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Abstract 

Sixteen temperature measurement sites under forest cover are distributed across the plateaus and mountains of the 

Jura (France). They are composed of pairs of stations located, one at the bottom of a topographic trough, the other 

at least 50 m higher in altitude. Three descriptors (station elevation, altitudinal difference (amplitude) between the 

two stations of each site, and topographical context) are used to explain how the frequency, intensity, and duration 

of inversions are spatially structured. Depending on whether one considers: 1) tn (minimum temperature) or tx 

(maximum temperature), 2) frequency or intensity, the sign of the correlation values changes. This reflects the fact 

that not all inversions can be explained in the same way. Elevation moderately explains the three characters of the 

inversions. Amplitude mainly explains their frequency (R = -0.83 for daily minima [tn]) and their intensity (R = 

0.62 for daily maxima [tx]). The magnitude of the topographic depressions where the low stations are located 

mainly explains the tn inversions while the magnitude of the eminences where the high stations are located mainly 

explains the tx inversions. Finally, a multiple regression where the explanatory variables correspond to the 

topographic descriptors makes it possible to model the three inversion indicators. 

Keywords: temperature under forest cover, elevation, topography, inversion, Jura. 

Résumé 

Descripteurs topographiques et inversions thermiques sur les plateaux et montagnes du Jura français 

Seize sites de mesure de la température sous couvert forestier sont dispersés sur les plateaux et la montagne du 

Jura, en France. Ils sont composés de deux stations situées, l’une au fond d’un creux topographique, l’autre au 

moins 50 m plus haut en altitude. Trois descripteurs (altitude des stations, écart altitudinal (l’amplitude) entre les 

deux stations de chaque site, contexte topographique) sont mis à contribution pour expliquer comment se 

structurent spatialement la fréquence, l’intensité et la durée des inversions. Selon que l'on considère 1) le moment 

où se produisent les inversions (tn, température minimale ou tx, température maximale), 2) la fréquence ou 

l’intensité, le signe des valeurs de corrélation change. Cela reflète le fait que toutes les inversions ne peuvent pas 

être expliquées de manière uniforme. L’altitude explique modérément les trois caractères des inversions. 

L’amplitude explique surtout leur fréquence (R=-0.83 lors des minimums journaliers[tn]) et l’intensité des 

inversions sur les maximums journaliers [tx] (R=0.62). L’ampleur de la dépression topographique où est situé le 

capteur-bas explique surtout les inversions qui se produisent sur les tn tandis que l’ampleur de l’éminence où est 

située le capteur-haut explique surtout les inversions observées sur les tx. Enfin, une régression multiple où les 

variables explicatives correspondent au descripteurs topographiques permet de modéliser les trois indicateurs des 

inversions. 

Mots-clés : température sous couvert forestier, altitude, topographie, inversion, Jura. 

Introduction 

The number of studies of temperature inversions has increased in recent decades in relation 

to pollution phenomena (El Melki, 2007; Chemel et al., 2016; Largeron and Staquet, 2016; 

Czarnecka and Nidzgorska-Lencewicz, 2017). The origin of temperature inversions is first and 

foremost related to atmospheric conditions. At temperate latitudes, the most frequent inversions 
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are radiation inversions due to the radiative deficit at the surface that often occurs under 

anticyclonic conditions (Conangla et al., 2018). These radiative inversions develop 

preferentially under clear, windless skies at night (Barry, 2008; Joly and Richard, 2019). 

Inversions are often destroyed in the early morning hours by convective turbulence (Anquetin 

et al., 1998). However, if weather conditions allow, they may last several days (Vitasse, 2017). 

In such instances, disturbed weather, accompanied by humid air advections and cloudiness, 

ends the inversion sequence (Williams and Thorp, 2015). There is another type of inversion 

that is quite frequent in temperate latitudes (Barry, 2008; Mirocha and Branko, 2010; Dupont 

et al., 2016; Young, 2016; Yu et al., 2017). These are the subsidence inversions that occur under 

hot, high pressure conditions at high altitudes by adiabatic air compression. They affect large 

areas and are responsible for the cloud seas that cover plains and valleys while only the summits 

remain clear. 

Inversion phenomena are initiated or reinforced by local topography (Anquetin et al., 1998; 

Fallot, 2012). Because it is denser than warmer air, cold air migrates down slopes and 

accumulates at the bottom of depressions (Helmis and Papadopoulos, 1996; Papadopoulos and 

Helmis, 1999; Mahrt et al., 2010; Fernando et al., 2013; Burns and Chemel, 2015). The 

boundary layer that develops in such contexts is totally decoupled from the overlying synoptic 

flow (Lundquist et al., 2008; Daly et al., 2009; Dorninger et al., 2011; Largeron and Staquet, 

2016). 

