyclic group such that Ky < Kg, and let v : N < N’ be a Kg-nice embedding
(see Definition 1.12). Let us define G' by

G'=Gxy N =(G,N"| g=1(g), Vg € N).
The following two assertions are equivalent.

(1) The group G’ is a legal small extension of G in the sense of Definition 1.13, i.e.
there ewists a Kg-nice embedding o' : N’ — N.
(2) Thy3(G') = Thya(G).

Remark 6.2. As observed in the introduction, G is not 3V-elementarily embedded into G’
in general.

First, we prove the easy direction.

Proposition 6.3. We keep the same notations as in Theorem 6.1. If Thy3(G’) = Thy3(G),
then G’ is a legal small extension of G.

Proof. According to the implication (1) = (4) of Theorem 1.23, there exists a strongly
special morphism ¢’ : G’ — G C G’'. Since ¢’ maps non-conjugate finite subgroups to
non-conjugate finite subgroups, there exists an integer n > 1 such that ¢ maps C to
g'Cg'~! for some ¢’ € G’. Hence we have ¢'"(N') C Ng(¢'Cq'~!) = ¢ Ng'~!, since ¢'(G’)
is contained in G. Let us define // by ' := (ad(g'~*) 0 ¢"");n+. This morphism is a Kg-nice
embedding, because ¢’ is strongly special. ([l
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In the rest of this section, we prove that the converse also holds.

Theorem 6.4. We keep the same notations as in Theorem 6.1. If G' is a legal small
extension of G, then Thyz(G’) = Thys(G).

Recall that an infinite virtually cyclic group N can be written as an extension of exactly
one of the following two forms:

1-C—-N—->Z—1 or 1-C—>N— Dy —1,

where C'is finite and Dy, = Z/27 * Z/2Z denotes the infinite dihedral group. In the first
case, N splits as N = C x (t), where ¢ denotes an element of infinite order. In the second
case, N splits as an amalgamated free product (C,a) ¢ (C,b) where a and b have order
2 in N/C. We choose such elements a and b and we define ¢ by ¢t = ba. Note that the
image of ¢t in N/C generates N /C, where NT denotes the kernel of the epimorphism
N — Do, — Z/2Z. In other words, Nt ~ C x (t).

In the sequel, we say that two elements g,¢g’ € N are equal modulo C, and we write
¢ =g mod O, if g~'¢’ belongs to C.

Recall that for every integer p, we denote by D, (V) the definable subset {n” | n € N}.

Lemma 6.5. Let N be a virtually cyclic group. Let C be the maximal finite normal
subgroup of N, and let m be the order of ad(t)|c in Aut(C). Then Dy, c|(N) = (#2mICly,

Remark 6.6. In particular, DQm\CI(N) is a subgroup of N. Moreover, it is central in V.

Proof. Let g be an element of N. The element ¢? can be written as ct?" for some ¢ € C
and r € Z, so g™ = Jt*™ for some ¢ € C. By definition of m, t™ commutes with ¢,
so (g2™)ICl = (&)IC1E2mICl = ¢2mICl - Ag a consequence, Dypmicf(N) is contained in (#2mIcly,
The other inclusion is obvious. O

Remark 6.7. Note that the action of Aut(C') on C'\ {1} gives an embedding from Aut(C)
into the symmetric group &¢|—;. It follows that |C|Aut(C) divides |C|!. Hence, 2m|C]
divides 2|CL.

In the sequel, G denotes a hyperbolic group and K denotes the maximal order of a finite
subgroup of G. For every virtually cyclic infinite subgroup N of G, we define the subgroup
D(N) of N by D(N) := Dyg1(N). The following result in an immediate consequence of
Lemma 6.5 (see the remark above).

Corollary 6.8. If C' is a finite subgroup of G whose normalizer N is virtually cyclic
infinite, then D(N) = (t*5"Y (for any element t chosen as above).

Recall that the normalizer of a finite edge group in a splitting is an infinite virtually
cyclic group if and only if one of the situations described below arises.

Lemma 6.9. Let G be a group. Suppose that G splits as an amalgamated free product
G = Axc B over a finite group C, and that Ng(C') is not contained in a conjugate of A or
B. Then N¢(C) is virtually cyclic if and only if C has index 2 in Nao(C) and in Np(C).
In this case, Nq(C) is of dihedral type, equal to No(C) xc Np(C).

Lemma 6.10. Let G be a group. Suppose that G splits as an HNN extension G = Ax¢ over
a finite group C. Let C1 and Cy denote the two copies of C' in A and t be the stable letter
associated with the HNN extension. Suppose that Ng(C) is not contained in a conjugate
of A. Then N¢(C) is virtually cyclic if and only if one of the following two cases holds.
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(1) If C1 and Cy are conjugate in A and Na(C1) = Ci, then the normalizer Ng(Ch)
is of cyclic type, equal to C1 x (at), where a denotes an element of A such that
aCea™t = CY.

(2) If C1 and Cy = t~1Cht are non-conjugate in G and Cy has index 2 in No(C1) and
Nyiai-1(Cy), then the normalizer Ng(Ch) is of dihedral type, equal to

Na(Ch) ¢y Niag—1(Ch).
6.1. Small test sequences.

Definition 6.11 (Twist). Let G be a group. Suppose that G splits as A*c B or Axc over
a finite subgroup C whose normalizer NN is virtually cyclic infinite and non-elliptic in the
splitting. Let ¢ be an element of D(NV).
o If G = Axc = (At | tet™! = 0(c),Ve € C) where § € Aut(C), the twist 75 is the
endomorphism of GG that coincides with the identity on A and that maps the stable
letter t to 4.
o If G = A x¢ B, the twist 75 is the endomorphism of G that coincides with the
identity on A, and that coincides with ad(d) on B.

Remark 6.12. Note that 75 is well-defined in both cases because 0 centralizes C, as en
element of D(N). Moreover, in both cases, 75 is a monomorphism: in the first case, it
suffices to observe that td has infinite order, which is true since t has infinite order and
§ is a power of 25" in the second case, the injectivity is automatic thanks to Britton’s
lemma. In addition, in the second case, note that 75 maps t = ba to 6b6 ‘a = t"bt"a =
(ba)"b(ba)""a = (ba)* 1 = 2"t = 152 for some multiple 7 of 2K

By analogy with test sequences defined in the previous section, we introduce below the
notion of a small test sequence, designed for legal small extensions.

Lemma 6.13. Let N and N’ be two virtually cyclic infinite groups. Let C' and C' be the
mazimal normal finite subgroups of N and N' respectively. Suppose that there exist two

embeddings v : N < N' and /' : N' — N. Then «(C) =C" and /(C") = C.

Proof. Note that N and N’ are both of cyclic type or of dihedral type, since a virtually
cyclic group of dihedral type does not embed into a virtually cyclic group of cyclic type.

First case. Suppose that N and N’ are of cyclic type. Then N = C xZ and N’ = C' xZ.
It follows that +(C') € C" and /(C") C C. Hence C' and C’ have the same cardinality, and
we have ((C) = C" and J/(C") = C.

Second case. Suppose that N and N’ are of dihedral type. There exist two elements
a,b € N such that N = (C,a,b | a®> € C,b? € C,aC = Ca,bC = Cb). Note that all finite
subgroups of N that are not contained in C are of the form n(Cy,a)n~! or n{Cy,b)yn~!
with C; C C and n € N. In addition, note that the normalizers of @ and b in IV are finite.
Thus, the normalizer of the finite groups (C1,a) and (Cy,b) are finite. Then, observe that
the normalizer of J/(C") is equal to ¢/(N’), which is infinite since ¢/ is injective and N’ is
infinite. It follows that /(C”) is contained in C'. Likewise, ¢(C') is contained in C’. Hence
C and C’ have the same cardinality, and we have ((C') = C" and /(C") = C. O

Let G be a hyperbolic group that splits over a finite group C' whose normalizer N is
virtually cyclic infinite and non-elliptic in the splitting. Let

I=Gx+y N =(G,N"| g=1(g), Vg € N)
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be a legal small extension of G, where N’ is virtually cyclic and ¢ : N < N’ is K-nice.
Let C' and C’ be the maximal normal finite subgroups of N and N’ respectively. By the
previous lemma, ¢(C) is equal to C’. As a consequence, in ', we have C' = C’. We make
the following two observations.

(1) The group T splits as A"« B’ or A’x¢. The normalizer Np(C) of C'in T is equal to
N’. This group is virtually cyclic infinite and non-elliptic in the previous splitting
of I" over C.

(2) The maximal order of a finite subgroup is the same for I' and G. Indeed, every
finite subgroup F of I is contained in a conjugate of G or in a conjugate of N’. In
the second case, F' embeds into N since there exists an embedding from N’ into
N. Hence, in both cases, F' embeds into G. As a consequence, Kt is equal to Kq
and there is no ambiguity about the notation D(N')

Thanks to these two observations, the Dehn twist 75 is well-defined, as an endomorphism
of T, for any element 6 € D(N’). We are now ready to define small test sequences.

Definition 6.14 (Small test sequence). Let G be a hyperbolic group. Suppose that G
splits over a finite group C whose normalizer N is virtually cyclic infinite and non-elliptic
in the splitting. Let

I =Gx+«y N =(G,N"| g=1(g), Vg € N)

be a legal small extension of G, where N’ is virtually cyclic and ¢ : N < N’ is K-nice. A
sequence of homomorphisms (¢, : I' = G)nen is called a small test sequence if there exist
a strictly increasing sequence of prime numbers (p;, )nen and a sequence (6, )peny € D(N')N
such that ¢, = 75, (viewed as an endomorphism of I') and [N : ¢, (N')] = pp, for every
integer n.

The following lemma shows that small test sequences exist as soon as ¢ : N < N’ is not
surjective.

Lemma 6.15. Let G be a hyperbolic group. Suppose that G splits over a finite group C
whose normalizer N = Ng(C) is virtually cyclic infinite and non-elliptic in the splitting.
Let T' = G xn N’ be a legal small extension of G. Suppose that N is a strict subgroup of
N'"inT. Then, there exists a small test sequence (o : T' = G)pen.

Proof. By definiton of a legal small extension, there exist two K-nice embeddings ¢ : N —
N"and // : N' < N. Let C and C’ be the maximal normal finite subgroups of N and N’
respectively. In I, we have the identification ¢(n) = n for every n € N. In particular, C
and C’ are identified. In the sequel, we do not mention ¢ anymore. We distinguish two
cases.

First case. Suppose that N is virtually cyclic of cyclic type. Since ¢/ is special, there
exists an integer m > 1 such that /™ coincides with the identity on C' and induces the
identity of N'/D(N’). Up to replacing ¢/ by «/™, one can assume without loss of generality
that ¢/ coincides with the identity on C' and induces the identity of N'/D(N’).

Let ¢ and z denote two elements such that such that N = Ng(C) = C x (t) and
N' = Np(C) = C x {(2). Recall that D(N") = (225"}, by Corollary 6.8. Since ' induces
the identity of N’/D(N’), we have i/(z) = z'*2K' for some integer q. Note that ¢ is
non-zero because N is a proper subgroup of N’ by assumption. Let k& and ¢ denote two
integers such that t = 2z mod C and /(z) = t* mod C. It follows that k¢ = 1+ 2Klq.
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In particular, ged(k,2K!) = 1. By the Dirichlet prime number theorem, there exists a
strictly increasing sequence of integers (A)nen such that p, := k + 2K!\, is prime for
every integer n. Let 6 = t?K' and let us define «;, : N’ — N by i (2) = /(2)6* and
. (c) = /(c) = c for every ¢ € C. This homomorphism is well-defined: if zcz™! = ¢/,

then ¢/, (zcz™1) = V' (2)0* 0 (¢)(((2)62) 1 =/ (2)d (e)/ (2) 7! =V (cze™t) = /() = (),
because § belongs to the center Z(N) of N. An easy calculation gives ¢/,(z) = tP» mod C.
As a consequence p, = [N : ¢ (N')].

Last, by considering the decompositions G = A*c N and I' = A x¢ N’, one can define a
homomorphism ¢, : I' = G that coincides with the identity on A and with ¢/, on N’ (well-
defined since ¢/, coincides with the identity on C). Note that &, = 2 tp,(2) = z71Pn =
2o =1 = 2K =1 — 2K (An=4) belongs to D(N’). Hence, the sequence (¢n)nen is a

small test sequence in the sense of Definition 6.14.

Second case. Suppose that N is virtually cyclic of dihedral type. It splits as N =
(C,a) *¢ (C,b) with a,b of order 2 modulo C. There exists two elements a’ and V' of order
2 modulo C such that N’ = (C,d’) x¢ (C, V). Up to exchanging a’ and b, one can suppose
without loss of generality that a is a conjugate of ¢’ in N’ (modulo C) and that b is a
conjugate of b’ (modulo C); indeed, the inclusion of N into N’ maps non-conjugate finite
subgroups to non-conjugate finite subgroups (¢ is K-nice).

Since ' is K-nice, ¢/(a’) and (V') are not conjugate modulo C. Hence, there exists an
integer j € {1,2} such that («/ o)/ maps a’ to a conjugate gag~—' of a, with g € G, and
b to a conjugate of b. Up to replacing «/ by ad(g~') o /7, one can assume without loss of
generality that «/(a’) = a. Then, note that there exists an integer m > 1 such that /™
coincides with the identity on C' and induces the identity of N'/D(N’). Up to replacing «/
by /™, one can assume without loss of generality that ¢/ coincides with the identity on C
and induces the identity of N'/D(N’).

Let us define z by z = b/a’ € N’ c T. Note that /(z) = 22K for some integer
q, because ¢/ induces the identity of N’/D(N’) and D(N') = (2*K"), by Corollary 6.8.
The integer ¢ is non-zero since N is a strict subgroup of N’ by assumption. Let k& and
¢ denote two integers such that t = z¢ mod C and //(z) = t* mod C. It follows that
k¢ =1+ 2Klq. In particular, ged(k,2K!) = 1. By the Dirichlet prime number theorem,
there exists a strictly increasing sequence of integers (A, )nen such that p, := k+ 2K\, is
prime for every integer n. Let 6 = ') and let us define ¢/, : N’ — N by ¢/, = ¢/ on (C,d’)
and ¢/, = ad(6*) o ¢/ on (C, ). This homomorphism is well-defined since § centralizes C
and N’ splits as N' = (C,d) x¢ (C, V). Since //(a’) = a and t = ba, the following series of
equalities holds (modulo C):
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It follows that p, = [N : ¢/, (N')].
Last, as in the first case, ¢}, extends to a homomorphism ¢,, : I' = G that coincides with
the identity on A and with an inner automorphism on B. ([l

6.2. Main result. We will prove the difficult part of Theorem 6.1, that is the following
result.

Theorem 6.16. Let G be a hyperbolic group. Suppose that G splits over a finite subgroup
C whose normalizer N is virtually cyclic and non-elliptic in the splitting. Let I' = Gy N’
be a legal small extension of G. Then Thy3(G) = Thyg(T).

The proof of this theorem relies on the following lemma, which can be viewed as an
analogue of Proposition 5.14.

Lemma 6.17. We keep the same notations as in the statement of Theorem 6.16. Let
(pn : T'— G)pen be a small test sequence (whose existence is guaranteed by Lemma 6.15).
Let X(x,y) = 1 AVU(x,y) # 1 be a system of equations and inequations, where x denotes
a p-tuple of variables and y denotes a q-tuple of variables. Let v € T'P. Suppose that G
satisfies the following condition: for every integer n, there exists g, € G9 such that

Y(en(¥)sgn) =1 A U(pn(v),9n) # 1.

Then there exists a retraction r from I's v = (I'y | £(v,y) = 1) onto T' such that each
component of the tuple r(¥(v,y)) is non-trivial. In particular, the q-tuple ' := r(y) € T'?
satisfies

S) =1 A Uy, ) #1.

6.2.1. Proof of Lemma 6.17 in a particular case. We first prove Lemma 6.17 in the case
where G and T are virtually cyclic of cyclic type. Let G = C x (t) and I' = C x (z). The
main difference compared to the general case is that we do not have to deal with actions
on real trees here.

Proof. For every n, the morphism ¢,, extends to a homomorphism @, : I's, , — G mapping
y to g,. We shall construct a retraction r : I's , — I' that does not kill any component
of the tuple ¥(+,vy). Up to extracting a subsequence, one can suppose that the sequence
(Pn)nen is stable. Let K = ker((@n)nen) be the stable kernel of the sequence, let L =
I's /K and 7 : I's, — L be the associated epimorphism. As a G-limit group, L is
equationally noetherian (see [RW14| Corollary 6.13). It follows that there exists a unique
homomorphism p, : L — G such that @, = p, o 7, for n sufficiently large.

By Remark 6.12, every p,, is injective. As a consequence, the homomorphism 7 : ' — L
is injective, and every component of the tuple m(¥(v,y)) € L is non-trivial. From now
on, I' is viewed as a subgroup of L and we do not mention the monomorphism 7 : I' — L
anymore.

In order to construct r, we will construct a discriminating sequence of retractions (ry, :
L — T)pen. Then, we will conclude by taking r := r, o 7 for n sufficiently large. Note
that p, coincides with @, on I'; in particular, (pn|r :I' = G)pen is a small test sequence.

Note that L is finitely generated, as a quotient of the finitely generated group I's 5. In
addition, the sequence (py,)nen is discriminating. Therefore, L is an extension

150 S LSV~7m™ 1.
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First, we prove that x(z) has no root in V. This element can be written as x(z) = v/ for
some element v € V' with no root, and some integer j # 0. We will prove that j = +1.
Each homomorphism p,, : L — G induces a homomorphism p,, : V — G/C ~ (t). For
every integer n, we have p,(v)! = tP». It follows that j divides p,, for every n. Since
(Pn)nen is a strictly increasing sequence of prime numbers, j = +1.

In order to define the retraction r,, : L — I, we use a presentation of L. Let (v1,va, ..., Up)
be a basis of V, with v;1 = v. For 1 < ¢ < m, let z; be a preimage of v; in L. One can sup-
pose that z; = z. Each element z; induces an automorphism (; of C'; and each commutator
[2i, 2;] is equal to an element ¢; ; € C. Here is a presentation of L:

(Coz1,- o szm | ad(z)|c = Gy [2i525] = cij)-

Let v = 25!, We denote by 7, the endomorphism of I defined by 7, = id on C and

Tn(2) = 27" (well-defined since 7 centralizes C). Let us define r, : L — I" by r, = id on
(C,z) and 7y,(2;) = Ty © pn(z) for 2 < i < m. In order to verify that r, is well-defined,
it suffices to show that [r,(2), r,(2i)] = rn(c14), since ry, coincides with the identity on C.
Recall that p,(z) = 26, with §, € D(I'). As a consequence, 7, o pp(2) = 2z with zft» in
the center of I'. Therefore,

Tn 0 pu([2, 21)) = [2257, 7 0 pn(20)] = [2, T © pu(2i)] = c1-

Hence, [rp(2), rn(2)] = r(c14), so ry, is well-defined.

