Jérémie Cabessa
email: jeremie.cabessa@u-paris2.fr

Olivier Finkel
email: finkel@math.univ-paris-diderot.fr

Computational Capabilities of Analog and Evolving Neural Networks over Infinite Input Streams

Keywords: recurrent neural networks, analog computation, infinite computation, attractors, Turing machines, Turing machines with oracles, super-Turing, ω-languages, Borel sets, analytic sets, 2008 MSC: 92B20, 68Q15, 68Q45, 68Q32, 68Q05, 03E15

Analog and evolving recurrent neural networks are super-Turing powerful. Here, we consider analog and evolving neural nets over infinite input streams. We then characterize the topological complexity of their ω-languages as a function of the specific analog or evolving weights that they employ. As a consequence, two infinite hierarchies of classes of analog and evolving neural networks based on the complexity of their underlying weights can be derived. These results constitute an optimal refinement of the super-Turing expressive power of analog and evolving neural networks. They show that analog and evolving neural nets represent natural models for oracle-based infinite computation.

Introduction

Understanding the computational and dynamical capabilities of biological neural networks is an issue of major importance, with repercussions in the fields of theoretical neuroscience, bio-inspired computing, artificial intelligence, robotics and philosophy.

Preprint submitted to Journal of Computer and System Sciences November 22, 2018 In this context, the theoretical approach to neural computation consists of studying the computational power of neural network models from the perspective of automata theory. The capabilities of neural networks are known to be related to the kind of activation functions used by the neurons, to the nature of their synaptic connections, to the eventual presence of noise in the model, and to the possibility for the neural architecture to evolve over time. The computational capabilities of diverse neural models have been shown to range from the finite automaton level [START_REF] Mcculloch | A logical calculus of the ideas immanent in nervous activity[END_REF][START_REF] Kleene | Representation of events in nerve nets and finite automata[END_REF][START_REF] Minsky | Computation: finite and infinite machines[END_REF][START_REF] Siegelmann | Recurrent neural networks and finite automata[END_REF],

up to the Turing [START_REF] Turing | Intelligent machinery[END_REF][START_REF] Pollack | On connectionist models of natural language processing[END_REF][START_REF] Hartley | A comparison of the computational power of neural network models[END_REF][START_REF] Siegelmann | On the computational power of neural nets[END_REF][START_REF] Kilian | The dynamic universality of sigmoidal neural networks[END_REF][START_REF] Hyötyniemi | Turing machines are recurrent neural networks[END_REF][START_REF] Neto | Turing universality of neural nets (revisited)[END_REF] or even to the super-Turing degree [START_REF] Siegelmann | Analog computation via neural networks[END_REF][START_REF] Balcázar | Computational power of neural networks: a characterization in terms of kolmogorov complexity[END_REF][START_REF] Siegelmann | Neural networks and analog computation: beyond the Turing limit[END_REF][START_REF] Siegelmann | Neural and super-Turing computing[END_REF][START_REF] Cabessa | Evolving recurrent neural networks are super-Turing[END_REF][START_REF] Cabessa | The super-Turing computational power of plastic recurrent neural networks[END_REF] (for detailed survey, see [START_REF] Síma | General-purpose computation with neural networks: A survey of complexity theoretic results[END_REF]).

More specifically, real-weighted neural networks, also referred to as analog neural nets, are strictly more powerful than Turing machines. In exponential time of computation, they can decide any possible discrete language.

In polynomial time of computation, they are equivalent to Turing machines with polynomially bounded advice, and hence decide the complexity class P/poly [START_REF] Siegelmann | Analog computation via neural networks[END_REF][START_REF] Siegelmann | Neural networks and analog computation: beyond the Turing limit[END_REF][START_REF] Siegelmann | Neural and super-Turing computing[END_REF]. Interestingly, the super-Turing computational capabilities of analog networks can be finely characterized in terms of the Kolmogorov complexity of their underlying synaptic real weights. A proper infinite hierarchy of classes of analog neural nets with real weights of increasing Kolmogorov complexity has been obtained [START_REF] Balcázar | Computational power of neural networks: a characterization in terms of kolmogorov complexity[END_REF]. Besides this, it has been shown that neural networks employing time-dependent synaptic weights, called evolving neural nets 1 , are computationally equivalent to the analog ones. This computational equivalence holds irrespectively of whether the synaptic weights of networks are modeled by rational or real numbers and their patterns of evolution restricted to binary updates or expressed by more general form of updating [START_REF] Cabessa | Evolving recurrent neural networks are super-Turing[END_REF][START_REF] Cabessa | The super-Turing computational power of plastic recurrent neural networks[END_REF].

Based on biological and computational considerations, these studies have been extended to alternative paradigms of computation where the networks process infinite rather than finite input streams [START_REF] Cabessa | Evolving recurrent neural networks are super-Turing[END_REF][START_REF] Cabessa | The computational power of interactive recurrent neural networks[END_REF][START_REF] Cabessa | A hierarchical classification of first-order recurrent neural networks[END_REF][START_REF] Cabessa | The expressive power of analog recurrent neural networks on infinite input streams[END_REF][START_REF] Cabessa | The super-Turing computational power of interactive evolving recurrent neural networks[END_REF][START_REF] Cabessa | The super-Turing computational power of plastic recurrent neural networks[END_REF][START_REF] Cabessa | Interactive evolving recurrent neural networks are super-Turing universal[END_REF][START_REF] Cabessa | An attractor-based complexity measurement for boolean recurrent neural networks[END_REF][START_REF] Cabessa | Computational capabilities of recurrent neural networks based on their attractor dynamics[END_REF][START_REF] Cabessa | Recurrent neural networks and super-Turing interactive computation[END_REF][START_REF] Cabessa | Expressive power of non-deterministic evolving recurrent neural networks in terms of their attractor dynamics[END_REF][START_REF] Cabessa | Expressive power of nondeterministic recurrent neural networks in terms of their attractor dynamics[END_REF][START_REF] Cabessa | Expressive power of first-order recurrent neural networks determined by their attractor dynamics[END_REF]. This approach conciliates two important biological and computer scientist perspectives about neural attractor dynamics on the one hand [START_REF] Amit | Modeling brain function: The world of attractor neural networks[END_REF] and non-terminating computational processes on the other [START_REF] Thomas | Automata on infinite objects[END_REF][START_REF] Perrin | Infinite Words -Automata, Semigroups, Logic and Games[END_REF].

The networks are provided with Boolean input and output cells carrying out the discrete exchange of information with their environment. When subjected to some infinite input stream, the outputs of the networks eventually get trapped into some attractor dynamics. The set of input streams inducing a meaningful attractor dynamics is the neural ω-language recognized by the network. The expressive power of the networks is then characterized by the topological complexity of their underlying neural ω-languages.

Within this framework, the Boolean neural networks provided with certain type specification of their attractors are computationally equivalent to Büchi or Muller automata [START_REF] Cabessa | A hierarchical classification of first-order recurrent neural networks[END_REF][START_REF] Cabessa | An attractor-based complexity measurement for boolean recurrent neural networks[END_REF]. As a consequence, a novel attractorbased measure of complexity for Boolean neural networks has been obtained.

This complexity measure refers to the ability of the networks to perform more or less complicated classification tasks of their input streams via the manifestation of meaningful or spurious attractor dynamics.