To be as rigorous as possible, inversions should be studied from equivalent potential 

temperatures to take into account the effects of elevation, saturation, and changes in water 

status. Since a majority of weather stations do not measure pressure or humidity, most of the 

work is based only on temperature, as is the present study. Within the framework of the “Zone 

Atelier de l’Arc Jurassien” (https://zaaj.univ-fcomte.fr/), a network of 29 sensors was installed 

under forest cover (UFC) in the Jura region (France) in spring 2011 (Joly, 2014). This network 

was expanded at the end of 2014 by 20 other sensors to extend the observation area to the east 

and northeast. This larger network revealed that the same regressors explain the spatial variation 

of temperature in open sites and UFC (Joly and Gillet, 2017). This same network was the basis 

for further research to study the frequency, intensity, and duration of inversions during the three 

years of observation (Joly and Richard, 2019). The current contribution continues the previous 

study. Its challenges are to determine the rules that allow a better understanding of the role of 

topography in the setting and development of inversions in a medium-sized mountain region 

where pollution by wood heating is ubiquitous. 

Accordingly, the objective of this study is to analyze the influence of topography on the 

characteristics of inversions (frequency, intensity, and duration) observed across the plateaus 

and mountains of the Jura (eastern central France). For that, we use daily minimum (tn) and 

maximum (tx) temperature records from 16 sites composed of two stations, one at the bottom 

of the depression (low station) and the other at the top of the slope (high station). The influence 

of topography will be examined through five descriptors: the elevations of the low and high 

stations, the altitudinal amplitude between the stations composing each pair, the depth of the 

depression within which the low station is located and the magnitude of the hump on which the 

high station is located. The depth of the depression and the magnitude of the hump are defined 

in Joly et al. (2012). Finally, particular attention will be paid to statistical modeling by multiple 

regression to estimate the three inversion characters. 

1. Data and method 

The study area (figure 1), in the French part of the Jura massif, is characterized by a mountain 

climate with a continental tendency (Joly et al., 2010). Under the Köppen climate classification 
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system, the study area is of the Cfb type (temperate oceanic climate C = temperate, f = no dry 

season, b = warm summer) up to about 1000 m a.s.l. and at higher elevations it is of the Cfc 

type (c = cold summer). It is bordered by the Doubs valley to the north and by the Jura ridges 

to the east and south. To the west, it does not extend beyond the first plateau of the Jura. All 

three topographical groups of the Jura are represented: the low land (200–250 m) to the north, 

the two plateaus (300–600 m) in an intermediate location, and the high range up to 1000 m. 

 

Figure 1. Study area and location of stations. Stations in the lower position are marked with a letter without 

numbers. Aire d’étude et localisation des capteurs. Les stations situées en position basse sont repérées par une 

lettre sans chiffre. 

1.1. Data 

It should be noted first and foremost that, in this paper, the term “sensor” refers to the device 

used to measure temperature and “station” refers to the measurement points managed either by 

the official institutions accredited by the WMO or the elements of our own network under forest 

cover that we have set up in the Jura. Since two low stations can be connected to several high 

stations, the analyses will focus on 16 pairs of stations that will be referred to as “sites” in the 

paper. 

A network of 48 temperature stations under forest cover was installed at the end of 2014 by 

one of the authors of this article in connection with the Parc Regional Naturel du Haut-Jura. 

The stations were first positioned so that they could be paired with one of the 25 weather stations 

in the Météo-France (MF) network located in a nearby open site. The remaining 23 are used to 



Climatologie, vol. 15 (2018) 

 

 

49 

sample specific sites omitted by MF stations, such as steep slopes or deep valley bottoms. For 

details of the localization of MF stations see Figure 1 in Joly and Richard (2019). 

The inversion study is based on a comparison of temperatures collected at all the available 

pairs of stations, one at the bottom of the depression, the other higher up on a ridge or on an 

upper slope. The low stations refer to the eight stations located at the bottom of the topographic 

depression (valleys, synclines). These are paired with one or more stations located at least 50 

m higher. The pairings are also based on a distance criterion. A first type of matching is done 

with the nearest station(s) within 20 km to analyze local inversions (figure 1). The 20 km range 

was chosen to ensure the two stations belong to the same topographic unit. The average distance 

and altitudinal amplitude between the stations composing each local pair are 8.5 km and 250 m 

respectively. The elevations of the lower stations range from 265 m (A) to 1047 m (E1) (Table 

1). The second type of matching is done with the station(s) located more than 40 km apart, 

which corresponds to the minimum distance between the crests of the Jura and the bordering 

plain. These regional pairs are based on the three low-stations located around the Jura arc, at 

less than 330 m elevation (A, B, and C in figure 1), and on the four high stations that line the 

ridges of the Jura between 981 and 1235 m. The average distance and altitudinal amplitude 

between the stations of each regional pair is 58 km and 830 m. The elevation of the high stations 

ranges from 981 m (H1) to 1235 m (G2).  

