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Abstract10

Analog and evolving recurrent neural networks are super-Turing powerful.
Here, we consider analog and evolving neural nets over infinite input streams.
We then characterize the topological complexity of their ω-languages as a
function of the specific analog or evolving weights that they employ. As a
consequence, two infinite hierarchies of classes of analog and evolving neural
networks based on the complexity of their underlying weights can be derived.
These results constitute an optimal refinement of the super-Turing expres-
sive power of analog and evolving neural networks. They show that analog
and evolving neural nets represent natural models for oracle-based infinite
computation.
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1. Introduction15

Understanding the computational and dynamical capabilities of biologi-16

cal neural networks is an issue of major importance, with repercussions in17

the fields of theoretical neuroscience, bio-inspired computing, artificial intel-18

ligence, robotics and philosophy.19
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In this context, the theoretical approach to neural computation consists20

of studying the computational power of neural network models from the21

perspective of automata theory. The capabilities of neural networks are22

known to be related to the kind of activation functions used by the neu-23

rons, to the nature of their synaptic connections, to the eventual presence24

of noise in the model, and to the possibility for the neural architecture to25

evolve over time. The computational capabilities of diverse neural mod-26

els have been shown to range from the finite automaton level [1, 2, 3, 4],27

up to the Turing [5, 6, 7, 8, 9, 10, 11] or even to the super-Turing de-28

gree [12, 13, 14, 15, 16, 17] (for detailed survey, see [18]).29

More specifically, real-weighted neural networks, also referred to as analog30

neural nets, are strictly more powerful than Turing machines. In exponen-31

tial time of computation, they can decide any possible discrete language.32

In polynomial time of computation, they are equivalent to Turing machines33

with polynomially bounded advice, and hence decide the complexity class34

P/poly [12, 14, 15]. Interestingly, the super-Turing computational capabili-35

ties of analog networks can be finely characterized in terms of the Kolmogorov36

complexity of their underlying synaptic real weights. A proper infinite hierar-37

chy of classes of analog neural nets with real weights of increasing Kolmogorov38

complexity has been obtained [13]. Besides this, it has been shown that39

neural networks employing time-dependent synaptic weights, called evolving40

neural nets1, are computationally equivalent to the analog ones. This com-41

putational equivalence holds irrespectively of whether the synaptic weights42

of networks are modeled by rational or real numbers and their patterns of43

evolution restricted to binary updates or expressed by more general form of44

updating [16, 17].45

Based on biological and computational considerations, these studies have46

been extended to alternative paradigms of computation where the networks47

process infinite rather than finite input streams [16, 23, 24, 25, 26, 17, 27, 28,48

29, 30, 31, 19, 20]. This approach conciliates two important biological and49

computer scientist perspectives about neural attractor dynamics on the one50

hand [32] and non-terminating computational processes on the other [33, 34].51

1Throughout this paper, the expressions evolving neural networks refers to neural net-
works with time-dependent synaptic weights, along the lines of [17, 19, 20]. This expression
is not to be understood in the sense of Evolving Connectionist Systems (ECoS) [21] nor
in that of Evolving Neural Networks through Augmenting Topologies (NEAT) [22].
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The networks are provided with Boolean input and output cells carrying out52

the discrete exchange of information with their environment. When subjected53

to some infinite input stream, the outputs of the networks eventually get54

trapped into some attractor dynamics. The set of input streams inducing55

a meaningful attractor dynamics is the neural ω-language recognized by the56

network. The expressive power of the networks is then characterized by the57

topological complexity of their underlying neural ω-languages.58

Within this framework, the Boolean neural networks provided with cer-59

tain type specification of their attractors are computationally equivalent to60

Büchi or Muller automata [24, 28]. As a consequence, a novel attractor-61

based measure of complexity for Boolean neural networks has been obtained.62

This complexity measure refers to the ability of the networks to perform63

more or less complicated classification tasks of their input streams via the64

manifestation of meaningful or spurious attractor dynamics.65

The sigmoidal neural networks are strictly more powerful than their Bool-66

ean counterparts. The static rational-weighted neural networks are compu-67

tationally equivalent to Muller Turing machines. In the deterministic and68

nondeterministic cases, these networks recognize the (lightface) topological69

classes of BC(Π0
2) and Σ1

1 neural ω-languages, respectively [29, 20]. By con-70

trast, the static real-weighted (or analog) neural networks are super-Turing.71

In the deterministic and nondeterministic cases, they recognize the (bold-72

face) topological classes of BC(Π0
2) and Σ1

1 neural ω-languages, respectively73

[31, 19, 29, 20]. In addition, the evolving neural networks are computation-74

ally equivalent to the static analog ones. This equivalence holds irrespectively75

of whether the static and evolving weights of the networks are modeled by76

rational or real numbers, and the patterns of evolution restricted to binary77

updates or expressed by more general forms of updating.78

In this paper, we provide an optimal refinement of these results and com-79

plete our study undertaken in [35], where only the case of evolving neural80

nets is treated in a more succinct way. We fully characterize the expressive81

power of analog and evolving networks according to the specific analog and82

evolving weights that they employ. Without loss of generality, we focus on83

analog or evolving networks using only one analog or one evolving weight,84

respectively. For any α ∈ 2ω with corresponding encoding rα ∈ R, we show85

that deterministic and nondeterministic analog or evolving networks employ-86

ing either the single static analog weight rα or the single evolving weight α87

recognize the (lightface) relativized topological classes of BC(Π0
2)(α) and88
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Σ1
1(α) ω-languages, respectively. As a consequence, we show the existence of89

two infinite refined hierarchies of classes of analog and evolving neural nets90

based on the complexity of their underlying analog and evolving weights.91

These hierarchies contain chains of length ω1 and antichains of uncountable92

size.93

From the point of view of theoretical computer science, these results con-94

stitute a generalization of the fundamental hierarchy of classes of analog95

networks based on the Kolmogorov complexity of their underlying analog96

weights [13]. They provide an optimal refinement of the super-Turing ex-97

pressive power of analog and evolving neural networks working on infinite98

input streams. They also show that analog and evolving neural networks99

represent natural models for oracle-based infinite computation, beyond the100

Turing limits. From a biological point of view, these achievements may con-101

stitute a theoretical foundation of the primary role played by synaptic plas-102

ticity in the computational capabilities of neural networks [36, 37, 38, 39].103

2. Preliminaries104

Given a finite set X, referred to as an alphabet, we let X∗ and Xω denote105

the sets of finite sequences (or finite words) and infinite sequences (or infinite106

words) of elements of X. A set L ⊆ X∗ or L ⊆ Xω is called a language or an107

ω-language, respectively.108

We assume the reader to be familiar with basic considerations about109

Turing machines (TM). A Muller Turing machine is a TM working on infinite110

words. It is defined as a pair (M, T ), where M is a classical multitape TM111

whose input tape is associated with a one way read-only head, and the Muller112

table T = {T1, . . . , Tk} is a finite collection of sets of states of M. In the113

deterministic (resp., non deterministic) context, an infinite word s is accepted114

by (M, T ) if and only if the unique infinite run (resp. there exists an infinite115

run) ofM on s induces (resp. which induces) a set of states that are visited116

infinitely often Ti which belongs to T . The set of all infinite words accepted117

by (M, T ) is the ω-language recognized by (M, T ). For any infinite word α,118

a Muller Turing machine with oracle α is a Muller Turing machine having119

an additional oracle tape with α written on it.120

In the sequel, any space of the form Xω is assumed to be equipped with121

the product topology of the discrete topology on X. Accordingly, the basic122

open sets of Xω are of the form p·Xω, for some p ∈ X∗. The general open sets123
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are countable unions of basic open sets. In particular, the space of infinite124