The sigmoidal neural networks are strictly more powerful than their Boolean counterparts. The static rational-weighted neural networks are computationally equivalent to Muller Turing machines. In the deterministic and nondeterministic cases, these networks recognize the (lightface) topological classes of BC(Π 0 2) and Σ 1 1 neural ω-languages, respectively [START_REF] Cabessa | Computational capabilities of recurrent neural networks based on their attractor dynamics[END_REF][START_REF] Cabessa | Expressive power of first-order recurrent neural networks determined by their attractor dynamics[END_REF]. By contrast, the static real-weighted (or analog) neural networks are super-Turing.

In the deterministic and nondeterministic cases, they recognize the (boldface) topological classes of BC(Π 0 2) and Σ 1 1 neural ω-languages, respectively [START_REF] Cabessa | Expressive power of non-deterministic evolving recurrent neural networks in terms of their attractor dynamics[END_REF][START_REF] Cabessa | Expressive power of nondeterministic recurrent neural networks in terms of their attractor dynamics[END_REF][START_REF] Cabessa | Computational capabilities of recurrent neural networks based on their attractor dynamics[END_REF][START_REF] Cabessa | Expressive power of first-order recurrent neural networks determined by their attractor dynamics[END_REF]. In addition, the evolving neural networks are computationally equivalent to the static analog ones. This equivalence holds irrespectively of whether the static and evolving weights of the networks are modeled by rational or real numbers, and the patterns of evolution restricted to binary updates or expressed by more general forms of updating.

In this paper, we provide an optimal refinement of these results and complete our study undertaken in [START_REF] Cabessa | Expressive power of evolving neural networks working on infinite input streams[END_REF], where only the case of evolving neural nets is treated in a more succinct way. We fully characterize the expressive power of analog and evolving networks according to the specific analog and evolving weights that they employ. Without loss of generality, we focus on analog or evolving networks using only one analog or one evolving weight, respectively. For any α ∈ 2 ω with corresponding encoding r α ∈ R, we show that deterministic and nondeterministic analog or evolving networks employing either the single static analog weight r α or the single evolving weight α recognize the (lightface) relativized topological classes of BC(Π 0 2)(α) and Σ 1 1 (α) ω-languages, respectively. As a consequence, we show the existence of two infinite refined hierarchies of classes of analog and evolving neural nets based on the complexity of their underlying analog and evolving weights.

These hierarchies contain chains of length ω 1 and antichains of uncountable size.

From the point of view of theoretical computer science, these results constitute a generalization of the fundamental hierarchy of classes of analog networks based on the Kolmogorov complexity of their underlying analog weights [START_REF] Balcázar | Computational power of neural networks: a characterization in terms of kolmogorov complexity[END_REF]. They provide an optimal refinement of the super-Turing expressive power of analog and evolving neural networks working on infinite input streams. They also show that analog and evolving neural networks represent natural models for oracle-based infinite computation, beyond the Turing limits. From a biological point of view, these achievements may constitute a theoretical foundation of the primary role played by synaptic plasticity in the computational capabilities of neural networks [START_REF] Abbott | Synaptic plasticity: taming the beast[END_REF][START_REF] Martin | Synaptic plasticity and memory: An evaluation of the hypothesis[END_REF][START_REF] Roberts | Spike timing dependent synaptic plasticity in biological systems[END_REF][START_REF] Caporale | Spike timing-dependent plasticity: a Hebbian learning rule[END_REF].

Preliminaries

Given a finite set X, referred to as an alphabet, we let X * and X ω denote the sets of finite sequences (or finite words) and infinite sequences (or infinite words) of elements of X. A set L ⊆ X * or L ⊆ X ω is called a language or an ω-language, respectively.

We assume the reader to be familiar with basic considerations about In the sequel, any space of the form X ω is assumed to be equipped with the product topology of the discrete topology on X. Accordingly, the basic open sets of X ω are of the form p•X ω , for some p ∈ X * . The general open sets are countable unions of basic open sets. In particular, the space of infinite words of bits (Cantor space) and that of infinite words of N -dimensional Boolean vectors will be denoted by 2 ω = {0, 1} ω and (B N) ω , respectively.

They are assumed to be equipped with the above mentioned topology.

Let (X , T) be one of the above topological spaces, or a product of such spaces. The class of Borel subsets of X , denoted by ∆ 1 1 (boldface), is the σalgebra generated by T , i.e., the smallest collection of subsets of X containing all open sets and closed under countable union and complementation. For every non-null countable ordinal α < ω 1 , where ω 1 is the first uncountable ordinal, the Borel classes Σ 0 α , Π 0 α and ∆ 0 α of X are defined as follows:

• Σ 0 1 is the class of open subsets of X (namely T)

• Π 0 1 is the class of closed subsets of X , i.e., that of complements of open sets

• Σ 0 α is the class of countable unions of subsets of X in γ<α Π 0 γ • Π 0 α is the class of countable intersections of subsets of X in γ<α Σ 0 γ . • ∆ 0 α = Σ 0 α ∩ Π 0 α
The classes Σ 0 α , Π 0 α and ∆ 0 α provide a stratification of the class of Borel sets known as the Borel hierarchy. One has

∆ 1 1 = α<ω 1 Σ 0 α = α<ω 1 Π 0 α [40].
The rank of a Borel set A ⊆ X is the smallest ordinal α such that A ∈ Σ 0 α ∪ Π 0 α . It is commonly considered as a relevant measure of the topological complexity of Borel sets. The class of sets obtained as finite Boolean combinations (unions, intersections and complementations) of Π 0 2 -sets is denoted by BC(Π 0 2).

Analytic sets are obtained as projections of either Π 0 2 -sets or general Borel sets [START_REF] Kechris | Classical descriptive set theory[END_REF]. More precisely, a set A ⊆ X is analytic if there exists some [START_REF] Kechris | Classical descriptive set theory[END_REF]. The class of analytic sets is denoted by Σ 1 1 . It strictly contains that of Borel sets, i.e., ∆

Π 0 2 - set B ⊆ X × 2 ω such that A = {x ∈ X : (x, β) ∈ B, for some β ∈ 2 ω } = π 1 (B)
1 1 Σ 1 1 [40].
The effective (lightface) counterpart of the Borel and analytic classes, denoted by Σ 0 n , Π 0 n , ∆ 0 n as well as ∆ 1 1 and Σ 1 1 , are obtained by a similar effective construction, yet starting from the class Σ 0 1 of effective open sets [START_REF] Moschovakis | Descriptive Set Theory, 2nd Edition[END_REF].

The class of finite Boolean combinations of Π 0 2 -sets, denoted by BC(Π 0 2) (lightface), and that of effective analytic sets, denoted by Σ 1 1 (lightface), correspond to the collections of ω-languages recognizable by deterministic and nondeterministic Muller Turing machines, respectively [START_REF] Staiger | ω-languages[END_REF]. One has

BC(Π 0 2) BC(Π 0 2) and Σ 1 1 Σ 1 1 .
Any topological class Γ of the topological space X will also be written as Γ X , whenever the underlying space X is needed to be specified. In addition, for any point x ∈ X , we will use the notation x ∈ Γ to mean that {x} ∈ Γ. Besides, any product space X × Y is assumed to be equipped with the product topology.

