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Introduction

A classical problem of enumerative geometry asks to count curves with given numerical invariants in a smooth complete intersection variety X in P n . This includes the study of various Fano schemes of X, that is, the components of the Hilbert schemes of curves with given numerical invariants, in particular, the Fano schemes of lines and conics. The present paper is a survey on this problem. We concentrate mainly on concrete numerical results. A special attention is paid to the case of surfaces and threefolds. We discuss the lines and conics in Fano threefolds, which 1. Counting lines on surfaces Cayley and Salmon [START_REF] Cayley | On the triple tangent planes to a surface of the third order[END_REF][START_REF] Salmon | A treatise on the analytic geometry of three dimensions[END_REF], and also Clebsch [121], discovered that any smooth complex cubic surface in P 3 contains exactly 27 lines. See, e.g., [START_REF] Henderson | The Twenty-Seven Lines Upon the Cubic Surface[END_REF] for a historical summary, [186,[START_REF] Ranestad | Twenty-seven questions about the cubic surface[END_REF] for the modern treatment, [START_REF] Bayer-Fluckiger | Lines on cubic surfaces and Witt invariants[END_REF][START_REF] Basu | Random fields and the enumerative geometry of lines on real and complex hypersurfaces[END_REF][START_REF] Cayley | A memoir on cubic surfaces[END_REF][START_REF] Finashin | Abundance of real lines on real projective hypersurfaces[END_REF][START_REF] Kass | An arithmetic count of the lines on a smooth cubic surface[END_REF]373,424,[START_REF] Segre | The non-singular cubic surfaces[END_REF]510] for the count of lines on cubic surfaces over R and in characteristic p > 0, [START_REF] Hashimoto | 38406501359372282063949 & all that: Monodromy of Fano Problems[END_REF] and [START_REF] Mckean | All lines on a smooth cubic surface in terms of three skew lines[END_REF] for the monodromy of lines in families of cubic surfaces, and [110] for lines on singular cubic surfaces.

In the case of quartic surfaces in P 3 the following is known.

Theorem 1.1.

(a) The maximal number of lines on a smooth quartic in P 3 is 64. This maximum is achieved by the F. Schur quartic. Any smooth quartic with 64 lines is isomorphic to the F. Schur quartic [START_REF] Degtyarev | Lines on quartic surfaces[END_REF][START_REF] Rams | 64 lines on smooth quartic surfaces[END_REF]489,[START_REF] Segre | The maximum number of lines lying on a quartic surface[END_REF]. (b) In the projective space |O P 3 (4)| parameterizing the quartics in P 3 , the subvariety of quartics containing a line has codimension one and degree 320. The general point of this subvariety represents a quartic surface with a unique line [376,[START_REF] Maulik | Gromov-Witten theory and Noether-Lefschetz theory[END_REF].

The first claim in (a) is due to B. Segre [START_REF] Segre | The maximum number of lines lying on a quartic surface[END_REF], but his proof contains a mistake. In [START_REF] Degtyarev | Lines on quartic surfaces[END_REF] and [START_REF] Rams | 64 lines on smooth quartic surfaces[END_REF] there are two different proofs based on the ideas of B. Segre. In the case of quintics we have the following weaker results. We let Σ(d, n) stand for the projective space |O P n (d)| = P ( n+d n )-1 parameterizing the degree d effective divisors on P n . The general point of Σ(d, n) corresponds to a smooth hypersurface of degree d in P n . Theorem 1.2.

(a) A smooth quintic surface in P 3 contains at most 127 lines [START_REF] Rams | Counting lines on surfaces, especially quintics[END_REF]. (b) The variety of quintic surfaces in P 3 containing a line is irreducible of degree 1990 and of codimension 2 in Σ [START_REF] Anella | Rational curves on fibered varieties[END_REF][START_REF] Altman | Foundations of the theory of Fano schemes[END_REF]. The general point of this variety corresponds to a quintic surface with a unique line [START_REF] Maia | Enumeration of surfaces containing a curve of low degree[END_REF]376].

The exact upper bound for the number of lines in a smooth quintic is unknown. The Fermat quintic and the Barth quintic contain exactly 75 lines each.

For higher degree surfaces in P 3 the following is known (cf. Theorem 1.1.b).

Theorem 1.3.

(a) A smooth surface of degree d ≥ 3 in P 3 contains at most 11d2 -32d + 24 lines [START_REF] Th | Counting lines on projective surfaces[END_REF]. 1(b) The surfaces of degree d in P 3 containing a line are parameterized by an irreducible subvariety in Σ(d, 3) of codimension d -3 and degree

(1) 1 24

d + 1 4 (3d 4 + 6d 3 + 17d 2 + 22d + 24) .

The general such surface contains a unique line [START_REF] Maia | Enumeration of surfaces containing a curve of low degree[END_REF]376].

Once again, for d ≥ 5 the exact upper bound in (a) is unknown. The Fermat surface of degree d contains exactly 3d 2 lines. As for (b), there are analogous formulas for the degrees of the loci of degree d surfaces in P 3 passing through a given line and containing an extra line, and, respectively, containing three lines in general position; see [START_REF] Maia | Enumeration of surfaces containing a curve of low degree[END_REF]Prop. 3.3 and 6.4.1]. The latter locus is of codimension 3d + 3 -12 = 3d -9 in Σ(d, 3). For d = 3 its degree equals 720, in agreement with the combinatorics of triplets of skew lines contained in a smooth cubic surface.

The numerology of Fano schemes

Given a variety X ⊂ P n , the Fano scheme F h (X) is the scheme of h-planes contained in X. Recall that a hypersurface is very general if it belongs to the complement of countably many proper subvarieties in the space of hypersurfaces of a given degree. For the Fano schemes of lines on hypersurfaces one has the following results.

Theorem 2.1. For a smooth hypersurface X of degree d in P n , where n ≥ 3, the following holds.

(a) ( [START_REF] Barth | Fano varieties of lines on hypersurfaces[END_REF][START_REF] Beheshti | Lines on projective hypersurfaces[END_REF][START_REF] Beheshti | Hypersurfaces with too many rational curves[END_REF][START_REF] Beheshti | Linear subspaces of hypersurfaces[END_REF]342,[START_REF] Landsberg | On the Debarre-de Jong and Beheshti-Starr conjectures on hypersurfaces with too many lines[END_REF][START_REF] Lewis | On hypersurfaces admitting a covering by rational curves[END_REF], [START_REF] Kollár | Rational curves on algebraic varieties[END_REF]Ch. V, 2.9, 4.3, 4.5])

-If d ≤ 2n -3 then the Fano scheme of lines F 1 (X) is nonempty; -if d < n then X is covered by lines. The latter holds also for non-smooth hypersurfaces;

-F 1 (X) is smooth of the expected dimension δ = 2n -3d if either X is general, or d ≤ min{8, n} and δ ≥ 0;

-F 1 (X) is irreducible if d ≤ (n + 1)/2 and X is not a smooth quadric in P 3 ; it is connected if d ≤ 2n -5. (b) -If d+1 2 ≤ n then F 1 (X) is rationally connected and is a Fano variety for X general [321, Exerc. V. 4.7].

-If d+2 2 ≥ 3n and X is very general then F 1 (X) contains no rational curve [START_REF] Riedl | Rational curves on general type hypersurfaces[END_REF]Thm. 3.3]. (c) Any hypersurface of degree d = 2n -3 in P n contains a line. The number of lines in a general such hypersurface is

2 d • d! n-3 k=0 (2k)! k!(k + 1)! I⊂{1,...,n-2}, |I|=n-2-k i∈I (d -2i) 2 i(d -i) .
For instance, a general quintic threefold in P 4 contains exactly 2875 lines [234].

The De Jong-Debarre Conjecture [159] states that dim(F 1 (X)) = δ for any smooth hypersurface in P n of degree d ≤ n. The upper bound n is optimal; indeed, for any d > n, there exists a smooth hypersurface X of degree d in P n with dim(F 1 (X)) > δ [START_REF] Beheshti | Linear subspaces of hypersurfaces[END_REF]Cor. 3.2]. For instance, the Fano variety of lines on a Fermat hypersurface of degree d ≥ n in P n is of dimension n -3 [158, Ch. 2, p. 50] (see also [START_REF] Terasoma | Varieties of lines on Fermat hypersurfaces[END_REF]), which is larger than δ when d > n. On the Fermat quintic threefold X 5 in P 4 there are 50 one-parameter families of lines [START_REF] Albano | Lines on the Fermat quintic threefold and the infinitesimal generalized Hodge conjecture[END_REF], cf. (c). Whereas for n = 4, d = 3, the Fano variety of lines F 1 (X 3 ) on the cubic Fermat threefold X 3 = {x 31 + x 3 2 + x 3 3 + x 3 4 + x 3 5 = 0} in P 4 is a smooth surface (and so, dim(F 1 (X 3 )) = δ = 2) carrying 30 smooth elliptic Fermat cubic curves [START_REF] Roth | Algebraic varieties with canonical curve sections[END_REF].

For varieties with too many lines we have the following classification results, see [START_REF] Canning | On a conjecture on the variety of lines on Fano complete intersections[END_REF]Thm. 4.2].

Theorem 2.2. ([478, 492]) Let X ⊂ P n be a k-dimensional subvariety of codimension at least 3. Then dim(F 1 (X)) ≤ 2k -2. Furthermore, • if dim(F 1 (X)) = 2k -2 then X = P k ; • if dim(F 1 (X)) = 2k -3 then X is either a quadric or a 1-parameter family of P k-1 ; • if dim(F 1 (X)) = 2k -4 then X is either a 1-parameter family of (k -1)-dimensional quadrics, a 2-parameter family of P k-2
, or the intersection of 6k hyperplanes with the Grassmannian Gr(2, 5) ⊂ P 9 in its Plücker embedding.

For lines in an arbitrary subvariety in P n one has the following fact.

Theorem 2.3. ([345, Thm. 1]; see [START_REF] Mezzetti | On threefolds covered by lines[END_REF] for m = 3) Let X be a projective variety of dimension m in P n . Assume X is covered by lines and through a general point of X pass a finite number of lines. Then there are at most m! lines passing through a general point of X.

Notice that a line osculating to order m + 1 at a general point of X must be contained in X [START_REF] Landsberg | Is a linear space contained in a submanifold? On the number of derivatives needed to tell[END_REF]. The bound m! in the theorem is optimal; it is achieved for a smooth hypersurface of degree m in P m+1 . A similar uniform bound is known for higher degree curves.

Theorem 2.4. ([266, Thm. 2]) Let X be an irreducible projective variety of dimension m in P n , and x ∈ X be a general point. Let Curves d (X, x) stand for the space of curves of degree d lying on X and passing through x. Then the number of components of Curves d (X, x) is bounded above by

(2m + 2)((2md) m -1) 2m + 1 (2m+2)(4d 2 -4d+2)
.

The exceptional locus in this theorem has codimension at least two in X [START_REF] Hwang | A bound on the number of curves of a given degree through a general point of a projective variety[END_REF]Thm. 3].

For the Fano schemes of h-planes in hypersurfaces we have the following facts.

Theorem 2.5. If X is a smooth hypersurface of degree d in P n , where n ≥ 3, then:

• F h (X) is irreducible of the expected dimension δ = (h + 1)(n -h) -d+h h provided 2 d + h -1 h ≤ n -h; • for 2h ≥ max{(n -1)/2, n + 2 -d} one has [40] dim(F h (X)) ≤ (m -h)(h + 1) if n = 2m + 1 (m -h -1)(h + 1) if n = 2m ;
• if n is odd and d > 2 then there are at most finitely many (n -1)/2-planes contained in X. If n is even and d > 3 then there is at most a one-parameter family of (n/2-1)-planes in X [START_REF] Beheshti | Linear subvarieties of hypersurfaces[END_REF];

• assume X is general, d+h h ≤ (n -h)(h + 1)
, and d = 2 or n ≥ 2h + 1. Then there are explicit formulas for the degree of F h (X) [START_REF] Debarre | Sur la variété des espaces linéaires dans une intersection complète[END_REF]Ex. 14.7.13], [START_REF] Tuan | Intersection theory with applications to the computation of Gromov-Witten invariants[END_REF]Thm. 1.1], [START_REF] Manivel | Symmetric functions, Schubert polynomials and degeneracy loci[END_REF]Thms. 3.5.18,4.3

]. 3 If X is a complete intersection of type (that is, of multidegree) d = (d 1 , . . . , d s ) then the expected dimension of F h (X) is (2) δ = δ(d, n, h) = (n -h)(h + 1) - s i=1 d i + h h .
In particular, the expected dimension of F 1 (X) is

δ = 2(n -1) -(d + s), where d = s i=1 d i .
Let also

δ -= min{δ, n -2h -s} .
For (a) and (b) of the following theorem see [START_REF] Borcea | Deforming varieties of k-planes of projective complete intersections[END_REF][START_REF] Debarre | Sur la variété des espaces linéaires dans une intersection complète[END_REF][START_REF] Langer | Fano schemes of linear spaces on hypersurfaces[END_REF][START_REF] Predonzan | Intorno agli S k giacenti suxla varietà intersezione completa di più forme[END_REF] and the references therein.