It remains to prove that the sequence (ry)nen is discriminating. Let x € L be a non-
trivial element, and let us prove that r,(x) is non-trivial for every n sufficiently large. The
element x can be written as © = 2?23 --- 2" with ¢ € C and ¢; € Z. If x lies in T,
then r,(xz) = x # 1. Else, if z does not belong to I', then y = 23> - - - 27 has infinite order
(otherwise, y would belong to C, so x would belong to I'). Since the sequence (py,)nen is
discriminating, p,(y) has infinite order for every n large enough, so p,(y) = 2 mod C
with £, # 0. Thus 7, 0 p,(y) = (22" = (KD For n > |q|, [€u(1 +nK!)| > |q],
so mp(z) is non-trivial. As a conclusion, the sequence of retractions (r, : L — I'),en is
discriminating. O

6.2.2. Proof of Lemma 6.17 in the general case. We now prove Lemma 6.17.

Proof. For every n, the map ¢, extends to a homomorphism @, : I's 4 — G mapping y
to g,. We shall construct a retraction r : I's, , — I' that does not kill any component of
the tuple ¥(v,y). Up to exctracting a subsequence, one can suppose that the sequence
(Pn)nen is stable. Let K = ker(($,)nen) be the stable kernel of the sequence, let L =
I's /K and 7 : I's, — L be the associated epimorphism. As a G-limit group, L is
equationally noetherian (see [RW14] Corollary 6.13). It follows that there exists a unique
homomorphism p,, : L — G such that ¢,, = p, o 7, for n sufficiently large.

By Remark 6.12, every p, is injective. It follows that the homomorphism 7 : I' — L
is injective, and every component of the tuple m(¥(vy,y)) € L is non-trivial. From now
on, I' is viewed as a subgroup of L and we do not mention the monomorphism 7 : I' < L
anymore.

In order to construct r, we will construct a discriminating sequence of retractions (ry, :
L — T')pen. Then, we will conclude by taking r := 7, o w for n sufficiently large. Note
that p,, coincides with @,, on I'; in particular, (Pn|r : ' = G)pen is a small test sequence.
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Let (X, d) be a Cayley graph of G. Let us consider a Stallings splitting A of L relative
to I', and let U be the one-ended factor that contains I'. Let S be a generating set of
U. Recall that Autp(U) is the subgroup of Aut(U) consisting of all automorphisms o
satisfying the following two conditions:

(1) o =idjr;
(2) for every finite subgroup F' of U, there exists an element u € U such that oy =
ad(u)|p.

Recall that a homomorphism ¢ : U — G is said to be short if its length ¢(p) =
maxses d(1, ¢(s)) is minimal among the lengths of homomorphisms in the orbit of ¢ under
the action of Autr(U) x Inn(G).

Since ||t || goes to infinity, there exists a sequence of automorphisms (o4, )peny € Autp(U)
and a sequence of elements (,)neny € G™ such that the homomorphisms ad(zy,) o py, 0 oy
are short, pairwise distinct, and such that the sequence (ad(x;,) o p, © 0y )nen is stable (see
paragraph 2.5.1), up to extracting a subsequence. Since p,, coincides with the identity on
G, we have ad(xy,) o p, © 0, = pp 0 ad(zy,) o 0, and, up to replacing o, by ad(x,) o oy, we
can forget the postconjugation by x, and assume that o, is a conjugation by an element
of G.

We claim that o,, extends to an automorphism of L, still denoted by o,,. By the second
condition above, 0, is a conjugacy on finite subgroups of U. We proceed by induction on
the number of edges of A (the Stallings splitting of L relative to I" used previously in order
to define U). It is enough to prove the claim in the case where A has only one edge.

If L = U x¢ B with 0, = ad(u), one defines 0, : L — G by oy )y = 0y and oy p =
ad(u).

If L =Usxc=(Ut]tt ' = a),Ve e C) with o,)c = ad(u1) and oyjqc) = ad(uz),
one defines 0y, : L — G by o)y = 0y and oy, (t) = u;ltul.

In order to complete the proof of Lemma 6.17, we will use the following lemma.

N

Lemma 6.18. We keep the same notations as above. Let T be the limit tree of the sequence
of metric spaces (X,d/l(pn 0 0p))nen. The following dichotomy holds:

e cither I' does not fix a point of T, in which case there exists a discriminating
sequence of retractions (ry, : L — T')pen,

e or I is elliptic, and there exist a proper quotient L1 of L, an embedding I' — L
allowing us to identify I' with a subgroup of L1, and two discriminating sequences
(pL : L1 — Gpen and (0L : L — Li)nen such that the following three conditions
are satisfied:

(1) ppoon = pyoby;

(2) pL coincides with py, on T; in particular, (P}ur : T — G)nen is a test sequence.

(3) There exists an element g, € G such that o, and 0} coincides with ad(g,) on
r.

Before proving this lemma, we will use it to conclude the proof of Lemma 6.17. If T’
does not fix a point of T, we are done. If I' fixes a point of T, by iterating Lemma 6.18,
we get a sequence of proper quotients
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such that, for every integer ¢ > 1, there exist two discriminating sequences of morphisms
(pl, : Li = Gpen and (0% : L1 — L;i)nen such that pil oo, = pi 06, pi coincides with
pi=t on T, and there exists an element g, € G such that o, and 6%, coincides with ad(gy,)
on I'.

By the descending chain condition, the iteration eventually terminates. Let L be the
last quotient of the series. By Lemma 6.18, there exists a discriminating sequence of
retractions (r, : Ly — I')pen. For every finite set F' C L, one can find some integers
ni,...,n; such that the morphism r,, o O,Ijik 0-+:0 071” : L — T' is injective on F'. Moreover,
since every 6, is a conjugation on I' by an element of G, there exists an element v,, € G
such that ad(vy,) o 7y, © Qﬁk o---0f} , - L — T'is a retraction. This concludes the proof of
Lemma 6.17 g

It remains to prove Lemma 6.18.

Proof. Recall that U denotes the one-ended factor of L relative to I'. We distinguish two
cases.

First case. Suppose that I' fixes a point of T'. Let us prove that the stable kernel of
the sequence (pp © 0p)nen is non-trivial. Assume towards a contradiction that the stable
kernel is trivial. Then, by Theorem 1.16 of [RW14], the action of (U,T") on the limit tree
T has the following properties:

e the pointwise stabilizer of any non-degenerate tripod is finite;

e the pointwise stabilizer of any non-degenerate arc is finitely generated and finite-
by-abelian;

e the pointwise stabilizer of any unstable arc is finite.

In particular, the tree T satisfies the ascending chain condition of Theorem 2.15 since any
ascending sequence of finitely generated and finite-by-abelian subgroups of a hyperbolic
group stabilizes.

Then, it follows from Theorem 2.15 that either (U,T") splits over the stabilizer of an
unstable arc, or over the stabilizer of an infinite tripod, or T has a decomposition into a
graph of actions. Since U is one-ended relative to I', and since the stabilizer of an unstable
arc or of an infinite tripod is finite, it follows that 7" has a decomposition into a graph of
actions.

Now, it follows from Theorem 2.23 that there exists a sequence of automorphisms
(n)nen € Autp(U)N such that (p, o 0y,) o au, is shorter than p, o o, for n large enough.
This is a contradiction since the morphisms p,, o o, are assumed to be short. Hence, the
stable kernel of the sequence (py, 0 0y )nen is non-trivial.

As in the proof of Lemma 6.17 above, since o,, coincides with an inner automorphism
on each finite subgroup of U (by definition of Autr(U)), it extends to an automorphism
of L, still denoted by o,. Let Ly := L/ker((py © 0p)nen) and let m; : L — Ly be the
corresponding epimorphism. Observe that 7 is injective on I'; allowing to identify I with
a subgroup of L.

As a G-limit group, L; is equationally noetherian (see [RW14] Corollary 6.13). It follows
that, for every integer n, there exists a unique homomorphism 7! : L1 — G such that
PrnO0n = T% omy. There exists an element g, € G such that o, coincides with ad(g,) on I'.
Hence, since p,, coincides with the identity on G, we can write p, o o, = ad(g,) o pt o 7

in such a way that pl := ad(g,!) o 7} coincides with the identity on G. For every n, let
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0 = 71 0(0,)7 L, s0 that p, = ad(gn) o pl 0ofl. The sequence (6} : L — L) en is therefore
discriminating, and every homomorphism 6} coincides with ad(g,;!) on T.

Second case. Suppose that I' does not fix a point of T. In the sequel, the letter z
denotes an element of N’ = Np(C') defined as follows.

e If ' = Axc and the copies of C in A are conjugate, one can suppose without
without loss of generality that there are equal. The letter z denotes the stable
letter of the HNN extension. We have Np(C) = C x (z).

o IfI' = Ax¢ B, we define z by z = ba where b and a are such that Ng(C) = C x (b)
et No(C) = C x (a). Note that b and a have order 2 modulo C' in Np(C) and
N(C) respectively.

e If I' = Ax¢ and the two copies of C' in A are not conjugate, let s be the stable
letter of the HNN extension, and let @ € A and b € sAs~! be two elements such
that Ng(C) = C x {(a) and N y,-1(C) = C % (b). Then we define z by z = ba.

In the same way, we define t € N = Ng(C).
Since I' is not elliptic in 7', and since A and B are elliptic, z acts hyperbolically on T
Let d denote its axis. We will proceed in two steps.

e First step. We prove that the one-ended factor U relative to I' can be decomposed
as a graph of groups A in which S is a vertex group, where S denotes the global
stabilizer of the axis d of z in T

e Second step. We construct a discriminating sequence of retractions (ry, : L — T).

First step. We shall prove that U splits as a graph of groups in which S is a vertex
group. First, we prove that the translates of d are transverse. Let u be an element of U
such that ud Nd contains a segment I which is not reduced to a point. Let us prove that
ud = d. There exists a constant R; such that the following holds: every element g € G such
that A(t)™° N gA(t)*° has a diameter larger than R; belongs to M (t), where A(t) refers to
the quasi-axis of ¢ (see Section 2.4). Taking g = p,(u), we have p,(u) € M(t) = Ng(C) for
n large enough. Therefore, since p,(z) belongs to (t), one of the following two possibilities
occurs, for n sufficiently large: either p,([u, z]) belongs to C, or p,((uz)?) belongs to C.
Since C' = p,(C), and since the sequence (p,,) is discriminating, we deduce that [u, 2] or
(uz)? belongs to C. Since C fixes d pointwise, u fixes d pointwise in the first case; in the
second case, u acts on d by reversing the orientation. As a conclusion, ud = d. Hence, the
translates of the axis d are transverse.

Recall that S is the global stabilizer of d in U. The following facts can be proved by
using the discriminating sequence (png : S — Ng(C) = M(t)):

(1) C is the maximal finite normal subgroup of S,
(2) §=Ny(0),
(3) S is virtually abelian. To be more precise, S/C' is abelian in the case where Ng(C)

is of cyclic type, and S/C has an abelian subgroup of index 2 in the case where
N¢g(C) is of dihedral type (see Lemma 6.19 below).

By [RW14] Theorem 6.3, the group S is finitely generated. We are ready to prove that U
splits as a graph of groups in which S is a vertex group.

First case. Suppose that the action of S on d is discrete. We define an equivalence
relation ~ on T by x ~ y if the intersection [z,y] Nud contains at most one point, for any
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element u € U. Let (Yj);jcs denote the equivalence classes that are not reduced to a point.
Note that each Y is a closed subtree of T'. Let us verify that the family (Y});e;U{ud | € U}
is a transverse covering of 7' (see Definition 2.16).

o Transverse intersection. By definition, Y;NY; = @ for every i € I, and |Y;Nud| < 1
for every ¢ € I and every v € U. In addition, d is transverse to its translates.

e Finiteness condition. Let x and y be two points of T'. Since the action of S on
d is discrete, there exists a constant € > 0 such that the following holds: for any
u € U, if the intersection [z, y]Nud is non-degenerate, then the length of [z, y|Nud is
bounded from below by e. Therefore, the arc [z, y] is covered by at most |d'(z,y)/e]
translates of the axis d and at most |d'(z,y)/e| + 1 distinct subtrees Y;, where d’
denotes the metric on 7.

Thus, the family (Yj)jesU{ud | u € U} is a transverse covering of the tree 7. We can
now build the skeleton of this transverse covering in the sense of Guirardel (see Definition
2.17), denoted by T”. Since the action of U on T is minimal, so is the action of U on
T’, according to Lemma 4.9 of [Gui04]. One of the vertex group of 7" is equal to S, by
construction. This concludes the proof of the first case.

Second case. Suppose that the action of S on d has dense orbits. The previous argument
no longer works (because e does not exist). Note that S is virtually Z" with n > 2.

Since the discriminating sequence (py) coincides with inner automorphisms on A and
B, these groups are elliptic in 7. We will apply Theorem 2.15 to the pair (U,{A, B})
(resp. (U, A)) in order to decompose T as a graph of actions. This is enough to conclude
because d is one of the components of the graph of actions. Indeed, the action of .S on d is
indecomposable (see Definition 1.17 in [Gui08|), so d is contained in one of the components
of the graph of actions by Lemma 1.18 of [Gui08]. Let C denote this component. Note
that each component given by Theorem 2.15 is either indecomposable or simplicial. Since
S ~ d has dense orbits, C is not simplicial. Thus, C is indecomposable. The axis d C C
being transverse to its translates, d is necessarily equal to C.

Assume towards a contradiction that Theorem 2.15 does not give a splitting of T" as a
graph of actions. Then, still by Theorem 2.15, the pair (U, A) (resp. (U,{A, B})) splits
over a finite subgroup E which is either the pointwise stabilizer of an unstable arc, or the
pointwise stabilizer of an infinite tripod whose normalizer contains the free group F5. Let
Y be the Bass-Serre tree of this splitting. We will prove that I is elliptic in Y, contradicting
the fact that U is one-ended relative to I'. Let YT be the minimal subtree of I'. Let Z be
the tree of cylinders of the splitting Axc or A *c B of I'. Its vertex groups are A and NV in
the first case, and A, B and N in the second case. In the cyclic case, there is only one edge
group in Z, namely C; in the dihedral case, there are at most two edges groups C7 and Cs
that contain C' with index 2. We claim that Z dominates Yr, i.e. that its vertex groups
are elliptic in Y. Since Y1 is a splitting relative to the pair {A, B}, we juste have to prove
that N is elliptic in Y. Since N C S, it is enough to observe that S is elliptic in Y, as
a one-ended group (because it is virtually Z™ with n > 2). Thus, the tree of cylinders Z
dominates Yr. As a consequence, FE contains C' up to conjugation. Since Ny (C) = S is
virtually abelian, the normalizer Ny (E) of E is virtually abelian as well. It follows that
FE is not the pointwise stabilizer of an infinite tripod whose normalizer contains the free
group Fy. So F is the stabilizer of an unstable arc I C T'. Therefore, there exists a subarc
I’ C I whose stabilizer E’ satisfies E/ D E and E' # E. The set of fixed points of C is
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exactly d. Since E D C, Fix(F) is contained in d = Fix(C'), and since d is transverse to its
translates, Fix(E) = d or Fix(FE) is one point of d. This second possibility cannot happen
since Fix(F) contains I. Hence, E is contained in S, so E = Sy (the pointwise stabilizer
of d). The same argument shows that £/ = Sy = E, a contradiction. As a conclusion, T
splits as a graph of actions one component of which is d. So U splits as a graph of groups
in which S is a vertex group. This completes the second case.

It remains to construct a discriminating sequence of retractions (r, : L — I'). We
distinguish two cases, depending on the type of Ng(C). In the sequel, we denote by A a
splitting of U as a graph of groups in which S is a vertex group.

Second step. Construction of the discriminating sequence of retractions (r, : L — T').

A. The cyclic case. Suppose that Ng(C) is of cyclic type. Then S is an extension

IACHS}»V:Z’”HL

for some integer m. We claim that x(z) has no root in V, i.e. that (x(z)) is cyclic maximal.
This element can be written as x(z) = v’ for some element v € V with no proper root,
and some integer j # 0. We will prove that j = £1. Each homomorphism p,g: S = G
induces a homomorphism p,, : V. — G/C ~ (t). For every integer n, we have p,,(v)’ = tPn.
It follows that j divides p,, for every m. Since (p,) is a strictly increasing sequence of
prime numbers, j = +1.

In order to define the retraction r, : L — I, we need a presentation of S. Let
(v1,v2,...,0y) be a basis of V, with v; = v. For 1 < i < m, let z; be a preimage of
v; in L. One can suppose that z; = z. Each element z; induces an automorphism (; of C,
and each commutator [z, 2;] is equal to an element ¢; ; € C. Here is a presentation of S:

<C, Zlye+y”m ’ ad(zi)‘c = Ci, [Zi,Zj] = Ci’j>.

Let v denote the vertex of A whose stabilizer is S. Note that any edge adjacent to v
in A has a stabilizer contained in Sy = (C, 22, ..., 2;m), because any stabilizer of a point
of d is contained in Sy. Let us refine A by replacing the vertex v with the decomposition
S = 8x*g, Sy of S. More precisely,

e the v vertex is replaced by a graph of groups with two vertices denoted by vy and
v1, linked by a single edge e, such that the stabilizers of vy and e are equal to Sy
and the stabilizer of vy is equal to S;

e we replace each edge ¢ = [v, w] A with an edge [vg, w] if w # v, and with an edge
[vo, vo] if w = v, which is always possible since U, is contained in Sp.

We denote by A’ this new decomposition of U as a graph of groups. Then, let us consider
a JSJ splitting of L relative to U over finite groups, and let A be the splitting of L obtained
from this JSJ splitting by replacing the vertex fixed by U with the splitting A’ of U. We
keep the notations vy and vy for the vertices of A corresponding to the vertices vy and vq
of A’. Since all finite subgroups of S are contained in Sy, we can assume without loss of
generality (up to performing some slides of edges) that there is a only one edge e adjacent
to v1 in A, namely the one that connects v; to vg. Now, we collapse all the edges of A
other than e, and we get a decomposition of L as an amalgamated product L = Lg g, S,
which can also be viewed as an HNN extension L = Lg*g, with stable letter z.
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We are now ready to define the retraction r, : L — I'. First, we define r,, on S. In
order to do this, we follow the same strategy as in the proof of the particular case discussed
above. Let v = zX'. We denote by 7, the endomorphism of I defined by 7, = id on C
and 7,(2) = 279" (well-defined since ~y centralizes C). Let us define r,, : S — T" by r, = id
on (C,2) and 7,(2;) = Ty(n) © pn(z) for 2 < i < m (where f : N — N denotes a strictly
increasing function that will be specified later). In order to verify that r, is well-defined,
it suffices to show that [r,(2), r,(2i)] = rn(c14), since ry, coincides with the identity on C.
Recall that p,(z) = 20, with 6, € D(T'). As a consequence, T¢(,) © pn(2) = zzBn with 2fin
in the center of I'. Therefore,

ey © pu([2, 21]) = [227%, 7400y © pn(20)] = [2, Ty © pu(20)] = 1

Hence, [rp(2), rn(2)] = n(c14), so ry, is well-defined.

