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Abstract

Recent initiatives such as the PARSEME
shared task have allowed the rapid develop-
ment of MWE identification systems. Many
of those are based on recent NLP advances,
using neural sequence models that take con-
tinuous word representations as input. We
study two related questions in neural verbal
MWE identification: (a) the use of lemmas
and/or surface forms as input features, and (b)
the use of word-based or character-based em-
beddings to represent them. Our experiments
on Basque, French, and Polish show that
character-based representations yield system-
atically better results than word-based ones. In
some cases, character-based representations of
surface forms can be used as a proxy for lem-
mas, depending on the morphological com-
plexity of the language.

1 Introduction

MWE identification consists in finding multiword
expressions (MWEs) in running text (Constant
et al., 2017). For many years, MWE identification
was considered unrealistic, with most MWE re-
search focusing on out-of-context MWE discovery
(Ramisch et al., 2013). Indeed, the availability of
MWE-annotated corpora was limited to some tree-
banks with partial annotations, often a by-product
of syntax trees (Green et al., 2013; Constant et al.,
2013). This prevented the widespread develop-
ment and evaluation of MWE identification sys-
tems, as compared to other tasks such as POS tag-
ging and named entity recognition.

This landscape has drastically changed in the
last few years, thanks to shared tasks such as
DiMSUM (Schneider et al., 2016) and PARSEME
1.0 and 1.1 (Savary et al., 2017; Ramisch et al.,
2018) and to the release of open corpora annotated
for MWEs in ∼20 languages. These initiatives
provide a unified framework for MWE identifi-

cation, including training/test corpus splits, eval-
uation metrics, benchmark results, and analysis
tools. As a consequence, it is now possible to
study some classical text processing problems and
their impact on MWE identification systems.

One of these problems is the relation between
a language’s morphology, lemmatisation, input
feature representations, out-of-vocabulary (OOV)
words, and the performance of the system. For
instance, an MWE identification system based
on (inflected) surface forms will likely encounter
more OOV words than a system based on lemmas,
especially for morphologically-rich languages in
which a single lemma may correspond to dozens
of surface forms (Seddah et al., 2013). This
problem is particularly relevant for verbal MWEs,
which present high morphological and syntactic
variability (Savary et al., 2018).

Our goal is to study the impact of word rep-
resentations on verbal MWE (VMWE) identifica-
tion, comparing lemmas, surface forms, traditional
word embeddings and subword representations.
We compare the performance of an off-the-shelf
MWE identification system based on neural se-
quence tagging (Zampieri et al., 2018) using lem-
mas and surface forms as input features, encoded
in the form of classical pre-initialised word2vec
embeddings (Mikolov et al., 2013) or, alterna-
tively, using new-generation FastText embeddings
built from character n-grams (Bojanowski et al.,
2017). Our main hypothesis is that the latter can
model morphological variability, representing an
alternative for lemmatisation. We carry out exper-
iments in 3 languages with varying morphological
complexity: French, Polish and Basque.

2 Related Work

Rule-based matching, supervised classification,
sequence tagging, and parsing are among the most
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popular models for MWE identification (Constant
et al., 2017). Parsing-based methods take the (re-
cursive) structure of language into account, try-
ing to identify MWEs as a by-product of pars-
ing (Green et al., 2013; Constant et al., 2013), or
jointly (Constant and Nivre, 2016). Sequence tag-
ging models, on the other hand, consider only lin-
ear context, using models such as CRFs (Vincze
et al., 2011; Shigeto et al., 2013; Riedl and Bie-
mann, 2016) and averaged perceptron (Schnei-
der et al., 2014) combined with some variant of
begin-inside-outside (BIO) encoding (Ramshaw
and Marcus, 1995).

Recurrent neural networks can be used for se-
quence tagging, being able to handle continu-
ous word representations and unlimited context.
The first neural identification system was MU-
MULS, submitted to the PARSEME shared task
1.0 (Klyueva et al., 2017). Although it did not
obtain the best results, MUMULS influenced the
development of more advanced models (Gharbieh
et al., 2017) which ultimately led to the popu-
larisation of the approach. As a consequence,
and inspired by the success of neural models in
NLP, nine out of the 17 systems submitted to the
PARSEME shared task 1.1 used neural networks
(Ramisch et al., 2018). Recently, improvements
have been proposed, e.g. to deal with discontinu-
ous MWEs (Rohanian et al., 2019).