Theorem 2.6. For a complete intersection X ⊂ P n of type d = (d 1 , . . . , d s ) the following holds. [START_REF] Canning | On a conjecture on the variety of lines on Fano complete intersections[END_REF]. See also [START_REF] Chan | Fano schemes of determinants and permanents[END_REF][START_REF] Ilten | Fano schemes of lines on toric surfaces[END_REF][START_REF] Ilten | Fano schemes of complete intersections in toric varieties[END_REF][START_REF] Ilten | Fano schemes for generic sums of products of linear forms[END_REF][START_REF] Ilten | On Fano schemes of toric varieties[END_REF] for the Fano schemes of toric varieties and of complete intersections in toric varieties, and [START_REF] Larsen | Notes on Fano varieties of complete intersections[END_REF][START_REF] Larsen | Fano schemes of generic intersections and machine learning[END_REF] for applications to the machine learning.

(a) If δ -< 0 then F h (X) = ∅ for a general X. (b) If δ -≥ 0 then F h (X) has dimension δ, is smooth for a general X, and is irreducible if δ -> 0. (c) If δ -≥ 0 and δ ≥ n -h -s then through any point x ∈ X passes an h-plane contained in X [397]. (d) For any smooth Fano complete intersection X ⊂ P n of type d = (d 1 , . . . , d s ) with s ≥ 2 and d = s i=1 d i ≤ s + 5, F 1 (X) has the expected dimension δ = 2n -d -s -2
Theorem 2.7. ( [START_REF] Bastianelli | On complete intersections containing a linear subspace[END_REF][START_REF] Miyazaki | Remarks on r-planes in complete intersections[END_REF]; see [START_REF] Manivel | Symmetric functions, Schubert polynomials and degeneracy loci[END_REF] for s = 1) Let Σ(d, n) be the scheme which parameterizes the complete intersections of type d = (d 1 , . . . , d s ) in P n , and let Σ(d, n, h) be the subvariety of Σ(d, n) of points which correspond to the complete intersections which carry h-planes. Then

dim Σ(d, n) = s j=1 d j + n d j . If γ(d, n, h) := -δ(d, n, h) > 0 then Σ(d, n, h) is a nonempty, irreducible and rational subvariety of codimension γ(d, n, h) in Σ(d, n).
The general point of Σ(d, n, h) corresponds to a complete intersection which contains a unique linear subspace of dimension h and has singular locus of dimension max{-1, 2h+ sn -1} along its unique h-dimensional linear subspace (in particular, it is smooth provided n ≥ 2h + s).

To determine the degree of Σ(d, n, h) we propose the following receipt. 

(F h (X)) > 0 and dim(Σ(d m , X)) > γ(d, n, h) 0 , where Σ(d m , X) = |O X (d m )| .
Let Σ(d s , X, h) be the set of points in Σ(d s , X) which correspond to complete intersections of type d = (d 1 , . . . , d s ) contained in X and containing a linear subspace of dimension h. Then the degree deg(Σ(d m , X, h)) equals the coefficient of the monomial

x n 0 x n-1 1 • • • x n-h h
in the product of the following polynomials in x 0 , . . . , x h :

• the product Q h,d = s-1 i=1 Q h,d i of the polynomials Q h,d i = v 0 +...+v h =d i (v 0 x 0 + • • • + v h x h ) ;
• the homogeneous component of degree

ρ := d s + h h -γ(d, n, h) = dim(F h (X))
of the polynomial

v 0 +...+v h =dm (1 + v 0 x 0 + . . . + v h x h ) ;
• the Vandermonde polynomial V (x 0 , . . . , x h ).

The general point of Σ(d m , X, h) corresponds to a complete intersection of type d = (d 1 , . . . , d s ) which contains a unique subspace of dimension h.

Notice that our assumptions hold automatically if γ(d, n, h) is sufficiently small, e.g., if γ(d, n, h) = 1.

Geometry of the Fano scheme

In this section we consider the complete intersections of type d = (d 1 , . . . , d s ) in P n whose Fano schemes have positive expected dimension δ = δ(d, n, h) > 0, see [START_REF] Alexeev | Theorems about good divisors on log Fano varieties (case of index r > n -2)[END_REF]. We assume d i ≥ 2, i = 1, . . . , s. If also n ≥ 2h + s + 1 then by Theorem 2.7(b), for a general complete intersection X of type d in P n , the Fano variety F h (X) of linear subspaces of dimension h contained in X is a smooth, irreducible variety of dimension δ(d, n, h). Theorem 3.1. ([169, Thm. 4.3]) In the notation and assumptions as before, the degree of the Fano scheme F h (X) under the Plücker embedding equals the coefficient of the monomial There are formulas expressing certain numerical invariants of F h (X) other than the degree. If δ(d, n, h) = 1 then F h (X) is a smooth curve; its genus was computed in [START_REF] Tuan | Numerical invariants of Fano schemes of linear subspaces on complete intersections[END_REF]. In the case where F h (X) is a surface, that is, δ(d, n, h) = 2, the Chern numbers of this surface and its holomorphic Euler characteristic χ(O F h (X) ) were computed in [START_REF] Ciliberto | On Fano schemes of complete intersections. Polynomial Rings and Affine Algebraic Geometry[END_REF]. Actually, [START_REF] Ciliberto | On Fano schemes of complete intersections. Polynomial Rings and Affine Algebraic Geometry[END_REF] contains formulas for c 1 (F h (X)) and c 2 (F h (X)) in the general case provided δ(d, n, h) > 0. Applying these formulas to the case where the Fano scheme is a surface, one can deduce the classically known values and new ones, as in the following examples.

x n 0 x n-1 1 • • • x n-h h of the product Q h,d • e δ • V where • V stands for the Vandermonde polynomial V (x) = 0≤i<j≤h (x i -x j ); • e(x) := x 0 + • • • + x h and δ = δ(d, n, h); • Q h,d is the product s i=1 Q h,d i of the polynomials Q h,d i = v 0 +...+v h =d i (v 0 x 0 + • • • + v h x h ) . Remark 
Examples 3.3.

• In the case of the Fano surface F = F 1 (X) of lines on the general cubic threefold X in P 4 one has [START_REF] Altman | Foundations of the theory of Fano schemes[END_REF][START_REF] Libgober | Numerical characteristics of systems of straight lines on complete intersections[END_REF], [START_REF] Ciliberto | On Fano schemes of complete intersections. Polynomial Rings and Affine Algebraic Geometry[END_REF]Ex. 4 

K 2 F = c 1 (F ) 2 = 0 .
In fact, F is an abelian surface [START_REF] Reid | The complete intersection of two or more quadrics[END_REF].

• Finally, for the Fano scheme F = F 2 (X) of planes on a general cubic fivefold X in P 6 one gets [START_REF] Ciliberto | On Fano schemes of complete intersections. Polynomial Rings and Affine Algebraic Geometry[END_REF]Ex. 4.4]

deg(F ) = 2835, e(F ) = c 2 (F ) = 1304, K 2 F = c 1 (F ) 2 = 25515
, and χ(O F ) = 3213 . As for the Picard numbers of the Fano schemes of complete intersections, one has the following result.

Theorem 3.4. ([304, Thm. 03]; cf. also [START_REF] Debarre | Sur la variété des espaces linéaires dans une intersection complète[END_REF]) Let X be a very general complete intersection of type d = (d 1 , . . . , d s ) in P n . Assume δ(d, n, h) ≥ 2. Then ρ(F h (X)) = 1 except in the following cases:

• X is a quadric in P 2h+1 , h ≥ 1. Then F h (X) consists of two isomorphic smooth disjoint components, and the Picard number of each component is 1;

• X is a quadric in P 2h+3 , h ≥ 1. Then ρ(F h (X)) = 2; • X is a complete intersection of two quadrics in P 2h+4 , h ≥ 1. Then ρ(F h (X)) = 2h + 6.
The assumption 'very general' of this theorem cannot be replaced by 'general'; one can find corresponding examples in [START_REF] Jiang | A Noether-Lefschetz theorem for varieties of r-planes in complete intersections[END_REF]. See also [START_REF] Harris | Algebraic Geometry. A first course[END_REF]Chapter 22] for the Fano varieties of smooth quadrics. It is well known, for instance, that the Fano variety of lines on a smooth threedimensional quadric is isomorphic to P 3 [233, Exercice 22.6].

Next we turn to the irregular Fano schemes of general complete intersections. 

= F h (X) of h-planes in X, h ≥ 1, is irreducible of dimension δ ≥ 2.
Then F is irregular if and only if one of the following holds:

(i) F = F 1 (X)
is the variety of lines on a general cubic threefold

X in P 4 (dim(F ) = 2); (ii) F = F 2 (X)
is the variety of planes on a general cubic fivefold

X in P 6 (dim(F ) = 2); (iii) F = F h (X)
is the variety of h-planes on the intersection X of two general quadrics in

P 2h+3 , h ∈ N (dim(F ) = h + 1).
Remark 3.6. 1. The Fano surface of lines F = F 1 (X) on a smooth cubic threefold X ⊂ P 4 in (i) was studied by Fano [201] who found, in particular, that q(F ) = 5. Using Example 3.3 we deduce p g (F ) = 10; cf. also [START_REF] Beauville | Sous-variétés spéciales des variétés de Prym[END_REF]Thm. 4], [START_REF] Bombieri | On the local zeta function of a cubic threefold[END_REF]128,218,[START_REF] Libgober | Numerical characteristics of systems of straight lines on complete intersections[END_REF][START_REF] Roulleau | Elliptic curve configurations on Fano surfaces[END_REF][START_REF] Tyurin | On the Fano surface of a nonsingular cubic in P 4[END_REF][START_REF] Tyurin | The geometry of the Fano surface of a nonsingular cubic F ⊂ P 4 and Torelli Theorems for Fano surfaces and cubics[END_REF], [START_REF] Reid | The complete intersection of two or more quadrics[END_REF]Sect. 4.3].

There is an isomorphism Alb(F ) ≃ J(X) where J(X) is the intermediate Jacobian, see [128] and Section 5. The latter holds as well for F = F 2 (X) where X ⊂ P 6 is a smooth cubic fivefold as in (ii) [START_REF] Collino | The Abel-Jacobi isomorphism for the cubic fivefold[END_REF], cf. Example 3.3. Thus, q(F ) > 0 in (i) and (ii). Consider further the Fano scheme F = F h (X) of h-planes on a smooth intersection X of two quadrics in P 2h+3 as in (iii). By a theorem of M. Reid [START_REF] Reid | The complete intersection of two or more quadrics[END_REF]Thm. 4.8] (see also [181, Thm. 2], [538]), F is isomorphic to the Jacobian J(C) of a hyperelliptic curve C of genus g(C) = h + 1 (of an elliptic curve if h = 0). Hence, one has q(F ) = dim(F ) = h + 1 > 0 for h ≥ 0. There is an isomorphism F ≃ J(X) where J(X) is the intermediate Jacobian of X [START_REF] Donagi | Group law on the intersection of two quadrics[END_REF].

2. The complete intersections in (i)-(iii) are Fano varieties. The ones in (i) are Fano threefolds of index 2 with a very ample generator of the Picard group. The Fano threefolds of index 1 with a very ample anticanonical divisor which are complete intersections are the varieties V 3 2g-2 ⊂ P g+1 of genera g = 3, 4, 5, that is (see [START_REF] Iskovskikh | Birational automorphisms of three-dimensional algebraic varieties[END_REF]Ch. IV, Prop. 1.4]; cf. Section 5): g = 3: the smooth quartics V 3 4 in P 4 ; g = 4: the smooth intersections V 3 6 of a quadric and a cubic in P 5 ; g = 5: the smooth intersections V 3 8 of three quadrics in P 6 . The Fano scheme of lines F = F 1 of a general Fano threefold V 3 2g-2 is a smooth curve of a positive genus g(F ) > 0. In fact, g(F ) = 801 for g = 3, g(F ) = 271 for g = 4, and g(F ) = 129 for g = 5 [START_REF] Markushevich | Numerical invariants of families of lines on some Fano varieties[END_REF], [252, Ex. 1-3], [START_REF] Iskovskikh | Fano Varieties[END_REF]Thm. 4.2.7]. For X = V 3 2g-2 with g ∈ {3, 4, 5}, the Abel-Jacobi map J(F ) → J(X) to the intermediate Jacobian is an epimorphism, see [START_REF] Iskovskikh | Birational automorphisms of three-dimensional algebraic varieties[END_REF] and [START_REF] Tyurin | Five lectures on three-dimensional varieties[END_REF]Lect. 4, Sect. 1, Ex. 1 and Sect. 3].

3. Besides the Fano threefolds V 3 2g-2 , there are other complete intersections whose Fano scheme of lines is a curve of positive genus. This holds, for instance, for the general hypersurface of degree 2r -4 in P r , r ≥ 4, and for the general complete intersections of types d = (n -3, n -2) and d = (n -4, n -4) in P n where n ≥ 5 and n ≥ 6, respectively [START_REF] Tuan | Numerical invariants of Fano schemes of linear subspaces on complete intersections[END_REF]. One can find in [START_REF] Tuan | Numerical invariants of Fano schemes of linear subspaces on complete intersections[END_REF] a formula for the genus of F in these cases.