Since L = S*g, Lo and since 7, coincides with 7¢(,)0pp on Sp, the morphism ry, : S — I'
extends to a morphism from L to I' that coincides with 7, on S and with 77,y o p, on
Lg. This new morphism is still denoted by r,. Note that r, is a retraction from L onto I'.
Indeed, 7,(2) = 2z and 1, = Tf() 0 pp =id on A, and I' = (2, 4).

To conclude, we will prove that the sequence (r;,) is discriminating, provided that the
function f : N — N is properly chosen. Let F' C L\ {1} be a finite set. For simplicity, one
can assume that F' = {x}, the proof being identical in the case where F' has more than
one element.

If z belongs to Lo, since the sequence (p,) is discriminating, we have p,(z) # 1 for n
large. Since 77, : I' — T is injective, we have 7¢(,) o pn(7) = r(x) # 1. Now, suppose
that = does not belong to Lg. Then z can be written as x = y12™y22™2 - - -y 2™ with
k>1,y; € L\Syand n; # 0 for all 1 <i <k (except possibly ng, which can be zero).
Note that Sy is the normalizer of C' in Lg. It follows from this observation that for n
sufficiently large, p,(yi) does not belong to Np(C') = (C, z). We can therefore write py,(y;)
as a product amz@i,lawz&ﬁ . --ai’qiz&'vqi with ¢; > 1, a,; € A\ C for all 1 < j < ¢; and
l;ij # 0 for all 1 <j < g —1 (the integer ¢; 4, can be zero). So 7,(y;) can be written as a
reduced form as follows

ra(Yi) = Ty © pa(ys) = ain 217 Wa o252 - gy g 20l (),

To prove that 7, () is non-trivial, it suffices to prove that the word obtained by concate-
nating the reduced forms of r,(y;) and 2™ is still in reduced form in the splitting I' = Ax¢
with stable letter z, i.e. is of the form ry(z) = w12 ug2®? - - - up2F™ with M > 2, k; # 0
and u € A\C (except maybe kyy = 0and u; € C). Let’s look at the subword at the junction
of rn(ys), 2™ and 7y, (yi41), for 1 < i < k. This subword is of the form a; 4, Zlivap f(n) yni Qit1,1-
Since ¢ < k, the integer n; is not zero. We distinguish two possibilities: either ¢; ;, = 0, in
which case there is nothing to be done, or ¢; 5, # 0, in which case we can choose f(n) large
enough so that ¢; o, f(n) +n; # 0.

As a conclusion, f(n) can be chosen sufficiently large so that r,(x) # 1, and the same
proof is still valid if one replaces the singleton {z} by a finite subset of L\ {1}. Hence, the
sequence of retractions (r,, : L — I') is discriminating.

B. The dihedral case. Suppose that Ng(C) is of dihedral type. Let us begin with an
easy lemma about D.-limit groups.
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Lemma 6.19. Let L be a group. Suppose that Thy(Ds) C Thy(L). Then, either L is
torsion-free abelian, or L is a semi-direct product Z x (w) with Z torsion-free abelian, and
w an element of order 2 acting by —id on Z.

Proof. The universal sentence VaVy ((z2 # 1) A (y? # 1) A (xy # 1)) = ((vy)? # 1), which
is satisfies by Dy, express the fact that the V-definable subset of D,, composed of all
elements of order > 2 is a subgroup (if one adds 1). Moreover, one can express by means
of universal sentences that this subgroup is torsion-free abelian, and has index at most
2. Therefore, any group L such that Thy(Ds) C Thy(L) contains a torsion-free abelian
subgroup of index at most 2. It follows that if L is not torsion-free abelian, then it splits
as a semi-direct product Z x (w) with Z torsion-free abelian, and w of order 2. Last, the
action of w on Z is described by the following universal sentence, satisfied by Dy:

Vavy ((x £ DA (@ =1) A (y* # 1) = (ayz~" =y 7).
This concludes the proof of Lemma 6.19. O

Since Ng(C) is of dihedral type, it follows from the lemma above that S is an extension

1—>C—>Si<»V>4Z2—>1,

with V' ~ Z™ such that x(z) € V, for some integer m. We claim that x(z) has no root in
V. This element can be written as x(z) = v/ for some element v € V with no proper root,
and some integer j # 0. We will prove that j = £1. Each homomorphism pnig =S = G
induces a homomorphism p,, : V — (). For every integer n > ng, we have p,(v)} = tPn.
It follows that j divides py, for every n > ng. Since (py,) is a strictly increasing sequence
of prime numbers, j = +1.

Let {z1,22,...,2:} C S be a finite set, with z; = 2, such that {x(z1),...,x(z)} is
a basis of V. Before we construct the retraction r, : L — I', we need a splitting of L.
Let v denote the vertex of A whose stabilizer is S§. We refine A by replacing v by the
decomposition S = S g, S2 where Sy = (C, 22, ..., 2,), S1 = Sp % (a) and Sy = Sy x (b)
with b = za (where a and b have been defined above). Note that any edge adjacent to v
in A has a stabilizer contained in a conjugate of S; or Sy in S. We refine A by replacing
v by this splitting of S. Let A’ denote this new decomposition of U as a graph of groups.
Then, consider a JSJ decomposition of L relative to U over finite groups, and let A denote
the decomposition of L obtained from this JSJ splitting by replacing the vertex fixed by U
with the splitting A’ of U. Then, collapsing edges if necessary, we obtain a decomposition
of L of the form

L =1Ly%g %S *g, Ly our L= (Lyxg, *5) *g, .

First case: L = Ly g, *S*g, Ly. The group L can also be decomposed as L = Lj g, Lo.
We will suppose that I' = A x¢ B, with C' is strictly contained in A and in B. The proof
is similar in the case where I' = Ax¢c (left to the reader).

Since A and B are elliptic in the decomposition L = Lj *g, L2, and since z has a
translation length equal to 2, one can suppose without loss of generality that A C Lq et
B C Ls.

Recall that the morphism p, coincides with the identity on A and with the inner
automorphism ad(d,) on B, with 6, € D(Np(C)) = (22K'). Set § = 22K so that
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6n = 0™ = 22K for a certain integer A\, # 0 (which goes to infinity as n goes to
infinity.

We denote by 7, the endomorphism of I" defined by 7, = id on A and 7,, = ad (™) on B
(well-defined since ¢ centralizes C'). Let f : N — N be a strictly increasing function that will
be specified later. The homomorphism 7,y © p,, : L — T coincides with ad(7s(y) (6,)07 ()
on B. Let v = Ty (6,)67/™ . An easy calculation shows that v, = z#* where u, =
2K\, (1 +4K!f(n)) +2K!f(n).

Let us define r,, on L by r,, = Tf(n) © Pn o0 Ly and r, = ad(%;l) OTf(n) © pn o0 La. Note
that r, is a retraction from L onto I' = A x¢c B (well-defined since 7, centralizes Sp). Let
us summarize the properties of r,.

rn(a) =a
rn(b) =b
rn(2) =2

Tn|Sy = Tf(n) © Pn|Sy
Tn|Ly = Tf(n) © pn\L1
Tin, = ad(7, 1) © Tr(n) © pnys,

To conclude, we will prove that the sequence (r,, : L — I') is discriminating provided
that the sequence (f(n)) is properly chosen. Let us consider the decompositions

L =1Lg%g %S*g, Ly and I = Axc, *N *¢, B,

where C; and Cy are overgroups of C' of index 2. More precisely, C1 = (C,a) and Cy =
(C,b) where a and b denote two elements of order 2 modulo C' such that z = ba.

The sequences (ry,z,) and (r,z,) are both discriminating since the sequence (py) is
discriminatig and since the homomorphisms 7, are injective. We claim that the sequence
(7n)g) is discriminating as well. Let F' C S\ {1} be a finite set. For simplicity, we suppose
that F' = {s}, the proof being identical in the case where F' has more than one element.
This element s can be written as s = zFspa® mod C with k € Z, s9 € Sy and € € {0,1},
where a is an element of order 2 modulo C such that S; = (Sp,a). We distinguish two
cases. If e = 1, then szs™ ! ! 'mod O, and this relation is preserved by 7, so 7,(s) is
non-trivial. If € = 0, either sy has finite order, in which case there is nothing to be done,
or so has infinite order, in which case p,(sg) has infinite order for n large enough. Then
pn(s0) = 2z mod C with £, # 0, so r,(s0) = Tf(n) © Pn(s0) = 2 (AR (1) mod O
For f(n) large enough, the element 7, (s) has infinite order. Hence, the sequence (r,g) is
discriminating. It remains to prove that (r,) is discriminating.

Let x € L be a non-trivial element. We will prove that r,(x) is non-trivial for n large
enough, by appropriately choosing the sequence of integers (f(n)). If z belongs to a
conjugate of one of the vertex groups of the graph of groups L = L *g, *S *g, Lo, then
rn(x) # 1 by the previous paragraph. From now on, we assume that x is not elliptic in this
decomposition. Let us write z as a non-trivial reduced word z1s1x282x3--- in the graph
of groups L = Ly *g, *S *g, Lo, with x; € Ly or Ly and s; € S. By definition of a reduced
word, the following three conditions hold.

e 1; does not belong to S; = (Sy, a) or So = (Sp, b).

:Z_
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e If x; and z;11 are both in Ly, then s; does not belong to S.
e If x; and x;11 are both in Lo, then s; does not belong to Ss.

We will prove that r,(z) can be written as a non-trivial reduced word in the graph of
groups I' = A x¢, N *¢, B, which implies that r,(z) # 0. Note first that r,(s;) belongs to
N since S = N (C). Each element r,(x;) can be decomposed as a reduced word w; in the
graph of groups I' = A x¢; N *¢, B. Let us consider the concatenation of these reduced
words w = wiry(s1)wary(s2)ws -+ -. We will prove that w is (almost) a reduced word in
the decomposition I' = A ¢, N *¢, B. The subwords of  (viewed as a non-trivial reduced
word in L; xg, *S *g, L2) are of one of the following three forms.

e Case I: T;iSiTi1 with Ti, Tit1 € 14 (or Lg).

o Case II: TiSiTit1 with z; € L1 and Tir1 € Lo (01" x; € Ly and Tiy1 € Ll).

e Case III: s;x;si41 with x; € Ly (or Lo).
In each case, we will see that the corresponding subword w;ry(s;)w;y1 or ry(s;)wirn(sit1)
of w is (almost) reduced.

Case I. Let x;s;x; be a subword of x with s; € S and z;, x; € L1, where j =i+ 1 (the
case x;,z; € Lo is identical). Since z is reduced, s; does not belong to S1 = (Sp, a), so
s; = 2Fspa® mod C with k # 0, sg € Sp and € € {0,1}. We have

T'n(sz’) _ Zk+€n(1+4K!f(n))a£ mod C,

where £,, denotes the integer such that p,(so) = 2 (modulo C).

Then, let us decompose 7, (z;) and ry,(z;) as reduced words in I' = Ax¢c, N *¢c, B, where
C1 = (C,a) et Cy = (¢, b). First, we decompose py(x;) as a reduced word whose first and
last letters belong to N. This word ends with y; ,n; , where n;, € N and y;, € A\ C; or
Yin € B\ Cy. The element n;, can be written as n;, = Zkingfin mod C with kin€Z
and ¢; , € {0,1}. We decompose p,(x;) in the same way. The corresponding reduced word
begin with n;,y;, where n;,, € N and y;,, € A\ Ci ou B\ Cy. Again, n;j, can be written
as nj, = Zkimggin mod C where kjn € Z and €;, € {0,1}. So we have

Ti(n)(Nin) = Phin(HAR () ggin mod ¢ and Ten) (Mjn) = 2Rim (4K () gein mod O,

Subcase i. Suppose that y; , and y; , are both in A. At the junction of the concatenation
of the reduced forms of ry,(z;), rn(s;) and r,(x;), we see the subword

YinWnYjn, With wn = Tpm) (ni,n)rn(si)Tf(n) (Njn).

We have to prove that one can choose f(n) so that w, does not belong to C; = (C,a).
Any easy calculation shows that

w = ZRnaei’n+6+€j’n,

where R,, is of the form
R, =+k+ (1+4K!f(n))D

for some integer D. Since the integer k is not zero, one can always choose f(n) in such a
way that R, is non-zero. This concludes the first subcase.

Subcase 4. Suppose that y;, and y;, are both in B. Then
T#(n) (yi,n) = 5f(n)y17n57f(n) and Tf(n) (yj,n) = 6f(n)yj,n57f(n)-
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By concatenating r,(x;), n(s;) and rp(z;), we see the subword

- Rn imtETEjn — R/ int I, n
Yin§ ) Rn gEin et §F () R ety

where
Rl = Ry — 2K f(n)(1 + (—1)5t=rntl),

Let us prove that the subword zBnafintetein does not belong to Cy = (C,b). First,
observe that this subword belongs to Cs if and only if one of the following two conditions
holds:

e Rl =0and ¢, + € +¢j, =0 mod 2, in which case ZBngeintetein =1 mod C,
or
e R, =1lande;p+¢e+¢j, =1 mod 2, in which case 2Rngeintetein — ) mod C.

In the first case R), = R,, and we saw in the first subcase that f(n) can be chosen large

enough so that R, # 0 (because k # 0). In the second case,

R, = R, —4K!f(n)
=tk + (1+4K!f(n))(kin £, £ kjpn) —4K!f(n)
SO
R, =1 tk+ (1 +4K\f(n))(kin £ ln £k, — 1) = 0.
But k is non-zero, so f(n) can be chosen sufficiently large so that the previous equality
does not hold.

Subcase wi. If y;,, € A and y;, € B, or y;, € B and y;, € A, there is nothing to be
done.

Case II. Let us consider the subword z;s;x; of x (viewed as word) with x; € Ly, s; € S
and z; € Ly (the case where z; € Ly and x; € L; can be tackled in exactly the same way),
where 7 = i + 1. The element s; can be decomposed as s; = 2¥spa® mod C with k € Z
(note that k£ may be zero here), so € Sy and € € {0,1}. So we have

Tn(sz‘) — Zk+€n(1+4K!f(n))a€ mod C,

where ¢, is the integer such that p,(so) = 2t Then, as above, we decompose rn(z;) and
rn(x;) as reduced words in the decomposition I' = Ax¢, N x¢c, B. With the same notations,
we have

Tf(n) (nl,n) — Zki,n(1+4K!f(n))a5i,n mOd C et Tf(n) (n]’n) — zkj’"(1+4K!f(n))aaj’" mOd C

As in Case I, there are three subcases because y;, and y;, may be in A or in B. We will
suppose that y;,, € A and y;, € A. The reader can check that the three other cases can
be solved in the same manner.

By concatenating the words corresponding to ry(z;), r,(s;) and ry(z;), we see the

subword

Ry, a€¢7n+5+5j,n

YinTf(n) (ni,n)rn(si)ziuan(n) (nj,n)yj,n = YinZz Yimn,

where
Ry =kin(1+4K!f(n)) + (=1)% (k + £, (1 + 4K f(n))) + (=1)% T (k; (1 + 4K f(n)) — pn)
=tk +2K!f(n)(2an, £ 4K\, £ 1) + (o, £2K!N\,,).
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where o, = ki, £ 0, £ kj, and p, = (1 +4K!f(n))2K!\, + 2K!f(n). The integer p,
comes from the fact that r, = ad(27#") o 7f(,) 0 pp on La). We claim that f(n) can be
chosen in such a way that zfnafintetein ¢ €y = (C,a). Indeed, for f(n) large enough,
R, # 0 since 2a,, £ 4K\, £ 1 is odd so non-zero.

Case III. Consider a subword s;z;s; with s;,s; € S and x; € Ly (or z; € La), where
j=1i+1

Since the word representing x is reduced, x; does not belong to S, so p,(x;) does not
belong to N. Hence, the decomposition of p,(z) as a reduced word in I' = A ¢, N *¢, B
is of the form nyy; - - - yrn, with r > 1, yp, € A\ C or B\ C, and ny,n, € N (maybe zero),
so there is nothing to be done. O

We will use Lemma 6.17 to prove Theorem 6.16.

6.2.3. Proof of Theorem 6.16. Let G be a hyperbolic group. Suppose that G splits over
a finite subgroup C' whose normalizer N is virtually cyclic. Let I' = G xy N’ be a legal
small extension of G. We shall prove that Thy3(G) = Thy3(I'). By Lemma 6.20 below, it
suffices to prove that Thy3(G) C Thya(I).

Lemma 6.20. Let G be a hyperbolic group. Suppose that G splits over a finite subgroup
C whose normalizer N is virtually cyclic. Let T' = G xny N’ be a legal small extension of
G. Then G is a legal small extension of I' (viewed as abstract groups).

Proof. There exists an injective twist ¢ : I' = G C T" (one can take any homomorphism
of the small test sequence (¢, : I' = G),en whose existence was proved above). Let
N" = Ny (C). The group G can be decomposed as G = ¢(T') ¥y~ N. The inclusion of
N"into N is legal, an there exists a legal embedding of N into N (for example ¢’ o, with
the same notations as above). O

Before proving Theorem 6.16, we prove that Lemma 6.17 remains true, more generally, if
one replaces the system of equations and inequations by a boolean combination of equations
and inequations.

Corollary 6.21. Let I be a legal small extension of G, and let (pn : I' = G)npen be a
small test sequence. Let

N

\ Skl y) =1 A Uy(a,y) # 1)

k=1
be a disjunction of systems of equations and inequations, where x is a p-tuple of variables
and y s a g-tuple of variables. Let~ € I'P. Suppose that G satisfies the following condition:
for every integer n, there exists g, € G such that

N

V Eelen(3),90) =1 A $rlpn(v):gn) # 1)-

k=1
Then there exists v' € T'? such that
N

V Ce(v,y) =1 A Wp(v,7) # 1).
k=1



51

Proof. Up to extracting a subsequence of (¢, )nen (Which is still a test sequence), one can
assume that there exists an integer 1 < k < N such that, for every integer n, there exits
gn € GY such that Xg(on(7v),9n) = 1 and Vy(pn(v),9n) # 1. Proposition 6.17 applies
and asserts the existence of a tuple v/ € T'? satisfying 3 (v,v’) = 1 and ¥i(v,~") # 1,
which concludes the proof. ]

We now prove Theorem 6.16.

Proof. According to Lemma 6.20, it suffices to prove that Thy3(G) C Thyg(I"). Let 6 be a
V3-sentence such that G |= 6. Let us prove that I' = 6. The sentence 6 has the following

form:
N

0:vady \/ (Sul(z,y) =1 A Uy(z,y) £ 1),
k=1
where x is a p-tuple of variables and y is a g-tuple of variables. Let « a p-tuple of elements
of I'. For every integer n, there exists g, € G? such that

N
k=1

By Lemma 6.21, there exists 4/ € I'? such that

N
TE V() =1 A T(v,9) #1).
k=1
Hence, I' = 6. O

7. PROOF OF (5) = (1)

We are now ready to prove the implication (5) = (1) of Theorem 1.23. In fact, we prove
a stronger result, since we only assume that G and G’ are hyperbolic.

Theorem 7.1 (Implication (5) = (1) of Theorem 1.23). Let G, G’ be two hyperbolic groups.
Suppose that there exist two multiple legal extensions I' and IV of G and G’ respectively,
such that T' ~T’. Then Thys(G) = Thys(G).

