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Parameter Privacy versus Control Performance:
Fisher Information Regularized Control

Ingvar Ziemann, Henrik Sandberg

Abstract— This article introduces and solves a new privacy-
related optimization problem for cyber-physical systems where
an adversary tries to learn the system dynamics. In the
context of linear quadratic systems, we consider the problem
of achieving a small cost while balancing the need for keeping
knowledge about the model’s parameters private. To this end,
we formulate a Fisher information regularized version of the
linear quadratic regulator with cheap cost. Here the control
operator is allowed to not only control the plant but also mask
its state by injecting further noise. Within the class of linear
policies with additive noise, we solve this problem and show that
the optimal noise distribution is Gaussian with state dependent
covariance. Next, we prove that the optimal linear feedback law
is the same as without regularization. Finally, to motivate our
proposed scheme, we formulate an equivalent minimax problem
for the worst-case scenario in which the adversary has full
knowledge of all other inputs and outputs. Here, our policies
are minimax optimal with respect to maximizing the variance
over all unbiased estimators.

I. INTRODUCTION

The advent of cyper-physical systems (CPS) poses many
new problems to the secure and effective operation of modern
control systems [1]. Not only do imminent threats arise due
to the potential of adversaries to alter control trajectories but
the potential for information about the system to fall into
the wrong hands also poses significant risks for both privacy
and security. To this end, [2] studies learning-based attacks
– attacks where the adversary initially has little or no knowl-
edge of the system dynamics but uses system identification
to launch an effective attack. Given such exposure it becomes
interesting to ask whether the adversary’s learning attemps
are preventable while – importantly – maintaining reasonable
control performance.

To make matters precise, this article treats linear stochastic
systems of the form

xt+1 = Axt +But + wt+1 + vt+1, (1)

where the state x = (xt) is driven by a sequence of random
disturbances w = (wt). Beside the ordinary control input
u = (ut), which we assume to be linear in the current
state xt, we assume that the control operator also has the
possibility to inject further noise v = (vt) by at each stage
choosing its density, pt. This ability to inject further noise
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is not all that different from the watermarking schemes
proposed in for instance [3]. In contrast to watermarking
however, instead of creating a physical difference in state,
it is the increased variance of the adversary’s attack, once
based on their parameter estimate, which serves to raise
detectability.

In the context of these systems this article studies the
trade-off between control performance and the adversary’s
ability to estimate the A-matrix given knowledge of the state
sequence (xt) and the control input (ut). We assume that our
adversary wants to find an estimator Â, that minimizes

trE(A− Â)(A− Â)> (2)

using the input and output sequences, (xt), (ut), which they
could then later use for malicious purposes. The control
operator is thus faced with a certain trade-off – a decision
needs to be made whether to optimize control performance
or to ensure that as little information as possible about A
is available to the adversary. Clearly, also other parameters
could be of interest to the adversary, but due to the impor-
tance of the A-matrix in control we consider it an interesting
case.

We would also like to point out that under the given
information structure and stability of the closed loop system,
succesful estimation of A will always be possible asymptoti-
cally. In this article we discuss how to prevent the adversary
from learning for as long as possible, at the smallest possible
extra cost. This is very much in line with the work [2] in
which a two-phase attack is considered. They consider a
model where the adversary first passively obtains a trajectory
of length T of the system, and then using these is constrained
to execute an undetectable attack in the second phase. Our
scheme thus makes it harder for this attacker to remain
undetectable for a given sampling period of length T .

Since (2) is hard to maximize directly, we instead optimize
a quantity which lower bounds (2), known as the trace of
Fisher information of A, IT (p). However, this is with little
loss of generality, as we manage to prove in Theorem 5.3
that in the worst-case scenario where the adversary knows
the disturbance w – for instance it might be them who inject
it – then these problems are equivalent.

