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ON EXTREMAL QUASI-MODULAR FORMS AFTER KANEKO AND KOIKE

F. PELLARIN, WITH AN APPENDIX BY G. NEBE

Abstract. Kaneko and Koike introduced the notion of extremal quasi-modular form and proposed conjec-

tures on their arithmetic properties. The aim of this note is to prove a rather sharp multiplicity estimate

for these quasi-modular forms. The note ends with discussions and partial answers around these conjec-

tures and an appendix by G. Nebe containing the proof of the integrality of the Fourier coefficients of the

normalised extremal quasimodular form of weight 14 and depth 1.

1. Introduction

In [5], Kaneko and Koike introduced the notion of extremal quasi-modular form and discussed
the potential arithmetic interest of these functions. Let E2(z), E4(z), E6(z) be the Eisenstein series
of weights 2, 4, 6 respectively, normalised to have limit one as the imaginary part ℑ(z) of z, the
variable in the complex upper-half plane H, tends to infinity. These functions have quite explicit
series expansions in Z[[q]] in terms of the uniformiser q = e2πiz , convergent for |q| < 1:

(1) E2(z) = 1− 24
∑

n≥1

σ1(n)q
n, E4(z) = 1 + 240

∑

n≥1

σ3(n)q
n, E6(z) = 1− 504

∑

n≥1

σ5(n)q
n,

where σk(n) denotes the sum
∑

d|n d
k, over the positive divisors of n. It is well known and easy

to prove that these functions are algebraically independent over C and the three dimensional poly-

nomial algebra M̃ := C[E2, E4, E6] is graded by the respective weights 2, 4, 6 of E2, E4, E6. A
quasi-modular form of weight w is a polynomial in E2, E4, E6 homogeneous of weight w. In partic-
ular such a function f , when non-zero, can be written in a unique way as

f = f0 + f1E2 + · · ·+ flE
l
2

with fi a modular form of weight w−2i for all i and fl 6= 0. We refer to the integer l as to the depth

of f . Let M̃≤l
w be the finite-dimensional vector space of quasi-modular forms of weight w ∈ 2Z and

depth ≤ l. We have

M̃ = C[E2, E4, E6] =
⋃

l≥0

⊕

w

M̃≤l
w .

By (1) the C-algebra M̃ embeds in the subring of series of C[[q]] which are converging for |q| < 1.
From now on, we identify quasi-modular forms with the formal series representing their q-expansions
(Fourier series expansions). If f ∈ C[[q]], we set

ν(f) := ordq=0(f) ∈ N ∪ {∞},

where N = {n ∈ Z : n ≥ 0}. This is the order of vanishing at q = 0 of the Fourier series of f and

defines a valuation over the C-algebra M̃ .
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The dimension δl(w) of M̃
≤l
w can be computed in the following way:

δl(w) =

l∑

i=0

d(w − 2i),

where d(w) denotes, for w ∈ 2Z, the dimension of the C-vector space Mw of modular forms of

weight w (which is also equal to M̃≤0
w ). We recall that

(2) d(w) =





0 if w < 0⌊
w
12

⌋
if w ≥ 0 and w ≡ 2 (mod 12)⌊

w
12

⌋
+ 1 in all the other cases.

If w − 2l = 2 with w even, M̃≤l
w is non-zero but there are no quasi-modular forms of weight w and

depth l because d(2) = 0.
The following definition is due to Kaneko and Koike, see [5].

Definition 1.1. A quasi-modular form f of weight w and depth l is extremal if

ν(f) = δl(w)− 1.

In [5] Kaneko and Koike address the following question.

Does there always exist an extremal quasimodular form of given weight w and depth l, provided
w and l satisfy the necessary constraint 0 ≤ 2l ≤ w, 2l 6= w−2? And is it unique when normalized?

We cannot answer this question in full generality, but in the present note we show that the
answer is affirmative if we suppose that l ≤ 4.

Assume that M̃≤l
w 6= {0}. We set:

νmax(l, w) := max{n ∈ N such that there exists f ∈ M̃≤l
w \ {0} with ν(f) = n} ∈ N.

Note that

(3) νmax(l, w) ≥ δl(w) − 1.