Proof. By definition of a multiple legal extension, there exists a finite sequence of groups
G=GyCGy C - CGy =T where G;41 is a legal large or small extension of GG; in the
sense of Definitions 1.6 or 1.13, for every integer 0 < ¢ < n — 1. According to Theorems
1.9 and 1.14, we have Thy3(G;) = Thy3(Git1), for every 0 < i < n — 1. Thus, G and I’
have the same V3-theory. Similarly, G’ and I" have the same V3-theory. But I' and I are
isomorphic, so Thyg(I') = Thyg(I'). Hence, G and G’ have the same V3-theory. O

8. PROOF OF (4) = (5)

This section is dedicated to a proof of the implication (4) = (5) of Theorem 1.23, that
is the following result.

Proposition 8.1 (Implication (4) = (5) of Theorem 1.23). Let G and G’ be two virtually
free groups. Suppose that there exist two strongly special homomorphisms ¢ : G — G’
and ¢ : G' — G. Then, there exist two multiple legal extensions I' and I of G and G’
respectively, such that T' ~T".
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While in the previous sections we stated and proved results in the general context of
hyperbolic groups (with torsion), the present section is specific to virtually free groups.
However, we believe that the construction of multiple legal extensions should play a role
in a classification of hyperbolic groups up to elementary equivalence as well.

There are, in brief, three increasing levels of complexity in the proof of Proposition 8.1
above.

(1) We assume that all edge groups in reduced Stallings splittings of G and G’ are
equal. In other words, we suppose that there is only one cylinder in these splittings
(see paragraph 2.7 for the definition of a cylinder). We refer the reader to Corollary
8.37.

(2) We assume that all edge groups in reduced Stallings splittings 7" and T of G and
G’ have the same cardinality. The importance of the previous point appears when
one considers the trees of cylinders T, and 7. of T and T (see paragraph 2.7 for
the definition of the tree of cylinders). See Proposition 8.43.

(3) In the general case, different cardinalities of edge groups may coexist in reduced
Stallings splittings of G and G’. The proof of Proposition 8.1 is by induction on the
number of edges in reduced Stallings splittings of G and G’. By carefully collapsing
certain edges, we can assume that there is only one cardinality of edge groups in
the splittings we consider, and we can use the same techniques as in the second
point above.

As usual, we denote by K¢ the maximal order of a finite subgroup of G. Note that, under
the hypotheses of Proposition 8.1, the integers K and K¢ are equal, because strongly
special morphisms are injective on finite subgroups. We define K := Kg = Kg > 1.
Note that this integer is preserved by legal extensions. In the sequel, we assume that the
maximal order of a finite subgroup in all virtually free groups we consider is at most equal
to K.

Before proving Proposition 8.1, we need to introduce new definitions and to prove some
lemmas.

8.1. Preliminaries.

8.1.1. Strongly special pair of homomorphisms.

Definition 8.2. Let G and G’ be two groups. Given two morphisms ¢, ¢’ € Hom(G, G"),
we use the notation ¢ ~ ¢ if, for every finite subgroup C of G, there exists an element
g € G’ such that ¢ = ad(g’) o on C.

Definition 8.3. Let G and G’ be two groups. Let ¢ : G — G’ and ¢’ : G’ — G be
two homomorphisms. The pair (¢, ¢’) is said to be strongly special if the following two
conditions hold.

(1) ¢ and ¢ are strongly special.
(2) ¢ o ~idg and o ¢’ ~idg.

Note that if ¢ : G — G’ and ¢ : G’ — G are both strongly special, then ¢’ o ¢ is strongly
special. As a consequence, taking ¢ = ¢ and ¢ = ¢ o (p 0 ¢')* for a suitable k, one gets
the following result.
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Lemma 8.4. Let G and G’ be two groups. Let o : G — G' and ¢’ : G' — G be two strongly
special homomorphisms. Suppose that G and G’ have finitely many conjugacy classes of
finite subgroups. Then there exists a strongly special pair (1, ¢').

According to the previous lemma, in order to prove Proposition 8.1, it suffices to prove
the following result.

Proposition 8.5. Let G and G’ be two virtually free groups. Suppose that there exists a
strongly special pair of homomorphisms (¢ : G — G',¢' : G' — G). Then there exist two
multiple legal extensions T' and T of G and G’ respectively, such that T’ ~T".

8.1.2. Smallest order of an edge group in a reduced Stallings splitting.

Definition 8.6. Given an infinite virtually free group G, we denote by m(G) the smallest
order of an edge group in a reduced Stallings splitting of G. Note that this integer does
not depend on a particular reduced Stallings splitting of G, because conjugacy classes of
edge groups are the same in all reduced Stallings splittings of G, since one can pass from
a reduced Stallings splitting to another by a sequence of slide moves. If G and G’ are two
virtually free groups, we define mq v = min(m(G), m(G")).

8.1.3. m-splittings.

Definition 8.7. Let m > 1 be an integer. Let G be a virtually free group. A m-splitting
of G as a graph of groups is a non-trivial splitting of G over subgroups of order exactly m.

Lemma 8.8. Let m > 1 be an integer. Let G be a virtually free group, and let T be a
reduced m-splitting of G. Suppose that T has a vertex group of order exactly m. Then, G
18 finite-by-free.

Proof. Suppose that there exists a vertex v of T' such that |G,| = m. Since T/G is a
reduced splitting of G over edge groups of order m, the existence of a vertex group of order
exactly m implies that the underlying graph of the graph of groups 7'/G has only one
vertex, i.e. is a bouquet of circles. Hence, all edge groups and vertex groups of T" are equal
to G,. As a consequence, (G, is the unique maximal finite normal subroup of G, and the
quotient group G/G, is the fundamental group of a bouquet of circles, i.e. a free group.
Hence, the group G is G,-by-free, with G, finite. O

8.1.4. Strongly (> m)-special homomorphisms. We need to slightly weaken the definitions
of a strongly special homomorphism and of a strongly special pair of homomorphisms. The
following definitions are suitable for proofs by induction.

Definition 8.9. Let G and G’ be virtually free groups. Let m > 0 be an integer. A
homomorphism ¢ : G — G’ is said to be a strongly (> m)-special homomorphism if it
satisfies the following four properties:
(1) ¢ is injective on finite subgroups;
(2) if Cy and Cy are two non-conjugate finite subgroups of G of order > m, then ¢(Ch)
and p(Cs) are non-conjugate in G';
(3) if C is a finite subgroup of G of order > m whose normalizer Ng(C') is non-
elementary, then the normalizer N¢/(p(C')) is non-elementary and

¢(Ec(Na(C))) = Eq/(Na (¢(C))).
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In particular, if the finite group Eg(Ng(C)) is equal to C, then
Ear(Ner (¢(C))) = o(C);

(4) if C is a finite subgroup of G of order > m whose normalizer is virtually cyclic
infinite maximal, then Ng/(¢(C)) is virtually cyclic infinite maximal, and the re-
striction ¢|n,(c) 1 Na(C) = Ng/(9(C)) is K-nice, with K the maximal order of a
finite subgroup of G (see Definition 1.12).

We define strongly (> m)-special homomorphisms in the same way.

Remark 8.10. A homomorphism is strongly special (see Definition 1.22) if and only if it is
strongly (> 0)-special.

Definition 8.11. Let G and G’ be virtually free groups. Let ¢ : G — G’ and ¢’ : G’ — G
be two homomorphisms. The pair (¢, ¢’) is said to be a strongly (> m)-special pair if the
following three conditions hold:

(1) ¢ and ¢’ are strongly (> m)-special (see Definition 8.9);
(2) ¢’ o ~ idg, which means that for every finite subgroup C' C G, there exists an
element g € G such that ¢’ o ¢ and ad(g) coincide on C;
(3) poy ~idg.
We define strongly (> m)-special pairs in the same way.

8.1.5. Preservation of specialness. The following lemma shows that the property of being
strongly (> m)-special is preserved by composition.

Lemma 8.12 (Composition of strongly (> m)-special homomorphisms). Let G, G’ and
G" be virtually free groups. Let m > 1 be an integer. Let o : G — G’ and ¢’ : G' — G" be
homomorphisms. Suppose that ¢ and ¢’ are strongly (> m)-special. Then ¢' o is strongly
(> m)-special.

Remark 8.13. We also prove that if ¢ and ¢’ satisfy the first three conditions of Definition
8.9, then ¢’ o ¢ satisfies the first three conditions of Definition 8.9.

Proof. There are four conditions that need to be verified.

Condition 1. Since ¢ and ¢’ are injective on finite subgroups of G and G', ¢’ o ¢ is
injective on finite subgroups of G as well.

Condition 2. If C; and Cy are two non-conjugate finite subgroups of G of order > m,
then ¢(C1) and ¢(C3) are two non-conjugate subgroups of G’ of order > m, hence ¢’'op(C1)
and ¢’ o p(Cy) are non-conjugate in G”.

Condition 3. If C is a finite subgroup of G of order > m whose normalizer in G
is non-elementary, then Ng/(¢(C)) is non-elementary and ¢(Eq(Ng(C))) is equal to
E¢/(Ngi (¢(C))), since ¢ is strongly (> m)-special. Note that |¢(C)| = |C| > m. Hence,
since ¢’ is strongly (> m)-special, the group Ng»(¢'(¢(C))) is non-elementary and the
following equality holds: (e (Nar((C)))) = Egn (Naw (¢ (o(C)).

Condition 4. If C is a finite subgroup of G of order > m whose normalizer in G is
virtually cyclic infinite maximal, then Ng/(¢(C)) is virtually cyclic infinite maximal, and
the restriction of ¢ to Ng(C) is K-nice (see Definition 1.12), because ¢ is strongly (> m)-
special. Since ¢’ is strongly (> m)-special, the group Ng»(¢'(p(C))) is virtually cyclic
maximal, and the restriction of ¢’ to Ng(¢(C)) is K-nice. Hence, the restriction of ¢’ o ¢
to Ng(C) is K-nice, as the composition of K-nice homomorphisms. O
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We now prove that the first three conditions of Definition 8.9 are preserved by the
equivalence relation ~ (see Definition 8.2).

Lemma 8.14. Let G and G’ be two virtually free groups, and let ¢,v) : G — G’ be two
homomorphisms. Suppose that ¢ ~ @. If ¢ satisfies conditions 1 to 3 of Definition 8.9,
then ¢ satisfies conditions 1 to 8 of Definition 8.9.

Proof. There are three conditions that need to be verified.

Condition 1. By definition of ~, the homomorphisms ¢ and % coincide up to conjugacy
on finite subgroups. Since ¢ is injective on finite subgroups of GG, the homomorphism 1 is
injective on finite subgroups as well.

Condition 2. If C1 and Cy are non-conjugate finite subgroups of G of order > m, then
©(C1) and p(Cs) are non-conjugate in G’ because ¢ is (> m)-special. In addition ¥ (C)
is conjugate to ¢(Cy) and 1 (Cy) is conjugate to p(C2). Hence, ¥(C1) and ¥ (Cy) are
non-conjugate in G.

Condition 3. If C is a finite subgroup of G of order > m whose normalizer in G
is non-elementary, then Ng/(¢(C)) is non-elementary and ¢(Eq(Ng(C))) is equal to
E¢/(Ngi (¢(C))), since ¢ is strongly (> m)-special. The group 1(C) being conjugate to
©(C), its normalizer is non-elementary and the following equality holds: ¢(Eq(Ng(C))) =
Eg/ (Ner (¥(C))). O

8.1.6. Preliminary lemmas about legal extensions.

Lemma 8.15. Let G be a non-elementary virtually free group. Let C' be a finite subgroup
of G. Suppose that the group I' = (G,t | ad(t)|c = idc) is a legal large extension of G.
Let @ denote the inclusion of G into I', and let r : I' - G denote the retraction defined by
7 =idg and r(t) = 1. Then r and i are strongly special, and i or ~ idr.

Proof. Let T be the Bass-Serre tree of the splitting I' = G'xjq,,, and let v denote a vertex
of T fixed by GG. Note that this vertex is unique, because the infinite vertex group G is not
equal to the adjacent edge group C', which is finite.

First, let us prove that the retraction r is strongly special. There are four conditions
that need to be verified.

Condition 1. Since every finite subgroup of I' is conjugate to a subgroup of G, the
retraction r is injective on finite subgroups of I'.

Condition 2. Let A and B be two non-conjugate finite subgroups of I'. One can suppose
without loss of generality that they are contained in G. Therefore, r(A) = Aand r(B) = B
are non-conjugate in G.

Condition 3. Now, let A be a finite subgroup of I' whose normalizer N := Np(A) is
non-elementary. One can suppose without loss of generality that A is contained in G. We
distinguish two cases.

First case. If A is not contained in a conjugate of C' in G, then v is the unique fixed
point of A in T'. It follows that Np(A) fixes the vertex v. Hence, Nr(A) = Np(A)NG =
Ng(A). This shows in particular that Ng(r(A)) is non-elementary. Moreover, note that
Er(Nr(A)) D A only fixes v. This implies that Ep(Np(A)) = Eq(Nr(A)) = Eg(Ng(A)).
Hence, we have r(Er(Nr(A))) = Eq(Na(r(A))).
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Second case. Otherwise, one can suppose without loss of generality that A is contained
in C. Then Ng(C) has a subgroup of finite index that centralizes A. Since Ng(C) is
non-elementary by definition of a large extension, the normalizer Ng(A) = Ng(r(A)) is
non-elementary as well. Now, let us prove that r(Er(Nr(A))) = Eq(Ng(r(A))). First,
we prove that Ep(Ng(A)) is contained in C. Let us observe that there exists an integer
n > 1 such that, for every g € Ng(C), the element g™ normalizes (and even centralizes)
A. Then, recall that Er(Ng(A)) is equal to the intersection of all M(g) C I where g runs
through the set Ng(A)? consisting of all elements of Ng(A) of infinite order. Hence, we
have:

Ee(Ne(A)= () Mc () MY () M) =E(Na(C))
gENG(A)° gENG(C)O gENG(C)0

C.

Note that the equality () follows from the fact that M(¢g") = M(g) for any non-trivial
integer n. We have proved that Ep(Ng(A)) is contained in C, hence in G. This shows
that the following equality holds:

(5) Er(Ng(A)) = Eg(Ng(A)).

In addition, recall that the stable letter ¢ centralizes C'. In particular, ¢ centralizes
Er(Ng(A)). Moreover Ng(A) normalizes Er(Ng(A)), by definition of Er(Ng(A)). Thus,
the group Np(A) = (Ng(A),t) normalizes Er(Ng(A)), which implies that Ep(Ng(A)) is
contained in Er(Np(A)), by definition of Er(Nt(A)). The reverse inclusion is obvious
since Ng(A) is contained in Np(A). Hence, we have

(6) Er(Nr(A)) = Er(Ng(A)).

By combining the two equalities (5) and (6), we get the equality Er(Nr(A)) = Eg(Ng(A)),
i.e. r(Er(Nr(A)) = Eg(Ng(r(A))), which concludes.

Condition 4. Let A be a finite subgroup of I' whose normalizer is virtually Z maximal.
One can suppose without loss of generality that A is contained in G. Note that A is not
contained in a conjugate of C'in G, otherwise Ng(A) would be non-elementary (see above).
Thus, the vertex v is the unique fixed point of A in T'. Therefore, Np(A) and Ng(A) are
equal, which implies that Ng(A) is virtually cyclic maximal in I'. In addition,  coincides
with the identity on Nr(A); in particular, it is K-nice.

We have proved that the retraction r is strongly special. Now, let us prove that the
inclusion i : G C I is strongly special.

Condition 1. The inclusion is injective on finite subgroups.

Condition 2. Let A and B be two finite subgroups of G. If B = yAy~! for a certain
element v € T, then B = r(vy)Ar(y)~L.

Condition 3. Let A be a finite subgroup of G whose normalizer N¢(A) is non-elementary.
Then Nr(A) is non-elementary. We have to prove that Er(Np(A)) and Eg(Ng(A)) are
equal. We distinguish two cases. If A is not contained in a conjugate of C' in G, then
Nr(A) = Ng(A) and Er(Nr(A)) = Eg(Ng(A)) (same proof as above). Otherwise, one
can suppose without loss of generality that A is contained in C. Then one can prove that
Er(Ng(A)) is contained in C' and deduce that Er(Np(A)) = Eq(Ng(A)) (same proof as
above).
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Condition 4. Let A be a finite subgroup of G whose normalizer is virtually Z maximal.
Note that A is not contained in a conjugate of C' in G, otherwise Ng(A) would be non-
elementary. Thus, the vertex v is the unique fixed point of A in 7. Therefore, Np(A)
fixes v, so Nr(A) and Ng(A) are equal. Let M be the maximal virtually cyclic subgroup
of T' containing Np(A). Since Nr(A) has finite index in M and fixes the vertex v, the
group M fixes the vertex v as well. Thus M is contained in G. Since Ng(A) is maximal
and contained in M, it is equal to M. This proves that Np(A) is virtually cyclic infinite
maximal. In addition, the restriction of the inclusion i to Ng(A) is K-nice.

We have proved that 7 is strongly special. It remains to prove that ¢ or ~idp. If A is a
finite subgroup of I', then there exists an element v € I" such that yAy~! is contained in
G. Consequently, i o r coincides with ad(r(y)~!v) on A. O

We need an analogous result for legal small extensions. First, we prove an easy lemma.

Lemma 8.16. Let G be a virtually free group. Suppose that I' = G xn N’ is a legal
small extension of G. By definition, there exists a nice emebedding j : N' — N. This
homomorphism extends to a monomorphism j: ' — G.

Proof. By definition, G splits as A *¢ B or A*¢ over a finite subgroup C' whose normalizer
is N. Moreover, N is assumed to be non-elliptic in the splitting. The corresponding tree of
cylinders gives a splitting A of G as a graph of groups whose vertices are A, N and B (only
in the first case), and whose edge groups are equal to C' or contain C' as a finite subgroup of
index 2. Since j coincides on each finite subgroup of N C N’ with an inner automorphism,
it extends to a homomorphism j : I' — G that coincides with inner automorphisms on A
and B (see Lemma 2.27). Let A’ be the splitting of I obtained from A be replacing N
by N’. One can see that j maps a non-trivial reduced word in the splitting A’ of T to a
non-trivial reduced word in the splitting A of G. This shows that j is injective. g

Lemma 8.17. Let G be a non-elementary virtually free group. Let I' be a legal small
extension of G. Let i denote the inclusion of G into I' and let j : I' — G denote a
monomorphism as in Lemma 8.16. Then ¢ and j are strongly special. Moreover, 105 ~ idr.

Proof. Let T be the Bass-Serre tree of the splitting I' = G'xjq,,, and let v denote a vertex
of T fixed by G. Note that this vertex is unique, because the vertex group G is not equal
to the adjacent edge group C.

By symmetry, it is enough to prove that j is strongly special. There are four conditions
that need to be verified.

Condition 1. By definition, j is injective on finite subgroups of I

Condition 2. Since i o j maps every finite subgroup of I" to a conjugate of itself, j maps
non-conjugate finite subgroups of I' to non-conjugate finite subgroups of I'.