Considering the trade-off between parameter privacy and
control performance, via Fisher information and through a
trade-off parameter λ, yields the relaxed problem

min
u,p

lim sup
T→∞

1

T

(
IT (p1, . . . , pT ) + λ

T∑
t=1

Ex>t xt

)
,



subject to the dynamics (1). In the class of linear control
laws we are able to show that the optimal density for vt+1

is Gaussian with covariance proportional to the closed loop
reachability Gramian from w and inversely proportional to
the current state energy. Next, in Theorem 4.3, we prove
that the optimal linear control law is the same as in the
unregularized case, λ→∞. This is then finally related to a
minimax problem for the objective in (2) in Theorem 5.3.

The idea to minimize Fisher information dates back to the
robust statistics community, see [4] for an overview. More
recently, [5], [6] introduce it as a measure of privacy and it
is from them we draw much of our inspiration. The authors
thereof use Fisher information as a guarantee of state privacy
as through the classical Cramér-Rao lower bound. This is
also the main motivation for using it in our work, as the
Cramér-Rao lower bound states that for any adversary only
having access to state and controller information, the trace
variance of their estimators at time T is bounded below by
1/IT . In contrast to the present work however, they focus
on state estimation and do not consider the situation with
control.

Other approaches to statistical privacy include differential
privacy [7] which has been considered in the context of
filtering in [8] and control in [9]–[11]. Similar in spirit to
our work [12] also considers a privacy-regularized version
of the linear quadratic regulator but instead uses directed
information (a variant of Shannon information) as a measure
of privacy.

A. Organization

The rest of the paper is organized as follows: In §2, we
give a precise formulation of the problem and give some
preliminaries. Next, §3 discusses the optimal concealment
problem regarding how to find the density of the noise v,
which optimally trades between cost and Fisher information.
This is then related to the control problem in §4, where we
derive the optimal linear control law. In §5, we show that
the proposed scheme also has a nice minimaxity property
with respect to the adversary’s estimation variance. We work
through and plot the 1-dimensional case in more detail in §6.
Finally, §7 concludes.

II. PROBLEM FORMULATION

As mentioned in the introduction, our aim is to control
the system (1) while keeping information about A private.
Our notion of privacy about A is here restricted to keeping
the variance of the trace of all unbiased estimators based on
knowledge of x and u large. Ideally then, we would want to
find v which gives the largest value of

min
Â

max
v

trE(A− Â)(A− Â)> (3)

subject to keeping control cost below some previously spec-
ified level. Treating this problem directly is nontrivial but
since by the Cramér-Rao lower bound [13],

trE(A− Â)(A− Â)> ≥
(
IT
)−1

a lower bound on the objective (3) may be obtained by
instead minimizing the trace of Fisher information, IT .

Definition 2.1: Trace Fisher information with respect to
the A-matrix is given by

IT (p) = tr

∫
∇2

A ln p(v)dp(v).

Using this insight, we first formulate and treat the relaxed
version of (3) below, which we dub Fisher Information
Regularized Control.

Problem 1: Find the optimal policies of

min
u∈L,p∈M

lim sup
T→∞

1

T

(
IT (p) + λ

T∑
t=1

Ex>t xt

)
,

s. t. xt+1 = Axt +But + wt+1 + vt+1(p).

We assume that the state evolves in Rn so that A ∈ Rn×n,
B ∈ Rn×m and that the control input u = (ut) is chosen
from the set L of linear time-invariant feedback controllers
of the form ut = Kxt with K ∈ Rm×n. The external
noise sequence (wt) is assumed independent and identically
distributed Gaussian with mean zero and identity covariance.
Moreover, the control operator is allowed to inject further
mean zero noise (vt) by choice of a Markov kernel p = (pt)
from a subset of smooth Markov kernels, M. Note further
that we assume for simplicity that the controller is chosen at
no external cost – cheap control.

Definition 2.2: The set M consists of Markov kernels
with densities of the form

p(v1, v2, . . . , vT |x)

= p1(v1)p2(v2|x1) . . . pT (vT |xT−1)

where each pt is a smooth (C∞) function of its first argument
and is a distribution with conditional mean zero.

Note that under Markovianity, trace Fisher information
satisfies a chain rule and splits into a sum over conditional
marginals. This merits the following definition.