To see this we set δ = δl(w) and we consider a basis (g0, . . . , gδ−1) of M̃
≤l
w . Writing the q-expansion

of each element of the basis gi =
∑

j≥0 gi,jq
j ∈ C[[q]] the matrix

(4) (gi,j) 0≤i≤δ−1
0≤j≤δ−2

has rank ≤ δ − 1 which justifies (3).

Definition 1.2. A quasi-modular form f of weight w and depth ≤ l is analytically extremal if

ν(f) = νmax(l, w).

For any l, w such that M̃≤l
w 6= {0} there exists a unique normalised analytically extremal quasi-

modular form fl,w ∈ M̃≤l
w \{0}. We may reinforce the terminology by saying that an extremal form

in the sense of Definition 1.1 is algebraically extremal. The attribute ’algebraic’ is chosen because

the definition seems to rather involve the algebraic structure of the C-vector space M̃≤l
w .

Theorem 1.3. Let l be in the set {0, 1, 2, 3, 4} and assume that 0 ≤ 2l ≤ w, 2l 6= w − 2. Then a

non-zero quasi-modular form of weight w and depth l is algebraically extremal if and only if it is

analytically extremal.
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This is a direct consequence of Theorem 2.3 below and answers Kaneko and Koike’s question
from above, in the case l ≤ 4. For l in this range, the definitions 1.1 and 1.2 therefore coincide and
there is no need to specify ’algebraically’ or ’analytically’ as an attribute for extremality.

In [5], Kaneko and Koike ask whether an element in M̃≤l
k is uniquely determined by its first δl(k)

Fourier coefficients and if one can prescribe these coefficients arbitrarily. In other words, they ask

if there exists a basis of M̃≤l
k the q-expansions of the elements of which agree with the canonical

diagonals basis (1, q, q2, . . .) of the vector space C[[q]] on its first δl(w) elements (we may call this

a ’diagonal basis’ of M̃≤l
k ). For l = 0 we have the so-called Miller bases which answer positively

to this question; they can be easily constructed by the fact that the algebra of modular forms has
dimension 2. For higher depth we do not know a general answer to the question but Theorem 2.3
implies that such bases exist for l ≤ 4. Indeed, completing the matrix in (4) by adding a column,
U = (fi,j)0≤i,j≤δ−1 is non-singular, because otherwise we would be able to construct, by linear

combination, a non-zero element f ∈ M̃≤l
k \ {0} such that ν(f) > νmax(l, w) = δl(w) − 1, which

is impossible (the last equality follows from Theorem 1.3). Hence ’diagonal bases’ for M̃≤l
k , l ≤ 4,

exist.

2. A multiplicity estimate

How large can be νmax(l,m)? Classically, a simple multiplicity estimate holds on f ∈ M̃≤l
w . For

example it is easy to show, by using an elementary resultant argument that:

νmax(l, w) ≤ 3δl(w).

The main result of this section is Theorem 2.3, where we prove a rather sharp multiplicity estimate
for quasi-modular forms. For w ∈ Z we consider the difference

κl(w) := d((l + 1)w)− δl(w) = dimC(M(l+1)w)− dimC(M̃
≤l
w ) ∈ Z.

We have the following elementary lemma.

Lemma 2.1. For all l ≥ 0 the sequence (κl(w))w≥0,2|w is non-negative, increasing and there exists

an integer 0 ≤ κl ≤ 6−1(3 + l)(4 + l) such that for all w ≥ 2l + 12, κl(w) = κl. Moreover,

κl(w) = κl = 0 for all w ∈ 2Z if l ∈ {0, 1, 2, 3, 4}.

Proof. We note that if w > 12 then d(w) = 1 + d(w − 12). Hence, if w ≥ 2l + 12 we can write
w = w′ + 12 with w′ − 2i ≥ 0 for all i ≤ l and:

κl(w) = l+ 1 + d((l + 1)w′)− (l + 1)−
l∑

i=0

d(w′ − 2i) = κl(w
′).