Condition 3. Let A be a finite subgroup of I'. One can suppose without loss of generality
that i0j(A) = A. Let N := Np(A). The inclusions j(N) C Ng(j(A)) and i(Ng(j(4))) C
N show that N is non-elementary (respectively virtually Z) if and only if Ng(j(A)) is
non-elementary (respectively virtually 7).

Suppose that N is non-elementary and let F := Ep(NN). Since E is finite, one can
suppose without loss of generality that i o j(E) = E. We claim that j(E) is equal
Eq(Ng(j(A))). Recall that a I'-chain is a tuple (71,...,7.) of elements of I' of infinite
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order such that the inclusions
(7) M(y1) D (M(y)NM(y2)) D+ D (M(y) NN M(7e))

are all strict (see Definition 4.1), and that the complexity ¢ := ¢(N) of N is the maximal
size of a I'-chain of elements of N (see Definition 4.2). Let (y1,...,7.) be a I'-chain of
elements of N. By injectivity of j, each j(x) has infinite order, for 1 < k < ¢. Moreover,
the sequence of proper inclusions 7 is mapped by j to a sequence of proper inclusions,
which proves that the tuple (j(71),...,7(7¢)) is a G-chain of elements of Ng(j(A)). In
particular, we have ¢(N) < ¢(Ng(j(A))). Symmetrically, ¢(Ng(j(A))) < ¢(N). Therefore,
the complexities ¢(IN) and ¢(Ng(j(A))) are the same. This implies that Eq(Ng(j(A))) is
equal to the intersection Ni<k<.M(j(7)) (see Lemma 4.4). Hence, the following holds:

JE) =5 () M) c () iMw)c () M) =Ec(Na(i(A))).
1<k<c 1<k<c 1<k<c
Symmetrically, i(Eg(Ng(j(A))) is contained in E. Hence, j(E) = Eq(Ng(j(A))).

Condition 4. Last, if N = Np(A) is virtually Z maximal, then Ng(j(A)) is virtually Z
maximal. In addition, jjx is K-nice. O

 —

The following lemma shows that the relation ~ is preserved by left of right composition
with any homomorphism.

Lemma 8.18. Let G,G’ and G" be virtually free groups. Let o : G — G' and ¢ : G — G’
be two homomorphisms. Suppose that p ~ 1. Then, the following hold:

e if p: G — G" is a homomorphism, then po o ~ po);

e if p: G" = G is a homomorphism, then o p ~ 1o p.

Proof. Let p : G’ — G” be a homomorphism, and let C' be a finite subgroup of G. By
hypothesis, there exists an element ¢’ € G’ such that Yo = ad(g) otjc. By left composing
this equality by p, one gets p o ) = ad(p(g')) o po Yc.

Let p : G” — G be a homomorphism, and let C' be a finite subgroup of G”. By
hypothesis, since p(C) is finite, there exists an element ¢’ € G’ such that o),y = ad(g') o

Yip(c), that is @ o pjc = ad(g') oo pc. O
We now prove a lemma that will be crucial in the proof of Proposition 8.44.

Lemma 8.19. Let G and G’ be two non-elementary virtually free groups, and let T be
a legal extension of G. Let m > 1 be an integer, let ¢ : G — G’ be a homomorphism
satisfying conditions 1 to 3 of Definition 8.9, and let ¢ : T' — G’ be a homomorphism. If
Vg ~ ¢, then ¥ satisfies conditions 1 to 3 of Definition 8.9.

Proof. First, let us suppose that I' is a legal large extension of GG. Let ¢ denote the
inclusion of GG into I', and let 7 : I' — G be the retraction as in Lemma 8.15. First,
note that ¢ = 1 o 1. Therefore ¢ oi ~ . By the second point of Lemma 8.18, we have
Wpoior ~ por. Moreover, ior is equivalent (in the sense of ~) to the identity of I" according
to Lemma 8.15, so 1 o i o r is equivalent to ¢, by the first point of Lemma 8.18. As a
consequence, 1 is equivalent to ¢ o r. Recall that r is strongly special thanks to Lemma
8.15. In particular, r is strongly (> m)-special, so r satisfies conditions 1 to 3 of Definition
8.9. In addition, ¢ satisfies conditions 1 to 3 of Definition 8.9 by assumption. It follows
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from Remark 8.13 below Lemma 8.12 that ¢ or satisfies conditions 1 to 3 of Definition 8.9.
Hence, by Lemma 8.14, the morphism 1 satisfies conditions 1 to 3 of Definition 8.9.

Now, suppose that I' is a legal small extension of G. Let i denote the inclusion of
G into I', and let j : I' — G denote a monomorphism as in Lemma 8.16. First, note
that ¢ = ¢ o4. Therefore ¢ o4 ~ . By the second point of Lemma 8.18, we have
Yoioj ~ poj. Moreover, i0j ~ idr, so Ypoioj ~ 1. As a consequence, ¥ ~ @oj. Since
is satisfies conditions 1 to 3 of Definition 8.9, and since j is strongly special (in particular
strongly (> m)-special) thanks to Lemma 8.17, it follows from Remark 8.13 below Lemma
8.12 that ¢ o j satisfies conditions 1 to 3 of Definition 8.9. Hence, by Lemma 8.14, the
homomorphism v satisfies the first three conditions of Definition 8.9. U

The following lemma is an immediate consequence of Lemma 8.19 above.

Lemma 8.20 (Extension of a strongly (> m)-special homomorphism). Let G and G’ be
two non-elementary virtually free groups, and let I' be a legal extension of G. Let m > 1
be an integer, let o : G — G’ be a strongly (> m)-special homomorphism and ¢ : T' — G’ a
homomorphism. If g ~ ¢ and if ¢ satisfies the fourth condition of Definition 8.9, then
W 1s strongly (> m)-special.

The following lemma shows that strongly (> m)-special homomorphisms behave nicely
with respect to legal extensions of the target group.

Lemma 8.21. Let G and G’ be two non-elementary virtually free groups, and let T be a
legal (large or small) extension of G'. Let i denote the inclusion of G into T'. Let m > 1
be an integer and let ¢ : G — G’ be a strongly (> m)-special homomorphism. Then
iow:G— T is strongly (> m)-special.

Proof. By Lemmas 8.15 and 8.17, the inclusion i is strongly special, in particular strongly
(> m)-special. Then, by Lemma 8.12, i o ¢ is strongly (> m)-special. O

Lemma 8.22 (Restriction of a strongly (> m)-special pair). Let G and G’ be two virtually
free groups. Suppose that they are not finite-by-free. Let m denote the integer mg /. Let
0:G— G and ¢ : G' = G be two homomorphisms such that (p,¢') is a strongly (> m)-
special pair. Let H be a m-factor of G. Suppose that o(H) is contained in a m-factor H'
of G', and that ©'(H') C H. Then the pair (o), (piH,) is strongly (> m)-special.

Proof. Let T be a reduced m-JSJ tree of G. First, we will prove the following preliminary
observations:

(1) if C' is a finite subgroup of H of order > m, then Ng(C) = Ny (C) and
Ea(Na(C)) = Eu(Nu(C));

(2) if C1 and Cy = gC1g~ " are two subgroups of H of order > m with g € G, then g
belongs to H.

By definition of a m-factor, there exists a vertex v € T such that H = G,. The vertex
v is the unique vertex of T fixed by C, because |C| > m and edge groups of T have
order m. This implies that Ng(C') fixes v, i.e. that Ng(C) is contained in H. Hence,
N¢g(C) = Ny (C). For the same reason, Eg(Ng(C)) D C is contained in H, which proves
that Eq(Ng(C)) = Ex(Nu(C)). The proof of the second point is similar.

Now, let us prove that ¢z : H — H " is strongly (> m)-special. There are four points
that need to be satisfied.
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Condition 1. The restriction ¢|; is injective on finite subgroups of H, because ¢ is
injective on finite subgroups of G.

Condition 2. Let C7 and C5 be two non-conjugate finite subgroups of H of order > m.
By the second preliminary observation, these groups are non-conjugate in G. Since ¢ is
(> m)-special, ¢(C1) and ¢(C3) are non-conjugate in G’. Thus, ¢(C;) and ¢(Cy) are
non-conjugate in H’'.

Condition 3. If C is a finite subgroup of H of order > m whose normalizer Ny (C) is non-
elementary, then N¢/(C') is non-elementary. This implies that Ngv(¢(C')) is non-elementary,
because ¢ is strongly (> m)-special. Moreover, we have N¢/(¢(C)) = N/ (p(C)) according
to the first preliminary observation. Hence, Ng/(¢(C)) is non-elementary. In addition, we
have

¢(Ea(Na(C))) = Ee(Ne (¢(C))),
since ¢ is strongly (> m)-special. It follows that

o(En(Nu(C))) = Eg/ (N (¢(C))),

because, by the first preliminary observation,
Eq(Na(C)) = En(Nu(C)) and  Eq(Na(¢(C))) = Eg/(Nu(#(C))).

Condition 4. Let C be a finite subgroup of H of order > m such that Ny (C) is virtually
cyclic infinite maximal. The morphism ¢ being strongly (> m)-special, the normalizer of
©(C) in G’ is virtually cyclic infinite maximal and the restriction of ¢ to Ng(C) is K-nice
in the sense of Definition 1.12. Since Ny (C) = Ng(C) and Ny (o(C)) = Ng(p(C)), the
restriction of ¢ to Ny (C) is K-nice.

We have proved that ¢ is strongly (> m)-special. Since the same arguments remain
valid with ¢’ instead of ¢, the restriction go‘/ 0 1s strongly (> m)-special as well.

It remains to prove that the pair (<p|H,g01H,) is strongly (> m)-special. To that end,

let us consider a finite subgroup C of H of order > m. Since ¢’ o p ~ idg, there exists
an element g € G such that ¢’ o p(C) = gCg~!. Since ¢’ o p(H) is contained in H by
assumption, the groups C' and gCg~! belong to H. By the preliminary observation, g
belongs to H. Hence, ¢’ o ¢ maps every finite subgroup of H of order > m to a conjugate
of itself in H. Symmetrically, ¢ o ¢’ maps every finite subgroup of H’ of order > m to a

conjugate of itself in H’. O
8.1.7. Legal (> m)-extensions.

Definition 8.23. Let m > 1 be an integer. Let I' be a virtually free group, and let G be a
subgroup of I'. We say that I is a multiple legal (> m)-extension of G if there exist nested
subgroups G = G1 C G C --- C G, = I and integers (k;)1<i<n—1 such that k; > m and
Giy1 is a legal large or small k;-extension of G; (see Definitions 1.6 and 1.13) for every
1 <i<n-—1. Ifn=2, we simply say that I is a legal (> m)-extension of G. In the
same way, we define multiple legal (> m)-extensions and multiple legal m-extensions of G
if k; > m or k; = m respectively.

Lemma 8.24. Let m > 1 be an integer. Let G be a virtually free group, and let A be a
m-splitting of G as a graph of groups. Let k > m be an integer, let v be a vertex of A and
let @v be a legal large k-extension of G,. Then the group G obtained from G by replacing
G, by (A;v in A is a legal large k-extension of G.
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Proof. By definition of a legal large k-extension, there is a subgroup C' of Gy, of order k such
that Gy = (Gy, t | [t,¢] = 1,Vc € C), with Ng, (C) non-elementary and E¢, (Ng, (C)) = C.
Thus, the normalizer of C' in G is non-elementary, and we only have to prove that F :=
Eq(Ng(C)) = C. Note that the inclusion C' C E always holds, because E is the unique
maximal finite subgroup of G normalized by Ng(C). It remains to prove that £ C C.

Let T be the Bass-Serre tree of A, endowed with the action of G. We shall still denote
by v a lift in 7" of the vertex v of A. As a first step, we shall prove that Eg(Ng,(C))
fixes the vertex v € T'. Assume towards a contradiction that Fg(Ng,(C)) does not fix v.
Then the inclusion C' C Eg(Ng, (C)) is strict. This shows in particular that Eg(Ng, (C))
has order > |C| > m. Since Eg(Ng,(C)) is finite, it fixes a vertex w # v of T, and this
vertex is unique because Eg(Ng,(C)) has order > m. It follows that Ng, (C) fixes w as
well. Hence, Ng, (C) is contained in the finite group G, N G, contradicting the fact that
Ng, is non-elementary. We have proved that Eq(Ng,(C)) fixes v. As a consequence, the
following equality holds:

(8) Eg,(Ng,(C)) = Ec(Ng, (C)).

Now, let us assume towards a contradiction that C' is strictly contained in E. Since FE
is finite, it fixes a vertex w of T'. Moreover, this vertex is unique since |E| > |C| = k > m.
It follows that Ng(E) is contained in G,,. But Ng(C) is contained in N¢(E) by definition
of E, hence Ng(C) fixes w. Since Ng,(C) is infinite, it fixes only v in 7', which proves
that w = v. As a consequence Ng(C) = Ng,(C), and therefore

9) Eq(Ng(C)) = Ea(Ng, (C)).

By combining equations (8) and (9), we get Eq(Ng(C)) = Eg,(Ng,(C)), ie. E = C,
contradicting the assumption that C' is strictly contained in E. As a conclusion, we have
proved that £ = C. This proves that G is a legal large k-extension of G. U

We need an analogous result for small extensions.

Lemma 8.25. Let m > 1 be an integer. Let G be a virtually free group, and let A be a
m-splitting of G as a graph of groups. Let v be a vertex of A. Let A, be a one edge splitting
of Gy over a finite group C' of order k > m whose normalizer Ng,(C) is virtually cyclic
and non-elliptic in A,. Let Gy be a legal small k-extension of G,. If Ng,(C) = Ng(C),
then the group G obtained from G by replacing G, by @U n A is a legal small k-extension
of G.

Proof. We only need to verify that C' is an edge group in a splitting of G in which Ng(C)
is non-elliptic. First, note that for any edge e of A incident to v, the edge group G, is
contained in a conjugate of A or B, as a finite group. Let A’ be the splitting of G' obtained
from A by replacing the vertex v by the splitting A, of G,, and let € be the new edge
of A’ coming from A,. By collapsing all edges of A’ different from &, we get a one edge
splitting of G over C' in which Ng(C) is non-elliptic. O

Remark 8.26. Let T be the Bass-Serre tree of A. We still denote by v a lift in T of the
vertex v of A. Let us observe that the equality Ng, (C) = Ng(C) holds if C is not an edge
group of A i.e. if v is the unique vertex of T' fixed by C, because in this case Ng(C) fixes v
as well, which implies that Ng, (C) = Ng(C)NG, = Ng(C). For instance, if k = |C| > m,
then v is the unique vertex of T fixed by C.
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The following lemma allows us to iterate Lemmas 8.24 and 8.25 above.

Lemma 8.27. Let m > 1 be an integer. Let G be a virtually free group, and let A be a
m- splzttmg of G as a graph of groups. Let v and w be two distinct vertices of A. Let G
and G be two legal (> m)-extensions of G, and Gy,. If the extension G’ (respectively

Guw) is small, suppose that Ng,(C) = Ng(C) (Tespectively Ng, (C) = Ng(C)), where C' is
the edge group of the one edge splitting of Gy, (respectively G,) associated with the small
extension. Then the group G obtained from G by replacing G, by G and Gy by Gw in A
is a multiple legal (> m)-extension of G.

Proof. Let T" be the group obtained from G by replacing G, by év. By Lemmas 8.24 and
8.25, T is a legal (> m)-extension of G. We claim that G is a legal (> m)-extension of T.
Note that I',, = G,,. We distinguish two cases. If CA?w is a large extension of G,,, there is
no condition to be checked and Lemma 8.24 claims that G is a legal (> m)-extension of I.
If G, is a small extension of Gy, the group Np(C) is equal to Ng(C), which is equal to
Ng,, (C) by assumption. Since I'y, = Gy, we have Ny (C) = Nr, (C). Hence Lemma 8.25
applies and guarantees that G is a legal (> m)-extension of I O

By iterating Lemma 8.27, we get the following result.

Corollary 8.28. Let m > 1 be an integer. Let G be a virtually free group and let A be a
m-splitting of G as a graph of groups. For every vertex v of A, let @v be a multiple legal
(> m)-extension of G,. If the extension éy s small, suppose that the edge group of the one
edge splitting of G, associated with the small extension has order > m. Then the group G
obtained from G by replacing every G, by év in A is a multiple legal (> m)-extension of
G.

8.1.8. Property Py,.

Definition 8.29. Let G and G’ be two virtually free groups. Let m denote the integer
meacr. Let ¢ : G — G" and ¢’ : G’ — G be two homomorphisms. We say that the tuple
(G,G', p,¢) has property P, if the following two conditions hold:

(1) the pair (¢, ¢') is strongly (> m)-special;
(2) ¢’ o maps each m-factor of G isomorphically to a conjugate of itself, and ¢ o ¢’
maps each m-factor of G’ isomorphically to a conjugate of itself.

Remark 8.30. Let Gy,...,Gpand G, . . ., G;, be two sets of representatives of the m-factors
of G and G’ respectively. If (G,G’,¢,¢") has P,,, then p = p’ and, up to renumbering
Gi,...,Gp, the homomorphism ¢ maps each G; isomorphically to a conjugate of G, and
¢ maps each G isomorphically to a conjugate of G;. Indeed, let T' be a reduced m-JSJ
splitting of G, and let H be a vertex group of T, that is a m-factor of G. Since ¢’ o ¢ is
injective on H, the morphism ¢ is injective on H as well. Hence ¢(H) ~ H is (< m)-rigid.
As a consequence, p(H) is contained in a vertex group H' of T". We claim that ¢ induces
an isomorphism from H to H’. First, note that ¢/(H’) is contained in a vertex group K
of T, for the same reason as above. Therefore, ¢’ o o(H) is contained in K. Moreover, we
know that ¢’ o p(H) = HY for some g € G. It follows that HY is contained in K. Since T
is reduced and since H9 and K are two vertex groups of T, we have H9 = K. Likewise,
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¢'(H9) = H'Y for some ¢’ € G’. Hence, the following series of inclusions holds:
HS H S B S 1Y

Recall that the homomorphism ¢ o ¢’ is surjective from H’ onto H'9'. Thus, ¢ induces an

isomorphism from HY to H'Y', and it follows that © induces an isomorphism from H to
H'

8.1.9. FExpansions.

Definition 8.31. Let G and G’ be two virtually free groups. Let m denote the integer
mgq. Let ¢ : G — G’ and ¢' : G’ — G be two homomorphisms. Let I' and I" be two
virtually free groups containing G and G’ respectively, and let ¢ : T' - T” and ¢/ : TV — T°
be two homomorphisms. We say that (I',I”,¢,4’) is a (> m)-expansion of (G,G’, ¢, ') if
the following conditions are satisfied:

(1) T and I are two multiple legal (> m)-extensions of G and G';
(2) ¢|G ~ ¢ and 1[)|/G’ ~ '
In the same way, we define (> m)-ezpansions.

Remark 8.32. Let U = (G,G,¢,¢’) be a tuple as in Definition 8.31 above. If U is a
(> m)-expansion of U, and if Us is a (> m)-expansion of U, then Us is a (> m)-expansion
of U.