Definition 2.3: Conditional trace Fisher information of pt
with respect to A is given by

It(pt) = tr

∫
∇2

A ln pt(vt+1)dpt(vt+1).

Problem 1 is essentially a version of the linear quadratic
regulator where an added value is placed on the system’s A-
matrix being hard to estimate given state information. This
hardness of estimation is captured by the functional IT (p)
which measures the extent to which knowledge of x and u
allows determination of A.

It should be noted that we do not actually know that the op-
timal causal controller should be linear. Nonetheless, due to
prevalence of linear controllers and for reasons of analytical
tractability we restrict attention to this class. Moreover, the
smoothness assumption on M is without loss of generality
by an application of the Stone-Weierstrass Theorem, [14].

A. Linearity Preliminaries

For a given matrix M we denote by M+ any pseudoin-
verse. That is, M+ satisfies M+M = I − πkerM where
πkerM is the projection onto the kernel of M . If M is positive



semi-definite, the eigenvalues coincide with the singular
values and moreover one may define the square root

√
M

which is any matrix
√
M satisfying

√
M
>√

M = M . For
a fixed square matrix L, we denote by Γt

L the associated
time−t reachability gramian,

Γt
L :=

t∑
j=0

Lj
(
Lj
)>

and for t =∞ simply as ΓL. We would also like to recall that
a pair (A,B) is called stabilizable if there exists a matrix K
such that σ(A+BK) < 1. Since we here only consider the
case with state cost, the associated variance optimal control
law is given directly as ut = K∗xt, where

K∗ ∈ arg min
K

tr ΓA+BK .

III. OPTIMAL CONCEALMENT

Here we derive the optimal noise and control policies
for Problem 1. We first take the optimal linear feedback
controller as a given and derive the optimal concealing noise
as a function thereof. This will later be used in Lemma 4.1
to charactarize the optimal linear feedback controller by a
finite-dimensional optimization problem.

We shall consider the finite-time version of Problem 1 for
fixed T .

Problem 2: Find the optimal policies and associated value
of

min
u∈L,p∈M

1

T

(
IT (p) + λ

T∑
t=1

Ex>t xt

)
,

s. t. xt+1 = Axt +But + wt+1 + vt+1(p).
Next, using Markovianity and linearity we show that the

problem of finding the optimal Markov kernel can be broken
down into a family of sub-problems.

Lemma 3.1: For the finite time version, Problem 2, the
optimal density1 at time t, pt, minimizes

min
pt

It(pt) + λEvtΓ
T−t
L vt

where ΓL is any closed loop reachability gramian induced
by L.

Proof: We may write,

IT (p) = tr

∫
∇2

A ln p(v)dp(v)

= tr

∫
∇2

A

(
T∑

t=1

ln pt

)
dp

=

T∑
t=1

E tr

∫
∇2

A ln ptdpt

=

T∑
t=1

EIt(pt)

This is essentially the chain rule for Fisher information, and
we see that each pt is only active in one part of the sum.

1We are supressing the dependence on xt in pt to avoid cumbersome
notation.

Next, we isolate the impact of vt in the quadratic compo-
nent of the cost. Observe that for fixed L = A + BK, the
closed loop dynamics are

xt+1 =

t+1∑
k=0

Lt+1−k(wk + vk).

Recalling the finite time gramian

Γt
L =

t∑
j=0

Lj
(
Lj
)>

the second part of the cost becomes

T∑
t=1

Ex′txt = E

(
T∑

k=0

w′kΓT−k
L wk

)
+ E

(
T∑

k=1

v′kΓT−k
L vk

)
.

Note in particular that pt+1 and vt+1 only show up in one
term of the sum and so varying any other term does not affect
optimality.

In particular, for the infinite-time problem, as T goes to
infinity, the energy from vt is of the simple form

EvtΓLvt + o(1).

Before attempting to solve the partial optimization problem,
we note its convexity properties.

Lemma 3.2: The functional

It(pt) + λEvtΓ
T−t
L vt

is convex and lower semicontinuous over the set of smooth
densities.

Proof: That Fisher information possesses these proper-
ties is well-known [4]. The second term obviously satisfies
this property and thus so does the sum of both terms.