Local 

stations 

Elevation 

low station 

Elevation 

high station 
Amplitude 

Topography 

low station 

Topography 

high station 

A-A1 265 475 210 WV P 

B-B1 326 431 105 WV P 

C-C1 320 437 117 WV P 

D-D1 542 929 387 NV S 

D-D2 542 727 185 NV US 

D-D3 542 969 427 NV US 

D-D4 542 1103 561 NV P 

E-E1 1047 1228 181 WV US 

F-F1 536 710 174 NV P 

G-G1 801 1005 204 WV US 

G-G2 801 1235 434 WV S 

H-H1 883 981 98 WV S 

Regional 

stations 

Elevation 

low station 

Elevation 

high station 
Amplitude 

Topography 

low station 

Topography 

high station 

A-A2 265 1117 852 WV P 

B-E1 326 1228 902 WV US 

B-G2 326 1235 909 WV S 

C-H1 320 981 661 WV S 

Table 1. Characters of station pairs; WV = wide valley, NV = narrow valley, P = plateau, S = summit, US = upper 

slope. Caractères des paires de stations ; WV = vallée large, NV = vallée étroite, P = plateau, S = sommet, US = 

haut de versant. 

Temperature under forest canopy (UFC) was measured by 21 sensors every 6 minutes using 

HOBO PRO V2 type sensors fitted in protective cases (Joly, 2015) fastened to the north side of 

trees 2 m above the ground (Kollas et al., 2013). The recordings run from 1 January 2015 to 31 

December 2017 with 2.6% of data missing. The daily minimum and maximum readings are 

extracted from the database. Since the highest altitudinal amplitude of the local station pairs is 

551 m and the lowest amplitude of the regional station pairs is 661 m, there is continuity 

between the two types of stations (figure 2). 
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Figure 2. Altitudinal amplitude of local and regional sites running from 1 January 2015 to 31 December 2017. 

Amplitude altitudinale des sites locaux et régionaux ayant fonctionné du 1 janvier 2015 au 31 décembre 2017. 

1.2. Topographic descriptors 

Several descriptors were derived from the 50 m resolution IGN (Institut Géographique 

National) digital terrain model (DTM) to assess the influence of topographical factors on 

inversions. In accordance with the results of Joly et al. (2012), five topographic descriptors (in 

square brackets) were chosen:  

 (1) Elevation of the low [elev-low] and (2) high stations [elev-high].  

 (3) Altitudinal amplitude [ampl], i.e. the difference in elevation (m) between the high 

station and the low station.  

 (4) Depth of the valley [valley] where the low stations are located and (5) magnitude of 

positive relief (ridge, hills [hump]) where the high stations are located. Hump and valley 

are used to evaluate the height or depth of positive or negative relief relative to a 

topographic reference point (Joly et al., 2012). 

Other variables such as slope orientation and the density of direct solar radiation received at 

the high station were not used. Preliminary tests showed they had no significant influence on 

the frequency of the inversions measured. 

Figure 3 shows the main indicators of the statistical distribution of the five topographic 

descriptors. Three points are worth mentioning. First, the mean is quite close to the median 

except for amplitude for which there is a 100 m difference. Second, the narrow distributions of 

valley and hump at the bottom of the elevation scale contrast with the distributions of the other 

three much broader descriptors. This is explained by the fact that valley and hump measure the 

vertical extension of topographic shapes while the other three descriptors are related to 

elevations of points scattered over the territory or to a measure of the relative distance between 

two points (amplitude). It should be noted that the vertical extension of the valleys is greater 

than that of humps, reflecting the marked depth of the valleys that are cut into the plateaus 

compared to the prominence of humps. The third aspect is the close proximity of the maximum 

and Q3 to the elevation of the high stations (1235 and 1227 m). This is due to the use of the 

four stations along the Jura ridges (A2, E1, G2, and H1) to compose three local and three 

regional sites. 