4. Let X be a smooth intersection of two quadrics in P 2k+2 . Then the Fano scheme F k (X) is reduced and finite of cardinality 2 2k+2 [470, Ch. 2], whereas F k-1 (X) is a rational Fano variety of dimension 2k and index 1, whose Picard number is ρ = 2k + 4, see [START_REF] Araujo | On the Fano variety of linear spaces contained in two odd-dimensional quadrics[END_REF][START_REF] Casagrande | Rank 2 quasiparabolic vector bundles on P 1 and the variety of linear subspaces contained in two odd-dimensional quadrics[END_REF], and the references therein.

5. It is shown in [START_REF] Chen | Hilbert scheme of a pair of codimension two linear subspaces[END_REF][START_REF] Ramkumar | The Hilbert scheme of a pair of linear spaces is a Mori dream space[END_REF] that the component of the Hilbert scheme whose general point is a pair of transversal linear subspaces in P n of given dimensions a, b, is a Mori dream space; its effective and nef cones are described, and it is determined as to when such a component is Fano.

Counting conics in complete intersection

A conic in P n is a curve whose Hilbert polynomial is 2t + 1. Any conic C is contained in a unique plane and is either a smooth (reduced) plane conic, or a pair of distinct lines, or a double line (see, e.g., [START_REF] Deland | Geometry of rational curves on algebraic varieties[END_REF]Lem. 2.2.6]). Thus, a pair of skew lines does not fit in our terminology. Likewise, the general member of the Hilbert scheme Hilb 3 (P n ) of curves in P n whose Hilbert polynomial is 3t + 1 is a twisted cubic.

Any smooth cubic surface S in P 3 contains exactly 27 pencils of conics, and any smooth conic in S belongs to a unique such pencil. Hence the variety of conics in S is reducible and consists of 27 P 1 -components.

By contrast, the number of conics on a general quartic surface in P 3 is finite. Furthermore, one has Theorem 4.1. ( [START_REF] Th | Quartic surfaces with 16 skew conics[END_REF]) There exist smooth quartic surfaces in P 3 which contain 432 smooth conics; 16 of these conics are mutually disjoint.

According to [419], 16 is the maximal number of disjoint rational curves on a quartic surface. In [START_REF] Barth | Smooth quartic surfaces with 352 conics[END_REF] and [START_REF] Eklund | Curves on Heisenberg invariant quartic surfaces in projective 3-space[END_REF] one can find constructions of two smooth quartic surfaces in P 3 carrying 352 and 320 smooth conics, respectively. The maximal number of conics lying in a smooth quartic in P 3 is unknown. However, given any smooth quartic surface S, a general pencil of quartic surfaces through S contains exactly 5016 surfaces with a conic, counting things with multiplicities, see Theorem 4.2. Let Σ c (d, 3) be the variety of those degree d surfaces in P 3 which contain conics. Then a general point of Σ c (4, 3) corresponds to a smooth quartic surface carrying exactly two (coplanar) conics, and so, deg(Σ c (4, 3)) = 5016/2 = 2508.

For higher degree surfaces in P 3 the following holds.

Theorem 4.2. ([376]

; see also [START_REF] Maia | Enumeration of surfaces containing a curve of low degree[END_REF]Prop. 7.1])

• For d ≥ 4, Σ c (d, 3
) is an irreducible subvariety of codimension 2d -7 in Σ(d, 3). In particular, Σ c (4, 3) is a hypersurface of degree 2508 in Σ(4, 3).4 • For d ≥ 5, a general point of Σ c (d, 3) corresponds to a surface which contains a unique (smooth) conic, and one has

deg(Σ c (d, 3)) = d 4 (d 2 -d + 8)(d 2 -d + 6)(207d 8 -288d 7 + 498d 6 + 5068d 5 -15693d 4 + 31732d 3 -37332d 2 + 9280d -47040)/967680 .
For higher dimensional hypersurfaces we have the following results.

Theorem 4.3.

(a) Let X be a hypersurface of degree n in P n , n ≥ 2. Then X is covered by a family of conics. For the general such X, the number of conics in X passing through a general point equals [START_REF] Riedl | Rational curves on general type hypersurfaces[END_REF]Thm. 3.4]. (d) Let further X be an arbitrary smooth hypersurface of degree d in P n .

(2n)! 2 n+1 - (n!) 2 2 [67, Prop. 3.2], see also [356, Thm. 0.1], [518] (n = 4), [138, Thm. 2] (n = 5). For n ≥ 4 and a general X, the variety R 2 (X) of smooth conics in X is smooth, irreducible, of dimension n -2. (b) For the general hypersurface X of degree d in P n , where n ≥ 3, R 2 (X) is smooth of the expected dimension µ(d, n) := 3n -2d -2 provided µ(d, n) ≥ 0, and is empty otherwise. It is irreducible provided µ(d, n) ≥ 1 and X is not a smooth cubic surface in P 3 [213, Thm. 1.1]. (c) If X is general and d ≥ 3n -1, then X contains no reducible conic
-Assume n ≥ 6 and d ≤ 6 (so, X is Fano). Let R = ∅ be an irreducible component of R 2 (X) such that the plane spanned by a general conic in R is not contained in

X. Then dim(R) = µ(d, n) = 3n -2d -2 [214].
-Let X be a smooth quartic threefold in P 4 (n = d = 4). Then dim R ≥ µ(4, 4) = 2 for any irreducible component R of R 2 (X). Through a general point of X passes 972 conics [START_REF] Collino | On the family of conics lying on a quartic threefold[END_REF][START_REF] Iskovskikh | Fano threefolds I, II[END_REF][START_REF] Tennison | On the quartic threefold[END_REF].

For instance, for a general sextic hypersurface X in P5 (n = 5, d = 6, and X is Calabi-Yau) the Fano scheme F c (X) of conics in X is a smooth projective curve, whose general point corresponds to a smooth conic [START_REF] Cao | Counting conics on sextic 4-folds[END_REF]. By (b), for a general Fano hypersurface X in P n (that is,

d ≤ n), R 2 (X) is smooth, irreducible, of dimension µ(d, n) ≥ 1 if n ≥ 4.
For conics in Fano complete intersections we have the following facts. 

d i = n -s + 1 .
Then the following holds.

• X is a Fano variety with Picard number one of index ι(X) = n-s+1

2

. The anticanonical degree of a conic in X equals ns + 1.

• For a general X the family of conics in X is a nonempty, smooth and irreducible component of the Chow scheme of X 5 , of dimension 2(ns -1).

• Let e(X) (e 0 (X), respectively) be the number of conics passing through a general pair of points of X (passing through a general point x ∈ X and having a given general tangent direction at x, respectively). Then for a general X these conics are smooth, and one has

e 0 (X) = e(X) = s i=1 (d i -1)!d i ! .
See [START_REF] Beauville | Quantum cohomology of complete intersections[END_REF] for formulas for the numbers of lines and conics in X meeting three general linear subspaces in P r of suitable dimensions; cf. also [START_REF] Libgober | Numerical characteristics of systems of straight lines on complete intersections[END_REF] in the case of lines, [44, Cor. 1.5], and [START_REF] Vakil | Counting curves on rational surfaces[END_REF]. See [START_REF] Borcea | On tangents to quadric surfaces[END_REF] for the variety of lines in P 3 tangent to four given quadric surfaces. See also [428] for a study on the Kontsevich moduli spaces M 0,2 (X, 2) of conics through a pair of points in a smooth complete intersection X (see the definition below).

Set (a

ǫ(d, n) = 2d + 2 -3n = -µ(d, n) . Consider the subvariety Σ c (d, r) of Σ(d,
) Σ c (d, n) is irreducible of codimension ǫ(d, n) in Σ(d, n). (b) If ǫ(d, n) > 0 and (d, n) = (4, 3
) then the hypersurface corresponding to the general point of Σ c (d, n) contains a unique conic, and this conic is smooth. In the case (d, n) = (4, 3) it contains exactly two distinct conics, and these conics are smooth and coplanar.

(c) If ǫ(d, n) > 0 and (d, n) = (4, 3) then one has deg(Σ c (d, n)) = - 5 32 n + 1 3 η(1, 1, 1) ,
where η is the homogeneous form of degree 3n-1 in the formal power series decomposition of

  |v|=d (1 + v, x )   •   |v|=d-2 (1 + v, x )   -1 with x = (x 1 , x 2 , x 3 ), v = (v 1 , v 2 , v 3 ) ∈ (Z ≥0 ) 3 , and |v| = v 1 + v 2 + v 3 .
The latter formulas are obtained by applying Bott's residue formula; see, e.g., [START_REF] Bott | A residue formula for holomorphic vector-fields[END_REF][START_REF] Brion | Equivariant cohomology and equivariant intersection theory[END_REF][START_REF] Edidin | Localization in equivariant intersection theory and the Bott residue formula[END_REF][START_REF] Tuan | Intersection theory with applications to the computation of Gromov-Witten invariants[END_REF][START_REF] Meireles Araújo | Equivariant intersection theory and Bott's residue formula. 16th School of Algebra, Part I (Portuguese)[END_REF] for generalities.

Recall the definition of the Kontsevich moduli spaces of stable maps [START_REF] Kontsevich | Enumeration of Rational Curves via Torus Actions. The moduli space of curves[END_REF]. Let X be a smooth projective variety in P n . The Kontsevich moduli space M g,r (X, e) parameterizes the isomorphism classes of corteges (C, f,

x 1 , • • • , x r ) where • C is a proper, connected, nodal curve of arithmetic genus g; • f : C → X is a morphism whose image is a curve of degree e in P n ; • (x 1 , • • • , x r ) is an ordered collection of distinct smooth points of C; • the cortege (C, f, x 1 , • • • , x r
) admits only finitely many automorphisms. In general, M g,r (X, e) is a proper Deligne-Mumford stack. The underlying variety of M g,r (X, e) is projective, but does not need to be smooth or irreducible. However, M 0,0 (X, e) is a compactification of the variety R e (X) of smooth rational curves in X of degree e.

Recall that a curve (a) Let X be a smooth hypersurface in P n of degree d < n.

C ≃ P 1 in a smooth projective variety X of dimension m is called free if N C/X ≃ O(a 1 ) ⊕ . . . ⊕ O(a m-1 )
-If X is general then M 0,0 (X, 2) is irreducible and of the expected dimension µ

(d, n) = 3n -2d -2 [174, 2.3.4].
-If X is arbitrary (but smooth) then there is a unique component of M 0,0 (X, 2) which contains a conic passing through the general point of X. Moreover, if the dimension of the variety of non-free lines on X is at most n -3 then there is a unique component of R 2 (X) whose general point corresponds to a smooth conic through the general point of X [174, 2. 5. Lines and conics on Fano threefolds and the Abel-Jacobi mapping 5.1. The Fano-Iskovskikh classification. The content of this section is partially borrowed from [START_REF] Iskovskikh | Fano Varieties[END_REF]Sect. 4.1] and [START_REF] Kuznetsov | Hilbert schemes of lines and conics and automorphism groups of Fano threefolds[END_REF]Sect. 2]. Let X be a smooth Fano threefold, that is, a smooth threefold with an ample anticanonical divisor -K X . One attributes to X the following integers:

• the genus 6 g(X) = (-K X ) 3 /2 + 1 = dim | -K X | -1 ≥ 2 ; • the index ι(X), that is, the maximal natural number in {1, . . . , 4} such that -K X = ι(X)H for an ample divisor H on X; • the Picard rank ρ(X) such that Pic(X) ≃ Z ρ(X) ; • the degree d(X) = H 3 ;
• the Matsusaka constant m 0 = m 0 (X), that is, the minimal integer such that m 0 H is very ample. One has g(X) = ι(X) 3 (i) The anticanonical divisor is very ample, and the linear system | -K X | defines an embedding ϕ of X onto a projectively normal threefold ϕ(X) of degree 2g -2 in P g+1 with one of the following: (i3) g = 3 and ϕ(X) ⊂ P 4 is a smooth quartic threefold; (i4) g = 4 and ϕ(X) ⊂ P 5 is complete intersection of a quadric and a cubic hypersurfaces; (i5) g = 5 and ϕ(X) ⊂ P6 is complete intersection of three quadric hypersurfaces; (ig) g ≥ 6 and ϕ(X) ⊂ P g+1 is an intersection of quadric hypersurfaces. (ii) g = 2 and X is a sextic double solid, that is, | -K X | defines a double cover X → P 3 ramified along a smooth surface S ⊂ P 3 of degree 6; (iii) g = 3 and | -K X | defines a double cover X → Q over a smooth quadric threefold Q ⊂ P 4 ramified along a smooth surface S ⊂ Q of degree 8.