If A ⊆ X × Y and y ∈ Y, the y-section of A is defined by A y = {x ∈ X : (x, y) ∈ A}. For any class Γ being equal to Σ 0 1 , BC(Π 0 2), Σ 1
1 , or Π 1 1 with underlying product space X × Y and for any y ∈ Y, the relativization of Γ to y, denoted by Γ(y), is the class of all y-sections of sets in Γ. In other words, A ∈ Γ(y) X if and only if there exists

B ∈ Γ X × Y such that A = B y . Moreover, we denote as usual ∆ 1 1 (y) = Σ 1 1 (y) ∩ Π 1 1 (y) [41, p. 118].
For any α ∈ 2 ω , one can show that the relativized classes BC(Π 0 2)(α) and Σ 1 1 (α) correspond to the collections of ω-languages recognizable by deterministic and nondeterministic Muller Turing machine with oracle α, respectively.

In addition, it can be shown that x ∈ Σ 0 1 (α) if and only if the successive letters of x can be produced step by step by some Turing machine with oracle

α. Besides, one has x ∈ Σ 1 1 (α) iff x ∈ ∆ 1 1 (α), for any α ∈ 2 ω [41].
Finally, the spaces (B M) ω ×2 ω and (B M +1) ω are isomorphic via the natural identification. Accordingly, subsets of these spaces will be identified without it being explicitly mentioned.

Recurrent Neural Networks on Infinite Input Streams

We consider first-order recurrent neural networks composed of Boolean input cells, Boolean output cells and sigmoidal internal cells. The sigmoidal internal neurons introduce the biological source of nonlinearity which is crucial to neural computation. They provide the possibility to surpass the capabilities of finite state automata, or even of Turing machines. The Boolean input and output cells carry out the exchange of discrete information between the network and the environment. When some infinite input stream is supplied, the output cells eventually enter into some attractor dynamics.

The expressive power of the networks is related to the attractor dynamics of their Boolean output cells.

Deterministic case

A deterministic (first-order) recurrent neural network (D-RNN) consists of a synchronous network of neurons related together in a general architec-

ture. It is composed of M Boolean input cells (u i) M i=1 , N sigmoidal internal neurons (x i) N i=1
, and P Boolean output cells (y i) P i=1 . The dynamics of the network is computed as follows: given the activation values of the input and internal neurons (u j) M j=1 and (x j) N j=1 at time t, the activation value of each internal and output neuron x i and y i at time t+1 is updated by the following equations, respectively:

x i (t + 1) = σ N j=1 a ij (t) • x j (t) + M j=1 b ij (t) • u j (t) + c i (t) for i = 1, . . . , N (1)
y i (t + 1) = θ N j=1 a ij (t) • x j (t) + M j=1 b ij (t) • u j (t) + c i (t) for i = 1, . . . , P (2)
where a ij (t), b ij (t), and c i (t) are the time dependent synaptic weights and bias of the network at time t, and σ and θ are the linear-sigmoid 2 and Heaviside step activation functions defined by

σ(x) =      0, if x < 0 x, if 0 ≤ x ≤ 1 1, if x > 1 and θ(x) = 0, if x < 1 1, if x ≥ 1
A synaptic weight or a bias w will be called static if it remains constant over time, i.e., if w(t) = c for all t ≥ 0. It will be called bi-valued evolving if it varies among two possible values over time, i.e., if w(t) ∈ {0, 1} for all t ≥ 0. It will be called general evolving otherwise. A D-RNN is illustrated in Figure 1.

According to these considerations, the dynamics of any D-RNN N is given by the function 2 The seminal results concerning the computational power of rational-and real-weighted neural networks have been obtained in this context of linear-sigmoid functions [START_REF] Siegelmann | Analog computation via neural networks[END_REF][START_REF] Siegelmann | On the computational power of neural nets[END_REF]. It has then been shown that these results remain valid for any other kind of sigmoidal activation function satisfying the properties mentioned in [9, Section 4].

f N : B M × B N → B N × B P defined by f N (u(t), x(t)) = (x(t + 1), y(t + 1))
where the components of x(t + 1) and y(t + 1) are given by Equations (1) and (2), respectively.

Consider some D-RNN N provided with M Boolean input cells, N sigmoidal internal cells, and P Boolean output cells. For each time step t ≥ 0, the state of N at time t consists of a pair of the form

x(t), y(t) ∈ [0, 1] N × B P .
The second element of this pair, namely y(t), is the output state of N at time t.

Assuming the initial state of the network to be x(0), y(0) = 0, 0 , any infinite input stream 1) and (2) an infinite sequence of consecutive states Note that any D-RNN N with P Boolean output cells can only have 2 P -i.e., finitely many -possible distinct output states. Consequently, any Boolean computation bc s necessarily consists of a finite prefix of output states followed by an infinite suffix of output states that repeat infinitely often -yet not necessarily in a periodic manner -denoted by inf(bc s). A set of states of the form inf(bc s) ⊆ B P will be called an attractor of N [START_REF] Cabessa | An attractor-based complexity measurement for boolean recurrent neural networks[END_REF]. A precise definition can be given as follows: Definition 1. Let N be some D-RNN. A set A = { y 0 , . . . , y k } ⊆ B P is an attractor for N if there exists some infinite input stream s such that the corresponding Boolean computation bc s satisfies inf(bc s) = A.

s = (u(t)) t∈N = u(0) u(1) u(2) • • • ∈ B M ω induces via Equations (
c s = (x(t), y(t)) t∈N = x(0), y(0) x(1), y(1) • • • ∈ [0, 1] N × B P ω
In words, an attractor of N is a set of output states into which the Boolean computation of the network could become forever trapped -yet not necessarily in a periodic manner. An attractor of some D-RNN is illustrated in Figure 1.

In this work, we further suppose that the networks' attractors can be of two distinct types, namely either accepting or rejecting. The classification of attractors into meaningful (accepting) or spurious (rejecting) types is an issue of significant importance in neural network studies [START_REF] Cabessa | An attractor-based complexity measurement for boolean recurrent neural networks[END_REF]; however, it is not the subject of this work. Here, we rather consider that the type specification of the networks' attractors has already been established, e.g., according to some neurophysiological criteria or computational requirements. Hence, from this point onwards, we always assume that a D-RNN is provided with an associated classification of all of its attractors into accepting and rejecting types.

This classification of attractors leads to the following Muller-like acceptance condition: given some D-RNN N , an infinite input stream s

∈ (B M) ω is accepted N if inf(bc s) is an accepting attractor; it is rejected by N if inf(bc s)
is a rejecting attractor. The set of all accepted input streams of N is the neural ω-language recognized by N , denoted by L(N). A set L ⊆ (B M) ω is said to be recognizable by some D-RNN if there exists a network N such that

• • • • • • Attractor (periodic)
L(N) = L.
We consider six different models of D-RNNs, according to the nature of their synaptic weights:

1. The class of deterministic static rational neural nets refers to the D-RNNs whose all weights are static rational values. It is denoted by

D-St-RNN[Q]s.

Nondeterministic case

We also consider nondeterministic recurrent neural networks, as introduced in [START_REF] Siegelmann | Analog computation via neural networks[END_REF][START_REF] Siegelmann | On the computational power of neural nets[END_REF]. The nondeterminism is expressed by means of an external binary guess stream processed via some additional Boolean guess cell.

