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Abstract

Converting surfaces into a volume has a long interest in several communities, e.g. the
computational mechanics community. This process involves having specific surfaces which can
be converted into a solid, i.e., a volume. This paper presents in a clear and brief manner
the topological properties conserved during surface to volume transformation. We state the
limits of this approach if a specific volume structure is required. Volume structures can be a
coarse volume organization or meshes. For that purpose, surface manifolds are mathematically
turned into a volume manifold. Topological tools are presented to understand which properties
are transmitted to the volume and which ones are unset. Developments are submitted both
for continuous and discrete manifolds using CW-complexes.

1 Introduction

Problematic of surface to volume transformation finds its interest in various fields of application.
For many years, different approaches have been used to solve this conversion. Despite this particular
interest, it currently not exists generic methods to generate a volume with a prescribed simplicial
complex connectivity from arbitrary surfaces. Such notes are given to better understand topological
aspects relative to this issue. This investigation will serves application fields who apply physics on
solid domains [Maq19].

Current challenges in computational mechanics and more globally in the physics field are the
generation of volume domains which are structured. For instance, pure hexahedral meshes have
always been greatly appreciated. They stand for a more homogeneous solution field with less local
effects and a more stable computation during large deformations. Structured mesh generation goes
with topology. Isogeometric analysis [HCB05, CHB09, Occ18] is a new method that represents
the geometry better than standard meshes. Despite this benefit, isogeometric meshes also need
structured domains. Attempts to compute fields with a specific symmetry embedded in volumes are
on current research [CHRVS18] to produce hexahedral meshes [RS15, VCD+16, SRUL16, SVB17].

Furthermore, today’s artificial intelligence applications need relevant ordered data. In other
words, the discretization of the geometry should be the same in order to learn important informa-
tion from identical structures [Maq19, LBG18].

We present mathematical formulations on topological properties of 2, 3-dimensional manifolds
embedded in R3. In particular with a goal to convert many 2-dimensional manifolds into a 3-
dimensional manifold. Using the well known generalized Euler characteristic and references in
the literature, our developments will be securely anchored. Close links between surfaces and its
associated volume are then determined.

Presented concepts are given without prerequisites, references in the topology field are recom-
mended [HLS00, Hat01, Jub09, SOA07]. In the following we consider only finite and connected
volumes constructed from one or more surfaces.
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2 Surfaces to volume conversion

We strive to find topological properties of 3-dimensional manifolds V that respect some constraints
inherited from topological and geometrical properties of a surface M , and in the following from
many surfaces M . We seek for constraints provided from the surface to be mapped into the
volume manifold. Into a volume manifold V , the number of volumes k3 is defined by equation
(1a). Naturally, the considered surface M becomes the boundary of V as formulated in equation
(1b).

k3 = −χ(V ) + k0 − k1 + k2, (1a)

s.t. {k0M − k1M + k2M = χ(∂V ) = χ(Mc) & |∂V | = 1}. (1b)

χ(V ) is the Euler characteristic of the volume V and ∂V its boundary. kiM are the CW-
complex or simplicial complex entities of the closed surface Mc. Likewise, ki are related to V . Mc

is given with no boundaries, i.e., without 1-dimensional manifolds and is provided from a surface
M possibly with boundaries. Since equation (1a) has overabundant unknown terms, and in general
not enough constraints in equation (1b), closed surface Mc can refer to many associated volumes
V with different structures. The constraint |∂V | = 1 if the volume manifold is built from only one
compact, connected and oriented 2-dimensional manifold. Hence, for one given closed surface Mc,
there exists many different volume structures composed by more or less k3 entities that satisfying
above constraints. Depending on the surface features, choosing the best volume structure is done
by analyzing geometry. It leads us to the following statement in proposition 1.

Proposition 1 Non-isomorphic associated volumes. Let Mc be a closed compact ori-
ented 2-dimensional manifold M . If we want to turn Mc into a volume manifold V , there exists
a set UV with an infinite size of non-isomorphic volume structures that satisfies constraints
provided in equation (1b):

Mc ⇒ V i 6≡iso V j ,∀i, j < |UV | =∞. (2)

Where ≡iso denotes the isomorphic equivalence in terms of simplicial complex entities, i.e.,
related to the number of entities of each dimension. Transformations with a discontinuous
function are permitted.

Non-isomorphism between different volumes V in equation (2) differ just by number of volumes
k3, number of surfaces k2 and number of edges k1 for a same χ(V ). In other words, two volumes
are isomorphic if they have the same number of simplices of each dimension n, n ∈ {0, 1, 2, 3},
if a mapping with a discontinuous function is allowed. Homeomorphic volumes are isomorphic
volumes holding exactly the same simplicial complex connectivity. The set UV has an infinite size
as explained in proof 1.

Proof 1 Infinite size of the set UV . The set of non-isomorphic volumes UV of an associ-
ated closed surface Mc has an infinite size because of the properties of the 3-simplex subdivision.
It is always possible to subdivide a n-simplex in the way that its (n − 1)-simplex entities re-
mains topologically and geometrically the same; and the created manifold is also embedded in
the same n-dimensional topological space, so:

|UV | =∞,∀V. (3)

2



Taking into account previous developments and constraints, we now seek to find which vol-
ume Euler characteristic χ(V ) is interesting. In other words, we expect a 3-dimensional manifold
embedded in R3 with specific properties inherited from a surface M or several surfaces M . Fur-
thermore, a volume which lies in R3 with one ore more (n−1)-dimensional compact, connected and
orientable entities is desired. However, we can not accept any 1-dimensional entity, i.e., bound-
aries of 2-dimensional manifolds. Finally, equation (4) and equation (5) in proposition 2 state our
interesting volume Euler characteristics.