From this computation we also see that the sequence is increasing. Moreover, since d(w) ≤ w
12 + 1

for all w ≥ 0 by (2), we have the trivial upper bound

κl(w) ≤
(l + 1)(2l + 12)

12
+ 1

if w ≥ 0 which yields the one for κl. Finally, the fact that κl(w) = 0 for all w ≥ 0 and for all
l ∈ {0, 1, 2, 3, 4} is trivial for l = 0 and otherwise follows from the following identities, valid for any
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w ∈ 2Z:

d(2w) = d(w) + d(w − 2),

d(3w) = d(w) + d(w − 2) + d(w − 4),

d(4w) = d(w) + d(w − 2) + d(w − 4) + d(w − 6),

d(5w) = d(w) + d(w − 2) + d(w − 4) + d(w − 6) + d(w − 8),

which can be proved with elementary computations using (2) and are left to the reader. �

Remark 2.2. The first coefficients of the sequence κl are

0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19 . . .

Let a(n) be the cardinality of the set {(i, j, k) ∈ N3 : i+ 2j + 3k = n} (set to zero if n ≤ 0). Then,
the first coefficients of the sequence κl agree with the first coefficients of the sequence a(n − 6).
Numerical experiments suggest that

κl(w) = a(l)− a(l − w/2), ∀l ≥ 0, w ∈ 2Z.

Theorem 2.3 (Multiplicity estimate). The following inequality holds:

νmax(l, w) ≤ δl(w)− 1 + κl.

Proof. For γ =

(
a

c

b

d

)
∈ Γ := SL2(Z) and z ∈ H the complex upper-half plane, we write

Jγ(z) = cz + d and Lγ(z) =
c

cz + d
.

We will use the identity map ρ1 : SL2(Z) → SL2(Z) so that ρ1(γ) = γ, and its symmetric powers of
order l ≥ 1:

ρl = Sl(ρ1) : SL2(Z) → SLl+1(Z),

realised in the space of polynomial homogeneous of degree s = l + 1 with coefficients in C:

ρl

((
a

c

b

d

))
(Xs−rY r) = (aX + cY )s−r(bX + dY )r.

For example, for γ as above, in the basis (X2, XY, Y 2):

ρ2(γ) =




a2 ab b2

2ac ad+ bc 2bd
c2 cd d2


 .

Let us also consider the derivation D of C((q)) induced by:

D = (2πi)−1 d

dz
= q

d

dq
.

Then we have the Ramanujan’s differential system:

(5) D(E2) =
1

12
(E2

2 − E4), D(E4) =
1

3
(E2E4 − E6), D(E6) =

1

2
(E2E6 − E2

4).

Let f ∈ M̃≤l
w be a quasi-modular form of weightw and depth≤ l. There exists, uniquely determined,

a polynomial

Pf ∈ Hol(H)[X ]
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of degree equal to the depth of f with coefficients which are holomorphic functions H → C, such
that for all γ ∈ Γ and for all z ∈ H, we have the functional equation:

(6) f(γ(z)) = Jγ(z)
wPf (Lγ(z)).

It is plain that the coefficients of Pf are quasi-modular forms. In particular, we can identify Pf

with an element of C[[q]][X ]. Note that additionally, the constant term of Pf is equal to f . We
write Qf (x) = xlPf (1/x) ∈ C[[q]][x] and we set:

Ff (z) =




Qf
∂Qf

∂x
∂2Qf

∂x2

∂3Qf

∂x3

...
∂lQf

∂xl




x=z

.

This defines a (weak) vectorial modular form of weight w − l associated to ρl. In other words, the
above is a holomorphic function H → Cl (column) which satisfies the following property: for all
γ ∈ SL2(Z) and for all z ∈ H,

Ff (γ(z)) = Jγ(z)ρl(γ) · Ff (z).

The dimension of the target space of Ff depends on l but not on the depth of f if it is < l. The
D-Wronskian

Wf (z) = det(F (z), D(F )(z), . . . , Dl−1(F )(z))

is easily seen to be a modular form of weight w(l+1) and furthermore, we have ν(W (Ff )) ≥ ν(f).
To fix the ideas of the construction, the reader can check the following formula by using (5):

W (FE2
) = −

E4

2πi
.