Formally, a nondeterministic (first-order) recurrent neural network (N-RNN) consists of a recurrent neural network N as described in previous Section 3.1, except that it contains M +1 Boolean input cells (u i) M +1 i=1 , rather than M . The cell u M +1 , called the guess cell, carries the Boolean source of nondeterminism to be considered [START_REF] Siegelmann | Analog computation via neural networks[END_REF][START_REF] Siegelmann | On the computational power of neural nets[END_REF][START_REF] Cabessa | The expressive power of analog recurrent neural networks on infinite input streams[END_REF][START_REF] Cabessa | Expressive power of nondeterministic recurrent neural networks in terms of their attractor dynamics[END_REF][START_REF] Cabessa | Expressive power of first-order recurrent neural networks determined by their attractor dynamics[END_REF]. A N-RNN is illustrated in Figure 2.

Given some N-RNN N , any sequence g = g(0)g(1)g(2) • • • ∈ 2 ω submitted to guess cell u M +1 is a guess stream for N . Assuming the initial state of the network to be x(0), y(0) = 0, 0 , any infinite input and guess streams We also assume that any N-RNN N is equipped with a corresponding classification of all of its attractors into accepting and rejecting types. An infinite input stream s ∈ (B M) ω is accepted by N if there exists some guess stream g ∈ 2 ω such that inf(bc (s,g)) is an accepting attractor. It is rejected by N otherwise, i.e., if for all guess streams g ∈ 2 ω , the set inf(bc (s,g)) is a rejecting attractor. The set of all accepted input streams is the neural ω-language recognized by N , denoted by L(N). A set L ⊆ (B M) ω is said to be recognizable by some nondeterministic recurrent neural network if there exists a N-RNN N such that L(N) = L.

As for the deterministic case, we consider the following classes and subclasses of N-RNNs according to the nature of their synaptic weights:

1. The class of nondeterministic static rational neural nets N-St-RNN[Q]s.

• • • • • •

Boolean input cells

Boolean output cells

Sigmoid internal cells

Guess cell

• • • • • • Attractor (periodic) Infinite Boolean output stream bc (s,g) Infinite Boolean input stream s • • • Guess stream g
= u(0) u(1) u(2) • • • ∈ (B M) ω induce a corresponding Boolean output stream -or Boolean computation -bc (s,g) = y(0) y(1) y(2) • • • ∈ (B P) ω .
The filled and empty circles represent active and quiet Boolean cells, respectively. As in Figure 1, the network necessarily enters into some attractor dynamics.

Expressive Power of Neural Networks

We provide a precise characterization of the expressive power of analog and evolving neural networks based on the specific analog and evolving weights that these networks employ, respectively. As a consequence, two proper hierarchies of classes of analog and evolving networks based on the complexity of their underlying weights can be obtained in Section 5.

Deterministic case

The expressive power of the classes of D where α ∈ 2 ω . Hence, from this point onwards, we will focus without loss of generality on the two specific subclasses of analog or evolving networks employing only one analog or evolving weight, respectively.

-St-RNN[Q], D-St-RNN[R], D- Ev 2 -RNN[Q], D-Ev-RNN[Q], D-Ev 2 -RNN[R],
We now provide a precise characterization of the expressive power of these

two subclasses of D-St-RNN[Q, r] and D-Ev 2 -RNN[Q, α], for any r ∈ [0, 1]
and α ∈ 2 ω , respectively. This result constitutes a significant refinement of Theorem 2. It is obtained via forthcoming Propositions 1, 2, 3 and 4.

Proposition 1. Let L ⊆ (B M) ω be some ω-language and α ∈ Proposition 2. Let L ⊆ (B M) ω be some ω-language and α = α

2 ω . If L ∈ BC(Π 0 2)(α), then L is recognizable by some D-Ev 2 -RNN[Q, α]. Proof. If L ∈ BC(Π 0 2)(α) (B M) ω , then by definition, there exists L ∈ BC(Π 0 2) (B M +1) ω such that L = L α = s ∈ (B M) ω : (s, α) ∈ L .
1 α 2 α 3 • • • ∈ 2 ω . If L ∈ BC(Π 0 2)(α), then L is recognizable by some D-St-RNN[Q, r α] N , where r α = ∞ i=1 2α i +1 4 i ∈ [0, 1].
Proof. Suppose that L ∈ BC(Π 0 2)(α). Then L is recognized by some deterministic Muller Turing machine M with oracle α. Let

α = 00 ∞ i=1 (0α i) = 000α 1 0α 2 0α 3 0α 4 0 • • • ∈ 2 ω .
Clearly, the successive letters α i 's of α can be produced by some Turing machine with oracle α , i.e., α ∈ Σ 1 0 (α). Consequently, L is also recognized by the deterministic Muller Turing machine with oracle α which retrieves step by step the successive letters of α from its oracle α , and concomitantly, simulates the behavior of M with oracle α. This means that L ∈ BC(Π 0 2)(α). Hence, there exists

L ∈ BC(Π 0 2) (B M +1) ω such that L = L α = s ∈ (B M) ω : (s, α) ∈ L .
By Theorem 1, there exists a D-St-RNN[Q] N with M + 1 input cells

u 1 , . . . , u M +1 such that L(N) = L .
Now, consider the real encoding of α given by r α = ∞ i=1

2α i +1 4 i ∈ [0, 1].
Consider also the D-St-RNN[Q, r α] N obtained by replacing the input cell u M +1 of N by the real-weighted neural circuit C with bias r α depicted in Figure 3. Circuit C is designed in such a way that it outputs the successive bits of α at each successive time step (see Figure 3 for further details of this decoding procedure). By construction, for any s ∈ (B M) ω , the behavior of N on input s is the same as that of N on input (s, α). In other words,

s ∈ L(N) if and only if (s, α) ∈ L(N) = L . Therefore, L(N) = L α = L.
This shows that L is recognized by the

D-St-RNN[Q, r α] N . Proposition 3. Let L ⊆ (B M) ω be some ω-language and α ∈ 2 ω . If L is recognizable by some D-Ev 2 -RNN[Q, α], then L ∈ BC(Π 0 2)(α). 1 +4 2 +1 1 +4 +1 2 x 2 x 3
x 4

x 7

x 8

x 1 connection to the rest of the network +1 +1

x 6

x 5 +1 +1 r ↵ Figure 3: Circuit C: nodes represent sigmoidal neurons and labelled edges are weighted synaptic connections between those. Cell x 1 receives r α as bias and cell x 7 outputs the successive bits of α = 000α 1 0α 2 0α 3 0 • • • . In order to understand this circuit, the following notions need to be recalled [START_REF] Siegelmann | On the computational power of neural nets[END_REF]. For any γ = γ 1 γ 2 γ 3 • • • ∈ 2 ω , we suppose that γ is a stack whose elements from top to bottom are γ 1 , γ 2 , γ 3 , We further assume that γ is encoded by the real number