The table of numerical data of the Fano threefolds with ρ(X) = 1 can be found in [301, Sect. 12.2]. These threefolds form 17 deformation families. According to the index, these are: ι = 1 : 10 families with genera varying from 2 to 12 excluding 11; ι = 2 : 5 families of del Pezzo threefolds with anticanonical degree -K 3 X = 8d, d = 1, 2, 3, 4, 5; ι = 3 : the smooth quadric Q in P 4 with anticanonical degree 54; ι = 4 : P 3 with anticanonical degree 64. The families of Fano threefolds V 3 2g-2 ⊂ P g+1 with ρ = 1 and ι = 1 are classified according to the genus g as follows. g = 2, 3, 4, 5: the Fano threefolds listed in (i3)-(i5), (ii), and (iii); g = 6: the smooth intersections Gr(2; 5) ∩ P 7 ∩ Q of the Grassmannian Gr(2; 5) with a linear subspace P 7 and a quadric Q in P 9 , and g = 6: the Gushel threefolds of genus 6, that is, the double covers of the del Pezzo threefold Y = Gr(2; 5) ∩ P 6 ⊂ P 9 of degree 5 branched along a smooth quadric section Q ∩ Y ; g = 7: the smooth linear sections OGr + (5; 10) ∩ P 8 of a connected component OGr + (5; 10) of the orthogonal Lagrangian Grassmannian in P 15 ; g = 8: the smooth linear sections Gr(2; 6) ∩ P 9 of the Grassmannian Gr(2; 6) ⊂ P 14 ; g = 9: the smooth linear sections LGr(3; 6) ∩ P 10 of the symplectic Lagrangian Grassmannian

LGr(3; 6) ⊂ P 13 ; g = 10: the smooth linear sections Ω 5 ∩ P 11 of the homogeneous G 2 -fivefold Ω 5 ⊂ P 13 (an adjoint orbit of the group G 2 ); g = 12: the smooth zero loci of triplets of sections of the rank 3 vector bundle Λ 2 E ∨ , where E is the universal bundle over the Grassmannian Gr(3; 7). Initially, the Fano threefolds V 3 2g-2 with g = 7, 9, 12 were obtained from simpler ones via certain birational transformations (elementary Sarkisov links); see, e.g., [START_REF] Iskovskikh | Fano Varieties[END_REF]Prop. 3 with g = 7, . . . , 10 as linear sections X n 2g-2 ∩P g+1 of certain special Grassmannians X n 2g-2 = G/P , which are flag varieties embedded in P g+n-2 .

Notice that the family of Gushel threefolds of genus 6 (called also special Gushel-Mukai threefolds) is a flat specialization of the family Gr(2; 5) ∩ P 7 ∩ Q of general Gushel-Mukai threefolds. Thus, the Fano threefolds of genus 6 form one deformation family of Gushel-Mukai threefolds. The same holds for the Fano threefolds of genus 3; indeed, the family of smooth quartic threefolds in P 4 specializes to the double covers

X → Q ramified along Q ∩ Y , where Y is a quartic in P 4 .
The families of Fano threefolds with ρ = 1 and ι = 2 are classified according to the anticanonical degree -K 3 X ∈ {8d, d = 1, 2, 3, 4, 5} as follows (Fujita [START_REF] Fujita | Classification theories of polarized varieties[END_REF]; see [START_REF] Iskovskikh | Fano Varieties[END_REF]Thm. 3.3.1]). d = 1: the smooth hypersurfaces of degree 6 in the weighted projective space P(3, 2, 1, 1, 1).

Another realization: the Veronese double cones, that is, the double covers X → V , where V ⊂ P 6 is the cone over the second Veronese surface in P 5 , branched at the vertex v of V and along a smooth intersection of V with a cubic hypersurface which does not pass through v [START_REF] Iskovskikh | Fano threefolds I, II[END_REF][START_REF] Tikhomirov | The Fano surface of a Veronese double cone[END_REF], see also [START_REF] Grinenko | On a double cone over a Veronese surface[END_REF][START_REF] Grinenko | Mori Structures on a Fano Threefold of Index 2 and Degree 1[END_REF][START_REF] Hwang | Varieties of minimal rational tangents on Veronese double cones[END_REF]; d = 2: the quartic double solids, that is, the double covers X → P 3 branched along a smooth quartic surface S ⊂ P 3 ; d = 3: the smooth cubic threefolds X ⊂ P 4 ; d = 4: the smooth complete intersections of two quadrics in P 5 ; d = 5: the smooth linear sections Gr(2; 5) ∩ P 6 of the Grassmannian Gr(2; 5) ⊂ P 9 . 5.2. Lines and conics on Fano threefolds. Let X be a Fano variety of index ι(X), and let H = K X /ι(X) ∈ Pic(X). The lines and conics on X are the irreducible curves C in X satisfying C • H = 1 and C • H = 2, respectively. One considers the Fano schemes F 1 (X) of lines and F c (X) of conics in X meaning actually the unions of the components of the Hilbert schemes of X whose general points correspond to lines and conics on X, respectively.

In the case where -K X is very ample, e.g., if ρ(X) = ι(X) = 1, the lines and conics on X are sent to the usual lines and conics under the anticanonical embedding X ֒→ P 2g(X)-2 . Otherwise, consider, for instance, a double solid, that is, a double cover π : X → P 3 branched along a smooth surface S ⊂ P 3 of degree 4 (degree 6, respectively) which does not contain any line (any conic, respectively). An irreducible curve C on X is a line (a conic, respectively) if and only if C ′ = π(C) is a bitangent line of S in P 3 (a conic in P 3 with only even local intersection indices with S, respectively). In these cases π * (C ′ ) = C + i(C) has two irreducible components, where i is the involution associated to π.

The following theorem summarizes results from [START_REF] Ceresa | The Abel-Jacobi isomorphism for the sextic double solid[END_REF][START_REF] Collino | On the family of conics lying on a quartic threefold[END_REF][START_REF] Collino | The Abel-Jacobi isomorphism for the cubic fivefold[END_REF][START_REF] Iliev | The Fano surface of the Gushel threefold[END_REF][START_REF] Iskovskikh | Birational automorphisms of three-dimensional algebraic varieties[END_REF][START_REF] Letizia | The Abel-Jacobi mapping for the quartic threefold[END_REF]365,[START_REF] Shokurov | The existence of a straight line on Fano 3-folds[END_REF]516,[START_REF] Tennison | On the quartic threefold[END_REF].

Theorem 5.2. Let X be a Fano threefold with ρ(X) = 1 of index ι(X) = 1 and genus g = g(X).

Then the following holds.

• Every line on X meets l(g) lines counting things with multiplicities, where Notice that there are smooth quartic threefolds in P 4 (for instance, the Fermat quartic) which contain cones over curves. However, through a general point of any smooth quartic in P 4 passes exactly 972 conics [START_REF] Collino | On the family of conics lying on a quartic threefold[END_REF][START_REF] Iskovskikh | Fano threefolds I, II[END_REF]. See also [301, 4.2.7] for the genera of the curve F 1 (X) for a general X as in the theorem.

-l(2) = 625; -l(3) = 81 if X of genus g = 3
The following two theorems summarize the results of [START_REF] Altman | Foundations of the theory of Fano schemes[END_REF][START_REF] Brambilla | Rank-two stable sheaves with odd determinant on Fano threefolds of genus nine[END_REF]181,[START_REF] Furushima | The family of lines on the Fano threefold V5[END_REF][START_REF] Iliev | The Sp 3 -Grassmannian and duality for prime Fano threefolds of genus 9[END_REF][START_REF] Iliev | Prime Fano threefolds and integrable systems[END_REF][START_REF] Iskovskikh | Birational automorphisms of three-dimensional algebraic varieties[END_REF][START_REF] Kuznetsov | Hilbert schemes of lines and conics and automorphism groups of Fano threefolds[END_REF][START_REF] Markushevich | Numerical invariants of families of lines on some Fano varieties[END_REF][START_REF] Puts | On some Fano-threefolds that are sections of Grassmannians[END_REF][START_REF] Tennison | On the quartic threefold[END_REF].

Theorem 5.3. ([336, Thm. 1.1.1]) Let X be a smooth Fano threefold with ρ(X) = 1 of index ι = 2 and degree d = d(X) ≥ 3. Then the Fano scheme of lines F 1 (X) is a smooth irreducible surface. In particular, d = 3: F 1 (X) is a minimal surface of general type with irregularity 5, geometric genus 10, and canonical degree K

2 F 1 (X) = 45; d = 4: F 1 (X) is an abelian surface; d = 5: F 1 (X) ≃ P 2 .
Theorem 5.4. ([336, Thm. 1.1.1]) Let X be a smooth Fano threefold with ρ(X) = 1 of index 1 and genus g = g(X) ≥ 7. Then the Fano scheme of conics F c (X) is a smooth irreducible surface. More precisely, g = 7: F c (X) is symmetric square of a smooth curve of genus 7; g = 8: F c (X) is a minimal surface of general type with irregularity 5, geometric genus 10, and canonical degree K 2 Fc(X) = 45; g = 9: F c (X) is a ruled surface isomorphic to the projectivization of a simple rank 2 vector bundle on a smooth curve of genus 3; g = 10 : F c (X) is an abelian surface; g = 12: F c (X) ≃ P 2 .

There exists the following duality between the Fano threefolds of indices 1 and 2 based on the Mukai construction [START_REF] Mukai | Biregular classification of Fano 3-folds and Fano manifolds of coindex 3[END_REF]410].

Theorem 5.5. ( [START_REF] Kuznetsova | Non-rational sextic double solids[END_REF]; see also [START_REF] Kuznetsov | Hilbert schemes of lines and conics and automorphism groups of Fano threefolds[END_REF]Appendix B]) For any smooth Fano threefold X with ρ(X) = 1, ι(X) = 1, and g(X) ∈ {8, 10, 12} there is a smooth Fano threefold Y with ρ(Y ) = 1, ι(Y ) = 2, and d(Y ) = g(X)/2 -1 such that F 1 (X) ≃ F c (Y ) (and the derived categories of X and Y are equivalent).

Notice [START_REF] Iliev | Tangent scrolls in prime Fano threefolds[END_REF] that there is no nonconstant morphism from a Fano threefold with ρ = 1 of index 1 to a Fano threefold with ρ = 1 of index 2. This was conjectured by Th. Peternell [438]; the proof exploits the Fano schemes of lines and conics on these threefolds, in particular, the subfamilies of reducible conics, and the families of lines on a tangent scroll to a curve contained in these threefolds.

The following theorem covers some results of [100, [START_REF] Faenzi | Bundles over the Fano threefold V5[END_REF][START_REF] Furushima | The family of lines on the Fano threefold V5[END_REF][START_REF] Iliev | The Fano surface of the Gushel threefold[END_REF][START_REF] Sanna | Rational curves and instantons on the Fano threefold Y5[END_REF][START_REF] Takagi | Geometries of lines and conics on the quintic del Pezzo 3-fold and its application to varieties of power sums[END_REF]. For the Fano schemes of lines and conics on del Pezzo threefolds, Fano fourfolds, and some other higher dimensional Fano varieties see, e.g., [START_REF] Beauville | La variété des droites d'une hypersurface cubique de dimension 4[END_REF][START_REF] Debarre | Special prime Fano fourfolds of degree 10 and index 2[END_REF]187,[START_REF] Donagi | Group law on the intersection of two quadrics[END_REF][START_REF] Hassett | Varieties of planes on intersections of three quadrics[END_REF][START_REF] Kapustka | Vector bundles on Fano varieties of genus ten[END_REF][START_REF] Macrì | Fano varieties of cubic fourfolds containing a plane[END_REF][START_REF] Markushevich | Symplectic structure on a moduli space of sheaves on the cubic fourfold[END_REF][START_REF] Yu | Fano-Mukai fourfolds of genus 10 as compactifications of C 4[END_REF]; see also [START_REF] Suzuki | An invariant for embedded Fano manifolds covered by linear spaces[END_REF] for polarized Fano varieties covered by linear spaces.

Let G be simple linear algebraic group, P ⊂ G be a parabolic subgroup. Consider the flag variety X = G/P along with its minimal homogeneous embedding in a projective space. Then the Fano schemes F k (X) of linear subspaces in X are disjoint unions of flag varieties [START_REF] Cohen | Lie incidence systems from projective varieties[END_REF][START_REF] Landsberg | On the projective geometry of rational homogeneous varieties[END_REF]; see also [378]. 5.3. The Abel-Jacobi mapping. Recall [128] that the intermediate Jacobian

J(X) = H 2,1 (X) * /(H 3 (X, Z) modulo torsion)
of a smooth Fano threefold X is a principally polarized abelian variety. Using a fine structure of the intermediate Jacobian one can detect the non-rationality of X; see, e.g., [START_REF] Beauville | The Lüroth problem[END_REF]128,[START_REF] Galkin | The Fano variety of lines and rationality problem for a cubic hypersurface[END_REF][START_REF] Kollár | Algebraic hypersurfaces[END_REF]449,[START_REF] Voisin | Abel-Jacobi map, integral Hodge classes and decomposition of the diagonal[END_REF][START_REF] Wilson | Towards birational classification of algebraic varieties[END_REF], cf. also [START_REF] Artin | Some elementary examples of unirational varieties which are not rational[END_REF][START_REF] Cheltsov | Sextic double solids[END_REF][START_REF] Yu | Rationality constructions of some Fano fourfolds of index 2[END_REF][START_REF] Roth | Algebraic threefolds with special regard to problems of rationality[END_REF]. Given a variety F we let A(F ) be the Albanese variety of F . For a Fano scheme F (X) of a Fano threefold X the Abel-Jacobi mapping A(F (X)) → J(X) is defined via the cylinder homomorphism H 1 (F (X), Z) → H 3 (X, Z), see the next section. For the Fano threefolds X one considers the Fano surface of lines F (X) = F 1 (X) if ι(X) = 2 and of conics F (X) = F c (X) if ι(X) = 1. For certain Fano threefolds X, the Abel-Jacobi mapping is known to be either an isomorphism, or an isogeny, hence q(F ) = h 2,1 (X). We summarize these results in the following theorem. See Table 12.2 in [START_REF] Iskovskikh | Fano Varieties[END_REF] for the values of h 2,1 (X).

