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LINES, CONICS, AND ALL THAT

C. CILIBERTO, M. ZAIDENBERG

To Bernard Shiffman on occasion of his seventy fifths birthday

Abstract. This is a survey on the Fano schemes of linear spaces, conics, rational curves,
and curves of higher genera in smooth projective hypersurfaces, complete intersections, Fano
threefolds, on the related Abel-Jacobi mappings, etc.
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Introduction

A classical problem of enumerative geometry asks to count curves with given numerical invari-
ants in a smooth complete intersection variety X in Pn. This includes the study of various Fano
schemes of X, that is, the components of the Hilbert schemes of curves with given numerical
invariants, in particular, the Fano schemes of lines and conics. The present paper is a survey on
this problem. We concentrate mainly on concrete numerical results. A special attention is paid
to the case of surfaces and threefolds. We discuss the lines and conics in Fano threefolds, which
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2 C. CILIBERTO, M. ZAIDENBERG

are not necessarily complete intersections. The latter involves the Abel-Jacobi mapping, the
related cylinder homomorphism, and Torelli type theorems. To keep a reasonable volume, we
do not outline proofs, and restrict the exposition to smooth projective varieties. We are working
over the complex number field unless otherwise is stated, while many results remain valid over
any algebraically closed field of characteristic zero. In the majority of cases, the names of the
authors of cited results appear only in the list of references. Together with the best known
result, we often mention its predecessors; we apologize for possible confusions.

Several important topics remain outside our survey, such as, e.g.: rational curves in Kähler
varieties [70], in Moishezon varieties, see, e.g., [346], in hyperkähler varieties, see, e.g., [3], in
fibered varieties, see, e.g., [4, 5], pseudo-holomorphic curves in symplectic manifolds, see, e.g.,
[184, 209, 197, 314, 315, 352], minimal rational curves and the varieties of minimal rational
tangents, see, e.g., [211, 212, 213, 214, 215, 455], (minimal) rational and elliptic curves in flag
varieties, Schubert varieties, Bott-Samuelson varieties, etc., see, e.g., [61, 106, 216, 277, 354, 356],
varieties covered by lines and conic-connected varieties, see, e.g., [235, 236, 237, 307, 308],
Prym varieties, see, e.g., [24, 25, 124, 151, 160, 166, 167, 245, 340, 369, 425, 458, 459], etc.
We avoid the vast domain of Mirror Symmetry and the Gromov-Witten invariants, see, e.g.,
[40, 121, 199, 202, 267, 268, 295, 313, 366].

1. Counting lines on surfaces

Cayley and Salmon [75, 390], and also Clebsch [95], discovered that any smooth cubic surface
in P3 contains exactly 27 lines. In the case of quartics in P3 the following is known.

Theorem 1.1. (a) The maximal number of lines on a smooth quartic in P3 is 64. This
maximum is achieved by the F. Schur quartic. Any smooth quartic with 64 lines is
isomorphic to the F. Schur quartic [138, 373, 393, 394].

(b) In the projective space |OP3(4)| parameterizing the quartics in P3, the subvariety of quar-
tics containing a line has codimension one and degree 320. The general point of this
subvariety represents a quartic surface with a unique line [305, 313].

The first claim in (a) is due to B. Segre [394], but his proof contains a mistake. In [138] and
[373] there are two different proofs based on the ideas of B. Segre.

In the case of quintics we have the following weaker results. We let Σ(d, n) stand for the

projective space |OPn(d)| = P(n+d
n )−1 parameterizing the degree d effective divisors on Pn. The

general point of Σ(d, n) corresponds to a smooth hypersurface of degree d in Pn.

Theorem 1.2. (a) A smooth quintic surface in P3 contains at most 127 lines [375].
(b) The variety of quintic surfaces in P3 containing a line is irreducible of degree 1990 and

of codimension 2 in Σ(5, 3). The general point of this variety corresponds to a quintic
surface with a unique line [303, 305].

The exact upper bound for the number of lines in a smooth quintic is unknown. The Fermat
quintic and the Barth quintic contain exactly 75 lines each.

For higher degree surfaces in P3 the following is known (cf. Theorem 1.1.b).

Theorem 1.3. (a) A smooth surface of degree d ≥ 3 in P3 contains at most 11d2−32d+24
lines [23].1

(b) The surfaces of degree d in P3 containing a line are parameterized by an irreducible
subvariety in Σ(d, 3) of codimension d− 3 and degree

(1)
1

24

(
d+ 1

4

)
(3d4 + 6d3 + 17d2 + 22d+ 24) .

1This improves the former upper bound 11d2 − 28d + 12 [394].
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The general such surface contains a unique line [303, 305].

Once again, for d ≥ 5 the exact upper bound in (a) is unknown. The Fermat surface of degree
d contains exactly 3d2 lines. As for (b), there are analogous formulas for the degrees of the
loci of degree d surfaces in P3 passing through a given line and containing an extra line, and,
respectively, containing three lines in general position; see [303, Prop. 3.3 and 6.4.1]. The latter
locus is of codimension 3d + 3 − 12 = 3d − 9 in Σ(d, 3). For d = 3 its degree equals 720, in
agreement with the combinatorics of triplets of skew lines contained in a smooth cubic surface.

2. The numerology of Fano schemes

Given a variety X ⊂ Pn, the Fano scheme Fh(X) is the scheme of h-planes contained in X.
Recall that a hypersurface is very general if it belongs to the complement of countably many
proper subvarieties in the space of hypersurfaces of a given degree. For the Fano schemes of
lines on hypersurfaces one has the following results.

Theorem 2.1. For a smooth hypersurface X of degree d in Pn, where n ≥ 3, the following
holds.

(a) ([18, 33, 35, 38, 278, 279, 289], [261, Ch. V, 2.9, 4.3, 4.5])
– If d ≤ 2n− 3 then the Fano scheme of lines F1(X) is nonempty;
– if d < n then X is covered by lines. The latter holds also for non-smooth hypersur-

faces;
– F1(X) is smooth of the expected dimension δ = 2n− 3− d if either X is general, or
d ≤ min{8, n} and δ ≥ 0;

– F1(X) is irreducible if d ≤ (n + 1)/2 and X is not a smooth quadric in P3; it is
connected if d ≤ 2n− 5.

(b) – If
(
d+1
2

)
≤ n then F1(X) is rationally connected and is a Fano variety for X general

[261, Exerc. V.4.7].

– If
(
d+2
2

)
≥ 3n and X is very general then F1(X) contains no rational curve [386,

Thm. 3.3].
(c) