

Figure 1 : The 3D crystal structure of Na₃V₂(PO₄)₂F₃. The bi-octahedral units V₂O₈F₃ and the tetrahedral PO₄ groups are shown as red and violet polyhedra, respectively. The Na⁺ ions, represented by yellow balls, occupy the empty space in the structure at the crystallographic planes z = 0 and $z = \frac{1}{2}$.

Figure 2 : Rietveld refinement of the Na₃(VO)Fe(PO₄)₂F₂ structure from SXRD data, performed in the $P4_2/mnm$ space group. Insets show enlargements of the (200)/(020) and (400)/(040) doublets.

S.G. $P4_2/mnm$ Z = 4		a = b = 9.03564(6) Å c = 10.6412(1) Å $V/Z = 217.195(2) \text{ Å}^3$			$\begin{split} R_{Bragg} &= 3.46\% \\ R_{p} &= 10.3\% \\ R_{wp} &= 10.7\% \end{split}$	
Atoms	Wyckoff positions	x/a	<i>y/b</i>	z/c	Occupancy	Biso
V(1)	8j	0.7483(6)	0.2517(6)	0.1917(2)	1/2	0.96(6)
Fe(1)	8j	0.7483(6)	0.2517(6)	0.1917(2)	1/2	0.96(6)
P(1)	4e	1/2	1/2	0.253(2)	1	0.9(1)
P(2)	4d	1/2	0	1⁄4	1	0.8(1)
O(1)	16k	0.595(2)	0.094(2)	0.162(1)	1	0.78
O(2)	8j	0.598(2)	0.402(2)	0.160(2)	1	0.78
O(3)	8j	0.402(2)	0.402(2)	0.330(2)	1	0.78
O(4)	8j	3/4	1⁄4	0.360(2)	1/2	1.0
F(1)	4g	3/4	1⁄4	0	1	0.44
F(2)	8j	3/4	1⁄4	0.360(2)	1/2	1.0
Na(1)	8i	0.270(2)	0.022(2)	0	0.850(3)	2.1(1)
Na(2)	8i	0.476(3)	0.290(3)	0	0.58(1)	4.5(4)
Na(3)	4f	0.408(5)	0.408(5)	0	0.266(6)	3.0(3)

Table 1: Structural parameters of Na₃(VO)Fe(PO₄)₂F₂ obtained from Rietveld refinement of synchrotron powder diffraction data collected at $\lambda = 0.8251$ Å. The Biso values of oxygen and fluorine were fixed during the Rietveld refinement.

Table 2 : Bond lengths (Å) describing the coordination polyhedra of each cation in Na₃(VO)Fe(PO₄)₂F₂ determined from Rietveld refinement performed in the *P*4₂/*mnm* space group of synchrotron X-ray powder diffraction data collected at $\lambda = 0.8251$ Å.

V/Fe	P(1)	P(2)	Na(1)	Na(2)	Na(3)
6	4	4	7	7	6
1.954(6)	1.595(8)x2		2.619(9)x2	2.27(1)x2	2.42(1)x4
2.013(6)		1.529(6) x4		2.70(1)x2	
1.983(6)x2	1.493(8)x2		2.351(7)x2		
2.040(1)			2.464(7)	2.50(1)	
1.795(1)			2.547(6)x2	2.55(1)x2	2.50(1)x2
	V/Fe 6 1.954(6) 2.013(6) 1.983(6)x2 2.040(1) 1.795(1)	V/FeP(1)641.954(6)1.595(8)x22.013(6)	V/FeP(1)P(2)6441.954(6)1.595(8)x2	V/FeP(1)P(2)Na(1)64471.954(6)1.595(8)x22.619(9)x22.013(6)1.529(6) x42.351(7)x21.983(6)x21.493(8)x22.351(7)x22.040(1)2.464(7)2.547(6)x2	V/FeP(1)P(2)Na(1)Na(2)644771.954(6)1.595(8)x22.619(9)x22.27(1)x22.013(6)1.529(6) x42.70(1)x21.983(6)x21.493(8)x22.351(7)x22.040(1)2.464(7)2.50(1)1.795(1)1.529(6) x42.547(6)x2