If f ∈ M̃≤l
w is non-zero we have that Qf has degree l in X and the functions

(
∂jQf

∂xj

)

x=z

, j = 0, . . . , l

are linearly independent over C so that W (Ff ) ∈ M(l+1)w \ {0}. We now look at W (Ff ) with
f = fl,w. By Lemma 2.1:

δl(w)− 1 ≥ d((l + 1)w)− 1− κl

≥ ν(W (Ffl,w ))− κl

≥ νmax(l, w)− κl.

If l ∈ {0, . . . , 4}, then κl = 0. Therefore, νmax(l, w) = δl(w) − 1. �

Proof of Theorem 1.3. We suppose that l ∈ {0, 1, 2, 3, 4}. Lemma 2.1 tells us that κl(w) = κl = 0
for all w ∈ 2Z, w ≥ 0. Combining (3), Theorem 2.3 we see that νmax(l, w) = δl(w) − 1. Hence an
algebraically extremal quasi-modular form of weight w and depth l is also analytically extremal.

Let us consider w ∈ 2N. We have the flag of vector spaces

Mw ( M̃≤1
w ( · · · ( M̃

≤w
2
−2

w ( M̃
≤w

2

w

which implies νmax(0, w) < νmax(1, w) < · · · < νmax(
w
2 − 2, w) < νmax(

w
2 , w). This means that if

l 6= w
2 − 1, an analytically extremal quasi-modular form is algebraically extremal. �
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Remark 2.4. For l ≤ 4 we have dimC(M̃
≤l
w ) = dimC(M(l+1)w) but we have not constructed natural

isomorphisms M̃≤l
w

∼= M(l+1)w. Hence, ’diagonal bases’ exist for l ≤ 4 but we have not provided

a way to construct them explicitly. If V := M̃≤l
w 6= {0} the map f 7→ W (Ff ) is homogeneous of

weight l + 1 over V (for example, if l = 1, it is quadratic). We consider its polarisation

V ⊕(l+1) Φ
−→ M(l+1)w.

We address the following problem. Characterise the l-tuples (f1, . . . , fl) ∈ V ⊕l such that the map
V ∋ f 7→ Φ(f, f1, . . . , fl) ∈ M(l+1)w is an isomorphism of C-vector spaces.

3. Further remarks in depth one

It belongs to Kaneko and Koike the discovery (in [5]) that (algebraically) extremal quasi-modular
forms of weight one and two are solutions of linear differential equations belonging to one-parameter
families of hypergeometric type. One of the reasons for which the terminology ’hypergeometric’ is
used is that moreover, the (algebraically) extremal forms (in depth one and two) can also be
described inductively by using certain contiguity equations similar to those of Gauss’ hypergeometric
function first observed by Kaneko and Koike (see Lemma 3.7). The author noticed, in other works,
that these contiguity equations can also be viewed as an avatar of an analytic family of Drinfeld
modules of rank two.

From now on, we focus on the case of depth one and weight multiple of six. We write:

∆ =
E3

4 − E2
6

1728
∈ M12

and we set D = D1. The following is a simple consequence of [5, Theorem 2.1 part (1)] observing
that D(∆) = E2∆ (which is clear from (5)). The symbol ∆1/2 denotes the unique normalised
square root of ∆ in uC[[q]], where u := q1/2 = eπiz . This can also be viewed as a holomorphic,
nowhere vanishing function over H.

Proposition 3.1. If w = 6k, k ∈ N, then the function f1,6k∆
−k/2 is the unique solution in uC[[q]]

of the differential equation

(7) D2(X) =
k2

4
E4X.

Proof. First, we acknowledge that this is a direct consequence of the results of [5]. By [5, Theorem
2.1 part (1)] we have

(
D2 −

w

6
E2D +

w(w − 1)

12
D(E2)

)
(f1,w) = 0, w ∈ 6N,

and f1,w is the unique such solution in Q[[q]]. Now, in the skew C-algebra C[E2, E4, E6,∆
− 1

2 ][D]

with Dc = cD +D(c), c ∈ C[E2, E4, E6,∆
− 1

2 ], we have

D2 −
w

6
E2D +

w(w − 1)