8.2. Finite extensions of free products. In this section, we are concerned with the
case where there is only one cylinder in the trees we consider, which means that all edge
groups are equal. This particular case will play a crucial role in the proof of Proposition
8.44, which uses extensively the trees of cylinders.
Given a group G and a subgroup C' C G, we denote by Autg(C') the following subgroup
of Aut(C):
Autg(C) = {o € Aut(C) | 3g € Ng(C), ad(g)c = o}

Lemma 8.33. Let G and G’ be two non-elementary hyperbolic groups. Let T and T" be two
simplicial trees endowed with actions of G and G’ respectively. Suppose that all edge groups
of T and T are equal, and let C and C' denote these edge groups. Suppose in addition
that T and T' have the same number of orbits of vertex groups, say p. Let Gi,...,G)
and G, . . ., Gl’n be some representatives of the vertex groups of T and T'. Suppose that the
following two conditions hold:

e there exists a strongly (> |C|)-special homomorphism ¢ : G — G’ that maps each
subgroup G; isomorphically to a conjugate of G,

e and there exists a strongly (> |C'|)-special homomorphism ¢' : G' — G that maps
each subgroup G isomorphically to a conjugate of G;.

Then C and C' have the same order m, and there exists a (> m)-expansion (G,G',3,?')
of (G,G",p,¢") such that @ and @' are bijective and satisfy the following two conditions:

o for every 1 <1i < p, there exists an element g} € G’ such that
v, = ad(gi) © Pl

where @ is viewed as a homomorphism from G to G';
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o for every 1 < i < p, there exists an element g; € G such that
‘PTG; = ad(g;) o ﬂg;,
where @' is viewed as a homomorphism from G’ to G.

Remark 8.34. It is worth noticing that in the particular case where T and T are m-JSJ
splittings of G and G’ respectively (which is equivalent to say that the vertex groups of
T and T" are m-rigid), the conclusion of the lemma can be reformulated as follows: there
exists a (> m)-expansion (@, G, 3, @) of (G,G',p,¢") with property P,,. However, the
lemma is stated in a more general context because, at some point in the proof (more
precisely in the third case of the second step of the proof of Proposition 8.42), we will be

considering some splittings that are not m-JSJ splittings.

Remark 8.35. The groups G and G’ constructed in the proof below are obtained by per-
forming legal large extensions over C' and C’ only.

Proof. Note that C' and C’ are normal in G and G’. As a first step, we shall prove that
©(C) = C" and ¢'(C") = C. Since ¢ is strongly (> |C|)-special, and since Ng(C) = G is
non-elementary, we have

¢(Ec(Na(C))) = Ecr(Nar(0(C)))-
The left-hand side of this equation is equal to ¢(C). Indeed, N¢(C) = G and Eg(G) = C
since C' is the unique maximal finite normal subgroup of G. The right-hand side of the
equation contains C’. Indeed, since C’ is a normal subgroup of G’, it is in particular
normalized by Ng/(p(C)) C G’; hence, C’ is contained in the unique maximal finite sub-
group of G’ normalized by Ng/ (¢(C)), namely Eq/(Ng(¢(C))). We have proved that C”
is contained in p(C). Likewise, we have C' C ¢'(C").

Since the homomorphisms ¢ and ¢’ are injective on finite subgroups, the inclusions
C’" C ¢(C) and C C ¢'(C") show that ¢(C) = C’ and ¢'(C") = C. More precisely, ¢
induces an isomorphism from C to C’, and ¢’ induces an isomorphism from C’ to C. In
particular, the finite groups C' and Q’ have the same order denoted by m.

We will now define the groups G and G’. First, let us define a homomorphism @ :
Autg(C) — Autg(C”) as follows: for every 0 = ad(g)|c € Autg(C), set

?(0) = pjcobo (go‘c)_l = ad(p(g))|cr independent from the choice of g.

Note that this homomorphism is injective. Indeed, if there exists an element ¢ € C such
that geg~! # ¢, then p(g)p(c)p(g9) ™! # ¢(c), because geg~! belongs to C' and ¢ is injective
on C. Likewise, ¢’ induces a monomorphism Autq (C’) < Autg(C). As a consequence,
Autg(C) and Aute(C’) have the same order, say ¢. Set Autg(C) = {61,...,6;} and
Auter (C') = {6),...,0,} with 0, =3(6;) for every 1 <1i < /.

Note that the groups G and G’ split respectively as

15C—>G—=Q=0Q1% *QpxFy =1 and 1 -0 -G = Q = Qix - +QpxFp — 1

where @; is the image in @ of a conjugate of G;, and Q) is the image in Q" of a conjugate
of G;. Up to replacing G; by a conjugate of itself, one can suppose that G; is the preimage
of @Q; in G, for every 1 <1i < p. Likewise, one can suppose that G} is the preimage of Q)
for every 1 <i <p. Let {z1,...,2} be a generating set of the free group F}, and let ¢; be
a preimage of x; in G, for every 1 < i < k. Each element ¢; € G induces by conjugacy an
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automorphlsm Oss) € Autg(C). Let H denote the subgroup G-+ -xc Gy C G, preimage
of Q1 %---*%Qp in G. We define ], 9;'(2') and H’' in the same manner.
The group G admits the following finite presentation:

G = (H,t1,... .t | ad(t;)jc = O0) Vi € [1,k]).
Similarly, the group G’ has a finite presentation of the form
G' = (H' #,... .t | ad(t )|C’ = 0’ y Vie [1, k).

Let n = max(k, k') — k and n’ = max(k, k") — k¥, so that n + k = n' + k’. Let us define
the overgroups G and G of G and G’ as follows:

G- < Gothg1s sty o s thgtgn

ad(ti)‘czei Vi e [[k’—Fl,k—Ff]]
ad(ti)‘czidc Vi2k+€+1 ’

a/_ G, k+1,...,t;€/+e,...7t;€/+€+n/
ad(t )lc/ ldcl Vi > k‘/ + 12 +1

ad(t))cr = 0, Vi€ [k +1,K +1] >

Note that G is a multiple legal large m-extension of G. We can see that by defining a
finite sequence of groups (G )0<q<g+n by Go = G and Gq+1 (Gq, thtgt1) for 0 < g < l+4n,
and by observing that G = Gg+n, and that GqH is a legal |C'|-extension of G for every q,
because ad(ty4q+1)c belongs to Autg(C). In the same way, the group G is a legal large
|C’|-extension of G.

We will now construct the isomorphisms @ : G — G’ and @' : G’ — G satisfying the
expected conditions. Let N :=f+k+n =/¢+k'+n'. Up to renumbering the elements #;,
one can assume that ad(ti)‘o = 0; for every 1 < ¢ < {. Then, for every i > £+1, there exists
an integer 1 < j < £ such that ad(t;)c = ad(t;)|c, because Autg(C) = {01,...,0,} and
ad(t;)|c belongs to Autg(C). Hence, up to replacing t; by tj_lti, one can assume without
loss of generality that 6; = id¢c. Now, G has the following presentation:

~ H
G:< 7t1> 7tN

Likewise, G’ has a presentation of the following form:

@,:< H .ty

We are now ready to define ¢ and ¢'. By assumption, ¢(G;) = ¢.G'g} =1 for some
g; € G'. Since Aute(C') = {ad(t})|cr,1 < j < ¢}, there exists an integer 0'( ) € [1,4]
such that ad(g;)|cr = ad(t o_(i))|c’l Recall that H = Gy *¢ - - - ¢ Gp. First, let us define a

homomorphism ¢ : H — G’ by

Y|, = ad ( ()gz 1) °®G;

ad(ti)|c = 91 Vi € Hl,f]]
ad(t,-)|c = ido Vi > l +1 )

ad( )lC/ = 09/ Vi S [[175]]
ad( )\C” ldC/ Vi Z 4 + 1 )
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for every 1 < i < p. This homomorphism is well-defined since the element #/ @) gg_l of G
centralizes C”.
Then, let us define 3 : G — G’ by g = ¢ and P(t;) = t; for every 1 <4 < N. This
homomorphism is well-defined because ad(t;)|c = 6; and ad(t})|r = ¢ 0 b0 (o)™t = 6.
Last, note that
B(Gi) =ty Gith ™ = B (t(0) Gi® (o)
ie.

G =3 ( ()Gt(l)>.

Hence, the image of ¢ contains G, for every 1 <4 < p and t, = p(¢t;) for every 1 <i < N.
As a consequence, since G’ is generated by G,..., G}, t,...,t)y, the homomorphism @

is surjective. Likewise, there exists an epimorphism ¢’ : G' — G that coincides with
¢’ on each G up to conjugacy. Since hyperbolic groups are Hopfian, the epimorphism

Pop: G — G is an automorphism. Hence, » and @’ are two isomorphisms. O

Remark 8.36. This remark will be useful for proving that there exists an algorithm that
takes as input two finite presentations of virtually free groups, and decides whether these
groups have the same V3-theory or not. We keep the same notations as in the proof above.
Let r be the rank of G (that is the smallest cardinality of a generating set for G), and let »/
be the rank of G’. Note that k < r and k' < r’. We constructed the groups G and G/ from
G and G’ by performing less than max(k, k') + ¢ < max(r,7’) + |C|! legal large extensions.

We now consider reduced Stallings splittings of virtually free groups G and G'. If all
edge groups are equal, then Lemma 8.33 applies. Here below are two consequences of
Lemma 8.33 in this context. These results will be useful in the proof of the general case
of the implication (4) = (5) of Theorem 1.23 (see Proposition 8.44).

Corollary 8.37. Let Q = Q1%+ -*Qp* Fj, and Q' = Q' *-- -*Q;, x Fyr be two free products
of finite groups with a free group. Suppose that Q and Q' are non-elementary. Let G and
G’ be two finite extensions

1-C—-G—=-Q—=1 and 1-C =G =-Q — 1.

Suppose that there exist two homomorphisms ¢ : G — G’ and ¢’ : G' — G such that the
pair (p,¢') is strongly (> mq ¢)-special. Then C and C' have the same order mg ¢, and
there exists a (> mg,qr)-expansion (I, TV, 1, ¢") of (G,G',¢,¢") such that ¢ : T' - I and
' TV — T are bijective.

Proof. For every 1 < i < p, let G; be a preimage of @; in G and for every 1 < i < p/, let
G’ be a preimage of @} in G’. In order to establish the existence of I and I/, we shall use
Lemma 8.33. To that end, it is enough to verify that the following three conditions are
satisfied (up to renumbering the G;):

ep=p,

e  maps each G; isomorphically to a conjugate of G},

e and ¢’ maps each G’ isomorphically to a conjugate of G;.

Since every finite subgroup of G’ is contained in a conjugate of some G, there exists
amap o : [1,p] — [1,p] such that ¢(G;) is contained in a conjugate of G’O_(i), for every
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1 < i < p. Likewise, there exists a map o’ : [1,p'] — [1, p] such that ¢'(G}) is contained
in a conjugate of Gy/(;), for every 1 < i < P

Since (p,¢’) is a strongly (> mg g)-special pair and |G;| > |C| > mg ¢ for every
1 <i < p, the subgroup ¢’ o (G;) of G is conjugate to G;. Hence, ¢’ o o is the identity of
[1,p]. Likewise, o o ¢’ is the identity of [1,p']. It follows that p = p’ and that ¢/ = o~ 1,
which concludes the proof. O

Note that the previous proposition holds in particular if G and G’ are both finite-by-free.
We need to prove that this result remains true if only one of these two groups is assumed
to be finite-by-free.

Corollary 8.38. Let G and G’ be two virtually free groups. Suppose that G is finite-by-free
(possibly finite or finite-by-7Z). Suppose that there exists a strongly (> mg qr)-special pair
of homomorphisms (¢ : G — G',¢' : G' — G). Then there exists a (> mg g)-expansion
(T, T, ¢") of (G, G, p,¢) such that ¢ : T =T and ¢' : T/ — T are bijective.

Proof. Since G is finite-by-free, there is a unique finite normal subgroup C' C G such that
G/C ~ F,, with n > 0. Let T be a reduced Stallings tree of G’. First, note that all
vertex groups of 7" have order equal to |C|. Indeed, if v is a vertex of T”, then ¢/(G)) is
a subgroup of C. Hence ¢ o p(G),) is contained in ¢(C'), which is of order |C|. The vertex
group G, being finite maximal (since 7" is reduced), and @ o (G being conjugate to G,
we have |G]| = |C].

In order to prove that G’ is finite-by-free, it suffices to show that all edge groups of T”
have order equal to |C|, as all vertex groups of T have order equal to |C|. Assume towards
a contradiction that there is an edge e = [v, w] of T” such that |G.| < |C|. Since G} and G/,
have order |C/|, we have ¢'(G) = ¢'(G!,) = C. It follows that G} and G, are conjugate in
G’ since ¢, being (> mgq ¢)-strongly special, maps non-conjugate finite subgroups of G’
of order > m¢ ¢ to non-conjugate finite subgroups of G. Let ¢ be an element of G’ such
that G, = tG!t™1, let By := G, and Ey :=tE it~ L.

Let S be the tree obtained from T” by collapsing all edges of T” that are not in the
G'-orbit of e. The segment [w,tv] fixed by G!, = tG!t~! is collapsed to a point in S.
Hence t has a translation length equal to 1 in S| i.e. t is a stable letter in the splitting of
G as an HNN extension whose S is the Bass-Serre tree. Let x be the image of v (or w) in
S and let H = G/, be its stabilizer. Note that E; C G, C H and Ey C G, C H. We have
G' = (H,t | tot™! = a(z),Vz € E1) = Hy.p, 5, where a denotes an isomorphism from
E; to Ey. Observe that x is the unique vertex of S fixed by G, because |Gl,| > |E1|.
Therefore N¢/(G',) fixes z, i.e. Nov(G1,)) C H.

Now, let us observe that the homomorphism ¢ o ¢’ coincides on the finite subgroup
G, with an inner automorphism ad(g’), for a certain ¢ € G’. Up to replacing ¢ by
ad(g’"!) o o, one can assume without loss of generality that ¢ o ¢/ coincides with the
identity on GI,. In particular, ¢ o ¢’ coincides with the identity on E; and F5. Let
z:= o (t). We have 2zE1271 = Fy and tE1t~! = E5. Therefore 2~ 't normalizes 1. In
addition, z normalizes G'; indeed, G!, = tG,t~! and G, = p o ¢/'(G!,) = po¢'(GY), thus
G, = po ¢ (t)Gl¢ oy (t)~t. Hence, 2 belongs to H since Ngr(G2,) C H. Thus, up to
replacing ¢ by z~!t in the previous splitting of G’ as an HNN extension, we get a splitting
of G’ of the form G' = (H,t | tat™! = a(x),Vxr € E1) where a denotes an automorphism
of Ey. This shows that Ng/(E7) is infinite and that Eq (Ng/(E1)) = Ej. By applying
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the strongly special homomorphism ¢’ to this equality, we get Eq(Ng(¢'(E1))) = ¢’ (E1).
This is a contradiction, because |¢/(E1)| < |C| and C' is normal in G.

As a conclusion, all edge groups of 7" have order |C|. As mentionned above, this shows
that the group G’ is finite-by-free. Let C’ C G’ be the unique finite normal subgroup such
that G'/C" is free. Note that |C| = |C'| = mg ¢ and G’ = Ng/(C”). Since ¢’ is strongly
(> mq,q)-special, ¢'(G’) is non-elementary as soon as G’ is non-elementary, and ¢'(G’)
is infinite as soon as G’ is infinite. By symmetry, ¢(G) is non-elementary as soon as G is
non-elementary, and ¢(G) is infinite as soon as G’ is infinite. Consequently, G and G’ are
simultaneously finite, virtually Z or non-elementary. We treat the three cases separately.

First case. Suppose that G and G’ are finite. Since the homomorphisms ¢ and ¢ are
injective on finite groups, they are bijective, and one can take I' = G and IV = G.

Second case. Suppose that G and G’ are virtually Z. Note that G’ can be written as
G’ = G *g G', where the embedding of G into G is the identity, and the embedding of G
into G’ is the nice embedding ¢ : G — G’. Moreover, ¢’ : G’ — G is a nice embedding.
Hence G’ is a legal small extension of G. One can take I' =T" = G’.

Third case. Suppose that G and G’ are non-elementary. Then the existence of I' and T
is an immediate consequence of Proposition 8.37 above. g

8.3. A property of the tree of cylinders. Let G be a virtually free group. Let m > 1
be an integer, and let T be a m-splitting of G. Recall that the tree of cylinders T, (see
[GL11] and Section 2.7) is the bipartite tree whose set of vertices V(T¢) is the disjoint
union of the following two sets:

e the set of vertices x of T' which belong to at least two cylinders, denoted by Vj(T¢);
e the set of cylinders of T', denoted by Vi (T¢).

There is an edge ¢ = (x,Y) between x € Vy(7,) and Y € Vi(1,) in T, if and only if z € Y.
If Y = Fix(G.) is the cylinder associated with an edge e € T', then the stabilizer Gy of Y’
is Ng(Ge).

Lemma 8.39. Let G be a virtually free group. Let m > 1 be an integer, and let T be
a m-splitting of G. Let T, denote the tree of cylinders of T. Let ¢ be an endomorphism
of G. Suppose that ¢ maps every vertex group of T, isomorphically to a conjugate of
itself, and every finite subgroup of G isomorphically to a conjugate of itself. Then ¢ is an
automorphism.

Proof. If T, is a point (i.e. if there is a unique cylinder in T'), then G is a vertex group of
T, and ¢ is an automorphism. From now on, we suppose that T, is not a point.

As a first step, we build a ¢-equivariant map f : T° — T. Let vy,...,v, be some
representatives of the orbits of vertices of T'. For every 1 < ¢ < n, there exists an element
gi € G such that ¢(G,,) = G¥i. We let f(v;) = g; - v;. Then we extend f linearly on edges
of T.

We claim that the map f induces a ¢-equivariant map f. : T, — T.. Indeed, for each
cylinder Y = Fix(C) C T, the image f(Y) is contained in Fix(¢(C)) of T', which is a
cylinder (not a point) since ¢(C) is conjugate to C. If v € T belongs to two cylinders,
so does f(v). This allows us to define f. on vertices of T, by sending v € Vy(T.) to
f(v) € W(T,) and Y € Vi(T¢) to f(Y) € Vi(T,). If (v,Y) is an edge of T, then f.(v) and
fe(Y') are adjacent in T..
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We shall prove that f. does not fold any pair of edges and, therefore, that f. is injective.
Assume towards a contradiction that there exist a vertex v of T, and two distinct vertices
w and w’ adjacent to v such that f.(w) = f.(w').

First, assume that v is not a cylinder. Since T, is bipartite, w and w’ are two cylinders,
associated with two edges e and €’ of T. Since f.(w) = f.(w'), we have ¢(G.) = ¢(G.)
by definition of f.. But ¢ is injective on G, by hypothesis, and G., G, are two distinct
subgroups of G, (by definition of a cylinder). This is a contradiction.