r γ = ∞ i=1 2γi+1 4 i ∈ [0, 1]
. By definition of r γ , the top element γ 1 of γ is given by top(γ) = σ(4r γ -2). In addition, the encoding of the stack γ 2 γ 3 γ 4 • • • , which corresponds to the stack γ whose top element has been popped, is given by pop(γ) = σ(4r γ -2top(γ) -1). The design of circuit C is based on these considerations. Cell x 3 receives from x 1 a permanent activity of intensity r α = ∞ i=1 2αi+1 4 i from time 2 onwards. But this activity is neutralized from time 3 onwards, due to the activity coming from x 2 . Hence, x 3 holds activation value r α = ∞ i=1 2αi+1 4 i at time 2 only. Next, x 7 computes top(α) = σ(4r α -2) = α 1 at time 3, and thanks to the chain of cells x 6 , x 5 and x 4 which brings an activity of intensity -1 to x 3 , the later cell computes pop(r α) = σ(4r α -2top(α) -1) at time 4. Afterwards, x 7 computes top(pop(r α)) = α 2 at time 5, and x 3 computes pop(pop(r α)) = pop 2 (r α) at time 6. And so on ad infinitum. Hence, x 7 outputs top(pop i (r α)) = α i+1 at successive time steps 2i + 3, for all i ∈ N, and it outputs 0 at any other time step. In other words, x 7 outputs the successive bits of In order to deal with these delays, we provide N with an additional output cell y P +1 which is programmed to be active only when the network simulates the output period of instruction 11. Then, an attractor A ⊆ B P +1 of N is defined to be accepting if and only if the (P + 1)-th component of each element of A equals 1 (which corresponds to the cell y P +1 being active), and the projection of A on B P is an accepting attractor of N .

α = 000α 1 0α 2 0α 3 0 • • • at successive time steps 0, 1, 2, . . . Proof. Let N be a D-Ev 2 -RNN[Q, α] such that L(N) = L.
In this way, for any input s ∈ (B M) ω , the subsequence of the Boolean computation of N induced by the active states of y P +1 is the same as the Boolean computation of N , and hence, s is accepting for N if and only if s is accepting for N . Consequently,

L(N) = L(N). Since N is a D- Ev 2 -RNN[Q, α], Proposition 3 ensures that L(N) ∈ BC(Π 0 2)(α). Therefore, L(N) ∈ BC(Π 0 2)(α) too.
Propositions 1, 2, 3 and 4 lead to the following theorem: From Theorem 3 and Remark 1, the following set-theoretical result can be retrieved: wait that K • n bits of α have been stored Proposition 5. Let L ⊆ (B M) ω be some ω-language and α ∈ 2

Theorem 3. Let L ⊆ (B M) ω be some ω-language, α = α 1 α 2 α 3 • • • ∈ 2 ω and r α = ∞ i=1 2α i +1 4 i ∈ [0,
BC(Π 0 2) = α∈2 ω BC(Π 0 2)(α). Indeed, L ∈ BC(Π 0
ω . If L ∈ Σ 1 1 (α), then L is recognizable by some N-Ev 2 -RNN[Q, α]. Proof. If L ∈ Σ 1 1 (α) (B M) ω , then by definition, there exists L ∈ Σ 1 1 (B M +1) ω such that L = L α = s ∈ (B M) ω : (s, α) ∈ L . Theorem 4 ensures that there exists a N-St-RNN[Q] N with M + 1 input cells such that L(N) = L . As in the proof of Proposition 1, one can modify network N to obtain a N-Ev 2 -RNN[Q, α] N such that L(N) = L α = L. Proposition 6. Let L ⊆ (B M) ω be some ω-language and α = α 1 α 2 α 3 ∈ 2 ω . If L ∈ Σ 1 1 (α), then L is recognizable by some N-St-RNN[Q, r α] N , where r = ∞ i=1 2α i +1 4 i ∈ [0, 1].
yet slightly modified in such a way that the algorithm receives as input a guess stream g ∈ 2 ω provided bit by bit in addition to the input stream s ∈ (B M) ω and infinite word α ∈ 2 ω . This modified version of Algorithm 1 can be simulated by some N-Ev 2 -RNN[Q, α] N receiving g as a guess stream and α = α 1 α 2 α 3 as an evolving bias. In addition, the accepting and rejecting attractors of N are defined in the same way as in Proposition 4. By

construction, L(N) = L(N). Since N is a N-Ev 2 -RNN[Q, α], Proposition 7 ensures that L(N) ∈ Σ 1 1 (α). Therefore, L(N) ∈ Σ 1 1 (α) too.
By combining Propositions 5, 6, 7 and 8, the following theorem is obtained:

Theorem 6. Let L ⊆ (B M) ω be some ω-language, α = α 1 α 2 α 3 • • • ∈ 2 ω and r α = ∞ i=1 2α i +1 4 i ∈ [0, 1].
The following conditions are equivalent:

(a) L ∈ Σ 1 1 (α); (b) L is recognizable by some N-Ev 2 -RNN[Q, α]; (c) L is recognizable by some N-St-RNN[Q, r α].
From Theorem 6 and Remark 2, the following set-theoretical result can be retrieved:

Σ 1 1 = α∈2 ω Σ 1 1 (α).
In other words, the relativized classes Σ 1 1 (α) span the class Σ 1 1 , when α varies over 2 ω .

The hierarchy theorem

Theorems 3 and 6 provide a precise characterization of the expressive

power of the classes of D-St-RNN[Q, r α], D-Ev 2 -RNN[Q, α], N-St-RNN[Q, r α] and N-Ev 2 -RNN[Q, α],
for any α ∈ 2 ω . We will show that these classes can be stratified into transfinitely many subclasses based on the complexity of the analog and evolving weights employed by the networks.

Towards this purpose, we first present some conditions that pairs of infinite words necessarily satisfy whenever their corresponding relativized classes are included one into the other.

rather than finite input streams. This approach conciliates two important biological and computer scientist perspectives about neural attractor dynamics and non-terminating computational processes, respectively.

In this context, we provided a full characterization of the expressive power of the networks. For any α ∈ 2 ω with corresponding encoding r α ∈ R, the deterministic and nondeterministic analog or evolving networks employing either the single static analog weight r α or the single evolving weight α recognize the (lightface) relativized topological classes of BC(Π 0 2)(α) and Σ 1 1 (α) ω-languages, respectively. As a consequence, two infinite refined hierarchies of classes of analog and evolving neural nets based on the complexity of their underlying analog and evolving weights are obtained. These hierarchies represent a generalization to the context of ω-computation of the fundamental previous hierarchy of classes of analog networks based on the Kolmogorov complexity of their underlying analog weights [START_REF] Balcázar | Computational power of neural networks: a characterization in terms of kolmogorov complexity[END_REF].

From a purely theoretical perspective, these results show that analog and evolving neural networks constitute natural equivalent models for oraclebased infinite computation, beyond the Turing limits. In the analog case, the extra-recursive power of the networks arises from their possibility to have access to more and more precise rational approximations of some given real weights [START_REF] Siegelmann | Analog computation via neural networks[END_REF]. In the evolving case, the extra capabilities emerge from the non-recursive patterns of evolution of the synapses [START_REF] Cabessa | The super-Turing computational power of plastic recurrent neural networks[END_REF]. Despite their mathematical equivalence, the two neural models are conceptually distinct:

while the former remains at a purely conceptual level, the later relies on considerations that could be observable in nature.

From a more practical point of view, the two phenomena of attractor dynamics and synaptic plasticity are of primordial importance to the processing and coding of information in both artificial and biological neural networks.