12
D(E2) = ∆

k
2

(
D2 −

k2

4
E4

)
∆− k

2

and this concludes the proof.
We can also proceed independently from [5, Theorem 2.1] by using Theorem 1.3 and some basic

properties of Rankin-Cohen brackets in the following way. Note that δ1(6k) = δ1(6k + 4) = k + 1
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for k ∈ N. Hence, νmax(1, 6k) = νmax(1, 6k + 4) = k, k ∈ N. Now observe that

gk :=

(
∆

k
2

(
D2 −

k2

4
E4

)
∆− k

2

)
(f1,6k) = θ

(1)
6k−1(f1,6k) ∈ M̃≤1

6k+4

in the notation of [5, p. 467], thanks to [5, Proposition 3.3] (the proof of which uses the notion
of sl2-triple). Hence looking at q-expansions and using that f1,6k = qk + o(qk+1) we see that
ν(gk) > νmax(1, 6k + 4) and gk = 0 for all k. �

A normalised extremal quasi-modular form (of weight w and depth ≤ l) has its q-expansion which
is defined over Q; in other words, the coefficients of its q-expansion are rational numbers. By the
fact that the q-expansions of E2, E4, E6 are rational integers, it is also clear that the denominators
of these rational numbers are bounded in absolute value depending on l and w. It is then natural to
ask for various properties of these rational coefficients such as upper bounds for the primes dividing
these denominators in the style of Clausen-von Staudt Theorem.

We recall [5, Conjecture 2 p. 469]:

Conjecture 3.2 (Kaneko and Koike). If l ∈ {1, 2, 3, 4}, then fl,w belongs to Z[ 1p : p < w][[q]].

Furthermore, except for f1,2 = E2, the coefficients of the Fourier series of fl,w are all positive.

This supports Kaneko and Koike’s prediction that these coefficients could be the values of some
“counting function of geometric nature”. In the direction of this conjecture, we have:

Theorem 3.3. For all k ≥ 0 we have f1,6k ∈ Z[ 1p : p < 6k][[q]].

This result has been also independently noticed by Kaneko, along with the analogue statement
for the case l = 2 of the conjecture, as an application of the techniques introduced in [4, 5]. We
propose here to revisit these techniques, including the arguments of [5]. The novel observation is
the use of certain identities of ’Lax type’ (see Lemmas 3.4 and 3.5 below). We hope that these
techniques can contribute to fully solve the conjecture.

We suppose that k is now an indeterminate and we set B := Q(k)[E2, E4, E6,∆
− 1

2 ]. Note that
B embeds in the valued field Q(k)((u)) where u2 = q. Also, B and Q(k)((u)) are endowed with
the Q((u))-linear automorphism σ defined by σ(k) = k+1 and also with the Q(k)-linear derivation
induced by the system (5) and by D(u) = u

2 . These two Q-vector space endomorphisms satisfy the
commutation rules:

Dσ = σD, Dc = cD +D(c), σc = σ(c)σ, c ∈ Q(k)((u))

and we can consider the skew polynomial Ore algebras

B[D, σ] ⊂ Q(k)((u))[D, σ]

which can be identified with sub-algebras of the Q-linear endomorphisms of B ⊂ Q(k)((u)). Let Ψ
be in B[D, σ]. Then, the map

∂Ψ : B[D, σ] → B[D, σ], ∂Ψ(x) = [x,Ψ] = xΨ −Ψx

is a derivation. Also, B[D, σ] is equipped with the Q[E2, E4, E6,∆
− 1

2 ]-linear automorphism

Ψ 7→ Ψ(1) := σΨσ−1.

In other words, Ψ(1) ∈ B[D, σ] is the unique element such that Ψ(1)σ = σΨ and clearly, we can also
define Ψ(i) for all i ∈ Z. In addition, there is an obvious commutation rule between X 7→ X(1) and
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δ•. Similar properties as the above hold in the algebra Q(k)((u))[D, σ]. We set:

E := D2 −
k2

4
E4 ∈ B[D, σ].

We are interested in the Q(k)-vector space

H := {Ψ ∈ B[D, σ] : ∂E(Ψ) ∈ B[D, σ]E}

which is the intersection between the left ideal generated by E and the image of ∂E in B[D, σ].
Clearly, Q(k) ⊂ H . We set:

F := ∆− 1

2 (E2E4 + (5 + 6k)E6 + 12E2D)σ ∈ B[D, σ].