Figure 3 : (*a*) ⁵⁷Fe Mössbauer spectrum recorded at ambient temperature with a ⁵⁷Co source, (*b*) Fe Kedge XANES spectrum of Na₃(VO)Fe(PO₄)₂F₂. Both Fe²⁺SO₄.7H₂O and Fe³⁺PO₄.2H₂O are used as references to determine the Fe oxidation state, (*c*) V K-edge XANES spectrum of Na₃(VO)Fe(PO₄)₂F₂. The V³⁺PO₄, LiV⁴⁺PO₄O and V⁵⁺OPO₄ XANES spectra are reported to determine the V oxidation state, (*d*) ³¹P *ss*-NMR spectrum recorded at 100 MHz, MAS frequency = 30 kHz. The excitation pulse was placed at 5000 ppm. The asterisks (*) indicate the rotational spinning sidebands.

Figure 4 : (*a*) An enlargement of the ³¹P NMR diamagnetic resonances (-100 ppm to 200 ppm) recorded for the Na₃(VO)Fe(PO₄)₂F₂ material. The *n* value indicates the number of Fe³⁺ in the second transition metal sites with respect to the Phosphorus nucleus. The five diamagnetic resonances observed for this material can be fitted by five different Pseudo-Voigt peak shape functions, (*b*) Illustration of the influence of the second neighboring metal ion belonging to the bi-octahedral unit on the ³¹P chemical shift value.

Figure 5: (*a*) The charge/discharge curve of Na₃(VO)Fe(PO₄)₂F₂ vs. Na metal, at *C*/10 cycling rate with the cut-off voltage of 4.3 and 5.0 V vs. Na⁺/Na. Inset shows the first derivative charge/discharge curve as a function of the operating voltage, (*b*) The long-term evolution of the charge/discharge curves at *C*/10 cycling rate in the potential range of 2.5 - 4.3 V vs. Na⁺/Na. Inset shows the evolution of the coulombic efficiency during the first twenty cycles, (*c*) The charge/discharge curve obtained at the second cycle for Na₃(VO)Fe(PO₄)₂F₂ vs. Na metal, at the cycling rate of *C*/10 per Na⁺ and in the potential range of 1.5 - 4.3 V vs. Na⁺/Na, (*d*) The charge/discharge capacity of Na₃(VO)Fe(PO₄)₂F₂ at different cycle rates in the potential ranges of 2.5 - 4.3 V vs. Na⁺/Na.

Figure 6 : The evolution of significant diffraction lines during Na⁺ de-intercalation from Na₃(VO)Fe(PO₄)₂F₂. *Operando* SXRD patterns were recorded upon cycling of a Na// Na₃(VO)Fe(PO₄)₂F₂ half-cell at $\lambda = 0.8251$ Å. The cell was cycled at C/10 cycling rate in the voltage window of 2.5 - 4.3 V vs. Na⁺/Na. The corresponding electrochemical data is given in **Figure S12**.

Figure 7 : The evolution of the cell parameters of $Na_{3-x}(VO)Fe(PO_4)_2F_2$ during the Na^+ de-intercalation reaction, determined from the Le Bail fit of the SXRD patterns collected *operando* upon charging a $Na/Na_3(VO)Fe(PO_4)_2F_2$ half-cell.

Figure 8: Vanadium K-edge XANES spectra recorded *operando* upon charging a $Na/Na_3(VO)Fe(PO_4)_2F_2$ half-cell operating in the potential range of 2.5 - 4.5 V vs. Na^+/Na (Figure S14).

Figure 9 : The evolution of the concentration of the two principal components required to describe all the Vanadium K-edge XAS spectra recorded upon charging a Na//Na₃(VO)Fe(PO₄)₂F₂ half-cell. The cell was cycled at C/10 in the voltage window of 2.5 - 4.5 V vs. Na⁺/Na.