1.3. Method 

As in Joly and Richard (2018), a simple temperature difference is calculated. This difference 

is neither weighted nor normalized by the altitudinal amplitude. It is calculated separately for 

daily tn and tx and between each pair of stations by subtracting the temperature value recorded 
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at the low station from the values at the high station. A negative result indicates a thermal 

inversion, with the temperature being lower at the bottom than at the top.  

 

Figure 3. Box plot of the five topographic descriptors (altitude of the low and high stations of each pair, vertical 

amplitude between the two stations, depth of the valley, and extent of the prominence where the low and high 

stations are respectively located). Box plot des cinq descripteurs topographiques (altitude des stations basses et 

hautes de chaque paire, amplitude verticale entre les deux stations, profondeur de la vallée et ampleur de la 

proéminence où sont respectivement localisées la station basse et la station haute). 

Three indicators are calculated: the average frequency, intensity, and duration of inversions 

for each of the 16 sites. Frequency is the number of inversions occurring during the three years 

of observation. Intensity is the temperature difference between the low station and the high 

station. Duration is minimal when the ephemeral inversion of late night and early morning 

disappears during the day. If the inversion continues into the afternoon or lasts even longer, it 

is referred to as an n-day sequence. 

It should be noted that the values we will be working on are rough observed temperatures. It 

would have been possible to correct the temperatures to take into account the differences in 

altitudinal amplitude between the high and low stations at each site. This was not done for two 

reasons. The first is that this article follows a previous contribution (Joly and Richard, 2019) 

whose construction principles we wanted to maintain. The second is that this article is 

descriptive. It aims to reflect the sensory experience of any walker who feels the cold at the 

bottom of the troughs and the warm air a few tens of meters higher. This choice also makes it 

possible to explain the role of topography in the emergence of inversions that accounts for, at 

least partially, the differential distribution of snow (Pomeroy and Brun, 2001; Mernild and 

Liston, 2010). 

The Bravais-Pearson correlation coefficient (R) is used to measure the dependence of the 

inversion characteristics on topographic factors. With a small sample, the risk of a result being 

random is high. This risk will be assessed by the p-value associated with each R. 

3. Results 

Very significant differences appear between sites (figure 4). The lowest inversion 

frequencies are 2.7% (site B-E1) and 3.5% (site A-A2) for tx and tn. They both concern regional 

sites. The highest values are for the local H-H1 (tn) and F-F1 (tx) sites and are 73.4% and 57.2% 

for tn and tx respectively. The minimum and maximum intensities are 0.6°C (tx, local site B-
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B1) and 3.7°C (tn, local site G-G2) respectively. The average durations range from 1.3 days 

(local site B-B1) to 3.7 days (local site F-F1). 

 

Figure 4. Mean (A) frequency, (B) intensity, and (C) duration of inversions for the 16 sites arranged in ascending 

order. Frequency and intensity differ with tn and tx, but not so duration. Fréquence (A), intensité (B) et durée (C) 

moyennes des inversions (16 sites) rangées par ordre croissant. Il y a une différenciation concernant la fréquence 

et l’intensité selon les tn et les tx, mais pas pour la durée. 

The rather significant differences that appear between sites are probably explained by 

topographical factors. Four of them, easily quantifiable by topographic descriptors (elevation, 

altitudinal amplitude between the two loggers that make up each site, hump amplitude, and 

valley depth), are used to measure their influence on the frequency, intensity, and duration of 

inversions. 

3.1. Influence of elevation 

The correlation between the elevation of the high stations and the frequency of inversions is 

negative (Table 2, column 2). This means that the higher the elevation of the high station, the 

lower the frequency of inversions. 

 
low stations 

(1) 

high stations 

(2) 

Amplitude 

(3) 

Valley 

(4) 

Hump 

(5) 

Frequency-tn 0.45* -0.51** -0.83*** 0.42* -0.15 

Frequency-tx 0.21 -0.44* -0.60** -0.18 -0.40* 

Intensity-tn 0.43* 0.30 -0.03 0.41* 0.67*** 

Intensity-tx -0.07 0.57** 0.62*** -0.04 0.19 

Duration 0.40* -0.17 -0.50* 0.13 -0.36 

Table 2: Correlation coefficient between frequency, intensity, and duration of inversions (tn and tx), and 1) 

elevation of low stations, 2) high stations, 3) altitudinal amplitude between the two stations of each site and 

according to the topographical context: 4) valley for low stations and 5) hump for high stations. R significant at 

the 10% (*), 5% (**), and 1% (***) levels. Coefficient de corrélation entre les trois caractères (fréquence, 

intensité, durée) des inversions (tn et tx) et 1) altitude des stations basses, 2) altitude des stations hautes), 3) 

l’amplitude altitudinale entre les deux stations qui composent chaque site et selon le contexte topographique : 4) 

profondeur des vallées pour les stations-basses et 5) ampleur de l’émergence des reliefs pour les stations-hautes. 