words of bits (Cantor space) and that of infinite words of N -dimensional125

Boolean vectors will be denoted by 2ω = {0, 1}ω and (BN)ω, respectively.126

They are assumed to be equipped with the above mentioned topology.127

Let (X , T ) be one of the above topological spaces, or a product of such128

spaces. The class of Borel subsets of X , denoted by ∆1
1 (boldface), is the σ-129

algebra generated by T , i.e., the smallest collection of subsets of X containing130

all open sets and closed under countable union and complementation. For131

every non-null countable ordinal α < ω1, where ω1 is the first uncountable132

ordinal, the Borel classes Σ0
α, Π0

α and ∆0
α of X are defined as follows:133

• Σ0
1 is the class of open subsets of X (namely T )134

• Π0
1 is the class of closed subsets of X , i.e., that of complements of open135

sets136

• Σ0
α is the class of countable unions of subsets of X in

⋃
γ<α Π0

γ137

• Π0
α is the class of countable intersections of subsets of X in

⋃
γ<α Σ0

γ .138

• ∆0
α = Σ0

α ∩Π0
α139

The classes Σ0
α, Π0

α and ∆0
α provide a stratification of the class of Borel sets140

known as the Borel hierarchy. One has ∆1
1 =

⋃
α<ω1

Σ0
α =

⋃
α<ω1

Π0
α [40].141

The rank of a Borel set A ⊆ X is the smallest ordinal α such that A ∈142

Σ0
α∪Π0

α. It is commonly considered as a relevant measure of the topological143

complexity of Borel sets. The class of sets obtained as finite Boolean combi-144

nations (unions, intersections and complementations) of Π0
2-sets is denoted145

by BC(Π0
2).146

Analytic sets are obtained as projections of either Π0
2-sets or general Borel147

sets [40]. More precisely, a set A ⊆ X is analytic if there exists some Π0
2-148

set B ⊆ X × 2ω such that A = {x ∈ X : (x, β) ∈ B, for some β ∈ 2ω} =149

π1(B) [40]. The class of analytic sets is denoted by Σ1
1. It strictly contains150

that of Borel sets, i.e., ∆1
1 ( Σ1

1 [40].151

The effective (lightface) counterpart of the Borel and analytic classes,152

denoted by Σ0
n,Π

0
n,∆

0
n as well as ∆1

1 and Σ1
1, are obtained by a similar effec-153

tive construction, yet starting from the class Σ0
1 of effective open sets [41].154

The class of finite Boolean combinations of Π0
2-sets, denoted by BC(Π0

2)155

(lightface), and that of effective analytic sets, denoted by Σ1
1 (lightface),156

correspond to the collections of ω-languages recognizable by deterministic157

and nondeterministic Muller Turing machines, respectively [42]. One has158
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BC(Π0
2) ( BC(Π0

2) and Σ1
1 ( Σ1

1.159

Any topological class Γ of the topological space X will also be written160

as Γ � X , whenever the underlying space X is needed to be specified. In161

addition, for any point x ∈ X , we will use the notation x ∈ Γ to mean that162

{x} ∈ Γ. Besides, any product space X ×Y is assumed to be equipped with163

the product topology. If A ⊆ X ×Y and y ∈ Y , the y-section of A is defined164

by Ay = {x ∈ X : (x, y) ∈ A}. For any class Γ being equal to Σ0
1, BC(Π0

2),165

Σ1
1, or Π1

1 with underlying product space X × Y and for any y ∈ Y , the166

relativization of Γ to y, denoted by Γ(y), is the class of all y-sections of sets167

in Γ. In other words, A ∈ Γ(y) � X if and only if there exists B ∈ Γ � X ×Y168

such that A = By. Moreover, we denote as usual ∆1
1(y) = Σ1

1(y)∩Π1
1(y) [41,169

p. 118].170

For any α ∈ 2ω, one can show that the relativized classes BC(Π0
2)(α) and171

Σ1
1(α) correspond to the collections of ω-languages recognizable by determin-172

istic and nondeterministic Muller Turing machine with oracle α, respectively.173

In addition, it can be shown that x ∈ Σ0
1(α) if and only if the successive let-174

ters of x can be produced step by step by some Turing machine with oracle175

α. Besides, one has x ∈ Σ1
1(α) iff x ∈ ∆1

1(α), for any α ∈ 2ω [41].176

Finally, the spaces (BM)ω×2ω and (BM+1)ω are isomorphic via the natural177

identification. Accordingly, subsets of these spaces will be identified without178

it being explicitly mentioned.179

3. Recurrent Neural Networks on Infinite Input Streams180

We consider first-order recurrent neural networks composed of Boolean181

input cells, Boolean output cells and sigmoidal internal cells. The sigmoidal182

internal neurons introduce the biological source of nonlinearity which is cru-183

cial to neural computation. They provide the possibility to surpass the ca-184

pabilities of finite state automata, or even of Turing machines. The Boolean185

input and output cells carry out the exchange of discrete information be-186

tween the network and the environment. When some infinite input stream187

is supplied, the output cells eventually enter into some attractor dynamics.188

The expressive power of the networks is related to the attractor dynamics of189

their Boolean output cells.190
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3.1. Deterministic case191

A deterministic (first-order) recurrent neural network (D-RNN) consists192

of a synchronous network of neurons related together in a general architec-193

ture. It is composed of M Boolean input cells (ui)
M
i=1, N sigmoidal internal194

neurons (xi)
N
i=1, and P Boolean output cells (yi)

P
i=1. The dynamics of the195

network is computed as follows: given the activation values of the input and196

internal neurons (uj)
M
j=1 and (xj)

N
j=1 at time t, the activation value of each197

internal and output neuron xi and yi at time t+1 is updated by the following198

equations, respectively:199

xi(t+ 1) = σ

(
N∑
j=1

aij(t) · xj(t) +
M∑
j=1

bij(t) · uj(t) + ci(t)

)
for i = 1, . . . , N (1)

200

yi(t+ 1) = θ

(
N∑
j=1

aij(t) · xj(t) +
M∑
j=1

bij(t) · uj(t) + ci(t)

)
for i = 1, . . . , P (2)

where aij(t), bij(t), and ci(t) are the time dependent synaptic weights and bias
of the network at time t, and σ and θ are the linear-sigmoid2 and Heaviside
step activation functions defined by

σ(x) =


0, if x < 0

x, if 0 ≤ x ≤ 1

1, if x > 1

and θ(x) =

{
0, if x < 1

1, if x ≥ 1

A synaptic weight or a bias w will be called static if it remains constant201

over time, i.e., if w(t) = c for all t ≥ 0. It will be called bi-valued evolving202

if it varies among two possible values over time, i.e., if w(t) ∈ {0, 1} for all203

t ≥ 0. It will be called general evolving otherwise. A D-RNN is illustrated204

in Figure 1.205

According to these considerations, the dynamics of any D-RNNN is given
by the function fN : BM × BN → BN × BP defined by

fN (~u(t), ~x(t)) = (~x(t+ 1), ~y(t+ 1))

2The seminal results concerning the computational power of rational- and real-weighted
neural networks have been obtained in this context of linear-sigmoid functions [12, 8].
It has then been shown that these results remain valid for any other kind of sigmoidal
activation function satisfying the properties mentioned in [9, Section 4].
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where the components of ~x(t + 1) and ~y(t + 1) are given by Equations (1)206

and (2), respectively.207

Consider some D-RNN N provided with M Boolean input cells, N sig-
moidal internal cells, and P Boolean output cells. For each time step t ≥ 0,
the state of N at time t consists of a pair of the form

〈~x(t), ~y(t)〉 ∈ [0, 1]N × BP .