Given convexity, to solve the problem in Lemma 3.1 it
suffices to solve the PDE giving the first order condition
for optimality, found below. For a formal justification of
sufficiency see e.g. [15] or [16].

Lemma 3.3: Given any closed loop L, the optimal noise
density for the finite time problem 2, given all information
at time t, pt+1 = f2, satisfies

n tr
(
xtx
>
t ∇2

vf(v)
)

+

(
µ(v)− 1

4
λv>ΓT−t

L v

)
f(v) = 0

where the dual variable µ(v) is chosen such that
∫
f2dv = 1

and
∫
vf2dv = 0.

Proof: The derivation is similar to that of Theorem 2
in [6] and is omitted.

We are now prepared to characterize the optimal noise
density in terms of the closed loop reachability gramian.

Theorem 3.4: Given any closed loop L and associated
trajectory, the optimal noise density pt at time t, conditioned
on xt, is Gaussian with mean zero and covariance√

n(ΓT−t
L λ)+(xtx>t ).

Before commencing with the proof, let us comment on the
interpretation of the result. The fact the optimal (conditional)



density is Gaussian can essentially be guessed from maxi-
mum entropy principles. Indeed, it is a well known fact that
for a given variance (cost), the distribution with unbounded
support which maximizes entropy is mean zero normal at
that variance [17] - the Gaussian family gives us the most
added uncertainty at the best possible price.

Moreover, we see that the noise covariance is inversely
proportional to

√
ΓL, which is natural as ΓL directly mea-

sures the input-to-cost of noise. The covariance is also
proportional to the current state xt which is natural since a
larger current state leads to a better signal to noise ratio for
the upcoming measurement. Note also that p∗t (v) must result
in the same cost to for any choice of pseudo-inverse. This is
a consequence of the fact that the trace Fisher information
is really a function of the singular values of the covariance
of vt+1 ∼ p∗t (·) above.

Proof: To find the solution of the PDE we make an
ansatz of the form

f(v) = c1e
−c2v>Qv.

Showing that this indeed verifies the PDE with the variance
stated in the theorem is rather straightforward and the details
are thus omitted for brevity.

Interestingly, the conditional trace Fisher information
functional does not depend on the state.

Lemma 3.5: Conditional trace Fisher information evalu-
ated at p∗ is

It(p
∗) = λ tr ΓT−t

L .

Proof: Write

It = n

∫
tr

[
1

p∗t+1(v)
xtx
>
t ∇vp

∗
t+1(∇vp

∗
t+1)>

]
dv

= n

∫
tr
(
xtx
>
t λΓT−t

L (nxtx
>
t )+

)
p∗t+1dv

= λ tr ΓT−t
L

as required.
Together with the Cramér-Rao lower bound, this implies the
following.

Corollary 3.6: For any closed loop L and added noise
v ∼ p∗, the adversary’s estimation error is lower bounded as

min
Â

trE(A− Â)(A− Â) ≥ 1

λ
∑T

t=1 tr ΓT−t
L

.

This lower bound becomes larger when the adversary does
not have knowledge of w, in which case an additional term of
order 1/T proportional to the covariance of Σ can be added
by the data processing inequality for Fisher Information.

In either case, to ensure a constant lower bound, λ must be
of order 1/T . That is, our preference for low state variance
is inversely related through the tuning parameter λ to our
preference for the adversary to have a bad estimate of A.
This may seem somewhat discouraging at first, but should
be compared to detector performance. In certain cases, even a
small increase in variance can be enough to infer the presence
of an adversary which bases its attacks on its estimate of A.

IV. OPTIMAL CONTROL

At this point, we are equipped with the structure of the
optimal noise kernel p∗ through Theorem 3.4 but do not yet
know its covariance as the optimal closed loop L remains
unknown. Our task is now to simplify Problem 1 further
using Theorem 3.4 to move toward a solution of the entire
problem.

We may now insert the solution in Theorem 3.4 using
the Lemma in Problem 1 to obtain a finite-dimensional
optimization problem.