R significatif au seuil de 10% (*), 5% (**) et 1% (***). 
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Elevation has a positive influence on the intensity of inversions during tx (R=0.57), but no 

influence on the duration of inversions. On the contrary, the influence of elevation of the low 

stations on the frequency characteristics is positive (Table 2, column 1). The best scores concern 

the frequency and intensity of inversions during tn (R = 0.45 and 0.43) and the duration of 

inversions. Inversions are more frequent, more intense, and longer lasting when the low station 

is located at a high elevation, in the mountains, than when it is located on the plain or on the 

first plateau. These results seem to indicate that the upper valleys are the most suitable for 

inversions. This point is discussed further below. 

3.2. Influence of the altitudinal amplitude  

The altitudinal amplitude strongly influences the frequency of inversions (Table 2, column 

3). This relationship is higher for the frequency of inversions-tn (R = -0.83) than for the 

frequency of inversions-tx (-0.60). In both cases it is negative: inversions are all the more 

frequent when the elevation difference between the low station and the high station is small. 

A positive relationship is found for the altitudinal amplitude and intensity of inversions at tx 

(R = 0.62). This may be perceived as evidence of bias related to the fact that the calculated 

inversions are not normalized by the altitude amplitudes. Nevertheless, for tn, R is close to zero 

and reflects the statistical independence of altitudinal amplitude and intensity of inversions. The 

relationship between the altitudinal amplitude and the duration of the inversions is again 

negative (R = -0.50): the longer the inversion sequences, the smaller the elevation difference 

between the station pairs. This counterintuitive relationship will be discussed later.  

3.3. Influence of hump amplitude and valley depth 

Here again, the topographical context of the low station (depth of the valley where it is 

located) differs from that of the high station (magnitude of the hump eminence) (Table 2, 

columns 4 and 5). The influence of topographic landforms on inversion characteristics reveals 

similar arrangements to those described above. The frequency of inversions during tn is 

explained more by the depth of the valleys (valley, R = 0.42) and during tx by the prominence 

of the landforms (hump, R = -0.40). On the other hand, the intensity of inversions, for tn, is 

more strongly dependent on humps than on valleys. The intensity and duration of inversions 

during tx are more or less independent of the topographic context. 

4. Calculation, by multiple regression, of the frequency, intensity and 

duration of inversions 

Contrasting relationships have been highlighted: correlation coefficients are sometimes high 

(0.87), but often moderate (out of a total of 25, 14 are equal to or greater than 0.4). These results 

encourage us to estimate the frequency, intensity, and duration by multiple regression. The five 

descriptors explained are elevation of the low and high stations, altitudinal amplitude, valley 

(low station), and hump (high station).  

As an example and in order not to overload the text, only one overview will be proposed: 

that relating to the frequency of inversions during tn. The progressive aggregation of an 

increasing number of regressors improves the quality of the regression model (Table 3). Even 

if the contribution of elev-low and hump is low, all explanatory variables contribute to the good 

final quality of the model. 

The final equation is: 

Frq_TN = 53.9 + (0.06*ampl) + (0.1*elev-low) - (0.1*elev-high) + (0.05*valley) + (0.6*hump) 



Topographic descriptors and thermal inversions amid the plateaus and mountains of the Jura (France) 54 

 1 1+2 1+2+3 1+2+3+4 1+2+3+4+5 

R² 0.67 0.69 0.74 0.78 0.81 

RMSE 49 47 44 40 38 

Table 3: R² and RMSE obtained from five models aggregating, step by step, an increasing number of regressors; 

1=ampl, 2=elev-low, 3=elev-high; 4=valley, 5=hump. R² et RMSE obtenus de 5 modèles agrégeant, étape par 

étape, un nombre croissant de régresseurs ; 1=différence d’altitude entre les deux stations composant chaque site, 

2=altitude de la station-bas, 3= altitude de la station-haut ; 4=profondeur de la vallée où est localisée la station-

bas, 5=ampleur de la crête où est localisée la station-haut 

The result is very convincing since R² and RMSE are 0.81 and 9.8% respectively, while the 

regression, according to the Fisher test, is significant at the 2‰ level (Table 4). The cloud of 

the 16 estimated points is is tightly grouped along the regression line (figure 5). 