Theorem 5.7. ([301, §8.2]) Consider a Fano threefold X with ρ(X) = 1 of genus g = g(X), degree d = d(X), and index ι = ι(X) ∈ {1, 2}. ι = 2: Assume ι = 2, and let F = F 1 (X) be the Fano scheme of lines on X. Then the following holds. d = 5: A(F ) and J(X) are both trivial [START_REF] Iskovskikh | Birational automorphisms of three-dimensional algebraic varieties[END_REF]. d = 2, 3, 4: F is a smooth irreducible surface, the Abel-Jacobi mapping A(F ) → J(X) is an isomorphism, and X is uniquely determined by F in the following cases: d = 2: X → P 3 is a quartic double solid whose branching surface S ⊂ P 3 has no line. One has q(F ) = 10 [297, Ch. III, Sect. 1], [122,[START_REF] Clemens | The quartic double solid revisited[END_REF][START_REF] Tikhomirov | Middle Jacobian of a double space P 3 ramified at a quartic[END_REF][START_REF] Tikhomirov | The geometry of the Fano surface of the double cover of P 3 branched in a quartic[END_REF][START_REF] Welters | Abel-Jacobi isogenies for certain types of Fano threefolds[END_REF][START_REF] Welters | The Fano surface of lines on a double P 3 with 4th order discriminant locus[END_REF]; d = 3: X is a smooth cubic threefold in P 4 . One has q(F ) = 5 [128]; d = 4: X is a smooth complete intersection of two quadrics in P 5 . One has q(F ) = 2, F ∼ = J(X) is an abelian surface [181, [START_REF] Donagi | Group law on the intersection of two quadrics[END_REF][START_REF] Reid | The complete intersection of two or more quadrics[END_REF]538]. d = 1: Let X → V be a double Veronese cone branched along a smooth surface W ⊂ V cut out by a cubic hypersurface in P 6 , and let F 0 be the Hilbert scheme of conics in V 3-tangent to W . Then F and F 0 are smooth irreducible surfaces, there is a branched double covering π : F → F 0 , the Fano scheme F(X) is not reduced and consists of F and the embedded ramification curve of π, and the Abel-Jacobi mapping yields an isogeny A(F )/π * A(F 0 ) → J(X) where dim J(X) = h 2,1 (X) = 21, and X → V is uniquely determined by the pair (F, π) [START_REF] Tikhomirov | The Fano surface of a Veronese double cone[END_REF]. ι = 1: Assume ι = 1, and let F = F c (X) be the Fano scheme of conics on X. Then the following holds. g = 2, 3, 4, 5: F is a smooth irreducible surface and the Abel-Jacobi mapping A(F ) → J(X) is an isomorphism in the following cases: g = 2: X → P 3 is the general sextic double solid. One has q(F ) = 52 [START_REF] Ceresa | The Abel-Jacobi isomorphism for the sextic double solid[END_REF]Thm. 3.3]; g = 3: X is the general quartic threefold in P 4 . One has q(F ) = 30 [START_REF] Collino | On the family of conics lying on a quartic threefold[END_REF]Prop. 3.6],

[355, Prop. 1], [START_REF] Tennison | On the quartic threefold[END_REF]; g = 3: X → Q is the general double cover of a smooth quadric Q ⊂ P 4 branched along a smooth surface S ⊂ Q of degree 8. One has q(F ) = 30 [START_REF] Kurchanov | On conics on a double 3-dimensional quadric[END_REF]; g = 4: X is the general complete intersection of a quadric and a cubic hypersurfaces in P 5 . One has q(F ) = 20, c 1 (F ) 2 = 23355, c 2 (F ) = 11961, p a (F ) = 2942 [START_REF] Iliev | Cubic hypersurfaces and integrable systems[END_REF]Cor. 18,Thm. 20], [START_REF] Markushevich | Numerical invariants of families of lines on some Fano varieties[END_REF]; g = 5: X is the general complete intersection of three quadrics in P 6 [START_REF] Beauville | Sous-variétés spéciales des variétés de Prym[END_REF][START_REF] Botta | On the intersection of three quadrics[END_REF][START_REF] Welters | Abel-Jacobi isogenies for certain types of Fano threefolds[END_REF].

One has q(F ) = 14, and X is uniquely determined by F [START_REF] Beauville | Variétés de Prym et jacobiennes intermédiaires[END_REF][START_REF] Debarre | Le théorème de Torelli pour les intersections de trois quadriques[END_REF][START_REF] Friedman | Degenerations of Prym varieties and intersections of three quadrics[END_REF][START_REF] Laszlo | Théorème de Torelli générique pour les intersections complètes de trois quadriques de dimension paire[END_REF],

[538, §5]. g = 6: F is irreducible for any smooth X = Gr(2; 5)∩P 7 ∩Q ⊂ P 9 [163, Cor. 8.3]. For the general such X, the Abel-Jacobi mapping A(F ) → J(X) is an isogeny, q(F ) = 10, the image of F in J(X) is algebraically equivalent to 2Θ 8 /8! where Θ ⊂ J(X) is a Poincaré divisor, and X is uniquely determined by F [365, Thms. 0.15, 0.16, 0.18], [START_REF] Iliev | Geometry of the Fano threefold of degree 10 of the first type[END_REF];

-Consider a special Gushel threefold π : X → Y of genus 6. Suppose X is general, that is, X is the double cover of a quintic threefold Y = Gr(2; 5) ∩ P 6 in P 9 branched along a quadric section Y ∩ Q, where P 6 ⊂ P 9 and Q are general. Then one has

F = F ′ ∪ F ′′ where F ′ = π * (F 1 (Y )
) is rational and F ′′ is a non-normal irreducible surface with q(F ′′ ) = 10. For the normalization F ′′ of F ′′ , the Abel-Jacobi mapping A( F ′′ ) → J(X) is an isomorphism [START_REF] Iliev | Lines on the Gushel threefold[END_REF][START_REF] Iliev | The Fano surface of the Gushel threefold[END_REF]. g ≥ 7: F is a smooth irreducible surface with q(F ) = h 2,1 (X), cf. Theorem 5.4 and [301,12.2].

Similar results were established in [START_REF] Debarre | On nodal prime Fano threefolds of degree 10[END_REF][START_REF] Debarre | Special prime Fano fourfolds of degree 10 and index 2[END_REF][START_REF] Flamini | The curve of lines on a prime Fano threefold of genus 8[END_REF][START_REF] Gruson | On prime Fano threefolds of genus 9[END_REF][START_REF] Markushevich | The Abel-Jacobi map of a moduli component of vector bundles on the cubic threefold[END_REF][START_REF] Yu | Reconstruction of special double P 3 from the family of lines on it[END_REF][START_REF] Tikhomirov | Singularities of a theta divisor of a double space P 3 of index 2[END_REF][START_REF] Tikhomirov | Special double space P 3 of index 2[END_REF][START_REF] Tyurin | Five lectures on three-dimensional varieties[END_REF][START_REF] Voisin | Sur la jacobienne intermédiaire du double solide d'indice deux[END_REF][START_REF] Welters | Divisor varieties, Prym varieties and a conjecture of Tyurin[END_REF] for various, possibly singular, Fano threefolds with ρ = 1 and for various families of curves. See also, e.g., [START_REF] Avritzer | The Hilbert scheme component of the intersection of two quadrics[END_REF][START_REF] Biswas | On some moduli spaces of stable vector bundles on cubic and quartic threefolds[END_REF][START_REF] Bloch | On the Chow groups of certain types of Fano threefolds[END_REF][START_REF] Collino | The Abel-Jacobi isomorphism for the cubic fivefold[END_REF][START_REF] Donagi | On the geometry of Grassmannians[END_REF][START_REF] Donagi | Group law on the intersection of two quadrics[END_REF]223,310,[START_REF] Kuznetsov | Abel-Jacobi maps for hypersurfaces and noncommutative Calabi-Yau's[END_REF][START_REF] Laszlo | Théorème de Torelli générique pour les intersections complètes de trois quadriques de dimension paire[END_REF][START_REF] Macrì | Fano varieties of cubic fourfolds containing a plane[END_REF]371,[START_REF] Mella | Existence of good divisors on Mukai varieties[END_REF][START_REF] Mérindol | Théorème de Torelli affine pour les intersections de deux quadriques[END_REF][START_REF] O'grady | The Hodge structure of the intersection of three quadrics in an odd-dimensional projective space[END_REF][START_REF] Botta | On the intersection of three quadrics[END_REF][START_REF] Yu | Fano-Mukai fourfolds of genus 10 as compactifications of C 4[END_REF]538,[START_REF] Voisin | Théorème de Torelli pour les cubiques de P 5[END_REF], [START_REF] Iskovskikh | Fano Varieties[END_REF]Thm. 8.2.1] and Theorem 5.12 below for some variations and higher dimensional analogs. The classification results for Fano threefolds with ρ ≥ 2 can be found in [START_REF] Mori | Classification of Fano 3-folds with B2 ≥ 2. I. Algebraic and Topological Theories -to the memory of Dr[END_REF]; a part of this classification for ρ = 2 is compressed in [START_REF] Iliev | Algebraic threefolds with two extremal morphisms[END_REF] using the Mori theory.

The classical Torelli theorem says that any smooth projective curve is uniquely determined by its polarized Jacobian variety; see, e.g., [START_REF] Huybrechts | The geometry of cubic hypersurfaces[END_REF]Ch. 5,Thm. 4.1]. There are different Torelli type theorems for higher dimensional varieties. For instance, for the smooth cubic hypersurfaces of dimension at least three the following holds.

Theorem 5.8. ( [START_REF] Beauville | La variété des droites d'une hypersurface cubique de dimension 4[END_REF][START_REF] Charles | A remark on the Torelli theorem for cubic fourfolds[END_REF]128,242,[START_REF] Looijenga | The period map for cubic fourfolds[END_REF][START_REF] Tyurin | Five lectures on three-dimensional varieties[END_REF][START_REF] Voisin | Théorème de Torelli pour les cubiques de P 5[END_REF], [START_REF] Huybrechts | The geometry of cubic hypersurfaces[END_REF]Ch. 3, Prop. 2.10, Ch. 3, Prop. 2.10 and Thm. 4.3]). Assume X, X ′ ⊂ P n , n ≥ 4, are smooth cubic hypersurfaces, and let F = F 1 (X) and F ′ = F 1 (X ′ ) be their Fano varieties of lines endowed with the natural Plücker polarizations O F (1) and O F ′ (1), respectively. Then X ∼ = X ′ if and only if (F, O F (1)) ∼ = (F ′ , O F (1)) as polarized varieties. For n = 5 this is equivalent to F ∼ = F ′ as unpolarized varieties.

5.4. The cylinder homomorphism. The results of the previous subsection are ultimately related to the studies of various cylinder homomorphisms. Definition 5.9. Let X ⊂ P n be a projective variety of dimension m, and let π : C → S be a family of irreducible curves in X over an irreducible base S. Then the cylinder homomorphism associated with C is defined as follows:

Ψ C : H m-2 (S, Z) → H m (X, Z), γ → s∈γ C s ,
where γ is a topological (m -2)-cycle in S and

C s = π -1 (s). We let Ψ C,Q : H m-2 (S, Q) → H m (X, Q) be the induced homomorphism.
For instance, if S = F 1 (X) then π : C → S is the universal family of lines in X, and if S = F c (X) then π : C → S is the universal family of conics in X, etc. Choosing for S the Fano scheme of lines F 1 (X) and letting Ψ 1 , Ψ 1,Q be the associated cylinder homomorphisms, we have the following.

Theorem 5.10. ([501]) Let X be a hypersurface in P n of degree d. Assume n ≥ 4, d ≤ n -1, and either X is general, or d = 3 and X is smooth. Then the following holds. Even n: Ψ 1 is an isomorphism modulo torsion; Odd n: dim(ker(Ψ 1,Q )) ≤ (n -3)/4, and Ψ 1 is surjective for d ≤ (n + 5)/2. In particular [START_REF] Beauville | La variété des droites d'une hypersurface cubique de dimension 4[END_REF]128], d ≤ 4: Ψ 1 is an isomorphism modulo torsion for n = 5; d = 3: Ψ 1 is surjective, and Ψ 1 is an isomorphism modulo torsion for even n; d = 3: Ψ 1 is an isomorphism for n = 4, 5.