Lemma 4.1: Given the optimal set of densities of Theorem
3.4, Problem 1 may be written as

min
K∈L

tr ΓL + lim sup
t→∞

1

T
E

(
T∑

t=1

x>t xt

)
,

s. t. xt+1 = (A+BK)xt + wt+1 + vt+1,

ΓL =

∞∑
t=1

(
(A+BK)t

)>
(A+BK)t.

Proof: We evaluate IT (p) at the optimal Markov kernel
given by Theorem 3.4.

IT (p∗) =

T∑
t=1

E tr

∫
∇2

A ln p∗t dp
∗
t =

T∑
t=1

EIt(p
∗
t )

Now note that each of the It(p∗t ) are just (the trace of) Fisher
Information as described by Lemma 3.5. Therefore

1

T
IT (p∗) =

1

T

T∑
t=1

λ tr(ΓT−t
L ) = λ tr ΓL.

Adding the quadratic part of the cost, dividing by λ and
taking limits, the result follows.

Lemma 4.2: Assume that (A,B) is stabilizable and that
L is a stable closed loop. Then under the optimal density p∗,
the state cost limit as T →∞ exists and is equal to

1

T

T∑
t=1

Ex>t xt → tr(ΓL)

(
1 +

1 +
√

2πλ+ 1

πλ

)
.

In the lemma above the first term is due cost induced by
the process noise w and the second term is due to added
noise v.

Proof: To see that the sequence above converges, it
suffices to note that Ex>t xt is either constant2 or monotone
increasing and bounded. Details of this are omitted for
brevity.

To compute the limit, write using the law of total proba-

2which occurs if and only if A−BK = 0.



bility,

lim sup
T→∞

1

T
E

T∑
t=1

x>t xt

= lim sup
T→∞

1

T

T∑
t=1

E
(
w>t ΓLwt + v>t ΓLvt

)
= tr ΓL + lim sup

T→∞

1

T

T∑
t=1

EEt−1v
>
t ΓLvt

= tr ΓL + lim sup
T→∞

1

T

T∑
t=1

E tr
√
λ−1ΓLxt−1x>t−1

Here, we replaced ΓT−t
L by its limit ΓL, which is justified

since the rate of convergence is exponential and the averaging
occurs at a linear rate.

To evaluate this last expression, we note that

E tr
√
λ−1ΓLxt−1x>t−1 = E

√
λ−1x>t−1ΓLxt−1

=
√

Eλ−1x>t−1ΓLxt−1

√
2

π

where the last equality uses that
√
λ−1x>t−1ΓLxt−1 is equal

in distribution to the absolute value of a Gaussian random
variable with variance Eλ−1x>t−1ΓLxt−1. Using this in the
evaluation of the limit implies that it equals

tr ΓL + lim
T→∞

1

T

T∑
t=1

√
Eλ−1x>t−1ΓLxt−1

√
2

π
.

Now the right and left hand sides are Cesàro limits of
functions of Ex>t xt, which exist as true limits. Thus the
left hand side is equal to X , satisfying the following system
of equations

X = tr ΓL +
√

trλ−1ΓLY

√
2

π
,

X = trY.

Solving this finishes the proof.
Combining lemmas 4.1 and 4.2 shows that the optimal

cost is linear in tr ΓL. This is cost has exactly the same
minimizers as the unregularized cheap control problem.
These observations result in the following Theorem.

Theorem 4.3: For any stabilizable (A,B), the solution of
Problem 1 exists and is given by

u∗t = BK∗xt

p∗t (vt+1) ∼ exp

(
−1

2
v>
√
λΓL(nxtx>t )+v

)
,

where the closed loop is given by L = A+BK∗, with

K∗ ∈ arg min
K

tr ΓL.

Remark 4.4: The sole difference in policy between the
standard cheap cost problem is thus to add mean zero
Gaussian noise with the covariance specified above. Since the
state is available, this amounts to sampling white Gaussian
noise and pre-multiplying with a function of the state, which
is computationally tractable.

