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Synopsis
This work aims at improving the estimation of multi-exponential transverse relaxation times from noisy magnitude MRI images. A spatially
regularized Maximum-Likelihood estimator accounting for the Rician distribution of the noise was introduced. This approach is compared to a
Rician corrected least-square criterion with the introduction of spatial regularization. To deal with the large-scale optimization problem, a
majoration-minimization approach was used, allowing the implementation of both the maximum-likelihood estimator and the spatial
regularization. The importance of the regularization alongside the rician noise incorporation is shown both visually and numerically on magnitude
MRI images acquired on fruit samples.

Purpose
Multi-exponential relaxation times  and their associated amplitudes  in an MRI image provide very useful information for assessing the
constituents of the imaged sample. Typical examples are the detection of water compartments of plant tissues and the quanti�cation of myelin
water fraction for multiple sclerosis disease diagnosis . The estimation of the multi-exponential signal model from magnitude MRI images faces the
problem of a relatively low signal to noise ratio (SNR), with a Rician distributed noise and a large-scale optimization problem when dealing with the
entire image. Actually,  maps are composed of coherent regions with smooth variations between neighboring voxels. This study proposes an
e�cient reconstruction method of  values and amplitudes from magnitude images by incorporating this information in order to reduce the noise
e�ect. The main feature of the method is to use a regularized maximum likelihood estimator derived from a Rician likelihood and a Majorization-
Minimization approach coupled with the Levenberg-Marquardt algorithm to solve the large-scale optimization problem. Tests were conducted on
apples and the numerical results are given to illustrate the relevance of this method and to discuss its performances.

Methods 
For each voxel  of the MRI image, the measured signal  at echo time  is represented by a multi-exponential model:

with 

The data are subject to an additive Gaussian noise in the complex domain and therefore magnitude MRI data follows a Rician distribution :

 is the �rst kind modi�ed Bessel function of order 0 and  is the standard deviation of the noise which is usually estimated from the image
background.

For an MRI image with  voxels, the model parameters are usually estimated by minimizing the least-squares (LS) criterion 
 under the assumption of a Gaussian noise using nonlinear LS solvers such as Levenberg-Marquardt (LM). However,

this approach does not yield satisfying results when applied to magnitude data . Several solutions to overcome this issue are proposed by adding a
correction term to the LS criterion . In this study, the retained correction uses the expectation value of data model under the hypothesis of Rician
distribution  since it outperforms the other correction strategies:

 stands for the sum of squares. We refer to this method as Rician corrected LS (RCLS).

A more direct way for solving this estimation problem is to use a maximum likelihood (ML) estimator which comes down to minimize:

To solve this optimization problem when dealing with the entire image, a majorization-minimization (MM) technique was adopted . The resulting
MM-ML algorithm is summarized in �gure 1, the LM algorithm used in this method minimizes a set of LS criteria derived from the quadratic
majorization strategy.

A spatial regularization term based on a cost function  was also added to both criteria (  and ) to ensure spatial
smoothness of the estimated maps. In order to reduce the numerical complexity by maintaining variable separability between each voxel  and it's
neighboring voxels , the function  is majorized by  :

where  stands for the iteration number of the iterative optimization algorithm.

1,2 2 2 1

1 2

T2 I0
1 

2 

T2

T2

j (τ)yj τ

(τ, ) =Mj θj ∑
c=1

Nc

I0(c,j)
e

−
τ

T2(c,j)

= [ , . . . , ]θj I0(1,j)
T2(1,j)

I0( ,j)Nc
T2( ,j)Nc

3

( (τ) , (τ, ) , σ) = ( )PRician yj Mj θj

(τ)yj

σ2
e

−
⎡
⎣

+yj(τ)2 Mj(τ, )θj
2

2σ
2

⎤
⎦

J0

(τ) (τ, )yj Mj θj

σ2

J0 σ

Nv

∑Nv

j=1 ∥ (τ) − (τ, )∥yj Mj θj
2
2

5

3,4

5

= ,JRCLS ∑
j=1

Nv

∥ (τ) − [ (τ, ) , σ]∥yj Erice Mj θj
2
2

∥ ⋅ ∥2
2

5 

= [ − log( ( ))] .JML ∑
j=1

Nv

∑
τ=τ0

τn Mj(τ, )θj
2

2σ2
J0

(τ) (τ, )yj Mj θj

σ2

6

ψ( (i) − (i))θj θk JML JRCLS

j

k ψ 7

ψ( (i) − (i)) ≤ ψ(2 (i) − ( (i) + (i))) + ψ(2 (i) − ( (i + (i )) for i = 1, 2...2 ∗θj θk

1

2
θj θn

j
θn

k

1

2
θk θj )n θk )n Nc

n



08/11/2017 https://submissions.mirasmart.com/ISMRM2018/ViewSubmissionPublic.aspx?sei=1Vyo9mQQo

https://submissions.mirasmart.com/ISMRM2018/ViewSubmissionPublic.aspx?sei=1Vyo9mQQo 2/3

The criterion to be minimized at each iteration  of the MM algorithm is thus given by :

 contains the indices of voxel 's neighboors

The resulting methods are refereed to by RCPLS and MM-PML. The regularization function  and the weight vector  should be adapted to each
problem.

Results
We �rst acquired very high SNR images (128*128 voxels) on an apple with a 1.5T MRI (Avanto, Siemens) using a multiple-spin echo sequence
allowing the acquisition of up to 512 echo times per relaxation decay. Then we estimated the reference tri-exponentiels  and  maps which
were used afterwards for 100 Monte-Carlo signal simulations with a SNR of 108. Four methods were compared : RCLS, MM-ML, RCPLS and MM-
PML. A quadratic penalty function  was used with  for all the variables. Figure 2 gives the relative bias, the relative standard
deviation and the relative MSE per parameter. Figure 3 shows the reference  maps and the estimated ones.

Results in �gure 2 show that even though the bias is higher in the regularized version, the standard deviation was reduced signi�cantly yielding to
lower MSE. Figure 3 con�rms the results by showing that the regularized version yields to visually better results. The fruit structures can thus be
identi�ed, and the  maps are no longer drowned in the noise.

Concerning the numerical complexity, the MM-PML algorithm ran faster (41.5 s) than the RCPLS (107.96 s).
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Figures

The algorithm of the MM-ML.
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The relative bias is given in percentage and is computed across the image and the 100 Monte-Carlo realizations. The standard deviation is also
given in percentage and is computed across the 100 Monte-Carlo realizations and the average standard deviation of the di�erent voxels is shown.
Table 1 shows the results of both algorithms without regularization; Table 2 shows the results of the regularized version.

 

First column contains the real  maps used for this study, and then respectively :  maps reconstructed using :RCLS, RCPLS and MM-PML
algorithm. The MM-ML is not shown to avoid redundancy.
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