Recall [374, Sect. 1], [502] that a smooth complete intersection X ⊂ P n of multidegree (d 1 , . . . , d s ) is a Fano variety of index ι if and only if ι := n + 1 -s i=1 d i > 0. Theorem 5.11. Let X ⊂ P n be a smooth Fano complete intersection. Then the following holds.

• X is covered by conics [START_REF] Conte | The Hodge conjecture for fourfolds admitting a covering by rational curves[END_REF][START_REF] Conte | The Hodge conjecture for Fano complete intersections of dimension four[END_REF][START_REF] Lewis | On hypersurfaces admitting a covering by rational curves[END_REF];

• X is covered by lines provided ι(X) ≥ 2 [536, Lect. 4, Proof of Lemma 1]; • the lines in X sweep out a hypersurface provided ι(X) = 1 [501].
The following theorem comprise certain results of [357,[START_REF] Lewis | The cylinder homomorphism for quintic fourfolds[END_REF] for the case of Fano complete intersections of index 1.

Theorem 5.12. ([502]) Let X be a general Fano complete intersection in P n of dimension k ≥ 3.

Then

• both Ψ 1,Q and Ψ c,Q are surjective;

• if k = 2s -1 is odd, then the Abel-Jacobi mappings

J s-1 (F 1 (X)) → J s (X) = J(X) and J s-1 (F c (X)) → J s (X) = J(X)
are surjective.

See, e.g., [START_REF] Bloch | On the Chow groups of certain types of Fano threefolds[END_REF][START_REF] Kerr | The Abel-Jacobi map for higher Chow groups[END_REF][START_REF] Kerr | The Abel-Jacobi map for higher Chow groups[END_REF]357,[START_REF] Lewis | The cylinder homomorphism for quintic fourfolds[END_REF][START_REF] Lewis | Lectures on Hodge Theory and Algebraic Cycles[END_REF]427,507,[START_REF] Voisin | Abel-Jacobi map, integral Hodge classes and decomposition of the diagonal[END_REF] and the literature therein for the cylinder mappings on cycles of other intermediate dimensions. See also [START_REF] Beltrametti | On the Chow group and the intermediate Jacobian of a conic bundle[END_REF] on the intermediate jacobians of conic bundles. See, e.g., [START_REF] Debarre | Gushel-Mukai varieties: Classification and birationalities[END_REF]- [START_REF] Debarre | Gushel-Mukai varieties: intermediate jacobians[END_REF] for the Gushel-Mukai varieties and their intermediate jacobians.

6.

Counting rational curves 6.1. Varieties of rational curves in hypersurfaces. Given a hypersurface X of degree d in P n , we let R e (X) be the space of smooth rational curves of degree e in P n lying in X. This is an open subscheme of the Hilbert scheme Hilb et+1 (X). The number ( 4)

µ e = µ e (d, n) = (n + 1 -d)e + n -4
is called the expected dimension of R e (X). Notice that -R e (X) is an integral, locally complete intersection scheme of dimension

µ 2 = µ 2 (d, n) = -ǫ(d, n) = 3n -2d -2 .
µ e if d ≤ n -2 [44, 477], [213, Thm. 1.1], [237, Thm. 1.1] 
, see also [START_REF] Browning | Rational curves on smooth hypersurfaces of low degree[END_REF][START_REF] Harris | Rational curves on hypersurfaces of low degree[END_REF][START_REF] Starr | Rational curves on hypersurfaces in projective n-space[END_REF][START_REF] Starr | The Kodaira dimension of spaces of rational curves on low degree hypersurfaces[END_REF];

-R e (X) is irreducible, generically smooth and of dimension µ e if n ≥ 4, d ≤ n -1, and e ≤ d -1 [START_REF] Harris | Rational curves on hypersurfaces of low degree[END_REF], [START_REF] Ran | Low-degree rational curves on hypersurfaces in projective spaces and their degenerations[END_REF]Thm. 26], [START_REF] Tseng | A note on rational curves on general Fano hypersurfaces[END_REF]. (c) If 2d ≤ n + 1 then through any point of X passes a family of degree e rational curves of dimension e(n + 1d) -2 ≥ ed. In particular, through any point of X passes a 2(nd)-dimensional family of smooth conics [START_REF] Harris | Rational curves on hypersurfaces of low degree[END_REF]. (d) Let R be a sweeping component of R e (X), that is, the corresponding rational curves

sweep out an open subset of X.

If (n + 1)/2 ≤ d ≤ n -3, then R is not uniruled [42, Thm . 1.1] 
. (e) For any n ≥ 4, d ≤ n, and e ≤ 2n -2 there exists on X a rational curve of degree e with balanced normal bundle [START_REF] Coscun | Normal bundles of rational curves on complete intersections[END_REF], [START_REF] Ran | Low-degree rational curves on hypersurfaces in projective spaces and their degenerations[END_REF]Thm. 24].

Notice that the dimension of R e (X) can be strictly larger than µ e for particular smooth hypersurfaces X. For instance [545], the family of lines on the Fermat quartic in P 4 is twodimensional, while the general quartic in P 4 carries a one-parameter family of lines. See further examples in [START_REF] Furukawa | Dimension of the space of conics on Fano hypersurfaces[END_REF]. See also [START_REF] Beheshti | Spaces of rational curves on complete intersections[END_REF]148] for results on the Gromov-Witten invariants.

Concerning arbitrary smooth hypersurfaces, we have the following results.

Theorem 6.2. Let X be a hypersurface of degree 

d in P n . (a) If X is smooth along C for some C ∈ R e (X) then dim C R e (X) ≥ µ e = χ(N C/X ) [214, Rem. 3.2], [ 321 
-k -1 in X [40]. 7 (d) Assume d = n ≥ 5.
Then there is a countable set of closed, codimension two subvarieties of X such that the image of any generically finite, regular morphism from a del Pezzo surface to X is contained in one of these [START_REF] Beheshti | Rational surfaces in index-one Fano hypersurfaces[END_REF]Thm. 1.4].

In [START_REF] Starr | The Kodaira dimension of spaces of rational curves on low degree hypersurfaces[END_REF] one can find restrictions under which the Kontsevich moduli space M 0,0 (X, e) is of general type. See also [429] for studies on the Kontsevich moduli spaces of rational curves through marked points in a Fano complete intersection variety.

Recall that a projective variety X is rationally connected if each pair of closed points of X is contained in a rational curve, see [START_REF] Debarre | Higher-dimensional algebraic geometry[END_REF][START_REF] Kollár | Rational curves on algebraic varieties[END_REF]. Notice that any Fano variety X is rationally connected and covered by the rational curves of degree ≤ dim(X) + 1. These curves generate the Mori cone of effective 1-cycles on X [START_REF] Campana | Connexité rationnelle des variétés de Fano[END_REF][START_REF] Kollár | Rational connectedness and boundedness of Fano manifolds[END_REF][START_REF] Mori | Projective manifolds with ample tangent bundles[END_REF], [START_REF] Kollár | Rational curves on algebraic varieties[END_REF]Sect. IV.3,Cor. IV.1.15]. See also [START_REF] De Jong | Low degree complete intersections are rationally simply connected[END_REF] for criteria of simple rational connectedness.

The following results concern rational curves and rational surfaces in smooth complete intersection Fano varieties. It is known that a general such variety of sufficiently small multidegree is unirational [START_REF] Artin | Some elementary examples of unirational varieties which are not rational[END_REF][START_REF] Kollár | Rational curves on algebraic varieties[END_REF][START_REF] Kollár | Which are the simplest algebraic varieties?[END_REF][START_REF] Kollár | Rationally connected varieties[END_REF]432,[START_REF] Waldron | Fano varieties of low-degree smooth hypersurfaces and unirationality[END_REF]. Theorem 6.3. Let X ⊂ P n be a smooth complete intersection of type d = (d 1 , . . . , d s ). Then the following holds.

(a) X is rationally connected if and only if

s i=1 d i ≤ n, that is, X is a Fano variety [171]. (b) Assume ω X ≃ O X (-1) that is, s i=1 d i = n.
Let S be a smooth variety of dimension 2 ≤ dim(S) ≤ dim(X) -2 with ω ∨ S nef. Consider a generically finite morphism f : S → X. In the case ω S ≃ O S assume further that f (S) ⊂ P n is linearly non-degenerate. Suppose f extends to a morphism F : S → X, where S → B is a deformation family containing S as a fiber. Then the image F (S) is contained in a subvariety of codimension at least two in X [521, Thm. 1.1].

Notice that statement (b) generalizes Theorem 6.2(d). See also [START_REF] Vakil | Counting curves on rational surfaces[END_REF][START_REF] Vakil | The enumerative geometry of rational and elliptic curves in projective space[END_REF] for count of rational and elliptic curves on rational surfaces and in projective spaces, [START_REF] Shen | On the normal bundles of rational curves on Fano 3-folds[END_REF][START_REF] Shen | Rational curves on Fermat hypersurfaces[END_REF] for count of rational curves in Fano threefolds and Fermat hypersurfaces, and [START_REF] Zahariuc | Rational curves on Del Pezzo manifolds[END_REF] for count of rational curves in del Pezzo manifolds. 

(d i -1) = n -s 3 + 1 .
Then the number of twisted cubics in X passing through three general points in X equals

s i=1 ((d i -1)!) 2 d i ! .
In particular, through three general points of a smooth cubic threefold X ⊂ P 4 pass exactly 24 twisted cubics in X [START_REF] Beauville | Quantum cohomology of complete intersections[END_REF].

See also [START_REF] R Piene | On the Hilbert scheme compactification of the space of twisted cubics[END_REF], the survey article [START_REF] Piene | On the enumeration of algebraic curves -from circles to instantons[END_REF], and the references therein. See, e.g., [START_REF] Boissière | Cubic threefolds and hyperkahler manifolds uniformized by the 10dimensional complex ball[END_REF][START_REF] De Jong | Low degree complete intersections are rationally simply connected[END_REF][START_REF] Hassett | Cubic fourfolds, K3 surfaces, and rationality questions[END_REF][START_REF] Huybrechts | The K3 category of a cubic fourfold[END_REF][START_REF] Huybrechts | The geometry of cubic hypersurfaces[END_REF][START_REF] Kollár | Remarks on degenerations of hyper-Kähler manifolds[END_REF][START_REF] Kuznetsov | Derived categories of cubic fourfolds[END_REF][START_REF] Lahoz | Generalized twisted cubics on a cubic fourfold as a moduli space of stable objects[END_REF]353,354,360,[START_REF] Sacca | Birational geometry of the intermediate jacobian fibration of a cubic fourfold[END_REF][START_REF] Shen | K3 categories, one-cycles on cubic fourfolds, and the Beauville-Voisin filtration[END_REF] for twisted cubics on cubic fourfolds and related hyper-Kähler varieties. For surfaces in P 3 containing smooth elliptic quartic curves, there are the following facts. Recall (see, e.g., [START_REF] Lewis | On hypersurfaces admitting a covering by rational curves[END_REF]) that a smooth hypersurface X in P n of degree d ≥ n + 1 cannot be covered by rational curves. This concerns, in particular, smooth quartic surfaces in P 3 , and holds, more generally, for any K3 surface. Nonetheless, a projective K3 surface carries infinitely many rational curves, see (a) in the next theorem. This generalizes a previous partial result due to Bogomolov, Mumford, Mori-Mukai [START_REF] Mori | The uniruledness of the moduli space of curves of genus 11[END_REF], see also [START_REF] Baragar | K3 surfaces, rational curves, and rational points[END_REF][START_REF] Bogomolov | Constructing rational curves on K3 surfaces[END_REF][START_REF] Bogomolov | Density of rational points on elliptic K3 surfaces[END_REF][START_REF] Bogomolov | Rational curves and points on K3 surfaces[END_REF]105,[START_REF] Hassett | Rational curves on K3 surfaces[END_REF][START_REF] Li | Rational curves on K3 surfaces[END_REF][START_REF] Morrison | The geometry of K3 surfaces[END_REF].

Theorem 7.3. Let X be a projective K3 surface over an algebraically closed field. Then the following holds.

(a) X contains infinitely many rational curves [107, 517]; cf. also [START_REF] Chen | Rational curves on lattice-polarized K3 surfaces[END_REF]. (b) Consider the subset S g of the moduli scheme of the K3 surfaces of genus g which parameterizes the surfaces X such that the union of rational curves on X is dense in the Hausdorff topology. Then S g is of the second Baire category [START_REF] Chen | Density of rational curves on K3 surfaces[END_REF]. (c) Any rational curve on a general K3 surface X of genus g ≥ 2 is nodal. (d) Given d ∈ N, for any h > 84d 2 and for any K3 surface X of degree h over a field k of characteristic p = 2, 3 the number of rational curves in X of degree at most d does not exceed 24. This upper bound is exact for any d ≥ 3 [START_REF] Miyaoka | Counting lines and conics on a surface[END_REF][START_REF] Rams | Counting lines on surfaces, especially quintics[END_REF].