Lemma 3.4. We have Q(k)[F ] ⊂ H.

Proof. It suffices to show that F ∈ H . This follows from an elementary computation which uses
(5). More explicitly, we have the formula (our first identity of ’Lax type’)

(8) δE(F ) = 4∆− 1

2 (E2E4 + 2E6)σE.

�

Let µ(k) be an element of Q(k). We set

Gµ := σ2 − µ(k)

(
1−

R

∆
1

2

σ

)
∈ B[σ].

Lemma 3.5. The following identity holds:

(9) E(2)Gµ −GµE = µ(k)E4

(
F

12
− (k + 1)

)
.

Proof. This also follows from an elementary computation, independent this time from (5). Note
that the identity is independent of the choice of µ(k). �

The identity (9) is our second identity of ’Lax type’. We now proceed to construct formal
solutions of (7). Let Y be a formal solution of the equation D(Y ) = k

2Y (in terms of analytic

functions of two variables, we would have Y = ekzπi). Since σ and D commute in Q(k)((u))[D, σ],
we can give the field

L = Q(k)((u))(Y )

a structure of Q(k)((u))[D, σ]-module by setting σ(Y ) = Y u. If f ∈ L, and Ψ ∈ Q(k)((u))[D, σ] we
denote by Ψ(f) the action of Ψ on f for this module structure (evaluation). It is easy to see that
Y and Y −1 are linearly independent over Q(k)((u)).

Let (cn(x))n≥0 be the sequence of Q(x) with c0 = 1, uniquely defined inductively as follows:

(10) cn(x) =
240x2

n(n+ 2x)

n∑

i=1

σ3(i)cn−i(x).

This is just the recursive rule induced by (7) and we have

Ker(E) = Q(k)ϕ1 ⊕Q(k)ϕ2 ⊂ L

where

ϕ1 = Y −1
∑

n≥0

cn(−k/2)qn, ϕ2 = Y
∑

n≥0

cn(k/2)q
n.
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In particular, we have

(11) ϕ2 = Y

(
1 +

60k2

k + 1
q + o(q)

)
∈ YQ(k)((q)).

It is also easy to see that ϕ1 and ϕ2 are linearly independent over Q(k)((u)).

Lemma 3.6. We have

Gµ(ϕ) = Y o(1)

in YQ(k)((q)) if and only if

(12) µ(k) =
(1 + k)(2 + k)

12(7 + 6k)(11 + 6k)
.

Proof. This is straightforward using (11). We have

σ2(ϕ2) = qY

(
1 +

60(k + 2)2

k + 3
q + o(q)

)
.

Moreover, we have, by the expansion ∆− 1

2 = u−1 +12u+ o(u3) (which easily follows from, say, the
product formula of ∆),

µ(k)

(
1−

E6

∆
1

2

σ

)
(ϕ2) = µ(k)Y

(
−
12(7 + 6k)(11 + 6k)

(1 + k)(2 + k)
q + o(q)

)
,

and the result follows. �

From now on we set µ(k) as in (12) and G = Gµ.

Lemma 3.7. We have G(ϕ2) = 0.

Proof. We set V := Ker(E) ∩ YQ(k)((u)); this is a subvector space over Q(k) of L. Note that
ϕ := ϕ2 ∈ V and that ϕ1 6∈ V . Indeed otherwise we would have ϕ1 ∈ YQ(k)((u)) contradicting
the above-mentioned property that Y, Y −1 are linearly independent over Q(k)((u)). Hence V is
one dimensional, generated by ϕ. By Lemma 3.4, F determines an endomorphism of V = Q(k)ϕ
and therefore ϕ is an eigenvector of F with eigenvalue λ ∈ Q(k). By using (10) this can be easily
computed:

λ = k + 1.