 

Figure 5. Scatterplots: observed values versus estimated values for the frequency (tn + tx), intensity (tn + tx), and 

duration of inversions. Estimates are made by multiple regression where the dependent variable is in turn the 

frequency, intensity, and duration of inversions and the explanatory variables are the five topographic variables 

described in Section 3 (altitude of low stations, altitude of high stations, altitudinal amplitude between the two 

stations that compose each site and according to topographic context: valley depth for low stations and magnitude 

of relief prominence for high stations). Diagrammes de dispersion. Valeurs observées par rapport aux valeurs 

estimées pour la fréquence (tn + tx), l'intensité (tn + tx) et la durée des inversions. Les estimations sont effectuées 

par régression multiple où la variable expliquée est tour à tour la fréquence, l’intensité et la durée des inversions 

et les variables explicatives sont les cinq descripteurs topographiques décrits dans la section 3 (altitude des 

stations basses, altitude des stations hautes, amplitude altitudinale entre les deux stations qui composent chaque 

site et contexte topographique : profondeur des vallées pour les stations-basses et ampleur de l’émergence des 

reliefs pour les stations-hautes). 
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The other descriptors are less well estimated, although the results remain significant at 

thresholds between 2% (Intens-tx) and 6% (duration). The minimum R² is 0.61 (duration), the 

other three are around 0.7. The RMSE of frequency and intensity inversion for tn and tx is 

around 10% and 0.4°C respectively. 

 Frq-tn Frq-tx Intens-tn Intens-tx Duration 

R² 0.81 0.67 0.69 0.72 0.61 

RMSE 9.8 10.4 0.43 0.38 0.4 

p-value 0.002 0.042 0.022 0.014 0.056 

Table 4: Quality measurements (R², RMSE and p-value) of the five estimated descriptors: frequency of inversions 

during tn (Frq-tn) and tx (Frq-tx), intensity of inversions during tn (Intens-tn) and tx (Intens-tx), and duration of 

inversions. Mesures de la qualité (R², RMSE et p-value) des cinq descripteurs estimés : fréquence des inversions 

lors des tn (Frq-tn) et des tx (Frq-tx), intensité des inversions lors des tn (Intens-tn) et des tx (Intens-tx) et durée 

des inversions. 

5. Discussion  

5.1. Influence of elevation  

The elevation of the low stations mainly affects the characters (frequency and intensity) of 

the tn inversions. The fact that the Rs (frequency, intensity, and duration) for low stations are 

positive means that it is mainly the high-valleys, or mountain valleys, that are the most prone 

to inversions. This influence of elevation is less simple for high stations: the Rs are of the 

opposite sign between frequency (r <0) and intensity (r >0) of inversions. Inversions are 

infrequent but intense in the mountains compared to the plain if we consider the high stations.   

The coherence between these two points is not obvious and the process(es) responsible for these 

thermal behaviors is (are) not easy to identify. Despite an intense search of the literature, very 

little work has been found on this issue. A hypothesis can be put forward that invokes the role 

of wind on the weakening and/or rarefaction of inversions (Dorninger et al., 2011; Zardi and 

Whiteman, 2013). Because wind speed is higher at high elevations and in exposed sites (ridges) 

than over plains and in sheltered areas (topographic hollows, valley bottoms), it affects the low 

stations less than the high stations. Indeed, because they are located at the bottom of valleys, 

the low stations, whether located in the plain or in the mountains, are relatively sheltered from 

the wind effects that destroy inversions. If the frequency trend of tn and tx inversions as a 

function of the elevation of the low stations is positive, it is therefore for other reasons: perhaps 

because colder temperatures in the mountains promote the accumulation of stable air at the 

bottom of the lows. The reverse trend in the frequency of tn and tx inversions as a function of 

elevation at high stations is explained by the action of the wind (Hu et al., 2013; Van Hooijdonk 

et al., 2017), which is more turbulent in the mountains. As a result, the lower of the high stations 

are relatively immune to the effects of the wind, unlike the stations at higher elevation: the 

tendency of inversions to occur with the elevation of the upper stations is therefore negative. 

The maximum frequency thus characterizes sites where the low stations are located at high 

elevations and where the high stations are not located too high in elevation. Site H-H1 (883 m 

- 981 m) is such a case, unlike sites G-G1 (801 m - 1235 m) or E-E1 (1047 m - 1228 m) where 

the elevation of the high station is too high. Conversely, low inversion frequencies are found at 

sites where the low station is located at low elevation but the high station is located at high 

elevation. These are regional sites but also some local sites (D-D4, 542 m - 1103 m) in 

particular. All these mechanisms can be contemplated but are difficult to test on the basis of 

statistics. To test these hypotheses, the observations would benefit from being cross-referenced 

with numerical modeling exercises. But neither can it be ruled out that this relationship is 
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dependent on station sampling. A study is being conducted throughout France that should 

provide some answers. 