In fact, the concept of an attractor has been shown to carry strong computational implications. According to Kauffman: "Because many complex systems harbour attractors to which the system settle down, the attractors literally are most of what the systems do" [45, p.191]. In the neural network context, alternative attractors are commonly interpreted as alternative memories, but have also been associated to motor behaviors, perceptions and thoughts [START_REF] Little | The existence of persistent states in the brain[END_REF][START_REF] Little | Analytical study of the memory storage capacity of a neural network[END_REF][START_REF] Hopfield | Neural networks and physical systems with emergent collective computational abilities[END_REF][START_REF] Hopfield | Neurons with graded response have collective computational properties like those of two-state neurons[END_REF][START_REF] Amit | Modeling brain function: The world of attractor neural networks[END_REF][START_REF] Eliasmith | A unified approach to building and controlling spiking 829 attractor networks[END_REF]. Likewise, synaptic plasticity is known to be crucially related to the storage and encoding of memory traces in the central nervous system, and provides the basis for most models of learning and memory in neural networks [START_REF] Abbott | Synaptic plasticity: taming the beast[END_REF][START_REF] Martin | Synaptic plasticity and memory: An evaluation of the hypothesis[END_REF][START_REF] Roberts | Spike timing dependent synaptic plasticity in biological systems[END_REF][START_REF] Caporale | Spike timing-dependent plasticity: a Hebbian learning rule[END_REF]. In view of these considerations, our results may constitute a theoretical foundation of the computational capabilities of neural networks in touch with these two crucial phenomena.

More generally, this study strengthen the connectedness between the fields of theoretical computer science, with possible extensions to the more practical domain of machine learning, and theoretical neuroscience. We hope that such comparative studies between neural networks and abstract ma-

 which is the computation of N induced by s. The corresponding infinite sequence of output states bc s = (y(t)) t∈N = y(0) y(1) y(2) • • • ∈ B P ω is the Boolean computation of N induced by s. The computation of such a D-RNN is illustrated in Figure 1.

Figure 1 :

 1 Figure 1: Illustration of the computational process performed by some D-RNN. The infinite Boolean input stream s= u(0) u(1) u(2) • • • ∈ (B M) ω induces a corresponding Boolean output stream -or Boolean computation -bc s = y(0) y(1) y(2) • • • ∈ (B P) ω . The filled and empty circles represent active and quiet Boolean cells, respectively. From some time step onwards, a certain set of output states begins to repeat infinitely often, which corresponds to the attractor dynamics associated with input stream s.

2 . 3 . 6 .

 236 The class of deterministic static real (or analog) neural nets refers to the D-RNNs whose all weights are static real values. It is denoted by D-St-RNN[R]s. For the purpose of our study, we stratify this class into uncountably many subclasses, each one being defined according to some specific real weights involved in the networks. Formally, for each r 1 , . . . , r k ∈ R, the subclass of networks containing r 1 , . . . , r k as real weights 3 and all other ones being rational is denoted by D-St-RNN[Q, r 1 , . . . , r k]s. The class of deterministic bi-valued evolving rational neural nets refers to the D-RNNs whose all non-static weights are bi-valued evolving and all static weight are rational. It is denoted by D-Ev 2 -RNN[Q]s. For each α 1 , . . . , α k ∈ 2 ω , the subclass of networks containing α 1 , . . . , α k as sole bi-valued evolving weights, all other ones being static rational, is denoted by D-Ev 2 -RNN[Q, α 1 , . . . , α k]s. 4. The class of deterministic (general) evolving rational neural nets refers to the D-RNNs whose all static and evolving weights are rational. It is denoted by D-Ev-RNN[Q]s. 5. The class of deterministic bi-valued evolving real neural nets refers to the D-RNNs whose all non-static weights are bi-valued evolving and all static weight are real. It is denoted by D-Ev 2 -RNN[R]s. The class of deterministic (general) evolving real neural nets refers to the D-RNNs whose all static and evolving weights are real. It is denoted by D-Ev-RNN[R]s.

s

 = (u(t)) t∈N ∈ B M ω and g = (g(t)) t∈N ∈ 2 ω induce via Equations (1) and (2) two infinite sequences of states and output states c (s,g) = (x(t), y(t)) t∈N ∈ [0, 1] N × B P ω bc (s,g) = (y(t)) t∈N ∈ B P ω called the computation and Boolean computation of N induced by (s, g), respectively. Furthermore, Definition 1 of an attractor remains unchanged in this case. The computation of an N-RNN is illustrated in Figure 2.

Figure 2 :

 2 Figure 2: Illustration of the computational process performed by some N-RNN. The infinite guess stream g = g(0)g(1)g(2) • • • ∈ 2 ω , represented by the dark blue pattern, together with the infinite Boolean input stream s= u(0) u(1) u(2) • • • ∈ (B M) ω induce a corresponding Boolean output stream -or Boolean computation -bc (s,g) = y(0) y(1) y(2) • • • ∈ (B P) ω .The filled and empty circles represent active and quiet Boolean cells, respectively. As in Figure1, the network necessarily enters into some attractor dynamics.

2 .

 2 The class of nondeterministic static real (or analog) neural nets N-St-RNN[R]s. For each r 1 , . . . , r k ∈ R, we consider the corresponding subclass N-St-RNN[Q, r 1 , . . . , r k]s. 3. The class of nondeterministic bi-valued evolving rational neural nets N-Ev 2 -RNN[Q]s. For each α 1 , . . . , α k ∈ 2 ω , we consider the corresponding subclass N-Ev 2 -RNN[Q, α 1 , . . . , α k]s. 4. The class of nondeterministic (general) evolving rational neural nets N-Ev-RNN[Q]s. 5. The class of nondeterministic bi-valued evolving real neural nets N-Ev 2 -RNN[R]s. 6. The class of nondeterministic (general) evolving real neural nets N-Ev-RNN[R]s.

Remark 1 .

 1 and D-Ev-RNN[R] has been characterized in[20, Theorems 1,[START_REF] Kleene | Representation of events in nerve nets and finite automata[END_REF]. We first recall these results.Theorem 1. [20, Theorem 1] Let L ⊆ (B M) ω be some ω-language. The following conditions are equivalent:(a) L ∈ BC(Π 0 2); (b) L is recognizable by some D-St-RNN[Q];(c) L is recognizable by some deterministic Muller Turing machine.Theorem 2. [20, Theorem 2] Let L ⊆ (B M) ω be some ω-language. The following conditions are equivalent:(a) L ∈ BC(Π 0 2); (b) L is recognizable by some D-St-RNN[R]; (c) L is recognizable by some D-Ev 2 -RNN[Q]; (d) L is recognizable by some D-Ev-RNN[Q]; (e) L is recognizable by some D-Ev 2 -RNN[R]; (f) L is recognizable by some D-Ev-RNN[R]. Theorem 1 states that D-St-RNN[Q]s are Turing equivalent. Theorem 2 shows that the classes D-St-RNN[R]s, D-Ev 2 -RNN[Q]s, D-Ev-RNN[Q]s, D-Ev 2 -RNN[R]s and D-Ev-RNN[R]s are computationally equivalent to each other and strictly more powerful than deterministic Muller Turing machines, since BC(Π 0 2) BC(Π 0 2). In this sense, the deterministic analog and evolving neural networks are super-Turing. Note that the D-Ev 2 -RNN[Q]s achieve a maximal expressive power by recognizing the whole class of BC(Π 0 2) ωlanguages. Indeed, the consideration of either real synaptic weights or more complex evolving patterns in the model does actually not yield to some higher expressive power. The proof of implication "(a) → (b)" of Theorem 2, detailed in [20, Proposition 1], shows that any ω-language L ∈ BC(Π 0 2) can be recognized by some D-St-RNN[R] employing at most one static irrational weight, which is in the interval [0, 1] and given in the form of a bias. Similarly, the proof of implication "(a) → (c)" of Theorem 2, also detailed in [20, Proposition 1], ensures that any ω-language L ∈ BC(Π 0 2) can be recognized by some D-Ev 2 -RNN[Q] using only one bi-valued evolving weight given as a bias (cf. [20, Proposition 1] again). By Theorem 2, this means that any D-St-RNN[R] is expressively equivalent to some D-St-RNN[Q, r], where r ∈ [0, 1], and any D-Ev 2 -RNN[Q] is expressively equivalent to some D-Ev 2 -RNN[Q, α],