The optimal noise distribution aside, there is an interest-
ing system identification based intuition behind why u∗t is
independent of λ. In system identification, a possibility to
efficiently estimate a model parameter is often characterized
by a notion known as persistence of excitation [18]. Roughly
speaking, the more noise passes through the closed loop
system, the easier it is to identify the model’s parameters.
Since the goal of bringing the plant to a low state variance is
exactly the opposite of it being persistently excited, the result
is in some sense expected. The only question that remains is
in what direction noise should be added, and here as shown
in Theorem 3.4, the answer is to add noise in a direction
inversely proportional to reachability gramian of the closed
loop system weighted by the last state.

V. MINIMAXITY

The information bound in Corollary 3.6 tells us that
we are stopping the adversary from learning A at a rate
of 1/ tr ΓL. In this section, we show that in the worst-
case scenario, where the adversary has knowledge of the
disturbance sequence w, this rate is indeed minimax optimal
with respect to the adversary’s estimator variance at a given
control performance; that is, it Fisher Information Regular-
ized Control solves the following minimax problem.

Problem 3: The minimax parameter privacy-performance
problem is

min
Â

max
u,v

lim sup
T→∞

T trE(A− Â)(A− Â)>,

s. t. xt+1 = Axt +But + wt+1 + vt+1,

lim sup
T→∞

1

T
E

T∑
t=1

x>t xt ≤ C.

under the regularity conditions on Â, u and v of Assump-
tion 1 below.

Assumption 1: The set of admissible policies for Prob-
lem 3 are:
A1. The control sequence, u, is chosen over all linear time-

invariant controllers L.
A2. The noise sequence, v, is decided by a smooth Markov

kernel from M.
A3. The estimator Â is unbiased and is based on knowledge

of x, u, w.
A4. The controlled Markov chain, x(u, v), has an invariant

measure π, which has finite Fisher information with
respect to A.

A5. There exists a π-integrable function M such that∥∥∥∇3 log pt(v|Ã)
∥∥∥ ≤M(v)

for all Ã in a neighborhood of A and some norm ‖ · ‖
on Rn3

.
The fact that the regularized controller is minimax optimal

is based on the following lemma which shows that the
opponent can attain the lower bound in Corollary 3.6 by
maximum likelihood estimation, uniformly for all policies
admissible to Problem 3.



Lemma 5.1: Under Assumption 1, the adversary’s maxi-
mum likelihood estimator asymptotically attains the Cramér-
Rao lower bound.

Proof: Denote by ÂT the maximum likelihood estima-
tor and by lT the associated log-likelihood, given the first T
samples. A Taylor expansion of ∇lT around A, shows that

∇lt(ÂT ) = ∇lT (A) +∇2lT (A)(ÂT −A)

+ (ÂT −A)>∇3lT (ÃT )(ÂT −A)

where we have supressed the dependence on the state se-
quence x in lt. Here ÃT is enclosed in a spherical shell
generated by the intersection of balls of radius ‖A‖ and
‖ÂT ‖. Moreover, by optimality of Ât, the left hand side
above is zero, so that
√
T (A− ÂT )

=

(
1

T
∇2lT (A) + (ÂT −A)>

1

T
∇3lT (Ã)

)−1
× ∇l

T (A)√
T

(4)

which holds assuming the inverse exists, which it does for
large T by assumption. Since ÂT → A a.s. by stability of
the closed loop system, we are done if we prove that

1

T
E[∇lT (A)(∇lT (A))>]→ I(p∗), (5)

1

T
∇2lT (A)→ I(p∗) and that, (6)

1

T
∇3lT (ÃT ) is bounded a.s. (7)

By Markovianity of (vt), the log-likelihood splits into a sum
of increments of the form

lt(vt+1|A) = lt(xt+1 − (A+BK)xt − wt+1).

Next, observe that since w is assumed to be Gaussian
noise with non-degenerate covariance, the Markov (Harris)
chain x is positive recurrent. Using this, we see that each
∇lt(A),∇2lt(A) and ∇3lt(ÂT ) are π-integrable functions
of the positive Harris chain with invariant measure π and by
the (Birkhoff/von Neumann) Ergodic Theorem for positive
Harris chains, [19], we see that both (5), (6), and (7) converge
to their expectations. The result follows by applying the trace
variance to the limit of (4), which we have just shown to
exist.