The second element of this pair, namely ~y(t), is the output state of N at time208

t.209

Assuming the initial state of the network to be 〈~x(0), ~y(0)〉 = 〈~0,~0〉, any
infinite input stream

s = (~u(t))t∈N = ~u(0)~u(1)~u(2) · · · ∈
(
BM
)ω

induces via Equations (1) and (2) an infinite sequence of consecutive states

cs = (〈~x(t), ~y(t)〉)t∈N = 〈~x(0), ~y(0)〉〈~x(1), ~y(1)〉 · · · ∈
(
[0, 1]N × BP

)ω
which is the computation of N induced by s. The corresponding infinite
sequence of output states

bcs = (~y(t))t∈N = ~y(0)~y(1)~y(2) · · · ∈
(
BP
)ω

is the Boolean computation of N induced by s. The computation of such a210

D-RNN is illustrated in Figure 1.211

Note that any D-RNN N with P Boolean output cells can only have212

2P – i.e., finitely many – possible distinct output states. Consequently, any213

Boolean computation bcs necessarily consists of a finite prefix of output states214

followed by an infinite suffix of output states that repeat infinitely often – yet215

not necessarily in a periodic manner – denoted by inf(bcs). A set of states216

of the form inf(bcs) ⊆ BP will be called an attractor of N [28]. A precise217

definition can be given as follows:218

Definition 1. Let N be some D-RNN. A set A = {~y0, . . . , ~yk} ⊆ BP is an219

attractor for N if there exists some infinite input stream s such that the220

corresponding Boolean computation bcs satisfies inf(bcs) = A.221

In words, an attractor of N is a set of output states into which the222

Boolean computation of the network could become forever trapped – yet not223
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necessarily in a periodic manner. An attractor of some D-RNN is illustrated224

in Figure 1.225

In this work, we further suppose that the networks’ attractors can be of226

two distinct types, namely either accepting or rejecting. The classification of227

attractors into meaningful (accepting) or spurious (rejecting) types is an issue228

of significant importance in neural network studies [28]; however, it is not229

the subject of this work. Here, we rather consider that the type specification230

of the networks’ attractors has already been established, e.g., according to231

some neurophysiological criteria or computational requirements. Hence, from232

this point onwards, we always assume that a D-RNN is provided with an233

associated classification of all of its attractors into accepting and rejecting234

types.235

This classification of attractors leads to the following Muller-like accep-236

tance condition: given some D-RNNN , an infinite input stream s ∈ (BM)ω is237

accepted N if inf(bcs) is an accepting attractor; it is rejected by N if inf(bcs)238

is a rejecting attractor. The set of all accepted input streams of N is the239

· · ·

· · ·

Attractor (periodic)

Infinite Boolean
output stream bcs

Infinite Boolean
input stream s

Boolean
input
cells

Boolean
output
cells

Sigmoid
internal

cells

· · · · · ·

Figure 1: Illustration of the computational process performed by some D-RNN. The infinite
Boolean input stream s = ~u(0)~u(1)~u(2) · · · ∈ (BM )ω induces a corresponding Boolean
output stream – or Boolean computation – bcs = ~y(0)~y(1)~y(2) · · · ∈ (BP )ω. The filled and
empty circles represent active and quiet Boolean cells, respectively. From some time step
onwards, a certain set of output states begins to repeat infinitely often, which corresponds
to the attractor dynamics associated with input stream s.
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neural ω-language recognized by N , denoted by L(N ). A set L ⊆ (BM)ω is240

said to be recognizable by some D-RNN if there exists a network N such that241

L(N ) = L.242

We consider six different models of D-RNNs, according to the nature of243

their synaptic weights:244

1. The class of deterministic static rational neural nets refers to the D-245

RNNs whose all weights are static rational values. It is denoted by246

D-St-RNN[Q]s.247

2. The class of deterministic static real (or analog) neural nets refers to248

the D-RNNs whose all weights are static real values. It is denoted by249

D-St-RNN[R]s. For the purpose of our study, we stratify this class250

into uncountably many subclasses, each one being defined according251

to some specific real weights involved in the networks. Formally, for252

each r1, . . . , rk ∈ R, the subclass of networks containing r1, . . . , rk as253

real weights3 and all other ones being rational is denoted by D-St-254

RNN[Q, r1, . . . , rk]s.255

3. The class of deterministic bi-valued evolving rational neural nets refers256

to the D-RNNs whose all non-static weights are bi-valued evolving and257

all static weight are rational. It is denoted by D-Ev2-RNN[Q]s. For258

each α1, . . . , αk ∈ 2ω, the subclass of networks containing α1, . . . , αk as259

sole bi-valued evolving weights, all other ones being static rational, is260

denoted by D-Ev2-RNN[Q, α1, . . . , αk]s.261

4. The class of deterministic (general) evolving rational neural nets refers262

to the D-RNNs whose all static and evolving weights are rational. It is263

denoted by D-Ev-RNN[Q]s.264

5. The class of deterministic bi-valued evolving real neural nets refers to265

the D-RNNs whose all non-static weights are bi-valued evolving and all266

static weight are real. It is denoted by D-Ev2-RNN[R]s.267

6. The class of deterministic (general) evolving real neural nets refers to268

the D-RNNs whose all static and evolving weights are real. It is denoted269

by D-Ev-RNN[R]s.270

3In this definition, the real weights r1, . . . , rk are not a priori required to be irrational;
they could be rational weights which we wish to specify.
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3.2. Nondeterministic case271

We also consider nondeterministic recurrent neural networks, as intro-272

duced in [12, 8]. The nondeterminism is expressed by means of an external273

binary guess stream processed via some additional Boolean guess cell.274

Formally, a nondeterministic (first-order) recurrent neural network (N-275

RNN) consists of a recurrent neural network N as described in previous276

Section 3.1, except that it contains M+1 Boolean input cells (ui)
M+1
i=1 , rather277

than M . The cell uM+1, called the guess cell, carries the Boolean source of278

nondeterminism to be considered [12, 8, 25, 19, 20]. A N-RNN is illustrated279

in Figure 2.280

Given some N-RNNN , any sequence g = g(0)g(1)g(2) · · · ∈ 2ω submitted
to guess cell uM+1 is a guess stream for N . Assuming the initial state of the
network to be 〈~x(0), ~y(0)〉 = 〈~0,~0〉, any infinite input and guess streams

s = (~u(t))t∈N ∈
(
BM
)ω

and g = (g(t))t∈N ∈ 2ω

induce via Equations (1) and (2) two infinite sequences of states and output
states

c(s,g) = (〈~x(t), ~y(t)〉)t∈N ∈
(
[0, 1]N × BP

)ω
bc(s,g) = (~y(t))t∈N ∈

(
BP
)ω

called the computation and Boolean computation of N induced by (s, g),281

respectively. Furthermore, Definition 1 of an attractor remains unchanged in282

this case. The computation of an N-RNN is illustrated in Figure 2.283

We also assume that any N-RNN N is equipped with a corresponding284

classification of all of its attractors into accepting and rejecting types. An285

infinite input stream s ∈ (BM)ω is accepted by N if there exists some guess286

stream g ∈ 2ω such that inf(bc(s,g)) is an accepting attractor. It is rejected287

by N otherwise, i.e., if for all guess streams g ∈ 2ω, the set inf(bc(s,g)) is288

a rejecting attractor. The set of all accepted input streams is the neural289

ω-language recognized by N , denoted by L(N ). A set L ⊆ (BM)ω is said to290

be recognizable by some nondeterministic recurrent neural network if there291

exists a N-RNN N such that L(N ) = L.292

As for the deterministic case, we consider the following classes and sub-293

classes of N-RNNs according to the nature of their synaptic weights:294

1. The class of nondeterministic static rational neural nets N-St-RNN[Q]s.295
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· · · · · ·

Boolean
input
cells

Boolean
output
cells

Sigmoid
internal

cells

Guess cell

· · ·

· · ·

Attractor (periodic)

Infinite Boolean
output stream bc(s,g)

Infinite Boolean
input stream s

· · ·Guess stream g

Figure 2: Illustration of the computational process performed by some N-RNN. The infinite
guess stream g = g(0)g(1)g(2) · · · ∈ 2ω, represented by the dark blue pattern, together with
the infinite Boolean input stream s = ~u(0)~u(1)~u(2) · · · ∈ (BM )ω induce a corresponding
Boolean output stream – or Boolean computation – bc(s,g) = ~y(0)~y(1)~y(2) · · · ∈ (BP )ω.
The filled and empty circles represent active and quiet Boolean cells, respectively. As in
Figure 1, the network necessarily enters into some attractor dynamics.