Hence, Theorem 1

 1 ensures that there exists a D-St-RNN[Q] N with M + 1 input cells u 1 , . . . , u M +1 such that L(N) = L . Now, consider the D-Ev 2 -RNN[Q, α] N which consists in a slight modification of the D-St-RNN[Q] N . More precisely, N contains the same cells and synaptic connections as N , it admits u 1 , . . . , u M as its input cells, and the cell u M +1 is transformed into an internal cell receiving the bi-valued evolving weight α ∈ 2 ω in the form of a bias. In addition, the attractors of N are the same as those of N . By construction, for any input s ∈ (B M) ω , N receives the bi-valued evolving weight α as a bias and works precisely like N on input (s, α) ∈ (B M +1) ω . Consequently, s ∈ L(N) if and only if (s, α) ∈ L(N) = L . Therefore, L(N) = L α = L. This shows that L is recognized by the D-Ev 2 -RNN[Q, α] N .

 By Remark 1, we may assume without loss generality that the bi-valued evolving weight α of N is a bias related to some cell x. Let N be the D-St-RNN[Q] obtained by replacing in N the cell x and its associated bias by a new input cell u M +1 . Network N is a D-St-RNN[Q] with M +1 input cells, and Theorem 1 ensures Lemma 4.1], reproduces the output pattern of N working on input prefix u(0) • • • u(n), to finally release the last output state of N at last time step n. But these successive computational periods of N are interspersed with delays due to the simulation of the other instructions of Algorithm 1.

1].

 1 The following conditions are equivalent:(a) L ∈ BC(Π 0 2)(α); (b) L is recognizable by some D-Ev 2 -RNN[Q, α]; (c) L is recognizable by some D-St-RNN[Q, r α].

2)Algorithm 1

 21 if and only if, by Remark 1, L is recognizable by some D-Ev 2 -RNN[Q, α], for some α ∈ 2 ω , if and only if, by Theorem 3,L ∈ BC(Π02)(α). In words, the relativized classes BC(Π 0 2)(α) span the class BC(Π 0 2), when α varies over 2 ω .4.2. Nondeterministic caseThe expressive power of the classes of N-St-RNN[Q], N-Ev 2 -RNN[Q], N-Ev-RNN[Q], N-Ev 2 -RNN[R] and N-Ev-RNN[R] has been established in [19,Theorems 1, 2]. We have the following results: Infinite procedure Require:1. input s = u(0) u(1) u(2) • • • ∈ (B M) ω supplied step by step at successive time steps t = 0, 1, 2, . . .2. infinite wordα = α 1 α 2 α 3 • • • ∈ 2 ω suppliedstep by step at successive time steps t = 0, 1, 2, . . .

10 : 1 Σ 1 1 .Remark 2 .

 10112 compute r α | K•n // recursive if α given bit by bit 11: simulate the computation of the truncated network N | K•n working on input prefix u(0) • • • u(n), but output the result of that computation only for the last time step n // recursive, since N | K•n is a D-St-RNN[Q] [8] 12: end for 13: END SUBROUTINE 2 Theorem 4. [19, Theorems 1] Let L ⊆ (B M) ω be some ω-language. The following conditions are equivalent:(a) L ∈ Σ 1 1 ; (b) L is recognizable by some N-St-RNN[Q];(c) L is recognizable by some nondeterministic Muller Turing machine.Theorem 5. [19, Theorems 2] Let L ⊆ (B M) ω be some ω-language. The following conditions are equivalent:(a) L ∈ Σ 1 1 ; (b) L is recognizable by some N-St-RNN[R]; (c) L is recognizable by some N-Ev 2 -RNN[Q]; (d) L is recognizable by some N-Ev-RNN[Q]; (e) L is recognizable by some N-Ev 2 -RNN[R]; (f) L is recognizable by some N-Ev-RNN[R].Theorem 4 states that N-St-RNN[Q]s are Turing equivalent. Theorem 5 shows that all other classes of N-St-RNN[R]s, N-Ev 2 -RNN[Q], N-Ev-RNN[Q], N-Ev 2 -RNN[R] and N-Ev 2 -RNN[R] are strictly more powerful than nondeterministic Muller Turing machines, since Σ 1 In this sense, the nondeterministic analog and evolving neural networks are also super-Turing. The nondeterministic counterpart of Remark 1 holds. More precisely, the proof of Theorem 5 [19, Theorem 2] shows that any ω-language L ∈ Σ 1 1 can be recognized by some N-St-RNN[R] employing at most one static irrational weight which is in the interval [0, 1] and given in the form of a bias. Similarly, any ω-language L ∈ Σ 1 1 can be recognized by some N-Ev 2 -RNN[Q] containing only one bi-valued evolving weight given as a bias. Consequently, from this point onwards, we will without loss of generality focus on the subclasses of N-St-RNN[Q, r] and N-Ev 2 -RNN[Q, α], for any r ∈ [0, 1] and α ∈ 2 ω . We now provide a precise characterization of the expressive power of the two subclasses of N-St-RNN[Q, r] and N-Ev 2 -RNN[Q, α], for any r ∈ [0, 1] and α ∈ 2 ω , respectively. This result is obtained via forthcoming Propositions 5, 6, 7 and 8, which are direct generalizations of Propositions 1, 2, 3 and 4.

 chines might eventually bring further insight to the understanding of both biological and artificial intelligences. Similarly to the foundational work of Turing, which played a crucial role in the practical realization of modern computers, further theoretical considerations about neural-and natural-based models of computation might contribute to the emergence of novel computational technologies, and step by step, open the way to the next computational generation.

Throughout this paper, the expressions evolving neural networks refers to neural networks with time-dependent synaptic weights, along the lines of[START_REF] Cabessa | The super-Turing computational power of plastic recurrent neural networks[END_REF][START_REF] Cabessa | Expressive power of nondeterministic recurrent neural networks in terms of their attractor dynamics[END_REF]

, 20]. This expression is not to be understood in the sense of Evolving Connectionist Systems (ECoS)[START_REF] Kasabov | Evolving connectionist systems -the knowledge engineering approach[END_REF] nor in that of Evolving Neural Networks through Augmenting Topologies (NEAT)[START_REF] Stanley | Evolving neural network through augmenting topologies[END_REF].

In this definition, the real weights r 1 , . . . , r k are not a priori required to be irrational; they could be rational weights which we wish to specify.