Similar results hold also for the Enriques surfaces, see [START_REF] Rams | 12 rational curves on Enriques surfaces[END_REF] and the references therein. See [START_REF] Huybrechts | Curves and cycles on K3 surfaces. With an appendix by C. Voisin[END_REF][START_REF] Huybrechts | Lectures on K3 Surfaces[END_REF] for a discussion related to (b). The generality assumption in (c) is essential; indeed, there are smooth quartic surfaces in P 3 which contain the rational 3-cuspidal plane quartic [105,[START_REF] Chen | A simple proof that rational curves on K3 surfaces are nodal[END_REF]. As for the count of curves on a K3 surface in terms of the Gromov-Witten invariant, see, e.g., [START_REF] Beauville | Counting rational curves on K3 surfaces[END_REF][START_REF] Lee | Counting elliptic curves in K3 surfaces[END_REF][START_REF] Maulik | Gromov-Witten theory and Noether-Lefschetz theory[END_REF][START_REF] Wu | The number of rational curves on K3 surfaces[END_REF][START_REF] Yau | BPS States, String Duality, and Nodal Curves on K3[END_REF].

Notice that there are complex analytic K3 surfaces with no algebraic curve. However, any K3 surface S carries a transcendental entire curve, that is, the image of a nonconstant holomorphic map C → S [START_REF] Cantat | Deux exemples concernant une conjecture de Serge Lang[END_REF]. (c) For n = 5 and d ≥ 2n -3 the general X contains just a finite number of rational curves of any given degree (that is, X does not contain any one-parameter family of rational curves) [START_REF] Voisin | On a conjecture of Clemens on rational curves on hypersurfaces[END_REF]. (d) If X is very general, n ≥ 4, and d ≥ 2n -2 then X contains no rational curve [START_REF] Voisin | On a conjecture of Clemens on rational curves on hypersurfaces[END_REF].

Notice that (d) fails for n = 3. Indeed, by Theorem 7.3(a), any smooth quartic surface in P 3 contains a sequence of rational curves of growing degrees. Statement (c) is a strengthening of the previous results in [121,[START_REF] Ein | Subvarieties of generic complete intersections[END_REF]195]. The validity of an analog of (c) for n = 4 and e ≥ 13 is still open; this is the famous Clemens Conjecture. 7.3. Clemens' Conjecture. This conjecture [121] suggests that a general quintic threefold in P 4 contains a positive finite number of smooth rational curves of any given degree, and the scheme of such curves is reduced. The next theorem gives a brief summary of some results on Clemens' Conjecture. where the number 2875 of lines is due to Schubert [START_REF] Schubert | Kalkül der Abzählenden Geometrie[END_REF]; see [START_REF] Piene | On the enumeration of algebraic curves -from circles to instantons[END_REF], [54, §10.6] and the references therein.

For instance [START_REF] Katz | On the finiteness of rational curves on quintic threefolds[END_REF], [START_REF] Shin | Conics on a general hypersurface in complex projective spaces[END_REF], a general hypersurface of degree d > 3 2 n -1 in P n does not contain any smooth conic; however, a general quintic threefold in P 4 does.

For any natural number d ≥ 1 there is a Mirror Symmetry prediction for the number of smooth rational curves of degree d in a general quintic threefold in P 4 . Actually, these virtual numbers count pseudoholomorphic curves in a general almost complex symplectic deformation of the quintic threefold via quantum cohomology, see, e.g., [START_REF] Bertin | Variations de structures de Hodge, variétés de Calabi-Yau et symétrie miroir[END_REF][START_REF] Kontsevich | Enumeration of Rational Curves via Torus Actions. The moduli space of curves[END_REF][START_REF] Kontsevich | Gromov-Witten classes, quantum cohomology, and enumerative geometry[END_REF][START_REF] Mcduff | J-holomorphic curves and quantum cohomology[END_REF].

The same methods work for certain smooth Calabi-Yau complete intersections (CICY, for short). Besides the quintic threefolds in P 4 , there are exactly 4 types of smooth CICY threefolds of type, respectively, (3, 3) and (2, 4) in P 5 , (2, 2, 3) in P 6 , and (2, 2, 2, 2) in P 7 . The Mirror Symmetry prediction for the number of smooth rational curves of degree d ≤ 10 in a general CICY threefold can be found in [START_REF] Libgober | Lines on Calabi-Yau complete intersections, Mirror Symmetry, and Picard-Fuchs equations[END_REF]. For d ≤ 6 this prediction gives the correct number of curves, see [START_REF] Tuan | Rational curves on Calabi-Yau threefolds: Verifying mirror symmetry predictions[END_REF][START_REF] Libgober | Numerical characteristics of systems of straight lines on complete intersections[END_REF]. The next theorem addresses rational and elliptic curves in general Calabi-Yau complete intersection threefolds. Theorem 7.6. ( [START_REF] Ekedahl | Isolated rational curves on K3-fibered Calabi-Yau threefolds[END_REF][START_REF] Kley | Rigid curves in complete intersection Calabi-Yau threefolds[END_REF][START_REF] Knutsen | On isolated smooth curves of low genera in Calabi-Yau complete intersection threefolds[END_REF]) Let X be a general CICY threefold. Then for g = 0, 1, 2, 3 there is an integer d g ≥ 0, where d 0 = 0, such that, for any d > d g , X contains an isolated smooth curve of degree d and genus g.

In [START_REF] Kley | Rigid curves in complete intersection Calabi-Yau threefolds[END_REF], some of these results are claimed to hold for any smooth CICY threefolds. However, there is a gap in the proof in [START_REF] Kley | Rigid curves in complete intersection Calabi-Yau threefolds[END_REF]; see [START_REF] Knutsen | On isolated smooth curves of low genera in Calabi-Yau complete intersection threefolds[END_REF]. Similar facts hold for certain higher genera curves under more severe restrictions, see [START_REF] Knutsen | On isolated smooth curves of low genera in Calabi-Yau complete intersection threefolds[END_REF]Thm. 1.2].

The following theorem gives a short account of sporadic results for curves in hypersurfaces.

Theorem 7.7.

• A very general hypersurface of degree d 2n -1 in P n does not contain any smooth elliptic curve [555]; cf. [START_REF] Clemens | Curves on generic hypersurfaces[END_REF].

• The degree of an elliptic curve on a very general heptic hypersurface X in P 4 is a multiple of 7 [START_REF] Ferrarese | Elliptic curves on the general hypersurface of degree 7 of P 4 . Indag[END_REF]. • Let X be the general heptic hypersurface in P 5 . Then X does not contain any rational curve of degree d ∈ {2, . . . , 16} [START_REF] Cotterill | Rational curves of degree 16 on a general heptic fourfold[END_REF][START_REF] Hana | Rational curves on a general heptic fourfold[END_REF][START_REF] Shin | Rational curves on general hypersurfaces of degree 7 in P 5[END_REF], any smooth elliptic curve of degree e ≤ 14, and any smooth curve C of degree e ≤ 16 and genus 1 ≤ g ≤ 3 provided the dimension of the linear span of C is not equal to 3 [START_REF] Ballico | Curves of low positive genus and low degree on a general heptic hypersurface of P 5[END_REF].

• A general hypersurface of degree 54 in P 30 does not contain any rational quartic curve [START_REF] Wang | First order deformations of pairs and non-existence of rational curves[END_REF].

The second statement goes in the direction of the conjecture of Griffiths and Harris [224] which says that for a very general hypersurface of degree d ≥ 6 in P n and for any curve C in H one has d| deg(C). This is true for n = 3 due to the Noether-Lefschetz theorem; see [START_REF]Trento problems. In: Classification of irregular varieties[END_REF] for further results. See also the survey article [START_REF] He | Calabi-Yau spaces in the string landscape[END_REF] on the role of the Calabi-Yau, in particular, CICY varieties in physics.

Counting curves of higher genera and hyperbolicity

It is worthwhile to compare previous results with the following finiteness theorems related to Kobayashi hyperbolicity and the Green-Griffiths-Lang Conjecture (see below).

Theorem 8.1.

(a) Consider a projective variety X ⊂ P n . If X is Kobayashi hyperbolic then there exists ε > 0 such that for any curve C of geometric genus g in X one has [START_REF] Demailly | Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials[END_REF] (5) 2g -2 ≥ ε deg(C) .

Consequently, the curves of a given geometric genus in X form a bounded family. (b) A general hypersurface X in P n of degree d ≥ 16(2n -3) 5 (10n -11) is Kobayashi hyperbolic [START_REF] Berczi | Non-reductive geometric invariant theory and hyperbolicity[END_REF][START_REF] Brotbek | On the hyperbolicity of general hypersurfaces[END_REF]178,[START_REF] Deng | Effectivity in the hyperbolicity-related problems[END_REF][START_REF] Merker | Degrees d ≥ ( √ n log n) n and d ≥ (n log n) n in the conjectures of Green-Griffiths and of Kobayashi[END_REF][START_REF] Riedl | Applications of a grassmannian technique in hypersurfaces[END_REF][START_REF] Siu | Hyperbolicity of generic high-degree hypersurfaces in complex projective space[END_REF]. The latter holds for n = 3 starting with d = 18 [START_REF] Paun | Vector fields on the total space of hypersurfaces in the projective space and hyperbolicity[END_REF] and for n = 4 starting with d = 593 [START_REF] Diverio | A remark on the codimension of the Green-Griffiths locus of generic projective hypersurfaces of high degree[END_REF].

A weaker form of (5) called algebraic hyperbolicity implies the absence of rational and elliptic curves; see, e.g., [START_REF] Chen | On algebraic hyperbolicity of log varieties[END_REF][START_REF] Chiantini | Focal loci of families and the genus of curves on surfaces[END_REF]144,232]. See also [START_REF] Beauville | La variété des droites d'une hypersurface cubique de dimension 4[END_REF]154] for logarithmic versions of (b). There are examples of smooth hyperbolic surfaces in P 3 of any given degree d ≥ 6 [START_REF] Ciliberto | Scrolls and hyperbolicity[END_REF]192,[START_REF] Shiffman | Two classes of hyperbolic surfaces in P 3[END_REF]499,[START_REF] Shiffman | New examples of hyperbolic surfaces in P 3[END_REF][START_REF] Zaidenberg | Hyperbolicity of general deformations[END_REF] and of hyperbolic hypersurfaces in P n of degree d ∼ n 2 /4 [START_REF] Dinh | Construction of hyperbolic hypersurfaces of low degree in P n (C)[END_REF][START_REF] Shiffman | Hyperbolic hypersurfaces in P n of Fermat-Waring type[END_REF].

In the direction of algebraic hyperbolicity of general hypersurfaces, the following holds.

Theorem 8.2. ( [START_REF] Pacienza | Subvarieties of general type on a general projective hypersurface[END_REF]) For n ≥ 6 and for a very general hypersurface X in P n of degree d ≥ 2n -2, any subvariety Y ⊂ X is of general type.

Cf. also [START_REF] Xu | Subvarieties of general hypersurfaces in projective space[END_REF]572,[START_REF] Xu | Divisors on generic complete intersections in projective space[END_REF]. Cf. also [START_REF] Lu | Bounding curves in algebraic surfaces by genus and Chern numbers[END_REF][START_REF] Lu | Bounding codimension-one subvarieties and a general inequality between Chern numbers[END_REF][START_REF] Wu | The number of rational curves on K3 surfaces[END_REF] for (a), [145,232] for (b).

For elliptic curves on general K3 surfaces and Fano schemes of lines on general cubic fourfolds, the following hold. (a) Let X be a very general K3 surface with primitive curve class β ∈ H 2 (X, Z) of selfintersection β, β = 2h -2, h ∈ Z ≥0 . Then the moduli space of elliptic curves on X from the class β is a smooth curve. The number n β,j of such curves with fixed general jinvariant depends only on h. It admits an expression in terms of two particular Gromov-Witten invariants, which can be computed explicitly for any given value of h. (b) A general Fano variety of lines on a cubic fourfold in P 5 contains precisely 3780 elliptic curves of minimal degree and of fixed general j-invariant.

Notice that there are exactly 6383765416 elliptic quartics meeting 16 general lines in P 3 [START_REF] Avritzer | Compactifying the space of elliptic quartic curves[END_REF]. For higher genera curves on K3 surfaces, we have the following theorem.

Theorem 8.5. [420, Cor. 2] A generic projective K3 surface contains infinitely many g-dimensional families of irreducible immersed curves of geometric genus g, for any positive integer g.

For the genera of curves on smooth surfaces in P 3 the following is known.

Theorem 8.6. For d 4 let Gaps(d) be the set of all the non-negative integers which cannot be realized as geometric genera of irreducible curves on a very general surface of degree d in P 3 . Then Gaps(d) is the union of finitely many disjoint and separated integer intervals Gaps j (d), j = 0, 1, . . .. One has:

• Gaps(5) = {0, 1, 2} [START_REF] Xu | Subvarieties of general hypersurfaces in projective space[END_REF];

• Gaps 0 (d) = 0, d(d-3)

2

-3 for all d 5 [START_REF] Xu | Subvarieties of general hypersurfaces in projective space[END_REF];

• Gaps 1 (d) = d 2 -3d+4 2 
, d 2 -2d -9 for all d 6 [START_REF] Ciliberto | Genera of curves on a very general surface in P 3[END_REF].