Previous work studied the impact of external
lexicons (Riedl and Biemann, 2016) and of several
feature sets (Maldonado et al., 2017) on CRFs for
MWE identification. Character-based embeddings
have been shown useful to predict MWE composi-
tionality out of context (Hakimi Parizi and Cook,
2018). In other tasks such as named entity recog-
nition, character convolution layers have been suc-
cessfully applied (Ma and Hovy, 2016). The use
of pre-trained vs. randomly initialised embeddings
has been analysed in some PARSEME shared task
papers (Ehren et al., 2018; Zampieri et al., 2018).
The closest works to ours are the Veyn (Zampieri
et al., 2018) and SHOMA (Taslimipoor and Roha-
nian, 2018) systems, submitted to the PARSEME
shared task 1.1. Veyn is used as our off-the-shelf
base system, so most of its architecture is iden-
tical to ours. Similarly to us, SHOMA employs
FastText embeddings, a recurrent layer and a CRF
output layer. To our knowledge, however, this is
the first study to compare input representations for
neural MWE identification.

3 Experimental Setup

Corpora The PARSEME shared task 1.1 re-
leased freely available VMWE-annotated corpora
in 20 languages.1 Each language’s corpus is
split into training, development and test parts.
To choose our target languages, we analysed the
PARSEME corpora, choosing 3 languages with
varying morphological richness: Basque (EU),
French (FR) and Polish (PL), shown in Table 1.2

The FR training corpus has more than 420K to-
kens, whereas the PL and EU training corpora
have around 220K and 117K tokens. EU con-
tains less annotated VMWE occurrences than both
FR and PL. The average length of annotated
VMWE occurrences is similar in the three lan-
guages (2.02/2.29/2.13 in EU/FR/PL). The pro-
portion of discontinuous VMWEs in highest in
FR (42.12%), whereas in Polish (29.76%) and in
Basque (19.28%) they are less frequent. These
languages do have not the same morphological
richness, as measured by the average number
of surface forms per lemma in the vocabulary
(‘Morph’ column). For instance, the EU training
corpus (2.32) has a higher morphological richness
than PL (2.21) and FR (1.33). The rate of OOVs,
that is, of words that appear in the dev or test cor-
pus vocabularies, but not in the training corpus,
is higher for surface forms than for lemmas, with
a potential negative impact on VMWE identifica-
tion systems based on surface forms only. As ex-
pected, the OOV rate for surface forms is lowest in
FR (20-26%), which also has the lowest morpho-
logical richness, and highest for EU (43%). These
differences are less visible for lemmas, which ab-
stract away from morphology.3 An interesting fig-
ure is the OOV rate focusing on verbs only.4 Here,
PL presents more OOV verb forms (42-44%) than
EU (32%), but again this difference disappears for
lemmas. This is relevant because our experimen-

1http://hdl.handle.net/11372/LRT-2842
2Other languages have similar characteristics but were not

selected due to the size of the corpora or to incomplete in-
formation (e.g. Turkish has missing surface forms for some
verbs, preventing us from training a system based on surface
forms only).

3The official PARSEME French test corpus presents
11,632 missing lemmas. We have lemmatised it using UD-
Pipe (http://ufal.mff.cuni.cz/udpipe) with de-
fault parameters, trained on the PARSEME shared task train-
ing corpus, to remain in the “closed track” conditions.

4For EU, we consider the POS tags VERB,
ADI and ADT according to the conversion table
https://universaldependencies.org/
tagset-conversion/eu-conll-uposf.html

http://hdl.handle.net/11372/LRT-2842
http://ufal.mff.cuni.cz/udpipe
https://universaldependencies.org/tagset-conversion/eu-conll-uposf.html
https://universaldependencies.org/tagset-conversion/eu-conll-uposf.html
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Vocabulary Morph OOVs-Vocabulary OOVs-Verbs
Tokens VMWEs forms lemmas forms lemmas forms lemmas

EU-train 117,165 2,823 26,912 11,602 2.32 — — — —
EU-dev 21,604 500 7,766 4,178 1.86 43% (3,365) 29% (1,225) 32% (454) 18% (93)

EU-test 19,038 500 7,226 3,902 1.85 43% (3,085) 28% (1,080) 32% (448) 15% (73)

FR-train 420,762 4,550 45,166 33,928 1.33 — — — —
FR-dev 54,685 629 11,593 8,814 1.32 26% (3,032) 27% (2,383) 23% (550) 12% (126)

FR-test 38,402 498 8,160 6,052 1.35 20% (1,666) 19% (1,172) 23% (441) 16% (144)