By Lemma 3.5, E(2)(G(ϕ)) = 0 and we immediately see that σ−2(G(ϕ)) ∈ Ker(E). Hence, G(ϕ) ∈
Q(k)σ2(ϕ). We write G(ϕ) = ησ2(ϕ) with η ∈ Q(k). By Lemma 3.6, η = 0. �

Proof of Theorem 3.3. By using (10) and induction, we see that for all i, j ≥ 0, σi(cj(k/2)) ∈ Q(k)
is regular at k = 0. Hence, by Proposition 3.1, for all integer i ≥ 0, writing

σi(ϕ2)|k=0 = ui
∑

j≥0

ci,jq
j ,

we have

f1,6i∆
−i/2 = ui

∑

i≥0

ci,jq
j .

To finish our proof, all we need to show is that if p is a prime number dividing the denominator of
ci,j , then p < 6i. The property is obvious for i = 0; indeed, one immediately sees that ϕ2|k=0 = 1.
For i = 1 we know that f1,6 = (E2E4 − E6)/720 has q-expansion defined over Z[ 12 ,

1
3 ,

1
5 ] because
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720 = 24 · 32 · 5. Therefore (σ(ϕ2))|k=0 = f1,6∆
− 1

2 has the required property (notice that ∆
1

2 is
defined over Z).

We now suppose, by induction hypothesis, that for all i′ < i, if p divides the denominator of ci′,j
for some j, then p < 6i′. Since the q-expansion of E6∆

− 1

2 is defined over Z and does not depend on
k, we have that the q-expansion ui

∑
j≥0 rjq

j of (σi−2(ϕ2) − E6∆
− 1

2σi−1(ϕ2))|k=0 is well defined
and has rational coefficients whose primes dividing the denominators do not exceed 6i − 6. But
now,

ci,j =
i(i− 1)

12(6i− 1)(6i− 5)
rj ,

which implies that if p is a prime dividing the denominator of ci,j , then p < 6i. Notice that the
argument must be sligthly modified if p = 2, 3. The proof of the Theorem now follows easily by the
fact that f1,6i = ∆i/2(σi(ϕ2))|k=0, because, as previously noticed, the q-expansion of ∆

1

2 is defined
over Z. �

Remark 3.8. We have been unable to show that f1,6i has positive Fourier coefficients for i ≥ 0.

However, from (10), it is easy to deduce that the Fourier coefficients of f1,6i∆
−i/2 are non-negative,

for all i ≥ 0.

We conclude the paper with a prediction. In [5], several examples are given, providing experi-
mental evidences of the truth of Conjecture 3.2. We conducted similar numerical examples and we
noticed that many normalised extremal quasi-modular forms fl,w with l ≤ 4 seem to have integral
Fourier coefficients. It is also apparent that this phenomenon ceases to hold for l > 4. Let El
be the set of integers w such that fl,w ∈ Z[[q]]. We propose the following, based on numerical
investigations we did.

Conjecture 3.9. If l ∈ {1, 2, 3, 4}, then El is an infinite set. If l > 4, then El is a finite set.

If l > 4, we did not find any candidate for an element of El.

4. Appendix by G. Nebe: an example

In ’small’ weight, it is easy to show that an extremal quasi-modular form of depth 1 has positive

integral coefficients. For example, we have used that f1,6 = D(E4)
240 ∈ Z[ 12 ,

1
3 ,

1
5 ][[q]] (and the coeffi-

cients are positive) but even better this series is in Z[[q]] by (1). Apart from this and other simple
examples, it is not easy to construct extremal quasi-modular forms in Z[[q]] with non-negative co-
efficients. As Kaneko and Koike pointed out in [5], the normalised extremal quasi-modular form of
weight 6 and depth 3

f3,6 =
∑

i≥2

ciq
i

(with c2 = 1) has the following property. The coefficient cd is equal to the number of simply ramified
coverings of genus 2 and degree d of an elliptic curve over C hence providing another example of
normalised extremal quasi-modular form with positive integral coefficients (see [2, 6]).