In the other direction, for the existence of subvarieties with a given geometric genus, we have the following result. Theorem 8.7. ([102] for s = 1, [116, Thm. 0.1]) Let X be a smooth irreducible projective variety of dimension n > 1, let L be a very ample divisor on X, and let s ∈ {1, . . . , n -1}. Then there is an integer p X,L,s (depending on X, L and s) such that for any p p X,L,s one can find an irreducible subvariety Y of X of dimension s with at most ordinary points of multiplicity s + 1 as singularities such that p g (Y ) = p. Moreover, one can choose Y to be a complete intersection Y = D 1 ∩ . . . ∩ D n-s , where D i ∈ |L| for i = 1, . . . , ns -1 are smooth and transversal and D n-s ∈ |mL| for some m 1 is such that Y has ordinary singularities of multiplicity s + 1. 

Recall the famous

Green-Griffiths-Lang Conjecture. ( [START_REF] Green | Two applications of algebraic geometry to entire holomorphic mappings[END_REF][START_REF] Langer | Fano schemes of linear spaces on hypersurfaces[END_REF]) Let X be a projective variety of general type. Then there exists a proper closed subset Y ⊂ X which contains any subvariety Z ⊂ X not of general type and the image of any nonconstant entire curve C → X.

The conjecture is fixed in the particular case of general projective hypersurfaces.

Theorem 8.9. ( [START_REF] Berczi | Towards the Green-Griffiths-Lang Conjecture via equivariant localization[END_REF][START_REF] Berczi | Non-reductive geometric invariant theory and hyperbolicity[END_REF][START_REF] Van Bommel | Boundedness in families with applications to arithmetic hyperbolicity[END_REF]178,[START_REF] Diverio | Effective algebraic degeneracy[END_REF][START_REF] Siu | Hyperbolicity of generic high-degree hypersurfaces in complex projective space[END_REF]) For a generic projective hypersurface X ⊂ P n , n ≥ 2, of degree d ≥ 16(n-1) 5 (5n-1) there exists a proper subvariety Y ⊂ X which contains the image of any nonconstant entire curve C → X, hence also any rational or elliptic curve on X and the images of abelian varieties.

There are the following related conjectures.

Conjecture. (C. Ciliberto, F. Flamini, and M. Zaidenberg [START_REF] Ciliberto | A remark on the intersection of plane curves. Differential Equations[END_REF]) There exists a strictly growing function ϕ : N → N such that the number of curves of geometric genus g ϕ(d) in any smooth surface S of degree d 5 in P 3 is finite and bounded by a function of d.

Conjecture. (C. Voisin [START_REF] Voisin | On some problems of Kobayashi and Lang; algebraic approaches[END_REF]) Let X ⊂ P n be a very general hypersurface of degree d n+2.

Then the degrees of rational curves in X are bounded.

Conjecture. (P. Autissier, A. Chambert-Loir, and C. Gasbarri [START_REF] Autissier | On the canonical degrees of curves in varieties of general type[END_REF]) Let X be a smooth projective variety of general type with canonical line bundle K X . Then there exist real numbers A and B, and a proper Zariski closed subset Z ⊂ X such that for any curve C of geometric genus g in X not contained in Z, one has deg C (K X ) A(2g -2) + B.

•

  .1] deg(F ) = 45, e(F ) = c 2 (F ) = 27, c 1 (F ) 2 = K 2 F = 45, and χ(O F ) = 6 . For the Fano surface F = F 1 (X) of lines on a general quintic fourfold X in P 5 one gets [120, Ex. 4.2] deg(F ) = 6125, e(F ) = c 2 (F ) = 309375, c 2 1 (F ) = K 2 F = 496125, and χ(O F ) = 67125 . • For the Fano surface F = F 1 (X) of lines on the intersection X of two general quadrics in P 5 one has [120, Ex. 4.3] deg(F ) = 32, e(F ) = c 2 (F ) = 0, and

Theorem 3 . 5 .

 35 [START_REF] Ciliberto | On Fano schemes of complete intersections. Polynomial Rings and Affine Algebraic Geometry[END_REF] Thm. 5.1]) Let X be a general complete intersection of type d = (d 1 , . . . , d s ) in P n . Suppose that the Fano scheme F

Theorem 4 . 4 .

 44 ([502, Lem. 1]) Let X ⊂ P n be the general complete intersection of dimension ≥ 3. Then the Fano scheme of conics in X is a smooth projective variety. Theorem 4.5. ([35, 67]) Consider a smooth complete intersection X ⊂ P n of type d = (d 1 , . . . , d s ). Assume

  r) whose points correspond to hypersurfaces containing plane conics. Theorem 4.6. ([120, Thms. 6.1, 6.6]) Assume d ≥ 2, n ≥ 3, and ǫ(d, n) ≥ 0. Then the following holds.

  where a i ≥ 0 ∀i. Statement (a) of the next theorem follows from Theorem 4.3(b).

  Theorem 4.7.

  3.6]. (b) Let X be the Fermat hypersurface in P n of degree d. Then the moduli space M 0,0 (X, e) is irreducible of the expected dimension e(n + 1d) + (n -4) in the following cases: -e ≥ 2 and ed ≤ n + 1; -e ≥ 3 and ed ≤ n -1. It is irreducible as well if e = 3 and 3d ≤ n + 5 [174, 2.4.4-2.4.6, 2.4.23, 2.4.30, 2.4.36].

1 .

 1 d(X)/2 + 1. Hence d(X) = 2g(X) -2 if and only if ι(X) = 1. The Fano-Iskovskikh classification of the Fano threefolds with Picard rank ρ(X) = 1 yields Theorem 5.1. ([297], [301, Sect. 4.1]) Let X be a smooth Fano threefold of genus g with ρ(X) = Then one of the following (i)-(iii) holds.

  .4.1, 4.4.1, Thm. 4.3.3, 4.4.11], [516]. We use above the Mukai description [408, 409, 410, 411] of the V 3 2g-2

Theorem 5 . 6 . 5 ) = P 2 , 5 ) = P 4 ,

 565254 ([113]) Consider the quintic Fano variety Y m 5 of dimension m, where 2 ≤ m ≤ 6, and of index m -1, which is the general linear section of the Grassmannian Gr(2, 5) under its Plücker embedding in P 9 . Then for any d ∈ {1, 2, 3} the moduli space R d (Y m 5 ) of smooth rational curves of degree d on Y m 5 is rational. For m = 4, 5 the Hilbert scheme Hilb 2 (Y m 5 ) of conics on Y m 5 is smooth and irreducible. In particular, Hilb 1 (Y 3 Hilb 2 (Y 3 Hilb 3 (Y 3 5 ) = Gr(2, 5), and Hilb 1 (Y 6 5 ) = R 1 (Y 6 5 ) = Gr(1, 3, 5) is a flag variety.

Theorem 6 . 1 .

 61 Let X be the general hypersurface of degree d ≥ 2 in P n , where n ≥ 3. Then the following holds. (a) R e = ∅ if µ e < 0 and e ≤ d + 1 [213, Thm. 1.1]. (b) -R e (X) is smooth of dimension µ e if µ e ≥ 0 and either e ≤ 3, or 2e ≤ d + 3;

  , II, Thm. 1.2]. (b) For any smooth hypersurface X ⊂ P n of degree d where either d = 3 and n ≥ 5, or d ≥ 4 and n ≥ 2 d-1 (5d -4), the scheme R e (X) is irreducible of the expected dimension µ e [81, 148]. (c) Assume X is smooth and d + 2kn ≥ 3. Then the quadrics of dimension k sweep out a subvariety of dimension at most n

6. 2 .

 2 Twisted cubics in complete intersections. The next results concern enumeration of twisted cubics on Fano complete intersections. Theorem 6.4. (a) Let Σ tc (d, 3) ⊂ Σ(d, 3) be the locus of degree d surfaces in P 3 which contain twisted cubic curves. There is an explicit expression of the degree of Σ tc (d, 3) as a polynomial in d of degree 24 [372, §8]. (b) Let X ⊂ P n be a smooth complete intersection of type (d 1 , . . . , d s ) where s i=1

7 .

 7 Hypersurfaces with few rational curves 7.1. Rational curves on K3 surfaces. Recall the following theorem.

Theorem 7 . 1 .

 71 ([400]) Let d > 0 and g ≥ 0 be integers. There is a smooth curve C of degree d and genus g lying in a smooth quartic surface X in P 3 if and only if either g = d 2 /8 + 1, or g < d 2 /8 and (d, g) = (5, 3).

Theorem 7 . 2 .

 72 Let Σ ell,4 (d, 3) be the locus of surfaces of degree d in P 3 containing an elliptic quartic curve. Then the following holds. (a) Σ ell,4 (4, 3) is a hypersurface in Σ(4, 3) of degree 38475 [153, §3.2]. (b) There is an explicit expression of deg(Σ ell,4 (d, 3)) for d ≥ 5 as a polynomial in d of degree 32 obtained via Bott's residue formula [153, §4.3].

7. 2 .

 2 Rational curves in hypersurfaces. The next theorem deals with hypersurfaces which contain few rational curves. Theorem 7.4. Let X be a hypersurface of degree d in P n . Then the following holds. (a) For n ≥ 3 and 2(d + 1) ≥ 3(n + 1) any rational curve in a very general X is contained in the maximal subvariety L(X) of X swept out by lines in X [475, Cor. 3.2]. (b) In the range n ≥ 7 and d ∈ [ 3n+1 2 , 2n -3] the general X contains lines but no other rational curves [475, Thm. 1.3]. This is true as well for n = 6 and d = 2n -3 [425], but fails for a general quintic threefold in P 4 .

Theorem 8. 3 . 2 ≥which yields g ≥ 3 .

 323 (a) The number of rational and elliptic curves on a minimal smooth surface of general type with c 2 1 > c 2 is bounded above by an effective function of c 1 and c 2[START_REF] Bogomolov | Families of curves on a surface of general type[END_REF][START_REF] Deschamps | Courbes de genre géométrique borné sur une surface de type général[END_REF][START_REF] Miyaoka | Counting lines and conics on a surface[END_REF],[START_REF] Langer | Logarithmic orbifold Euler numbers of surfaces with applications[END_REF] Thm. 10.1]. (b) Let X be a very general surface of degree d ≥ 5 in P 3 . Then for any curve C of geometric genus g on X one has(6) 2g -2 ≥ max d 2 -3d -6, d + 1 d -5 deg(C) .In particular, for d = 5 one has 2gmax The absolute lower bound 2g -2 ≥ d 2 -3d -6 is sharp; for d ≥ 6 it is achieved by the tritangent hyperplane sections only[START_REF] Chiantini | Focal loci of families and the genus of curves on surfaces[END_REF] 144,[START_REF] Xu | Subvarieties of general hypersurfaces in projective space[END_REF].

Theorem 8 . 4 .

 84 ([417])

Corollary 8 . 8 .

 88 (a) For any integer d ≥ 4, there exists an integer c(d) such that, for any smooth surface S in P 3 of degree d and any integer g ≥ c(d), S carries a reduced, irreducible nodal curve of geometric genus g, whose nodes can be prescribed generically on S [102], [116, Cor. 3.1]. (b) For any positive integer d and for any non-negative integer g, there is a smooth surface S in P 3 of degree d and an irreducible, nodal curve C on S with geometric genus g [116, Thm. 3.3].

  For any d ≥ 1 a general quintic threefold in P 4 contains a smooth rational curve C of degree d [313]. (c) Any smooth rational curve C in a general quintic threefold X in P 4 is embedded with normal bundle O P 1 (-1) ⊕ O P 1 (-1). Any singular rational curve in X is a plane 6-nodal quintic [149, 150, 307, 313, 419]. (d) The number of smooth rational curves of degree 1, 2, 3, 4, ...10 in a general quintic threefold in P 4 is, respectively, 2875, 609250, 317206375, 242467530000, . . . , 704288164978454686113488249750 ,

	Theorem 7.5.	(a) The Clemens Conjecture holds for curves of degree ≤ 12 [20, 149, 150,
	307, 313].	
	(b)	

This improves the former upper bound 11d

-28d + 12[START_REF] Segre | The maximum number of lines lying on a quartic surface[END_REF].[START_REF] Alexeev | Theorems about good divisors on log Fano varieties (case of index r > n -2)[END_REF] See also[START_REF] Van Der Waerden | Zur algebraischen Geometrie. II, die geraden Linien auf den Hyperflächen des P n[END_REF] for another expression of this number.

In the case of equality F h (X) is zero-dimensional and deg(F h (X)) is the number of h-planes in X.

Cf.[START_REF] Maulik | Gromov-Witten theory and Noether-Lefschetz theory[END_REF].

The latter holds as well if the equality in (3) is replaced by the inequality "≤" [67, Cor. 2.1].

The genus g(X) is equal to the genus g of a general curve section of the anticanonical model of X.

In particular, for d ≥ n + 1 the conics contained in X do not cover X. The latter can be shown directly.
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