2. The class of nondeterministic static real (or analog) neural nets N-296

St-RNN[R]s. For each r1, . . . , rk ∈ R, we consider the corresponding297

subclass N-St-RNN[Q, r1, . . . , rk]s.298

3. The class of nondeterministic bi-valued evolving rational neural nets N-299

Ev2-RNN[Q]s. For each α1, . . . , αk ∈ 2ω, we consider the corresponding300

subclass N-Ev2-RNN[Q, α1, . . . , αk]s.301

4. The class of nondeterministic (general) evolving rational neural nets302

N-Ev-RNN[Q]s.303

5. The class of nondeterministic bi-valued evolving real neural nets N-Ev2-304

RNN[R]s.305

6. The class of nondeterministic (general) evolving real neural nets N-Ev-306

RNN[R]s.307
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4. Expressive Power of Neural Networks308

We provide a precise characterization of the expressive power of ana-309

log and evolving neural networks based on the specific analog and evolving310

weights that these networks employ, respectively. As a consequence, two311

proper hierarchies of classes of analog and evolving networks based on the312

complexity of their underlying weights can be obtained in Section 5.313

4.1. Deterministic case314

The expressive power of the classes of D-St-RNN[Q], D-St-RNN[R], D-315

Ev2-RNN[Q], D-Ev-RNN[Q], D-Ev2-RNN[R], and D-Ev-RNN[R] has been316

characterized in [20, Theorems 1, 2]. We first recall these results.317

Theorem 1. [20, Theorem 1] Let L ⊆ (BM)ω be some ω-language. The318

following conditions are equivalent:319

(a) L ∈ BC(Π0
2);320

(b) L is recognizable by some D-St-RNN[Q];321

(c) L is recognizable by some deterministic Muller Turing machine.322

Theorem 2. [20, Theorem 2] Let L ⊆ (BM)ω be some ω-language. The323

following conditions are equivalent:324

(a) L ∈ BC(Π0
2);325

(b) L is recognizable by some D-St-RNN[R];326

(c) L is recognizable by some D-Ev2-RNN[Q];327

(d) L is recognizable by some D-Ev-RNN[Q];328

(e) L is recognizable by some D-Ev2-RNN[R];329

(f) L is recognizable by some D-Ev-RNN[R].330

Theorem 1 states that D-St-RNN[Q]s are Turing equivalent. Theorem331

2 shows that the classes D-St-RNN[R]s, D-Ev2-RNN[Q]s, D-Ev-RNN[Q]s,332

D-Ev2-RNN[R]s and D-Ev-RNN[R]s are computationally equivalent to each333

other and strictly more powerful than deterministic Muller Turing machines,334

since BC(Π0
2) ( BC(Π0

2). In this sense, the deterministic analog and evolv-335

ing neural networks are super-Turing. Note that the D-Ev2-RNN[Q]s achieve336

a maximal expressive power by recognizing the whole class of BC(Π0
2) ω-337

languages. Indeed, the consideration of either real synaptic weights or more338
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complex evolving patterns in the model does actually not yield to some higher339

expressive power.340

Remark 1. The proof of implication “(a)→ (b)” of Theorem 2, detailed in341

[20, Proposition 1], shows that any ω-language L ∈ BC(Π0
2) can be recog-342

nized by some D-St-RNN[R] employing at most one static irrational weight,343

which is in the interval [0, 1] and given in the form of a bias. Similarly,344

the proof of implication “(a) → (c)” of Theorem 2, also detailed in [20,345

Proposition 1], ensures that any ω-language L ∈ BC(Π0
2) can be recognized346

by some D-Ev2-RNN[Q] using only one bi-valued evolving weight given as a347

bias (cf. [20, Proposition 1] again). By Theorem 2, this means that any D-St-348

RNN[R] is expressively equivalent to some D-St-RNN[Q, r], where r ∈ [0, 1],349

and any D-Ev2-RNN[Q] is expressively equivalent to some D-Ev2-RNN[Q, α],350

where α ∈ 2ω. Hence, from this point onwards, we will focus without loss351

of generality on the two specific subclasses of analog or evolving networks352

employing only one analog or evolving weight, respectively.353

We now provide a precise characterization of the expressive power of these354

two subclasses of D-St-RNN[Q, r] and D-Ev2-RNN[Q, α], for any r ∈ [0, 1]355

and α ∈ 2ω, respectively. This result constitutes a significant refinement of356

Theorem 2. It is obtained via forthcoming Propositions 1, 2, 3 and 4.357

Proposition 1. Let L ⊆ (BM)ω be some ω-language and α ∈ 2ω. If L ∈358

BC(Π0
2)(α), then L is recognizable by some D-Ev2-RNN[Q, α].359

Proof. If L ∈ BC(Π0
2)(α) � (BM)ω, then by definition, there exists L′ ∈

BC(Π0
2) � (BM+1)ω such that

L = L′α =
{
s ∈ (BM)ω : (s, α) ∈ L′

}
.

Hence, Theorem 1 ensures that there exists a D-St-RNN[Q] N ′ with M + 1360

input cells u1, . . . , uM+1 such that L(N ′) = L′.361

Now, consider the D-Ev2-RNN[Q, α] N which consists in a slight modi-362

fication of the D-St-RNN[Q] N ′. More precisely, N contains the same cells363

and synaptic connections as N ′, it admits u1, . . . , uM as its input cells, and364

the cell uM+1 is transformed into an internal cell receiving the bi-valued365

evolving weight α ∈ 2ω in the form of a bias. In addition, the attractors of366

N are the same as those of N ′. By construction, for any input s ∈ (BM)ω,367

N receives the bi-valued evolving weight α as a bias and works precisely368
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like N ′ on input (s, α) ∈ (BM+1)ω. Consequently, s ∈ L(N ) if and only if369

(s, α) ∈ L(N ′) = L′. Therefore, L(N ) = L′α = L. This shows that L is370

recognized by the D-Ev2-RNN[Q, α] N .371

Proposition 2. Let L ⊆ (BM)ω be some ω-language and α = α1α2α3 · · · ∈372

2ω. If L ∈ BC(Π0
2)(α), then L is recognizable by some D-St-RNN[Q, rα] N ,373

where rα =
∑∞

i=1
2αi+1

4i
∈ [0, 1].374

Proof. Suppose that L ∈ BC(Π0
2)(α). Then L is recognized by some deter-

ministic Muller Turing machine M with oracle α. Let

α′ = 00
∞∏
i=1

(0αi) = 000α10α20α30α40 · · · ∈ 2ω.

Clearly, the successive letters αi’s of α can be produced by some Turing
machine with oracle α′, i.e., α ∈ Σ1

0(α
′). Consequently, L is also recognized

by the deterministic Muller Turing machine with oracle α′ which retrieves
step by step the successive letters of α from its oracle α′, and concomitantly,
simulates the behavior ofM with oracle α. This means that L ∈ BC(Π0

2)(α
′).

Hence, there exists L′ ∈ BC(Π0
2) � (BM+1)ω such that

L = L′α′ =
{
s ∈ (BM)ω : (s, α′) ∈ L′

}
.