PL-train 220,352 4,122 48,211 21,795 2.21 — — — —
PL-dev 26,014 515 10,007 5,955 1.68 34% (3,452) 19% (1,136) 42% (1,047) 14% (180)

PL-test 27,661 515 10,285 6,408 1.61 40% (4,145) 25% (1,605) 44% (825) 16% (177)

Table 1: Description of the training (train), development (dev), and test corpora for Basque (EU), French (FR), and
Polish (PL). The number of tokens excludes ranges (multiword tokens). ‘VMWEs’ denotes the number of verbal
MWEs. The ‘Vocabulary’ column shows the number of types in the vocabulary of surface forms and lemmas.
The ‘Morph’ column indicates the morphological richness: ratio between the number of forms and lemmas in the
vocabulary. The rate and number (in parentheses) of OOVs is given for the whole vocabulary, and for verbs only.

tal setup implies that it is difficult for a system to
predict a VMWE without a reliable representation
for a verb, learned from the training data.

MWE Identification System We use our in-
house MWE identification system Veyn (Zampieri
et al., 2018), based on sequence tagging using re-
current neural networks.5 The system takes as in-
put the concatenation of the embeddings of the
words’ features (e.g. lemmas and POS). It uses a
CRF output layer (conditional random fields) to
predict valid label sequences, with VMWEs en-
coded using the ‘BIOG+cat’ format. Each token
is tagged ‘B’ if it is at the beginning of a VMWE,
‘I’ if it is inside a VMWE, ‘O’ if it does not
belong to a VMWE, and ‘G’, if it does not be-
long to a VMWE but it is in the gap between two
words that are part of a VMWE. The tags ‘B’ and
‘I’ are concatenated with the VMWE categories
(VID, LVC.full, etc.) present in the corpus. The
system is trained on the shared task training cor-
pora, so that the results are comparable with the
systems submitted to the closed track.6 We use
the dev corpus as validation data, training for 25
epochs which 3 epochs of patience for early stop-
ping. We configure it to use two layers of bidirec-
tional gated recurrent units (GRU) of dimension
128, with all other parameters taking the default
values suggested in the Veyn documentation.

Word Representations We use two types of
word embeddings to represent input surface forms

5https://github.com/zamp13/Veyn
6http://multiword.sourceforge.net/

sharedtaskresults2018

and lemmas: word2vec and FastText. Word2vec is
a prediction-based distributional model in which
a word representation is obtained from a neural
network trying to predict a word from its con-
text or vice-versa (Mikolov et al., 2013). Fast-
Text is an adaptation which also takes into ac-
count character n-grams, being able to build vec-
tors for OOVs from its character n-grams (Bo-
janowski et al., 2017). For each representation, we
used the gensim library7 to train 256-dimensional
vectors for both forms and lemmas on the training
corpus of the shared task for 10 epochs. Further-
more, all embeddings use the CBOW algorithm
with the same hyper-parameter values of 5 for the
window size (left/right context of words) and 1
for min-count (minimum number of occurrences
of words). For FastText, we set the size of charac-
ter n-grams to 1 to combine the whole word’s em-
bedding with the embeddings of its characters. We
did not use contextual representations, like BERT,
Elmo or Flair (Devlin et al., 2018; Peters et al.,
2018; Akbik et al., 2018), because they have to
be pre-trained on large corpora and we wanted to
have an experimental setup compatible with the
closed track of the PARSEME shared task.

Evaluation Measures We adopt the metrics
proposed in the PARSEME shared tasks (Savary
et al., 2017). The MWE-based measure (F-
MWE) is the F1 score for fully predicted VMWEs,
whereas the token-based measure (F-TOK) is the
F1 score for tokens belonging to a VMWE.

7https://radimrehurek.com/gensim/

https://github.com/zamp13/Veyn
http://multiword.sourceforge.net/sharedtaskresults2018
http://multiword.sourceforge.net/sharedtaskresults2018
https://radimrehurek.com/gensim/
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Features Embeddings
EU FR PL

F-MWE F-Tok F-MWE F-Tok F-MWE F-Tok
form word2vec 60.37 70.93 47.41 56.64 42.27 58.23
form FastText 66.52 72.36 52.60 63.47 47.24 56.08
lemma word2vec 53.36 65.37 53.28 63.76 57.82 65.48
lemma FastText 62.86 68.79 59.35 68.60 61.49 63.98
form-lemma word2vec 60.56 73.07 56.11 66.31 56.80 67.16
form-lemma FastText 69.24 74.01 60.41 68.39 57.39 64.63

Table 2: MWE-based F-measure (F-MWE) and token-based F-measures (F-TOK) of the models on the test corpus,
using word2vec and FastText word representations for different feature sets: lemmas, surface forms, and both.