Next, we prove that our proposed strategy through Theo-
rem 4.3 satisfies Assumption 1.

Lemma 5.2: The control and noise policy of Theorem 4.3
satisfy Assumption 1.

Proof: Except for xt, pt only depends on t through
ΓT−t
L which converges to ΓL by stability. Using this we

see that pt converges to a stationary conditional distribution.
From this it follows that x has an invariarant measure. The
integrability assumptions are also satisfied since the functions
∇klt are just weighted fourth moments of x (which is a sum
of Gaussian and roots of Gaussian random variables).

Using these lemmas, we are able to show that control
with Fisher information as a regularizer is actually minimax
optimal with respect to Problem 3.

Theorem 5.3: If a solution to

C = tr(ΓL) + tr(ΓL)
1 +
√

2πλ+ 1

πλ

exists for some λ ≥ 0 using the optimal policy given in
Theorem 4.3 with the largest such λ is also minimax optimal
for Problem 3 under Assumption 1.

Note that the necessity of the solution existing merely
means that the control problem of attaining cost C needs
to be feasible, C ≥ tr ΓL. In this λ → ∞ reduces to the
ordinary optimal control problem without regularization.

Proof: According to Lemma 4.2 the optimal cost at a
given λ is

tr(ΓL) + tr(ΓL)
1 +
√

2πλ+ 1

πλ
.

Since we are constrained to costs less than or equal to C,
choosing the largest λ making the above equal to C maxi-
mizes the inverse of the trace of Fisher information subject
to our constraints. By Lemma 5.1, the optimal adversarial
estimator has variance equal to for all admissible strategies of
the control operator. Since Lemma 5.2 states the policies of
Theorem 4.3 are admissible under Assumption 1, maximum
likelihood together with these policies constitute a saddle
point.

VI. THE 1-D CASE WORKED OUT

To get a feeling for how a system evolves under the
regularized problem, let us plot the dynamics for the 1-D
case below. Here, we assume that the system is governed by

xt+1 = axt + ut + wt+1 + vt+1

where wt has variance 1 and λ = 1. A Monte Carlo average
of the trajectory of this system’s cost under the optimal policy
in Theorem 4.3, the theoretical average cost and adversarial
estimator variance are given below, in Figure 1.

Fig. 1. 1-D Cost and Estimator Variance.

We see that the control performance quickly reaches the
theoretical long-run average cost predicted by Theorem 5.3.
Meanwhile, the adversary’s variance is kept above 0 at a rate
of 1/T .



Next, in Figure 2, we plot the trade-off curve between con-
trol perfomance and asymptotic variance of the adversary’s
estimator.

Fig. 2. Parameter Privacy versus Control Performance: Here, the colored
region represents the achievable region for asymptotic estimator variance
and cheap control performance.

This final figure thus characterizes the trade-off between
privacy about the scalar a and cheap control performance.
Our proposed scheme is able to achieve all rates along the
boundary between the two regions.

VII. DISCUSSION AND CONCLUSION

In this article we have charactarized the trade-off between
cheap control and keeping knowledge about the A-matrix
private in a variance optimal manner. We also introduced
a computationally tractable procedure to solve the trade-off
problem, dubbed Fisher Information Regularized Control.
This gives an approach for how to mitigate the initial phase
of learning-based attacks, as considered in [2]. In particular,
this would lessen the requirements on the detector when the
attack is ongoing.

As for further work, noting the close theoretical analogue
to the work of [6], it would be interesting to attempt to
generalize the results here to the case where state privacy
is the central matter. One might expect similar results al-
though our work would have to be extended to cover partial
observability for this to make sense. This however would
be interesting in its own right. In a similar vein, it would
also be interesting to cover the case where the adversary
tries to learn other system parameters or different linear
functions thereof. It is also clear to us that we have made a
number of simplifying assumptions pertaining to the system’s
parameters. In particular, we would very much like to extend
our results to the case where the cost is also allowed to
depend on the control input, u.
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