By Theorem 1, there exists a D-St-RNN[Q] N ′ with M + 1 input cells375

u1, . . . , uM+1 such that L(N ′) = L′.376

Now, consider the real encoding of α given by rα =
∑∞

i=1
2αi+1

4i
∈ [0, 1].377

Consider also the D-St-RNN[Q, rα] N obtained by replacing the input cell378

uM+1 of N ′ by the real-weighted neural circuit C with bias rα depicted in379

Figure 3. Circuit C is designed in such a way that it outputs the successive380

bits of α′ at each successive time step (see Figure 3 for further details of this381

decoding procedure). By construction, for any s ∈ (BM)ω, the behavior of382

N on input s is the same as that of N ′ on input (s, α′). In other words,383

s ∈ L(N ) if and only if (s, α′) ∈ L(N ′) = L′. Therefore, L(N ) = L′α′ = L.384

This shows that L is recognized by the D-St-RNN[Q, rα] N .385

Proposition 3. Let L ⊆ (BM)ω be some ω-language and α ∈ 2ω. If L is386

recognizable by some D-Ev2-RNN[Q, α], then L ∈ BC(Π0
2)(α).387
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Figure 3: Circuit C: nodes represent sigmoidal neurons and labelled edges are weighted
synaptic connections between those. Cell x1 receives rα as bias and cell x7 outputs the
successive bits of α′ = 000α10α20α30 · · · . In order to understand this circuit, the following
notions need to be recalled [8]. For any γ = γ1γ2γ3 · · · ∈ 2ω, we suppose that γ is a
stack whose elements from top to bottom are γ1, γ2, γ3, . . .. We further assume that γ
is encoded by the real number rγ =

∑∞
i=1

2γi+1
4i ∈ [0, 1]. By definition of rγ , the top

element γ1 of γ is given by top(γ) = σ(4rγ − 2). In addition, the encoding of the stack
γ2γ3γ4 · · · , which corresponds to the stack γ whose top element has been popped, is given
by pop(γ) = σ(4rγ−2top(γ)−1). The design of circuit C is based on these considerations.
Cell x3 receives from x1 a permanent activity of intensity rα =

∑∞
i=1

2αi+1
4i from time

2 onwards. But this activity is neutralized from time 3 onwards, due to the activity
coming from x2. Hence, x3 holds activation value rα =

∑∞
i=1

2αi+1
4i at time 2 only.

Next, x7 computes top(α) = σ(4rα − 2) = α1 at time 3, and thanks to the chain of cells
x6, x5 and x4 which brings an activity of intensity −1 to x3, the later cell computes
pop(rα) = σ(4rα − 2top(α) − 1) at time 4. Afterwards, x7 computes top(pop(rα)) = α2

at time 5, and x3 computes pop(pop(rα)) = pop2(rα) at time 6. And so on ad infinitum.
Hence, x7 outputs top(popi(rα)) = αi+1 at successive time steps 2i+ 3, for all i ∈ N, and
it outputs 0 at any other time step. In other words, x7 outputs the successive bits of
α′ = 000α10α20α30 · · · at successive time steps 0, 1, 2, . . .

Proof. Let N be a D-Ev2-RNN[Q, α] such that L(N ) = L. By Remark 1, we388

may assume without loss generality that the bi-valued evolving weight α of389

N is a bias related to some cell x. Let N ′ be the D-St-RNN[Q] obtained by390

replacing in N the cell x and its associated bias by a new input cell uM+1.391

Network N ′ is a D-St-RNN[Q] with M+1 input cells, and Theorem 1 ensures392
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that L(N ′) ∈ BC(Π0
2). By construction, for any (s, α) ∈ (BM+1)ω, the393

behavior ofN ′ on input (s, α) is the same as that ofN on input s ∈ (BM)ω. In394

other words, (s, α) ∈ L(N ′) if and only if s ∈ L(N ). Thus L(N ) = L(N ′)α.395

Since L(N ′) ∈ BC(Π0
2), it follows that L(N ) ∈ BC(Π0

2)(α).396

Proposition 4. Let L ⊆ (BM)ω be some ω-language and r ∈ [0, 1]. If L397

is recognizable by some D-St-RNN[Q, r], then L ∈ BC(Π0
2)(α), for some398

α ∈ 2ω. In particular, if L is recognizable by some D-St-RNN[Q, rα], where399

rα =
∑∞

i=1
2αi+1

4i
and αi ∈ {0, 1} for each i ∈ N∗, then L ∈ BC(Π0

2)(α),400

where α = α1α2α3 · · · .401

Proof. If L is recognized by some D-St-RNN[Q, r], then a fortiori L is rec-402

ognized by some D-St-RNN[R]. By Theorem 2, L ∈ BC(Π0
2). By Theorem403

2 again, L is recognized by some D-Ev2-RNN[Q], and by Remark 1, L is404

recognized by some D-Ev2-RNN[Q, α], for some α ∈ 2ω. By Proposition 3,405

L ∈ BC(Π0
2)(α).406

Now, suppose that L is recognized by some D-St-RNN[Q, rα] N , where
rα =

∑∞
i=1

2αi+1
4i

and αi ∈ {0, 1}, for each i ∈ N∗. By Remark 1, we may
assume without loss of generality that the static weight rα of N is a bias.
Let rα|K denote the truncation of rα after K bits, i.e.,

rα|K =
K∑
i=1

2αi + 1

4i
.

For each n ≥ 0, let N|K·n be the network N whose weight rα has been407

replaced by rα|K·n, for some constant K > 0 defined in [12, Lemma 4.1]. By408

[12, Lemma 4.1], the truncated network N|K·n computes precisely like N up409

to time step n. Moreover, N|K·n is a D-St-RNN[Q], and thus, its behavior410

can be simulated by some Turing machine [8].411

Consider the infinite procedure given by Algorithm 1 below. The pro-412

cedure consists in two subroutines performed in parallel. It receives some413

input s ∈ (BM)ω together with the infinite word α ∈ 2ω, and it simulates414

the computation of N working on input s, by using the successive truncated415

networks N|K·n. All instructions of Algorithm 1 are recursive, and thus, can416

be simulated by some D-St-RNN[Q] [8]. Hence, the whole Algorithm 1 can417

be simulated by some D-Ev2-RNN[Q, α] N ′ which receives α = α1α2α3 as418

an evolving bias. Every time N ′ enters instruction 11 of Algorithm 1, it419

simulates the behavior of the truncated network N|K·n, and thus, by [12,420
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Lemma 4.1], reproduces the output pattern of N working on input prefix421

~u(0) · · · ~u(n), to finally release the last output state of N at last time step422

n. But these successive computational periods of N ′ are interspersed with423

delays due to the simulation of the other instructions of Algorithm 1. In424

order to deal with these delays, we provide N ′ with an additional output425

cell yP+1 which is programmed to be active only when the network simulates426

the output period of instruction 11. Then, an attractor A ⊆ BP+1 of N ′427

is defined to be accepting if and only if the (P + 1)-th component of each428

element of A equals 1 (which corresponds to the cell yP+1 being active), and429

the projection of A on BP is an accepting attractor of N .430

In this way, for any input s ∈ (BM)ω, the subsequence of the Boolean431

computation of N ′ induced by the active states of yP+1 is the same as the432

Boolean computation of N , and hence, s is accepting for N ′ if and only433

if s is accepting for N . Consequently, L(N ′) = L(N ). Since N ′ is a D-434

Ev2-RNN[Q, α], Proposition 3 ensures that L(N ′) ∈ BC(Π0
2)(α). Therefore,435

L(N ) ∈ BC(Π0
2)(α) too.436

Propositions 1, 2, 3 and 4 lead to the following theorem:437

Theorem 3. Let L ⊆ (BM)ω be some ω-language, α = α1α2α3 · · · ∈ 2ω and438

rα =
∑∞

i=1
2αi+1

4i
∈ [0, 1]. The following conditions are equivalent:439

(a) L ∈ BC(Π0
2)(α);440

(b) L is recognizable by some D-Ev2-RNN[Q, α];441

(c) L is recognizable by some D-St-RNN[Q, rα].442

From Theorem 3 and Remark 1, the following set-theoretical result can
be retrieved:

BC(Π0
2) =

⋃
α∈2ω

BC(Π0
2)(α).