)(α i) ⊆ BC(Π 0 2)(α j) and Σ 1 1 (α i) ⊆ Σ 1 1 (α j) hold, for every distinct α i , α j ∈ A.

Acknowledgments

Partial support from DARPA project no. HR001117S0016-L2M-FP-015 is gratefully acknowledged.

that L(N) ∈ BC(Π 0 2). By construction, for any (s, α) ∈ (B M +1) ω , the behavior of N on input (s, α) is the same as that of N on input s ∈ (B M) ω . In other words, (s, α) ∈ L(N) if and only if s ∈ L(N). Thus L(N) = L(N) α .

Since L(N) ∈ BC(Π 0 2), it follows that L(N) ∈ BC(Π 0 2)(α).

and α i ∈ {0, 1}, for each i ∈ N * . By Remark 1, we may assume without loss of generality that the static weight r α of N is a bias. Let r α | K denote the truncation of r α after K bits, i.e.,

For each n ≥ 0, let N | K•n be the network N whose weight r α has been replaced by r α | K•n , for some constant K > 0 defined in [START_REF] Siegelmann | Analog computation via neural networks[END_REF]Lemma 4.1]. By

By Therefore, L(N

and α i ∈ {0, 1} for each i ∈ N * . By Remark 2, we may assume without loss of generality that the static weight r α of N is given as a bias. Consider the infinite procedure given in previous Algorithm 1, Proposition 9. Let α, β ∈ 2 ω . The following relations hold:

Proof. We prove both left-to-right implications. Recall that α ∈ Σ 0 1 (α). In the first case, one has

, and thus α ∈ ∆ 1 1 (β), by [START_REF] Moschovakis | Descriptive Set Theory, 2nd Edition[END_REF].

For the converse implication of relation (4), suppose that α ∈ ∆ 1 1 (β).

Then α ∈ Σ 1 1 (β), which means that the ω-language {α} is recognized by

Then L is recognized by a nondeterministic Muller TM M 2 with oracle α.

Consider the nondeterministic Muller TM M with oracle β which works as follows: if x is written on its input tape, then M nondeterministically writes some y ∈ 2 ω bit by bit on one of its work tape, and concomitantly, it simulates in parallel the behaviors of M 1 on y as well as that of M 2 with oracle y on x. The TM M is suitably programmed in order to always have enough bits of y being written on its work tape so that the next simulations steps of M 1 with oracle y can be performed without fail. In addition, the machine M accepts input x iff both simulation processes of M 1 and M 2 are accepting, i.e., iff y = α and the simulation of M 2 with oracle y = α accepts

x, which is to say that x ∈ L(M 2) = L. Hence, M recognizes L also, and thus L ∈ Σ 1 1 (β). This shows that Σ 1 1 (α) ⊆ Σ 1 1 (β).

We now show the existence of an infinite sequence of infinite words whose corresponding succession of relativized classes properly stratify the "super-

Turing" classes of BC(Π 0 2) and Σ 1 1 neural ω-languages. In addition, the hierarchy induced by the inclusion relation between the relativized classes possesses chains of length ω 1 as well as uncountable antichains.

Proposition 10. There exists a sequence (α i) i<ω 1 , where α i ∈ 2 ω for all

Moreover, there exists some uncountable set A ⊆ 2 ω such that the following relations BC(Π 0

Proof. Take α 0 ∈ Σ 0 1 . Suppose that for γ < ω 1 , the sequence (α i) i<γ has been constructed and satisfies the required property. We build the next element α γ of that sequence, i.e., the element such that Σ 1 1 (α i) Σ 1 1 (α γ), for all i < γ.

Note that, for each i < γ, the set ∆ 1 1 (α i) is countable. Since γ < ω 1 , the union i<γ ∆ 1 1 (α i) is countable too. Hence, there exists α ∈ 2 ω \ i<γ ∆ 1 1 (α i). Now, let {β i : i < ω} be an enumeration of the countable set {α} ∪ {α i : i < γ}, and let α γ ∈ 2 ω be the encoding of {β i : i < ω} given by α γ (i, n

where ., . : ω 2 → ω is a classical recursive pairing function. Each function

, for some i < ω. This means that L is recognizable by some deterministic Muller TM M with oracle β i . Since

L is also recognized by the deterministic Muller TM M with oracle α γ which, in a suitable alternating manner, produces β i bit by bit from α γ , and works precisely like M with oracle β i . Therefore, L ∈ BC(Π 0 2)(α γ). By replacing in this argument every occurrences of "BC(Π 0 2)" by "Σ 1 1 " and of "deterministic" by "nondeterministic", one obtains that Σ 1 1 (α j) ⊆ Σ 1 1 (α γ), for all j < γ.

We now show that

, for some j < γ. Then Relations (3) and (4) ensure that α γ ∈ ∆ 1 1 (α j). But α = β k for some k < ω, and by the above stated fact,

The two relations α ∈ Σ 0 1 (α γ) and α γ ∈ ∆ 1 1 (α j) imply that α ∈ ∆ 1 1 (α j). This contradicts the fact that α ∈ 2 ω \ i<γ ∆ 1 1 (α i).

We finally prove the existence of an uncountable antichain. There exists an uncountable set A ⊆ 2 ω such that α i ∈ ∆ 1 1 (α j), for all distinct α i , α j ∈ A [START_REF] Apt | ω-models in analytical hierarchy[END_REF]. By Relations (3) and (4),

respectively. Theorems 3 and 6 together with Proposition 10 imply the existence of four proper hierarchies of classes of deterministic and nondeterministic analog and evolving neural networks of increasing expressive power.

Theorem 7. There exists a sequence of real numbers (r i) i<ω 1 and a sequence of infinite words

), for all i < j < ω 1 .

Proof. Theorems 3 and 6 ensure that

where r α is the encoding of α described in Proposition 4, for any α ∈ 2 ω . By Proposition 10, there exists some sequence (α i) i<ω 1 satisfying Points (b) and (d). In addition, by taking r i = r α i for all i < ω 1 , one obtains a sequence (r i) i<ω 1 satisfying Points (a) and (c).

Finally, let R be the equivalence relation defined by

This relation represents the decision problem of whether two classes of nondeterministic evolving networks (determined by the evolving weights α and β) have the same expressive power. We show that this relation is undecidable and of complexity Π 1 1 \ Σ 1 1 .

Proposition 11. The equivalence relation R is in the class Π 1 1 \ Σ 1 1 .

Proof. According to Theorem 6 and Relation (4), the relation R ⊆ 2 ω × 2 ω satisfies R(α 1 , α 2) iff α 1 ∈ ∆ 1 1 (α 2) and α 2 ∈ ∆ 1 1 (α 1). It is known that the relation "α ∈ ∆ 1 1 (β)" is a Π 1 1 relation which can be expressed by a Π 1 1formula φ(α, β), see [41, 4D.14, p. 171] and [START_REF] Finkel | Ambiguity of omega-languages of Turing machines[END_REF]. Thus R is a Π 1 1 -relation.

Towards a contradiction, assume now that R is Σ 1 1 , and take β ∈ Σ 0 1 . Then R(., β) = {α : R(α, β)} = {α :

But it is known that the set

, see [41, 4D.16, p. 171]. This concludes the proof.

Conclusion

The present study concerns the expressive power of sigmoidal recurrent neural networks involved in a computational paradigm based on infinite