Now, assume that v = Y. is a cylinder. Since f.(w) = f.(w’), there exists an element
g € G such that w' = g - w. As a consequence ¢(g) belongs to ¢(G,,), so one can assume
that ¢(g) = 1 up to multiplying g by an element of G,. In particular, it follows that g
does not belong to Ng(G:) = Gy, since ¢ is injective in restriction to Ng(Ge) = G,. Then
observe that Ge C Gy, G. C Gy and gG.g~' C gGuwg™! = G,. We have G, # gG.g™"
since g does not lie in Ng(G.), but ¢(G:) = ¢(9Geg~!) since ¢(g) = 1. This contradicts
the injectivity of ¢ on G, .

Hence, f. is injective. It follows that ¢ is injective. Indeed, let g be an element of G
such that ¢(g) = 1. Then f.(g-v) = f.(v) for each vertex v of T, so g-v = v for each
vertex v of T.. But ¢ is injective on vertex groups of T, so g = 1.

It remains to prove the surjectivity of ¢. We begin by proving the surjectivity of f..
It suffices to prove the local surjectivity. Let v be a vertex of T and e an edge adjacent
to v. Up to conjugacy, we can assume that f.(v) = v and f.(e) = e. We thus have
fe(Gy - e) = @(Gy) - fe(e) = Gy - fe(e) = Gy - e. Therefore, all the translates of e by an
element of GG, are in the image of f., which proves the surjectivity of f.. It remains to
prove the surjectivity of ¢. Let g € G and let w be a vertex. There are two vertices v
and v" such that f.(v) = w and f.(v') = gw. Hence there exists h € G such that v' = ho,
so f.(v)) = fo(hw) = ¢(h)w, i.e. gw = ¢p(h)w, so g~1¢p(h) belongs to G, = #(G,), hence
g = ¢(h)g with ¢’ € G, . As a consequence, ¢ is surjective. O

8.4. A key proposition.

Definition 8.40. Let G and G’ be two virtually free groups, and let ¢, : G — G’ and
¢’ "+ G — G be homomorphisms. We say that (1,v’) is a power of (p, ') if there exist
two integers n,n’ > 0 such that g = @ o (¢’ 0 )" and 1/J|’G, =y o(poy).

Definition 8.41. Let G and G’ be two virtually free groups, and let ¢, : G — G’ and
¢, : G — G be homomorphisms. The notation (¢, 9’) ~ (¢, ¢’) means that ) ~ ¢ and

Y~y

Proposition 8.42. Let G and G’ be two virtually free groups. Let m denote the integer
maq. Let o : G — G and ¢’ : G' — G be two homomorphisms. If (G,G',p,¢') has
property P, then there exists a pair (¢ : G — G',¢' : G' — G) which is equivalent (in
the sense of ~) to a power of (¢, ¢'") and a m-expansion (@, G, 3, @) of (G,G', 4,0 such
that @ and @' are isomorphisms.

Proof. Let T and T' be reduced m-JSJ splittings of G and G’. First, let us observe that
¢ maps every m-factor of G' isomorphically to a m-factor of G’ and that ¢’ maps every
m-factor of G’ isomorphically to a m-factor of G (see Remark 8.30).
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If G or G’ is finite-by-free, the result is an immediate consequence of Corollary 8.38.
From now on, we suppose that G and G’ are not finite-by-free. We decompose the proof
of the lemma into three steps.

Step 1. We claim that there exists a m-expansion (G1, G}, ¢1,¢}) of (G, G, ¢, ¢") such
that ¢1 and ¢} maps edge groups of m-JSJ splittings 77 and 77 of G and G} to edge
groups of T} and T} respectively.!

Proof of Step 1. If p(C) is an edge group of T" for every edge group C of T, and if
¢©'(C") is an edge group of T for every edge group C’ of T”, then one can take G; = G,
©1 = ¢, G} = G, and ¢} = ¢'. Now, let us suppose that there is an edge e of T such
that ¢(G.) is not the stabilizer of an edge of T”. Let C := G.. We shall prove that the
group G/ = (G, 1 | ad(t)|,(c) = idy(cy) 1s a legal m-extension of G'. Note that p(C) is an
edge group in any m-JSJ tree T' of G. In addition, one easily sees that the homomorphism
@ : G’ — G defined by @'(t) = 1 and @'(¢') = ¢(g') for every ¢’ € G satisfies the following
three conditions:

e the pair (p, ') is strongly (> m)-special;
* Plgr ~ ¢
e ' maps every m-factor of G’ isomorphically to a m-factor of G.

Hence, one can define the group G, and symmetrically the group Gi, by iterating the
construction described above finitely many times, since 7" and 7" have only finitely many
orbits of edges. R

It remains to prove that the group G' = (G',t | ad(t)|,(c) = idy(cy) is a legal m-extension
of G', under the hypothesis that ¢(C') is not contained in the stabilizer of an edge of T".

Since the group ¢(C) is not contained in the stabilizer of an edge of T”, it fixes a unique
vertex v’ of T". There exists an edge e = [v,w] of T such that G. = C, ¢(G,) C G}, and
¢(Gw) C G.,. Moreover, recall that ¢ maps G, and G, isomorphically to m-factors of G'.
Therefore, the following equalities hold: ¢(G,) = ¢(Gw) = G, and p'op(G,) = ¢’ op(Gy).
Since ¢’ o maps every m-factor of G to a conjugate of itself, there exists an element g € G
such that G, = gG,g~!'. Thus we have p(G,) = ©(9Gug71) = ©(9)0(Gy)p(g)~t. This
shows that ¢(g) belongs to Ng/(p(Gy)). Since G is not finite-by-free, Lemma 8.8 asserts
that G, has order > m. This implies that Ng/(¢(Gy)) = ¢(Gy). Hence p(g) belongs to
©(Gy). There is an element h € G, such that p(g) = ¢(h). Let k = gh~!, so that ¢(k) = 1
and w = gv = kv. Note that k # 1, since w = kv # v. Now, note that p(C) = p(kCk™1).
Since C' and kCk~! are contained in G, and since ¢ is injective on G, this proves
that C = kCk~!, i.e. that k belongs to the normalizer Ng(C) of C' in G. In particular,
N¢g(C) must be non-elementary, otherwise ¢ would be injective on Ng(C'), contradicting
the fact that ¢(k) = 1. In order to prove that the group G’ defined above is a legal large
m-extension of G, we need to prove that o(C) = Eg/(Ng(p(C))). First, let us prove
that C = Eq(Ng(C)). Note that the inclusion C C Eq(Ng(C)) always holds, because
E¢(Ng(C)) is the unique maximal finite subgroup of C' normalized by N¢(C). Assume
towards a contradicton that the inclusion C C Eg(Ng(C)) is strict. Then Eg(Ng(C))
has order > m, so it fixes a unique vertex = € T, because edge groups of T have order

INote that this condition is not automatically satisfied, as shown by the following example: take G that
does not split non-trivially as a free product, and G’ = G * F,,.
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equal to m. This implies that x is fixed by Ng(C). But Ng(C) is not elliptic in 7" since
the element k € Ng(C) acts hyperbolically on 7. This is a contradiction. We have proved
that Eq(Ng(C)) = C. It follows that Eg(Ng(0(C))) = ¢(C), because ¢ is strongly
(> m)-special and C has order m. Hence, the group G} = (G',t | ad(t),(c) = idy(cy) is a
legal large m-extension of GG, which concludes the proof of the first step.

Now, up to replacing (G, G’, ¢, ¢') with (G1, G, ¢1, ¢! ), one can suppose that (G, G, ¢, ¢)
has the property of Step 1.

Step 2. We claim that there exists a power (p,p’) of (¢,¢') and a m-expansion
(G2, G, 2, ph) of (G,G', p,p’) such that the following two condltlons hold:

e for every edge group C of Th, the group ¢2(C) is an edge group of T4 and @2 maps
Ne, (C) isomorphically to Ny (¢2(C));

e for every edge group C’ of T, the group ) is an edge group of T» and ¢/, maps
Ngy (C") isomorphically to Ne, (#5(C")).

Proof of Step 2. Let T be a m-JSJ splitting of G, and let T be a m-JSJ splitting of
G'. Let C1,...,Cy be a set of representatives of the conjugacy classes of edge groups of T'.
Let Cf,...,C}, be a set of representatives of the conjugacy classes of edge groups of 7".
Thanks to the first step, we know that ¢ = ¢’ and, up to renumbering the edges of T', one
can assume that o(C;) = ¢/Clgl ™" for a certain element g/ € G and that ¢/ (C!) = g;Cig;
for a certain element g; € G. For every 1 < i < g, let N; = Ng(C;) and N} = N (CY).
Let T, and T be the trees of cylinders of T" and T”. Recall that Ny,..., N, are the new
vertex groups of T and that Ny,..., N, are the new vertex groups of 7.

Let i € [1,q]. Let p; = ad(gfl) o ¢|n, and ¢ = ad(g; 1) o (‘OTN{' Let Y; be the cylinder
of C; in T. Recall that Y; is connected (see Section 2.7). Moreover, note that NV; acts
cocompactly on Y;, because two edges of Y; are in the same G-orbit if and only if they are
in the same N;-orbit. As a consequence, the action of NV; on Y; gives a decomposition of
N; as a graph of groups, all of whose edges groups are equal to C;. Let Y/ be the cylinder
of C/ in T7.

We claim that, for every 1 < < ¢, there exists a power (pl,pl) of (gol,gol) and a m-
expansion (NZ,N $i, @t) of (N;, N/ ,pl,pl) such that @; : N; — N’ and @, : N’ — N; are
bijective and coincide with p; and p}, up to conjugacy, on the edge groups adJacent to
the vertices fixed by N; and N/ in T, and T (this condition on the edge groups will be
necessary in order to apply Lemma 2.27).

The homomorphisms ¢ and ¢’ being strongly (> m)-special, and the edge groups of T
and 7" having order equal to m, the groups N; and N/ are simultaneously finite, virtually
cyclic infinite, or non-elementary. We treat separately the three cases.

First case. If N; and Nj are finite, |y, : N; — N] and ¢\ : Nj = N; are injective.
Thus, they are bijective. There is nothing to be done: we simply take N; = N;, N/ = N/,
@i = ¢n, and @) = ¢’y

Second case. Suppose that N; and N are virtually cyclic infinite. Let us observe that
N; is elliptic in T if and only if N/ is elliptic in T". Indeed, if N; fixes a vertex v € T, then

©(N;) fixes the vertex v’ fixed by ¢(G,) in T'. Then, note that ¢(V;) has finite index in
NI, because p(NN;) is infinite and N is virtually cyclic. It follows that N/ fixes v'.
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First subcase. If N; and N are elliptic in 7" and 7", then ¢ and ¢’ induce isomorphisms
between N; and N/, because ¢ and ¢’ induce isomorphisms between vertex groups of T

and T'. There is nothing to be done: we simply take N; = N;, Nz’ = N{, @i = ¢y, and
G = ¢'|nr-

Second subcase. If N; and N/ are not elliptic in 7" and 7", we take N, = N ! = N/, and
we take for @; and @) the 1dent1ty of N/. The > group N is a legal small extension of N;,
with nice embeddings ¢; : N; — N and ¢ : N — NZ, and the group N’ is a legal small
extension of N/, with nice embeddings ¢ = ¢; o ¢} : Ni’ — N/ and ¢/ = ¢; 0 ¢} : N/ — NZ-’.

Ni= N, 228 N = N Ni=N/ «&— N/ =N/
p;=id
|+ | o /]
Ny — 2 NI N; ¢+———— NI

i

Note that the edge groups adjacent to the vertices fixed by N; and N/ in T and T} are
finite. Indeed, let e be an edge of T, adjacent to the vertex fixed by IV; in T.. Observe
that G is elliptic in T, by definition of the tree of cylinders T,. As a consequence, if
G. C N; were infinite, then N; would be ellitptic in 7', contradicting our hypothesis. As
a conclusion, @; and @; coincide with ¢; and ¢}, up to conjugacy, on the edge groups
adjacent to the vertices fixed by N; and N/ in T, and T,

Third case. Last, suppose that N; and N/ are non-elementary. Recall that the inclusion
C; C E¢(N;) always holds because Eg(N;) is the unique maximal finite subgroup of G
normalized by N;. Likewise, C/ is contained in Eq(N]). We distinguish two cases.

First subcase. If E; := FEg(N;) contains C; strictly, it has order > m. Therefore, it
fixes a unique vertex v; € T, and N; fixes v; as well. By definition of a strongly (> m)-
special homomorphism, ¢(E;) = E! := Eg/(Ng (¢(Ci))) and ¢(C;) is conjugate to C!.
Consequently, N/ fixes the unique vertex v, of 7" fixed by ¢(E;). Since ¢ induces an
isomorphism from (G)y, to (G'),, it induces an isomorphism from N; to N;. There is

nothing to be done: we simply take N; = N;, NZ' = Ny, @i = ¢|n, and @] = (PllN{'

Second subcase. If Eg(N;) = C;, then Eq(N]) = C! since ¢ is strongly (> m)-special.
We will use Proposition 8.33 in order to establish the existence of a power (p;, p}) of (¢;, ¢})
and of a m-expansion (Nl, NZ’ . @i, %) of (N;, N/, pi, pl;) satisfying the properties announced
above. Before using Proposition 8.33, we will prove that the cylinders Y; and Y/ of C; and
C!, endowed with actions of N; and N/ respectively, satisfy the following conditions:

(1) Y; and Y/ are m-splittings of N; and N, with the same number of orbit of vertices;
(2) i and ¢ induce bijections between the conjugacy classes of vertices of Y; and Y/,
and induce isomorphisms between the vertex groups.

First, note that each vertex group of the N;-tree Y; is of the form N; N G, for some
v € Y;. By hypothesis, ¢’ o p(G,) = gG,g~! for some g € G. Let ¢/ = ad(g™!) o ¢’ and
Y = ¢, so that ¢’ o (G,) = G,. Since ¢’ o 1) maps non-conjugate finite subgroups to
non-conjugate finite subgroups, and since GG, has only finitely many conjugacy classes of
finite subgroups, there exists an integer n > 1 such that (¢’ o ¥)*(C;) = ¢,Csg, ! with
gv € Gy. Let p/ = ad(gy) o (¢ oyp)" Loy and p = 9, so that p’ o p(G,) = G, and
p' o p(C;) = C;. As a consequence, p’ o p(N;) C N;.
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Let vy, ...,v, be some representatives of the G-orbits of vertices of Y;. We can define
iteratively two homomorphisms p : G — G’ and p’ : G’ — G such that, for every 1 < j <,
there exists an element g; € G such that ad(gj)op’op(G.;) = G, and ad(gj)op’op(C;) = C;.
Up to replacing p’ by ad(gj_l) o p/, we can suppose without loss of generality that g; = 1.
Hence p' o p(C;) = C; and ad(g;) o p' o p(C;) = C; for every j > 2. This shows that g;
normalizes Cj, i.e. that g; belongs to ;.

We have proved that the homomorphism p’ o p maps every vertex group N; N G, of N;

isomorphically to a N;-conjugate of itself. Moreover, one can suppose that p o p’ maps
every vertex group of N/ isomorphically to a N/-conjugate of itself (we repeat the same
operation described above with N/ instead of IV;, and this does not affect the property
satisfied by p’ o p). Note that the pair (p, p’) is a power of (¢, ¢).
_ Now, the existence of a_m-expansion (Niy N/, i, &%) of (N;, N/, pi, p;) such that @; :
N; — N/ and @, : N/ — N; are bijective and coincide with p; and pj, up to conjugacy,
on the edge groups adjacent to the vertices fixed by N; and N/ in T and T}, follows from
Lemma 8.33. This concludes the proof of the second subcase.

The group G2 obtained from G by replacing each vertex group N; of T, by NZ is a
multiple legal m-extension of Ci Similarly, the group G obtained from G’ by replacing
each vertex group N/ of T, by N/ is a multiple legal m-extension of G'.

Last, since the morphisms 3; : N; — ]VZ’ and @ : ]Vl' — Nj; coincide with ¢; and w5,
up to conjugacy, on the vertex groups of Y; and Y/, and since every edge group of T, and
T/ is contained in a vertex group of Y; or Y/, Lemma 2.27 guarantees the existence of the
homomorphisms s : G — G% and ¢, : G, — G2 announced above.

Step 3. We now prove that the homomorphisms ¢3 : Go — G4 and ¢, : G4 — G
constructed previously are bijective. To that end, we use Lemma 8.39. Let T5 and T}
denote two recuced m-JSJ splittings of G2 and G%, and let Th . and T}, . be their trees
of cylinders. Recall that V(Ty.) = Vo(T2.) U Vi(Ta), where Vp(Ts,) denotes the set of
vertices of T' belonging to at least two distinct cylinders, and V;(T2.) denotes the set of
cylinders of T. Observe that the following facts hold.

e (2 maps every vertex group of V1 (T3,) isomorphically to a vertex group of V(73 .),
and ¢4 maps every vertex group of V4(T3 ) isomorphically to a vertex group of
Vi(Ts,e).

e (9 maps every vertex group of Vy(T2 ) isomorphically to a vertex group of Vo(Té’C),
and ¢, maps every vertex group of V()(Tic) isomorphically to a vertex group of
%(T2,c)-

The first point is a consequence of Step 2. The second point follows from the fact that v € T
belongs to two cylinders if and only if there exists two distinct edge groups Cy C (G2), and
Cy C (G2)y. By Step 1, po(C1) and ¢2(Cs) are edge groups of T, and they are distinct
because ; is injective on vertex groups of T'. Consequently, v2((G2)y) is a vertex group
of T'. Last, Lemma 8.39 ensures that ¢} o 9 is an automorphism of Ga. Thus, @2 and ¢
are two isomorphisms. This concludes the proof. ]

8.5. Proof of (4) = (5).

8.5.1. A particular case. We first prove the implication (4) = (5) of Theorem 1.23 in a
particular case.
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Proposition 8.43. Let G and G’ be two virtually free groups. Let T and T" be two reduced
JSJ-splittings of G and G’ over finite groups. Suppose that all edges groups of T and T’
have the same order, say m. If there exist two homomorphisms p : G — G’ and ¢’ : G' — G
such that the pair (o, ') is strongly special, then there exist two multiple legal extensions
I and IV of G and G’ such that T ~T".

Proof. This particular case is an immediate consequence of Proposition 8.42. ]

8.5.2. The general case. We shall now prove the implication (4) = (5) of Theorem 1.23 in
the general case, that is the following result.

Proposition 8.44. Let G and G’ be two virtually free groups. Suppose that there exists a
strongly special pair of homomorphisms (¢ : G — G',¢' : G' — G). Then there exist two
multiple legal extensions T' and T of G and G’ respectively, such that T’ ~T".

Proof. We define the complexity of the pair (G,G’), denoted by ¢(G,G’), as the sum of
the number of edges in reduced Stallings splittings of G and G'. We will prove Proposition
8.44 by induction on the complexity ¢(G,G’). In fact, we will prove a slightly stronger
result (see the induction hypothesis below). If G is infinite, recall that we denote by m(G)
the smallest order of an edge group in a reduced Stallings splitting of G. If G is finite, we
set m(G) = |G|. We denote by m¢ ¢ the integer min(m(G), m(G")).