Indeed, L ∈ BC(Π0
2) if and only if, by Remark 1, L is recognizable by443

some D-Ev2-RNN[Q, α], for some α ∈ 2ω, if and only if, by Theorem 3,444

L ∈ BC(Π0
2)(α). In words, the relativized classes BC(Π0

2)(α) span the class445

BC(Π0
2), when α varies over 2ω.446

4.2. Nondeterministic case447

The expressive power of the classes of N-St-RNN[Q], N-Ev2-RNN[Q], N-448

Ev-RNN[Q], N-Ev2-RNN[R] and N-Ev-RNN[R] has been established in [19,449

Theorems 1, 2]. We have the following results:450
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Algorithm 1 Infinite procedure

Require: 1. input s = ~u(0)~u(1)~u(2) · · · ∈ (BM)ω supplied step by step at
successive time steps t = 0, 1, 2, . . .

2. infinite word α = α1α2α3 · · · ∈ 2ω supplied step by step at succes-
sive time steps t = 0, 1, 2, . . .

1: SUBROUTINE 1
2: for all time step t ≥ 0 do
3: store the incoming Boolean vector ~u(t) ∈ BM
4: store the incoming bit αt+1 ∈ {0, 1}
5: end for
6: END SUBROUTINE 1

7: SUBROUTINE 2
8: for n = 0, 1, 2, 3, . . . do
9: wait that K · n bits of α have been stored

10: compute rα|K·n // recursive if α given bit by bit

11: simulate the computation of the truncated network N|K·n working on
input prefix ~u(0) · · · ~u(n), but output the result of that computation
only for the last time step n // recursive, since N|K·n is a

D-St-RNN[Q] [8]

12: end for
13: END SUBROUTINE 2

Theorem 4. [19, Theorems 1] Let L ⊆ (BM)ω be some ω-language. The451

following conditions are equivalent:452

(a) L ∈ Σ1
1;453

(b) L is recognizable by some N-St-RNN[Q];454

(c) L is recognizable by some nondeterministic Muller Turing machine.455

Theorem 5. [19, Theorems 2] Let L ⊆ (BM)ω be some ω-language. The456

following conditions are equivalent:457

(a) L ∈ Σ1
1;458

(b) L is recognizable by some N-St-RNN[R];459

(c) L is recognizable by some N-Ev2-RNN[Q];460

(d) L is recognizable by some N-Ev-RNN[Q];461
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(e) L is recognizable by some N-Ev2-RNN[R];462

(f) L is recognizable by some N-Ev-RNN[R].463

Theorem 4 states that N-St-RNN[Q]s are Turing equivalent. Theorem 5464

shows that all other classes of N-St-RNN[R]s, N-Ev2-RNN[Q], N-Ev-RNN[Q],465

N-Ev2-RNN[R] and N-Ev2-RNN[R] are strictly more powerful than nonde-466

terministic Muller Turing machines, since Σ1
1 ( Σ1

1. In this sense, the non-467

deterministic analog and evolving neural networks are also super-Turing.468

Remark 2. The nondeterministic counterpart of Remark 1 holds. More469

precisely, the proof of Theorem 5 [19, Theorem 2] shows that any ω-language470

L ∈ Σ1
1 can be recognized by some N-St-RNN[R] employing at most one471

static irrational weight which is in the interval [0, 1] and given in the form472

of a bias. Similarly, any ω-language L ∈ Σ1
1 can be recognized by some N-473

Ev2-RNN[Q] containing only one bi-valued evolving weight given as a bias.474

Consequently, from this point onwards, we will without loss of generality475

focus on the subclasses of N-St-RNN[Q, r] and N-Ev2-RNN[Q, α], for any476

r ∈ [0, 1] and α ∈ 2ω.477

We now provide a precise characterization of the expressive power of the478

two subclasses of N-St-RNN[Q, r] and N-Ev2-RNN[Q, α], for any r ∈ [0, 1]479

and α ∈ 2ω, respectively. This result is obtained via forthcoming Propositions480

5, 6, 7 and 8, which are direct generalizations of Propositions 1, 2, 3 and 4.481

Proposition 5. Let L ⊆ (BM)ω be some ω-language and α ∈ 2ω. If L ∈482

Σ1
1(α), then L is recognizable by some N-Ev2-RNN[Q, α].483

Proof. If L ∈ Σ1
1(α) � (BM)ω, then by definition, there exists L′ ∈ Σ1

1 �
(BM+1)ω such that

L = L′α =
{
s ∈ (BM)ω : (s, α) ∈ L′

}
.

Theorem 4 ensures that there exists a N-St-RNN[Q] N ′ with M + 1 input484

cells such that L(N ′) = L′. As in the proof of Proposition 1, one can modify485

network N ′ to obtain a N-Ev2-RNN[Q, α] N such that L(N ) = L′α = L.486

Proposition 6. Let L ⊆ (BM)ω be some ω-language and α = α1α2α3 ∈ 2ω.487

If L ∈ Σ1
1(α), then L is recognizable by some N-St-RNN[Q, rα] N , where488

r =
∑∞

i=1
2αi+1

4i
∈ [0, 1].489
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Proof. Suppose that L ∈ Σ1
1(α). Let α′ = 00

∏∞
i=1(0αi) = 00α10α20α30α40 · · · ∈

2ω. One has α ∈ Σ1
0(α
′). The relations L ∈ Σ1

1(α) and α ∈ Σ1
0(α
′) imply

L ∈ Σ1
1(α
′). Consequently, there exists L′ ∈ Σ1

1 � (BM+1)ω such that

L = L′α′ =
{
s ∈ (BM)ω : (s, α′) ∈ L′

}
.

By Theorem 1, there exists a N-St-RNN[Q] N ′ with M + 1 input cells490

u1, . . . , uM+1 and one guess cell uM+2 such that L(N ′) = L′.491

Now, consider once again the real encoding of α given by rα =
∑∞

i=1
2αi+1

4i
∈492

[0, 1]. Consider also the N-St-RNN[Q, rα] N obtained by replacing the input493

cell uM+1 of N ′ by the real-weighted neural circuit C with bias rα depicted494

in Figure 3. One has L(N ) = L′α′ = L, which shows that L is recognized by495

the N-St-RNN[Q, rα] N .496

Proposition 7. Let L ⊆ (BM)ω be some ω-language and α ∈ 2ω. If L is497

recognizable by some N-Ev2-RNN[Q, α], then L ∈ Σ1
1(α).498

Proof. Let N be a N-Ev2-RNN[Q, α] such that L(N ) = L. By Remark 2, we499

may assume without loss generality that the bi-valued evolving weight α of500

N is given as a bias. As in the proof of Proposition 3, we can construct from501

N a N-St-RNN[Q] N ′ with P +1 input cells and one guess cell such that, for502

any (s, α) ∈ (BM+1)ω, one has (s, α) ∈ L(N ′) if and only if s ∈ L(N ). This503

shows that L(N ) = L(N ′)α. Besides, Theorem 4 ensures that L(N ′) ∈ Σ1
1.504

Therefore, L(N ) ∈ Σ1
1(α).505

Proposition 8. Let L ⊆ (BM)ω be some ω-language and r ∈ [0, 1]. If L506

is recognizable by some N-St-RNN[Q, r], then L ∈ Σ1
1(α), for some α ∈ 2ω.507

In particular, if L is recognizable by some N-St-RNN[Q, rα], where rα =508 ∑∞
i=1