Proposition 2 Equation 2χ(V ) = χ(Mc). In R3, a 3-dimensional manifold V constructed
from a compact, connected and oriented 2-dimensional manifold Mc is restricted to the follow-
ing volume Euler characteristic χ(V ):

χ(V ) =
χ(Mc)

2
= 1− g. (4)

Using g as the genus of the surface M or the closed surface Mc, i.e., g(M) or g(Mc). Indeed,
adding 1-dimensional manifold entities to a 2-dimensional one does not change its genus g. If
several compact, connected and oriented 2-dimensional manifolds are used to create the volume,
the disjoint union of Euler characteristics implies:

χ(V ) =
χ(M1

c tM2
c t ... tMns

c )

2
=

ns∑
i=1

χ(M i
c)

2
=

ns∑
i=1

1− g(M i
c). (5)

With ns the number of given surface manifolds which serve to generate the volume V . An
example is shown in figure 1.

This result can be demonstrated using CW-complex properties and Betti numbers in a topo-
logical space R3 [Dam10], see equation (9) in proof 2. Notice that meshes are simplicial complexes
due to their combinatorial form. Remember that CW-complexes are themselves both simplicial
complexes and continuous entities on which homotopy theory is applicable.

Proof 2 Equation 2χ(V ) = χ(Mc). To turn any 3-dimensional volume manifold V embedded
in R3 into a topological object homeomorphic to the volume ball B3, we have to add CW-
complex objects to V . We first create g surfaces k2, i.e., for each 1-dimensional tunnel, see
e.g. figure 2 (A). Secondly, we create two edges k1 and one surface k2 for each 2-dimensional
cavity, see e.g. figure 2 (B):

χ(V ) = k0 − (k1 + 2b2) + (k2 + b1 + b2)− k3, (6)

= k0S − k1S + k2S − 2b2 + b1 + b2 − k3, (7)

= χ(S) + b1 − b2 − 1, (8)

= χ(S)− χ(V )⇒ 2χ(V ) = χ(S). (9)

The Betti number b3 = 0, because the topological space R3 is considered. S is the set of closed
surfaces, S = tM i

c. k0 = k0S , k1 = k1S and k2 = k2S . S remains unchanged. k3 = 1 implies
only one connected volume.

Developments leading to equation (9) establish the topological relation between the associated
volume V of many closed surfaces M i

c . We can now express in equation (10) the Betti numbers of
V using the previous results.
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Figure 1: A 3-dimensional manifold V . Three compact, connected and oriented 2-dimensional
manifolds M1

c , M2
c and M3

c are used to determine V . According to Betti numbers bi, χ(V ) =
1− 3 + 2 = 0. Using equation (5) the same result is found.

Figure 2: 3-dimensional manifold V to volume ball B3 conversion using CW-complexes. (A) g
surfaces k2 are created for a genus-g surface (red surface), i.e., for each tunnel. (B) Two edges k1
and one surface k2 are constructed (red curves and surface) for a cavity. Black and blue objects
are not created beacause they are lying on a lower dimensional object than a volume.
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b0 = 1,

b1 = b0 + b2 − χ(Mc)
2 or b1 = b0 + b2 −

∑ns

i=1
χ(Mi

c)
2 ,

b2 = |M |.
(10)

With |M | the number of connected 2-dimensional manifolds used to define V minus one. If
only one surface manifold is used to generate the volume, |M | = 0. We can now re-write equation
(1) to include interesting volume Euler characteristics and needed topological space constraints
inherited from several surfaces. This idea is formulated in equation (11).

k3 =
[ ns∑
i=1

1− g(M i
c)
]

+ k0 − k1 + k2, (11a)

s.t. {
ns∑
i=1

(ki0M − k
i
1M + ki2M ) = χ(∂V ) =

ns∑
i=1

χ(M i
c)} and (11b)

{|∂V | = ns & V ∈ R3 & ∂V ≡ tM i
c}. (11c)

Where≡ denotes the classic geometric equivalence: if the ns surfacesM i
c are meshes, boundaries

of V are. ∂V and surfaces M i
c are topologically and geometrically the same. ∂V replicates perfectly

the closed surfaces M i
c . Notice that, in equation (11b) and equation (11c), constraints are not

independent. Since ∂V is provided from the surfaces M i
c , |∂V | and χ(∂V ) are already established.

3 Conclusion

We have presented topological aspects in order to determine properties of volumes constructed from
surfaces. We have shown that topology concepts are fundamental features in the transformation
of boundary surfaces to a volume.

In spite of mathematical tools given above, the problem of converting surfaces into a structured
volume is still hard. Indeed, there is many possibilities of volume structures satisfying input
information during this kind of conversion. It is easy to see that the interior volume is not defined.
A lack of constraints and unset properties are clearly observed. Additional constraints should be
added to tackle this uncertainty on the solid structure.

Within the computational mechanics community, researchers are trying to turn scanned meshes
into volume meshes. For instance, several techniques exist to convert boundary surfaces into
solids, in order to apply physics on them. Presented mathematics state the limits of this kind of
approaches.
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dominant meshing. ACM Transactions on Graphics (TOG), 35(5):157, 2016.

[SVB17] Justin Solomon, Amir Vaxman, and David Bommes. Boundary element octahedral
fields in volumes. ACM Trans. Graph., 36(3):28:1–28:16, May 2017.

[VCD+16] Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele Panozzo, David Bommes,
Klaus Hildebrandt, and Mirela Ben-Chen. Directional field synthesis, design, and
processing. In Computer Graphics Forum, volume 35, pages 545–572. Wiley Online
Library, 2016.

6