In this appendix we show that these properties are also shared with the normalised extremal
form f1,14. Let us consider the theta series (of weight 12) associated to the Leech lattice Λ24:

θΛ24
= E12 −

65520

691
∆

where E12 denotes the normalised Eisenstein series of weight 12. We have θΛ24
∈ Z[[q]] and the

coefficients are non-negative. By using the well known fact that θΛ24
is an extremal modular form
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of weight 12 and that νmax(1, 14) = 2 (by Theorem 1.3 or by numerical computations), we easily
deduce that:

f1,14 =
1

393120
D(θΛ24

).

Here,

393120 = 25 · 33 · 5 · 7 · 13

is twice the number of vectors of square norm 2 in Λ24 and we see that f1,14 ∈ Z[ 12 ,
1
3 ,

1
5 ,

1
7 ,

1
13 ][[q]]

while the coefficients of the Fourier series are all non-negative, in agreement with Conjecture 3.2.
But more is true.

Theorem 4.1. We have f1,14 ∈ Z[[q]].

Proof. To prove the theorem let L := Λ24 be the Leech lattice and A := 393120 = 25 · 33 · 5 · 7 · 13.
By the above

f1,14 = A−1q

∞∑

a=1

a|La|q
a where La = {λ ∈ L | ‖λ‖2 = a}.

To show the theorem we need to show that A divides a|La| for all a. We do this prime by prime.
Let G be the automorphism group of L. Then G ∼= 2.Co1 has order |G| = 22239547211 · 13 · 23

and acts on the finite set La for all a > 0. For a subgroup S ≤ G and λ ∈ La we put

S · λ := {σ(λ) | σ ∈ S}

to denote the orbit of λ under S. Then La is a disjoint union of S-orbits and, by Lagrange theorem,

|S · λ| = |S|
|U| where U = {σ ∈ S | σ(λ) = λ} is the stabiliser in S of λ.

To see that 5 · 7 · 13 divides |La| let p ∈ {5, 7, 13}. Then the Sylow-p-subgroup S of G acts fixed
point freely on the non-zero vectors in L. So the stabiliser U of any λ ∈ La has index > 1 and all
S-orbits in La have length a multiple of p.

Now let S be a Sylow-3-subgroup of G, so S ≤ G has order 39. With Magma [1] we computed the
low-index subgroups of S of index 1, 3, and 9. For all 101 of these 102 subgroups U , the sublattice
of L consisting of all elements of L that are fixed by all generators of U is {0}. For the other
subgroup U (of index 9 in S) this sublattice is isometric to (3)A2. In particular all elements in the
lattice have norm divisible by 3. So whenever there is λ ∈ La such that |S · λ| ≤ 9, then |S · λ| = 9
and λ lies in a sublattice of L that is isometric to (3)A2. In particular a is a multiple of 3. This
shows that 9 divides |La| and 33 divides a|La| for all a > 0.

To see the divisibility by 25, we could argue the same way, but Magma failed to compute the
low index subgroups of the Sylow-2-subgroup (of order 222) of G up to index 16. Instead let σ ∈ G
be an element of order 16 (it is not unique, but the following holds for all three conjugacy classes).
Let

K := {λ ∈ L | σ8(λ) = λ} and N := {λ ∈ L | σ8(λ) = −λ}.

We compute that K = (2)E8 is the rescaled Barnes-Wall lattice of dimension 8 and N ∼= Λ16 is
the Barnes-Wall lattice of dimension 16. By [3, Theorem 14] all non-zero shells Ka (a > 0) have a
cardinality divisible by 2 · 8 = 24 and similarly 2 · 16 = 25 divides |Na| for all a > 0. Note also that
Ka = ∅, if a is odd.

Let Ma := La \ (Ka ∪Na). Then

Ma = {λ ∈ La | |〈σ〉 · λ| = 16 and − λ 6∈ 〈σ〉 · λ}
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is a disjoint union of an even number of 〈σ〉-orbits of length 16. In particular Ma has a cardinality
divisible by 2 · 16 = 25. By the above |Na| is a multiple of 25 and Ka is either empty or a is even
and |Ka| is a multiple of 24. In total we have a|La| = a|Ma|+ a|Na|+ a|Ka| is a multiple of 25. �

Note that the divisibility by 2533 of the coefficients of D(ΘΛ24
) also follows from [7, Theorem

1.2 and 1.3].
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