2αi+1
4i

and αi ∈ {0, 1} for each i ∈ N∗, then L ∈ Σ1
1(α), where α =509

α1α2α3 · · · .510

Proof. If L is recognized by some N-St-RNN[Q, r], then a fortiori L is recog-511

nized by some N-St-RNN[R]. By Theorem 5, L ∈ Σ1
1. By Theorem 5 again,512

L is recognized by some N-Ev2-RNN[Q], and by Remark 2, L is recognized513

by some N-Ev2-RNN[Q, α], for some α ∈ 2ω. By Proposition 7, L ∈ Σ1
1(α).514

Now, suppose that L is recognized by some N-St-RNN[Q, rα] N , where515

rα =
∑∞

i=1
2αi+1

4i
and αi ∈ {0, 1} for each i ∈ N∗. By Remark 2, we may516

assume without loss of generality that the static weight rα of N is given517

as a bias. Consider the infinite procedure given in previous Algorithm 1,518
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yet slightly modified in such a way that the algorithm receives as input a519

guess stream g ∈ 2ω provided bit by bit in addition to the input stream520

s ∈ (BM)ω and infinite word α ∈ 2ω. This modified version of Algorithm521

1 can be simulated by some N-Ev2-RNN[Q, α] N ′ receiving g as a guess522

stream and α = α1α2α3 as an evolving bias. In addition, the accepting and523

rejecting attractors of N ′ are defined in the same way as in Proposition 4. By524

construction, L(N ′) = L(N ). Since N ′ is a N-Ev2-RNN[Q, α], Proposition 7525

ensures that L(N ′) ∈ Σ1
1(α). Therefore, L(N ) ∈ Σ1

1(α) too.526

By combining Propositions 5, 6, 7 and 8, the following theorem is ob-527

tained:528

Theorem 6. Let L ⊆ (BM)ω be some ω-language, α = α1α2α3 · · · ∈ 2ω and529

rα =
∑∞

i=1
2αi+1

4i
∈ [0, 1]. The following conditions are equivalent:530

(a) L ∈ Σ1
1(α);531

(b) L is recognizable by some N-Ev2-RNN[Q, α];532

(c) L is recognizable by some N-St-RNN[Q, rα].533

From Theorem 6 and Remark 2, the following set-theoretical result can
be retrieved:

Σ1
1 =

⋃
α∈2ω

Σ1
1(α).

In other words, the relativized classes Σ1
1(α) span the class Σ1

1, when α varies534

over 2ω.535

5. The hierarchy theorem536

Theorems 3 and 6 provide a precise characterization of the expressive537

power of the classes of D-St-RNN[Q, rα], D-Ev2-RNN[Q, α], N-St-RNN[Q, rα]538

and N-Ev2-RNN[Q, α], for any α ∈ 2ω. We will show that these classes can539

be stratified into transfinitely many subclasses based on the complexity of540

the analog and evolving weights employed by the networks.541

Towards this purpose, we first present some conditions that pairs of infi-542

nite words necessarily satisfy whenever their corresponding relativized classes543

are included one into the other.544
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Proposition 9. Let α, β ∈ 2ω. The following relations hold:545

BC(Π0
2)(α) ⊆ BC(Π0

2)(β) −→ α ∈ ∆1
1(β) (3)

Σ1
1(α) ⊆ Σ1

1(β) ←→ α ∈ ∆1
1(β) (4)

Proof. We prove both left-to-right implications. Recall that α ∈ Σ0
1(α). In546

the first case, one has α ∈ Σ0
1(α) ⊆ BC(Π0

2)(α) ⊆ BC(Π0
2)(β) ⊆ ∆1

1(β). In547

the second case, α ∈ Σ0
1(α) ⊆ Σ1

1(α) ⊆ Σ1
1(β), and thus α ∈ ∆1

1(β), by [41].548

For the converse implication of relation (4), suppose that α ∈ ∆1
1(β).549

Then α ∈ Σ1
1(β), which means that the ω-language {α} is recognized by550

some nondeterministic Muller TM M1 with oracle β. Now, let L ∈ Σ1
1(α).551

Then L is recognized by a nondeterministic Muller TM M2 with oracle α.552

Consider the nondeterministic Muller TM M with oracle β which works553

as follows: if x is written on its input tape, then M nondeterministically554

writes some y ∈ 2ω bit by bit on one of its work tape, and concomitantly, it555

simulates in parallel the behaviors of M1 on y as well as that of M2 with556

oracle y on x. The TM M is suitably programmed in order to always have557

enough bits of y being written on its work tape so that the next simulations558

steps of M1 with oracle y can be performed without fail. In addition, the559

machineM accepts input x iff both simulation processes ofM1 andM2 are560

accepting, i.e., iff y = α and the simulation ofM2 with oracle y = α accepts561

x, which is to say that x ∈ L(M2) = L. Hence, M recognizes L also, and562

thus L ∈ Σ1
1(β). This shows that Σ1

1(α) ⊆ Σ1
1(β).563

We now show the existence of an infinite sequence of infinite words whose564

corresponding succession of relativized classes properly stratify the “super-565

Turing” classes of BC(Π0
2) and Σ1

1 neural ω-languages. In addition, the566

hierarchy induced by the inclusion relation between the relativized classes567

possesses chains of length ω1 as well as uncountable antichains.568

Proposition 10. There exists a sequence (αi)i<ω1, where αi ∈ 2ω for all569

i < ω1, such that570

(a) BC(Π0
2)(α0) = BC(Π0

2) and BC(Π0
2)(αi) ( BC(Π0

2)(αj), for all i <571

j < ω1;572

(b) Σ1
1(α0) = Σ1

1 and Σ1
1(αi) ( Σ1

1(αj), for all i < j < ω1.573

Moreover, there exists some uncountable set A ⊆ 2ω such that the following574

relations BC(Π0
2)(αi) 6⊆ BC(Π0

2)(αj) and Σ1
1(αi) 6⊆ Σ1

1(αj) hold, for every575

distinct αi, αj ∈ A.576
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Proof. Take α0 ∈ Σ0
1. Suppose that for γ < ω1, the sequence (αi)i<γ has been577

constructed and satisfies the required property. We build the next element578

αγ of that sequence, i.e., the element such that Σ1
1(αi) ( Σ1

1(αγ), for all i < γ.579

Note that, for each i < γ, the set ∆1
1(αi) is countable. Since γ < ω1, the union580 ⋃

i<γ ∆1
1(αi) is countable too. Hence, there exists α ∈ 2ω \⋃i<γ ∆1

1(αi). Now,581

let {βi : i < ω} be an enumeration of the countable set {α} ∪ {αi : i < γ},582

and let αγ ∈ 2ω be the encoding of {βi : i < ω} given by αγ(〈i, n〉) = βi(n),583

where 〈., .〉 : ω2 → ω is a classical recursive pairing function. Each function584

fi : αγ 7→ (αγ)i = βi is recursive, and therefore, βi ∈ Σ0
1(αγ), for each i < ω.585