Induction hypothesis H(n). For every pair of virtually free groups (G,G’) such that
¢(G,G") < n, if there exist two homomorphisms ¢ : G — G and ¢’ : @' — G such that the
pair (¢, ¢’) is strongly (> meq ¢)-special, then there exists a power (¢, ¢') of (¢, ¢’) and
a (> mg,q)-expansion (I',IV,9,¢') of (G,G’,¢,¢') such that ) : T’ - I" and ¢’ : I" - T’
are two isomorphisms.

The base case H(0) is obvious: if reduced Stallings splittings of G and G’ have 0 edge,
then G and G’ are finite, and one can take I' = G and I" = G'.

We now prove the induction step. Let n > 0 be an integer. Suppose that H(n) holds,
and let us prove that H(n + 1) holds. To that end, let us consider two virtually free
groups G and G’ such that ¢(G,G’) = n + 1, and suppose that there exists a strongly
(> mg,¢)-special pair of homomorphisms (¢ : G — G', ¢’ : G' — G).

Let us fix two reduced mg ¢-JSJ decompositions of G and G’, and let T' and T” denote
their respective Bass-Serre trees. Note that 7" or T” can be trivial, but not both at the same
time. Let G ...,Gpand G, ..., G}, denote the mg er-factors of G and G, well-defined up
to conjugacy. In other words, G;...,G, and G, .. vG;;' are some representatives of the
conjugacy classes of vertex groups of 7' and T” respectively. These groups are mg ¢-rigid
by definition. L

We now prove that there exists a (> mg ¢ )-expansion (G,G',9,¢') of (G,G',¢,¢")
with property P, ., which means that the pair (p, @) is strongly (> m)-special, and
that @' o @ and @ o ¢’ map every mg -factor of G and G’ isomorphically to a conjugate
of itself. R R

Note that m(G) = m(G), because G is a (> mg ¢ )-legal extension of G, with mg ¢ >
m(G). Likewise, m(G’) = m(G"). Therefore, me,Gr = mg ar-

If G or G’ is finite-by-free, the result is a consequence of Proposition 8.38. From now
on, we suppose that G and G’ are not finite-by-free. In particular, according to Lemma
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8.8, for every vertex v of T or T" and for every edge e incident to v, the edge group G is
strictly contained in G,.

Claim: the integers p and p’ are equal. Moreover, ¢(G;) is contained in gngL»gZ’-fl for
some g} € G', and ¢'(GY) is contained in g;G;g; ' for some g; € G, up to renumbering the
subgroups G;.

Let us prove this claim. First, we prove that p(G;) fixes a unique vertex of T”, for every
1 <@ < p. Note that there exists a vertex v; € T" such that G; = G,,. Let T; be a reduced
Stallings splitting of Gj.

As a first step, we will prove that each vertex group (G;), of T; has order > mg . If
T; is not reduced to a point, each vertex group (Gj;), of T; contains an edge group, and
edge groups of T; have order > mg ¢ since G; is mq,gr-rigid. If T; is reduced to a point,
the group G; = (Gy); is finite. By Lemma 8.8, we have |G;| > mg ¢, because G is not
finite-by-free by assumption.

In the previous paragraph, we have proved that each vertex group (G;). of T; has order
> mg . Since g is injective on finite subgroups of G, the finite group ¢((G;)y) has order
> mg as well. But edge groups of 7" have order exactly ma ¢/, so ¢((G;)w) fixes a
unique vertex v of T'. We shall prove that ¢(G;) fixes this vertex v'. Let us consider a
vertex wy adjacent to w in T;. The same argument shows that ¢((G;)w,) fixes a unique
vertex v4 of T'. But Gj is mq ¢r-rigid, as a mq ¢r-factor of G, so (G;)w N (Gi)w, has order
> mgr. As a consequence, vy = v'. It follows from the connectedness of T; that, for
every vertex x of T;, the group ¢((G;);) fixes v' and only v'. Now, let g be an element
of G;. For any vertex x of T;, ¢((Gi)z) and ¢((Gi)ge) fixes v and only v/, so g fixes v'.
Hence, ¢(G;) fixes v" and only v'.

Symmetrically, ¢'(G,) fixes a unique vertex v of T'. Since ¢’ o ¢ is a conjugacy on finite
subgroups, v is a translate of v; (because G; has a finite subgroup of order > mg ¢, see
above), i.e. ¢’ op(G;) is contained in a conjugate of G;. Hence, ¢ and ¢’ induce two inverses
bijections of the conjugacy classes of mg ¢r-factors of G and G’. Now, up to renumbering
the mq ¢/-factors, one can assume that ¢(G;) is contained in a conjugate gZ/Gggfl of G},
with ¢/ € G, and that ¢/(G?) is contained in a conjugate g;G;g; ' of G, with g; € G. This
concludes the proof of the claim.

We aim to apply the induction hypothesis H(n) to the pair (G;, G%), for every 1 < i < p.
First, let us observe that the complexity ¢(G;, G}) is less than n. Indeed, at least one of
the trees T or 1" is not reduced to a point, say T, and one gets a Stallings splitting of G
by replacing the vertex of T fixed by G; by the splitting T; of GG;; moreover, the resulting
Stallings tree is reduced because T; is reduced and the vertex groups of T; have order
> mq,q, Wwhereas edge groups of 1" are of order mg ¢/, by Lemma 8.8.

In order to apply the induction hypothesis H(n) to (G, G}), we need a strongly (>
mg, :)-special pair of homomorphisms (¢; : G; = G, ¢} : G; — G;). We define ¢; =
ad(gg_l) °opg, : Gi — G} and ¢ = ad(g; ') o 90,|G; : G% — G;. By Remark 8.26, the pair
(i, 7) 1s strongly (> mg,cr)-special. But mg, g; = min(m(G;), m(G;)) > me,er. Thus,
(i, ;) is strongly (= mg, gr)-special.
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Now, for every 1 < i < p, the induction hypothesis H(n) applied to the vertex groups
G, and G together with the pair of homomorphisms (gol,gol) endows us a (> mg a)-
expansion (Gl,Gl,gpl,gpl) of (Gi, Gl i, ¢}) such that @; : Gi — G’ and @, : G” — G, are
isomorphisms.

One defines G from G by replacing every vertex group G; by Gi O G; in the ma,qr-JSJ
sphttlng T of G, and one defines G symmetrically. Thanks to Corollary 8.28, the groups
G and G’ are multiple legal (> mg ¢r)-extensions of G and G’. In particular, they are
multiple legal (> mg ¢r)-extensions of G and G.

We define below a strongly (> m¢ ¢)-special homomorphism @ : G — G that coincides
up to conjugacy with @; on each subgroup G; (in particular, @ ~ ¢). Thanks to Lemma
8.20, in order to prove that this morphism @ is strongly (> mg ¢)-special, it suffices to
prove that the fourth condition of Definition 8.9 holds, namely: for every finite subgroup
A of G of order > mg g, if Ng(A) is virtually Z maximal, then Ng, (P(A)) is virtually Z
maximal as well, and the restriction of ¢ to Nz(A) is nice.

Construction of @. We proceed by induction on the number of edges of the m-JSJ
decomposition T/G of G. It is enough to construct @ in the case where 7'/G has only one
edge.

First case. Suppose that G = Gy x¢ Ga. If Ng(C) is virtually Z, then there exists two
finite subgroups C; C Gj such that [C; : C] = 2 and Ng(C) = (C1,Cs) = Cy x¢ Co. If
N¢g(C) is not virtually Z, let C; := C and Cy := C'. Since C and Cy are finite, there exist
two elements ¢}, g5 € G’ such that

(@110, = ad(g)) o pie,  and  (P2))c, = ad(g3) © P|cy-

The homomorphisms ad(g1 Yo 31 and ad(gé_l) o ¢y coincide on C' C C1,Cy. Hence,

one can define 3 : G — G’ by
P, =adgi Nod and P, =ad(gh )o@

Note that ¢ coincides with ¢ on C; and on Cy. By Lemma 8.20, in order to prove that @
is strongly (> mq ¢r)-special, we only need to prove that ¢ satisfies the fourth condition of
Definition 8.9. Let A be a finite subgroup of G of order > m such that N a(A) is virtually
Z maximal. Since every finite subgroup of G is conjugate to a finite subgroup of G, one
can suppose without loss of generality that A C G. As a finite group, A is elliptic in the
m-JSJ tree T of G, i.e. A is contained in at least one conjugate of él or éQ. There are
two possibilities.

First possibility. The group A may be contained in only one conjugate of CA;'l or ég,
which is the case for instance if |A| > m. Then Nz, (¢(A)) is virtually Z maximal and the
restriction of ¢ to Ng(A) is nice, because ¢ induces an isomorphism from G; to its image
(for i € {1,2}).

Second possibiliy. The group A may be contained in at least two distinct conjugates of
Gi or Go. Then A is contained in an edge group of the m-JSJ splitting T' of G. Since A has
order m, one can suppose without loss of generality that A = C'. The normalizer N5(A) is
finite-by-D+o, equal to Cpxc Cy. By construction, § coincides with ¢ on Cq and Cy. Hence,
 coincides with ¢ on Ng(A) = C1 *¢ Ca. Since ¢ is strongly (> m)-special, Ng/(¢(A)) is
virtually Z maximal, and the restriction of ¢ to Ng(A) is nice. Let us observe that ¢(A) is
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an edge group of the m-JSJ splitting 7" of G’. This implies that Nz, (¢(A)) = N/ (p(A)).
As a conclusion, Ng,(¢(A)) is virtually Z maximal and the restriction of @ to Ng(A) is
nice.

Second case. Suppose that
G = Gixc = (G1,t | tet ™' = a(c), Ve € O).
If Ng(C) is virtually Z with finite center (i.e. finite-by-Dy,), then C and tCt~! are non-
conjugate in G and C has index 2 in C; := Ng,(C) and Cy := Nyg,;—1(C). If Ng(C)

is not virtually Z with finite center, let C; := C and Cy := tCt~!. Since C; and C» are
finite, there exist two elements ¢/, g5 € G’ such that such that

(@1)jc, = ad(gy) 0w, and  ($1)jc, = ad(g3) © Y|cs-

One can define 3 : G — G’ by
~ ~ ~ -1
Gig, =?1 and B(t) = gho(t)d
We need to prove that @ satisfies the fourth condition of Definition 8.9. Let A be a finite
subgroup of G' of order > m such that N5(A) is virtually Z maximal. One can suppose
without loss of generality that A is contained in G. As a finite group, A is elliptic in the
m-JSJ tree T of G, i.e. A is contained in at least one conjugate of G.

First possibility. The group A may be contained in only one conjugate of @1, which
is the case for instance if |[A| > m. Then Ng,(¥(A)) is virtually Z maximal, and the

restriction of $ to Ng(A) is nice, because @ induces an isomorphism from G to its image.

Second possibility. The group A may be contained in at least two distinct conjugates of
G1. Then A is contained in an edge group of T. Since A has order m, one can suppose
without loss of generality that A = C'. There are two subcases.

First subcase. The groups C and tCt~! = a(C) are conjugate in G7. Up to replacing t
with gt for some g € G4, one can suppose without loss of generality that tCt~! = C, i.e.
t € Ng(C). Thus we have C; = C = C and one can suppose that g} = g5 = 1. Hence, ¢
coincides with ¢ on C' and on ¢. This implies that @ coincides with ¢ on Ng(C) = (C, t).
Since ¢ is strongly (> m)-special, Ng/(p(A)) is virtually Z maximal, and the restriction of
¢ to Ng(A) is nice. Let us observe that ¢(A) is an edge group of the m-JSJ splitting 7" of
G’ (see the first step of Proposition 8.42). This implies that Nz, (¢(A)) = N/ (p(A)). As
a conclusion, Ng, (¢(A)) is virtually Z maximal and the restriction of @ to N5(A) is nice.

Second subcase. The groups C and tCt~! = a(C) are not conjugate in G7. Then Ng(C)
is C-by-D, and we conclude as in the first case.

Then, note that the morphism @ constructed above is strongly (> mg ¢)-special, thanks
to Lemma 8.20. Likewise, there exists a strongly (> mg g)-special homomorphism @' :

G’ — G such that, for every G, the restriction @I & coincides with @, up to conjugacy.

Let m = mg, . Let us observe that the tuple (@, @’,@, ¢') is a (> m)-expansion of
(G,G',p,¢") and has property Pp,. In addition, recall that mg g = m, since G and G/
are (> m)-legal extensions of G and G’. Now, the key proposition 8.42 claims that there
exists a pair (¢ : G — G',¢' : G’ — @) which is equivalent (in the sense of ~) to a
power of (, ') and a (> m)-expansion (I',T”,1,v’) of (é, G, 3, @) such that ¢ and v/
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are isomorphisms. By transitivity of the relation "to be a (> m)-expansion of", the tuple
(0, TV, 4,4") is a (> m)-expansion of (G, G’, ¢, ¢"). This concludes the proof. O

9. ALGORITHM
We will prove the following result.

Theorem 9.1. There exists an algorithm that takes as input two finite presentations of
virtually free groups, and decides whether these groups have the same VY3-theory or not.

Our proof relies on the main results of [DG10| and [DG11].

Theorem 9.2. There exists an algorithm that takes as input a finite presentation of a
hyperbolic group G and a finite system of equations and inequations with constants in G,
and decides whether there exists a solution or not.

Theorem 9.3. There exists an algorithm that takes as input two finite presentations of
hyperbolic groups, and which decides whether these groups are isomorphic or not.

We need some preliminary lemmas.
9.1. Some useful algorithms.

Lemma 9.4 ([DG11], Lemma 2.5). There is an algorithm that computes a set of generators
of the normaliser of any given finite subgroup in a hyperbolic group.

Lemma 9.5 ([DG11], Lemma 2.8). There is an algorithm that, given a finite set S in a
hyperbolic group, decides whether (S) is finite, virtually cyclic infinite, or non-elementary.

Lemma 9.6. There is an algorithm that takes as input a finite presentation of a hyperbolic
group and computes a list of representatives of the conjugacy classes of finite subgroups in
this hyperbolic group.

Proof. There exists an algorithm that computes, given a finite presentation (S | R) of
a hyperbolic group G, a hyperbolicity constant § of G (see [Pap96]). In addition, it is
well-known that the ball of radius 1000 in G contains at least one representative of each
conjugacy class of finite subgroups of G (see [Bra00]). Moreover, two finite subgroups C}
and Cs of G are conjugate if and only if there exists an element g whose length is bounded
by a constant depending only on § and on the size of the generating set S of G, such that
Coy = gC1g™ ! (see [BHO5]). O

Lemma 9.7. There is an algorithm that takes as input a finite presentation of a hyperbolic
group G and a finite subgroup C of G such that Ng(C) is non-elementary, and decides if
Eq(Na(C)) =C.

Proof. One can compute a finite generating set S for Ng(C) using Lemma 9.4. Using
the main algorithm of [DG10] (see Theorem 9.2 above), one can decide if the following
existential sentence with constants in G is satisfied by G: there exists an element g € G
such that

(1) the element g does not belong to C;
(2) the subgroup C’" := (C, g) is finite;
(3) for every s € S, we have sC’s™! = (.
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Note that such an element g exists if and only if C' is strictly contained in Eq(Ng(C)).
This concludes the proof of the lemma. [l

Lemma 9.8. There is an algorithm that takes as input a finite presentation (S | R) of
a hyperbolic group G, and outputs a finite list of finite presentations of all legal large
extensions of G.

Proof. Using Lemma 9.6, compute a list of representatives of the conjugacy classes of finite
subgroups of G. For each finite group C' in this list, use Lemma 9.5 in order to decide if
N¢g(C) is finite, virtually cyclic infinite or non-elementary. In the case where Ng(C) is
non-elementary, decide if Eq(Ng(C)) = C by means of Lemma 9.7. Output the finite list
of finite presentations (St | [t,c] = 1,Vc € C), for every C in the previous list such that
N¢g(C) is non-elementary and Eg(Ng(C)) = C. O

Lemma 9.9. There is an algorithm that takes as input a finite presentation of a hyperbolic
group G, and outputs a finite list of presentations of all legal small extensions of G.

Proof. Using Lemma 9.6, compute a list of representatives of the conjugacy classes of finite
subgroups of G. For each finite group C' in this list, decide if Ng(C) is finite, virtually
cyclic infinite or non-elementary, by means of Lemma 9.5. If N := Ng(C) is virtually
cyclic infinite, enumerate the list of all virtually cyclic infinite groups N’ such that there
exist two Kg-nice embeddings ¢ : N < N’ and ¢/ : N’ < N. Output a list of presentations
of all legal small extensions of G, of the form (G, N’ | t(n) =n,Vn € N). O

9.2. Proof of Theorem 9.1. We are now ready to prove Theorem 9.1.

Proof. Let G and G’ be two virtually free groups. Let r be the maximal rank of the
normalizer of a finite subgroup of G or G’, let o be the maximal order of a finite subgroup
of G or G', let n,n’ be the number of conjugacy classes of finite subgroups of G and G’
respectively, and let N = max(n,n’). By looking closely at the construction of the two
isomorphic multiple legal extensions I' and IV of G and G’ in the proof of Proposition
8.1, one can enumerate the number of legal extensions involved in the construction. This
number of legal large extensions is bounded from above by N(r + o!) (see Remark 8.36),
and the number of legal small extensions is bounded by N.

Here below is an algorithm that takes as input two finite presentations of virtually free
groups and decides whether two virtually free groups G and G’ have the same V3-theory
or not.

Step 1. Using Lemma 9.6, compute a list of representatives of the conjugacy classes of
finite subgroups of G and G’. Let C4,...,Cy,C1,...,C!, denote these finite groups.

Step 2. For each finite group C; or C/ in the previous list, use Lemma 9.4 to compute a
set of generators S; or S, of Ng(C;) or Nev(CY). Let R = max({|S;|,[S]], 1 <i <n}).

Step 3. Using Lemmas 9.8 and 9.9, compute all multiple legal extensions of G and G’
obtained by performing less than N (R + o!) + N legal large of small extensions.

Step 4. For every pair (I',T") of groups computed in Step 3, use the main algorithm of
[DG11] (see Theorem 9.3) in order to decide if I and I"” are isomorphic. Output "yes" if
there exists such a pair, and "no" otherwise. O

Remark 9.10. Here is an aternative algorithm that decides whether two virtually free groups
have the same V3-theory or not. Let G be a hyperbolic group. By carefully looking at the
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sentence JV-sentence (g defined in Section 4, one can see that the number of symbols in
(¢ is bounded from above by a number ng computable from a finite presentation of G. If
G’ is another hyperbolic group, let us define n := max(ng,ng) and let A be a finite set
of variables of cardinality n.

If G and G’ are virtually free, the following three assertions are equivalent (note that
the equivalence (1) < (2) is part of Theorem 1.23 established previously).

(1) G and G’ have the same V3-theory.

(2) G satisfies (¢ and G’ satisfies (.

(3) For every JV-sentence ¢ in the language of groups over alphabet A involving less
than n symbols, G satisfies ¢ if and only if G’ satisfies ¢.

Since the set of JV-sentence in the language of groups over alphabet A involving less
than n symbols is finite, the third point above is decidable algorithmically using the main
algorithm of [DG10] (see Theorem 9.2).
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