5.2. Influence of the altitudinal amplitude 

The negative relationship between inversion frequency and amplitude is strong for both tn 

and tx (R = -0.83 and -0.60 significant at the 1% and 5% levels). This result is partly due to the 

influence of the four regional sites, which combine low inversion frequency and high altitudinal 

difference between the low and high stations. However, the correlation calculation applied only 

to local sites does provide lower correlation values (-0.55 and -0.43 for tn and tx significant at 

5% level), but the sign is negative too. There is therefore a marked trend: the greater the 

altitudinal difference between the two stations of a site, the more the inversion frequency 

decreases. This result contrasts with the result modeled by Wagner et al. (2015), who concluded 

that “the deeper the valley, the stronger the upvalley winds and the more favoured the formation 

of vertically stacked circulation cells and an elevated valley inversion layer”. To explain our 

result, let us take a theoretical example with a temperature set at -5 °C at the bottom of the 

valley where station C1 is located (figure 6). The temperature rises until the 650 m level where 

it reaches its maximum (-3 °C), marking the upper limit of the boundary layer. Station C2 below 

this limit records an inversion. Above the boundary layer, the temperature decreases with 

elevation with an altitudinal gradient of about 0.6 °C/100 m. At 1000 m elevation, C3 with a 

temperature of -5 °C reaches the same value as at the valley bottom and does not record any 

inversion. The highest inversion frequencies are therefore observed at sites where the high 

station lies close to the upper level of the boundary layer. Stations located higher in elevation, 

in the open atmosphere, see their temperature fall in proportion to the elevation, thus decreasing 

the frequency of inversions. 

 

 

 

 

 

Figure 6: Theoretical diagram of the 

influence of altitudinal amplitude on the 

frequency of inversions (the values are given 

for information only and do not concern any 

particular place or season). Schéma théorique 

de l’influence de l’amplitude altitudinale sur 

la fréquence des inversions (les valeurs sont 

données à titre indicatif et ne concernent 

aucun lieu ni saison particuliers). 

 

 

5.3. Comparison of inversion characters at two neighboring sites 

The three descriptors (elevation, amplitude, and topographic landforms) were chosen to 

explain the spatial variation of inversion characters because they are easy to calculate. Other 

descriptors exist that could also explain the characteristics of the inversions: for example, solar 

radiation (Sadoti et al., 2018). To show this, we will use the example of the two neighboring 

sites H and F located in the east of the study area at the contact between the plateau and the 

folded mountains of the Jura. 
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Station H is located at 883 m, at the bottom of a vast, almost deforested and shallow syncline 

valley, (98 m amplitude between H and H1) (Table 1). Station F, 15 km away, is located 350 m 

lower at the bottom of a very narrow valley covered with a compact forest. Both sites are 

characterized by an amplitude and topographical context of their analogous high station (174 m 

amplitude between F and F1). The frequency and intensity of inversions are only slightly higher 

on the anticline than in the valley during tn (73.4% versus 72.3%); and the reverse occurs during 

tx. The duration of the inversion sequences is longer at the bottom of the valley. The differences 

observed in Table 5 are therefore well related to the shape of the hollow landform in which the 

low station is located. The enclosed valley is in the shade for four winter months. 

 Frq-tn (%) Frq-tx (%) Intens-tn (°C) Intens-tx (°C Duration (days) 

H-H1 73.4 47.9 26.5 13.5 2.5 

F-F1 72.3 57.2 24.2 23.6 3.7 

Table 5. Average of the inversion characters over the three years of observation (frq=frequency, intens=intensity) 

during tn and tx; sites H-H1 (broad anticlinal) and F-F1 (incised valley). Moyenne des caractères des inversions 

lors des trois années d’observation (frq=fréquence, intens=intensité) lors des tn et des tx ; sites H-H1 (large 

anticlinal) et F-F1 (vallée encaissée). 

As a result, cold air even stagnates in the middle of the day (Jahanbakhshasl and Roshani, 

2013; Largeron and Staquet, 2016) and possibly for persistent inversion sequences lasting more 

than 20 days (Joly and Richard, 2019). In the syncline valley, the vast open areas favor 

radiation. Inversions start easily and they are intense (Vitasse et al., 2017). But the thinness of 

the boundary layer makes them vulnerable to turbulence and morning warming so that they are 

easily destroyed during the day by thermal convection (Conangla et al., 2018). 