We show that BC(Π0
2)(αj) ⊆ BC(Π0

2)(αγ), for all j < γ. Let L ∈586

BC(Π0
2)(αj) = BC(Π0

2)(βi), for some i < ω. This means that L is recogniz-587

able by some deterministic Muller TMM with oracle βi. Since βi ∈ Σ0
1(αγ),588

L is also recognized by the deterministic Muller TMM′ with oracle αγ which,589

in a suitable alternating manner, produces βi bit by bit from αγ, and works590

precisely likeM with oracle βi. Therefore, L ∈ BC(Π0
2)(αγ). By replacing in591

this argument every occurrences of “BC(Π0
2)” by “Σ1

1” and of “deterministic”592

by “nondeterministic”, one obtains that Σ1
1(αj) ⊆ Σ1

1(αγ), for all j < γ.593

We now show that BC(Π0
2)(αj) ( BC(Π0

2)(αγ) and Σ1
1(αj) ( Σ1

1(αγ), for594

all j < γ. Towards a contradiction, suppose that BC(Π0
2)(αγ) ⊆ BC(Π0

2)(αj)595

or Σ1
1(αγ) ⊆ Σ1

1(αj), for some j < γ. Then Relations (3) and (4) ensure that596

αγ ∈ ∆1
1(αj). But α = βk for some k < ω, and by the above stated fact,597

α = βk ∈ Σ0
1(αγ). The two relations α ∈ Σ0

1(αγ) and αγ ∈ ∆1
1(αj) imply that598

α ∈ ∆1
1(αj). This contradicts the fact that α ∈ 2ω \⋃i<γ ∆1

1(αi).599

We finally prove the existence of an uncountable antichain. There exists600

an uncountable set A ⊆ 2ω such that αi 6∈ ∆1
1(αj), for all distinct αi, αj ∈601

A [43]. By Relations (3) and (4), BC(Π0
2)(αi) 6⊆ BC(Π0

2)(αj) and Σ1
1(αi) 6⊆602

Σ1
1(αj), for all distinct αi, αj ∈ A.603

Let L(D-St-RNN[Q, r]), L(D-Ev2-RNN[Q, α]), L(N-St-RNN[Q, r]) and604

L(N-Ev2-RNN[Q, α]) denote the classes of neural ω-languages recognized by605

D-St-RNN[Q, r], D-Ev2-RNN[Q, α], N-St-RNN[Q, r] and N-Ev2-RNN[Q, α],606

respectively. Theorems 3 and 6 together with Proposition 10 imply the exis-607

tence of four proper hierarchies of classes of deterministic and nondetermin-608

istic analog and evolving neural networks of increasing expressive power.609

Theorem 7. There exists a sequence of real numbers (ri)i<ω1 and a sequence610

of infinite words (αi)i<ω1 such that611

(a) L(D-St-RNN[Q, ri]) ( L(D-St-RNN[Q, rj]), for all i < j < ω1;612
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(b) L(D-Ev2-RNN[Q, αi]) ( L(D-Ev2-RNN[Q, αj]), for all i < j < ω1;613

(c) L(N-St-RNN[Q, ri]) ( L(N-St-RNN[Q, rj]), for all i < j < ω1;614

(d) L(N-Ev2-RNN[Q, αi]) ( L(N-Ev2-RNN[Q, αj]), for all i < j < ω1.615

Proof. Theorems 3 and 6 ensure that

L(D-Ev2-RNN[Q, α]) = L(D-St-RNN[Q, rα]) = BC(Π0
2)(α)

L(N-Ev2-RNN[Q, α]) = L(N-St-RNN[Q, rα]) = Σ1
1(α)

where rα is the encoding of α described in Proposition 4, for any α ∈ 2ω. By616

Proposition 10, there exists some sequence (αi)i<ω1 satisfying Points (b) and617

(d). In addition, by taking ri = rαi
for all i < ω1, one obtains a sequence618

(ri)i<ω1 satisfying Points (a) and (c).619

Finally, let R be the equivalence relation defined by

R(α, β) iff L(N-Ev2-RNN[Q, α]) = L(N-Ev2-RNN[Q, β])

This relation represents the decision problem of whether two classes of non-620

deterministic evolving networks (determined by the evolving weights α and621

β) have the same expressive power. We show that this relation is undecidable622

and of complexity Π1
1 \ Σ1

1.623

Proposition 11. The equivalence relation R is in the class Π1
1 \ Σ1

1.624

Proof. According to Theorem 6 and Relation (4), the relation R ⊆ 2ω × 2ω625

satisfies R(α1, α2) iff α1 ∈ ∆1
1(α2) and α2 ∈ ∆1

1(α1). It is known that the626

relation “α ∈ ∆1
1(β)” is a Π1

1 relation which can be expressed by a Π1
1-627

formula φ(α, β), see [41, 4D.14, p. 171] and [44]. Thus R is a Π1
1-relation.628

Towards a contradiction, assume now that R is Σ1
1, and take β ∈ Σ0

1. Then629

R(., β) = {α : R(α, β)} = {α : α ∈ ∆1
1(β) & β ∈ ∆1

1(α)} = {α : α ∈630

∆1
1(β)} = {α : α ∈ ∆1

1} should also be in Σ1
1. But it is known that the set631

{α : α ∈ ∆1
1} is not Σ1

1, see [41, 4D.16, p. 171]. This concludes the proof.632

6. Conclusion633

The present study concerns the expressive power of sigmoidal recurrent634

neural networks involved in a computational paradigm based on infinite635
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rather than finite input streams. This approach conciliates two important bi-636

ological and computer scientist perspectives about neural attractor dynamics637

and non-terminating computational processes, respectively.638

In this context, we provided a full characterization of the expressive power639

of the networks. For any α ∈ 2ω with corresponding encoding rα ∈ R, the640

deterministic and nondeterministic analog or evolving networks employing641

either the single static analog weight rα or the single evolving weight α rec-642

ognize the (lightface) relativized topological classes of BC(Π0
2)(α) and Σ1

1(α)643

ω-languages, respectively. As a consequence, two infinite refined hierarchies644

of classes of analog and evolving neural nets based on the complexity of their645

underlying analog and evolving weights are obtained. These hierarchies rep-646

resent a generalization to the context of ω-computation of the fundamental647

previous hierarchy of classes of analog networks based on the Kolmogorov648

complexity of their underlying analog weights [13].649

From a purely theoretical perspective, these results show that analog and650

evolving neural networks constitute natural equivalent models for oracle-651

based infinite computation, beyond the Turing limits. In the analog case,652

the extra-recursive power of the networks arises from their possibility to653

have access to more and more precise rational approximations of some given654

real weights [12]. In the evolving case, the extra capabilities emerge from655

the non-recursive patterns of evolution of the synapses [17]. Despite their656

mathematical equivalence, the two neural models are conceptually distinct:657

while the former remains at a purely conceptual level, the later relies on658

considerations that could be observable in nature.659

From a more practical point of view, the two phenomena of attractor dy-660

namics and synaptic plasticity are of primordial importance to the processing661

and coding of information in both artificial and biological neural networks.662

In fact, the concept of an attractor has been shown to carry strong com-663

putational implications. According to Kauffman: “Because many complex664

systems harbour attractors to which the system settle down, the attractors665

literally are most of what the systems do” [45, p.191]. In the neural net-666

work context, alternative attractors are commonly interpreted as alternative667

memories, but have also been associated to motor behaviors, perceptions and668

thoughts [46, 47, 48, 49, 32, 50]. Likewise, synaptic plasticity is known to be669

crucially related to the storage and encoding of memory traces in the cen-670

tral nervous system, and provides the basis for most models of learning and671

memory in neural networks [36, 37, 38, 39]. In view of these considerations,672
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our results may constitute a theoretical foundation of the computational ca-673

pabilities of neural networks in touch with these two crucial phenomena.674

More generally, this study strengthen the connectedness between the675

fields of theoretical computer science, with possible extensions to the more676

practical domain of machine learning, and theoretical neuroscience. We hope677

that such comparative studies between neural networks and abstract ma-678

chines might eventually bring further insight to the understanding of both679

biological and artificial intelligences. Similarly to the foundational work of680

Turing, which played a crucial role in the practical realization of modern com-681

puters, further theoretical considerations about neural- and natural-based682

models of computation might contribute to the emergence of novel computa-683

tional technologies, and step by step, open the way to the next computational684

generation.685
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