4 Results

We train Veyn using UPOS tags as input features,
combined with word2vec and FastText embed-
dings for lemmas, surface forms, or both.8 Per-
formances are given on the PARSEME test corpus
for Basque (EU), French (FR) and Polish (PL). On
one hand, we compare performances with Fast-
Text and word2vec representations, and on the
other hand, we compare performances with vari-
ous input feature sets (Table 2).

Impact of Word Vector Representation For
French and Basque, the use of FastText outper-
forms word2vec by a large margin on both F-
measures with any input feature set. For Basque,
the best input features and subword embeddings
get a score of 69.24 (74.01) in F-MWE (F-TOK),
while they get a score of 60.56 (73.07) in F-MWE
(F-TOK) with word2vec representations. Similar
results are obtained for French, with FastText cor-
responding to the best choice for both metrics. Re-
sults for PL are more contrasted: word2vec rep-
resentation yields the best results for the F-TOK
metric (67.16 against 64.63 for FastText) but re-
sults are better with FastText in terms of F-MWE
scores (61.29 against 57.82 with word represen-
tation). This suggests that the word2vec model
has difficulties in predicting MWE boundaries, but
predicts correct parts of VMWEs more often than
with FastText. Looking into the details of the sys-
tem’s output, we observed that the system with
word2vec predicts more MWEs (540 predictions
against 365 predictions with FastText). These pre-
dictions include a large amount of single-token
VMWEs (22% with word2vec against 5% with
FastText), but the training and development cor-
pora have no single-token VMWE in Polish. For
exemple, for the verbal idiom expression będzie

8Other features (e.g. morphology and syntax) are ignored.

się w stanie, the system with FastText makes no
prediction whereas with word2vec the prediction
is będzie się w stanie where the reflexive clitic się
is tagged as being a single-token inherently reflex-
ive verb and w stanie is predicted as a verbal id-
iom. More single token predictions increase the
recall of F-TOK, but decrease the precision of F-
MWE. Further investigation will be made to un-
derstand this phenomenon, which could be com-
pensated by simple post-processing, e.g. grouping
single-token predictions with adjacent ones. We
hypothesise that the system with subword repre-
sentation is able to take the morphological inflec-
tion into account. For example, the French expres-
sion faire référence ‘to make reference’ is seen
in this form in the training corpus, but the test cor-
pus contains a different inflection of the verb fait
référence ‘makes reference’. For this example,
with FastText representation the system is able to
find the expression, but with word2vec represen-
tation the system can not find it if we use surface
form and lemma at input.

Impact of Input Pre-processing For Basque,
which has a high morphological richness, the
model with the richest information provides the
best results. Performances are maximised with the
form-lemma model, providing an F-MWE score
of 69.24, while the form model yields a 66.52
score and the lemma model gives 62.86, suggest-
ing that relevant information for VMWE identifi-
cation is lost in lemmatisation. For Polish, sim-
ilar results are obtained in terms of F-Tok while
F-MWE is maximised for the lemma configura-
tion with FastText. This is also a consequence of
the phenomenon described in the previous subsec-
tion where single-token expressions are predicted
for Polish. The lemma configuration is less af-
fected by this phenomenon (F-TOK is lower) and
thus full-expression identification is more effec-
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tive (higher F-MWE of 61.49). Results on French
corroborate this trend: although French has sim-
pler morphology, lemmas are still important to ob-
tain best results. As opposed to highly morpho-
logical languages like Basque, the combination of
lemmas and forms for French does not yield as
much improvement. Performances in terms of F-
TOK are equivalent for lemma and form-lemma
and are slightly better in terms of F-MWE.

For the three languages under consideration, our
best models would have ranked in the top-3 in the
closed track of the official shared task results.

5 Conclusions and Future Work

We have studied the impact of word representa-
tions on VMWE identification for Basque, French
and Polish, comparing lemmas and surface forms
as input features and comparing traditional word
embeddings (word2vec) and subword representa-
tions (FastText). Regarding the latter, subword
representations proved to be efficient for our task.
For the former, we have highlighted that the use
of lemmas always have a positive impact. For
languages with high morphological richness, the
combination of lemmas and forms has an even
higher impact, especially for Basque. Consider-
ing the high Out-of-Vocabulary rate, including for
verbs, we intend to improve OOV handling in the
future. The use of recent embeddings such as
BERT, Elmo and Flair, trained on large external
corpora, could help with OOVs.
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