To illustrate these thermal patterns, the temperature variations during autumn 2015 and 

winter 2016 are presented. These clearly show the influence of the topographical context on 

inversions (figure 7). The Russey Valley site (vast but shallow anticline) has the most severe 

inversion of the period (on 30 December, the temperature difference between the bottom of the 

valley, sensor H, and the top of the slope that overlooks it, sensor H1, was -15°C). But the 

bottom of the Reverote Valley (sensor F) is much more stable, with long inversion sequences 

(25 September to 7 October 2015; 30 November to 8 December 2015; 10 December to 31 

December 2015) or no inversions (13 October to 19 October 2015; 25 February to 29 February 

2016). During the same sequences, the Russey valley oscillated between inversion during tn 

and absence of inversion during tx (in Figure 7, the blue curve rises above and falls below the 

dashed line). The only long inversion sequence over the Russey Valley was from 30 November 

to 21 December 2015. 

 

Figure 7: Temperature graph obtained from sensors (one measurement every six minutes) in January 2016 at sites 

H-H1 (Russey) and F-F1 (Réverotte). A negative value indicates a thermal inversion. Graphe des températures 

obtenues des capteurs (une mesure toutes les six minutes) au cours du mois de janvier 2016 dans les sites H-H1 

(le Russey) et F-F1 (Réverotte). 
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The greater stability of temperature at the bottom of deep valleys is explained by the 

phenomenon of hysteresis, which had already been mentioned to explain the higher inertia of 

temperatures in forested sites than in open sites (Joly, 2014). It also applies here: temperature 

variations induced by weather changes do not result in a movement at the bottom of the deep 

valleys of the same magnitude as in the shallow valleys. Cold air accumulated during the 

inversion sequence or warm air carried to the bottom of the valley during windy advective 

phases tends to remain as it is after the atmospheric situation favorable to inversion or non-

inversion has ceased. This decoupling from the overlying synoptic flow is more marked in 

deeper valleys (Daly et al., 2009; Largeron and Staquet, 2016). 

Conclusion 

Sixteen sites distributed across the plateaus and mountains of the Jura consisting of one 

station at the bottom of a topographic trough and one station located at least 50 m higher are 

analyzed to detect which topographic factors are most relevant for explaining the spatial 

variations in inversion characteristics of frequency, intensity, and duration. The variations in 

these three characters are first explained by the descriptor “amplitude”, i.e. the altitudinal 

difference between the two stations of each site. The sites that observe the most frequent 

inversions are those where the high station is located close to the boundary layer, around 100 m 

above the low station. Sites with much greater amplitudes have a lower frequency of inversions 

although they are more intense but shorter-lived than in the previous case. 

The other two descriptors (elevation and topographical context) are good predictors, but only 

for one or other of the inversion characters and only in the context of tn or tx. The inversions 

that occur during tn are thus mainly explained by two topographical factors (elevation of the 

low station and valley) contrary to those that explain the inversions that occur during tx 

(elevation of the high station and hump). The regional climatology, frequency, and higher wind 

strength at elevation than in the lowlands and in the afternoons than in the mornings, was 

suggested as an explanation. But this hypothesis cannot readily be confirmed without additional 

in situ observations. To confirm this, for example, the demonstration should be based on a larger 

number of observation sites equipped with wind speed sensors. 

A statistical model of the three inversion indicators was proposed via multiple regressions 

in which the explanatory variables are elevations of the low and high stations, altitudinal 

amplitude, valley (low station), and hump (high station). The results are all significant with R² 

ranging from 0.61 to 0.81. They could lead to an interpolation of the inversion indicators. We 

did not attempt this because the sampling of stations that does not cover all the topographical 

contexts of the Jura is not exhaustive. To the extent that the low stations are exclusively at the 

bottom of topographic troughs, the grid interpolated pixels would have been spatially 

aggregated into patches of varying length and width. This idea will be developed as a natural 

extension of this study, based not on the plateaus and mountains of the Jura but on the whole 

of France in order to provide more general results. It would be of the utmost interest to estimate 

the ability of any point of the territory to promote or, on the contrary, to hinder the establishment 

of inversions. Pollution by particulate matter affects urban centers primarily. But it also affects 

rural areas where residential wood burning is common. Knowledge of the places where 

inversions occur most frequently would allow developers to inform the population of the risks 

involved (Steward and Nitschke, 2016). 
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