Incompleteness Theorems, Large Cardinals, and Automata over Finite Words - Archive ouverte HAL
Article Dans Une Revue International Journal of Foundations of Computer Science Année : 2019

Incompleteness Theorems, Large Cardinals, and Automata over Finite Words

Résumé

We prove that one can construct various kinds of automata over finite words for which some elementary properties are actually independent from strong set theories like Tn =:ZFC + "There exist (at least) n inaccessible cardinals", for integers n ≥ 0. In particular, we prove independence results for languages of finite words generated by context-free grammars, or accepted by 2-tape or 1-counter automata. Moreover we get some independence results for weighted automata and for some related finitely generated subsemigroups of the set Z ^{3×3} of 3-3 matrices with integer entries. Some of these latter results are independence results from the Peano axiomatic system PA.
Fichier principal
Vignette du fichier
Extended-version-tamc2017-revised.pdf (358.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02318263 , version 1 (16-10-2019)

Identifiants

  • HAL Id : hal-02318263 , version 1

Citer

Olivier Finkel. Incompleteness Theorems, Large Cardinals, and Automata over Finite Words. International Journal of Foundations of Computer Science, 2019. ⟨hal-02318263⟩
58 Consultations
131 Téléchargements

Partager

More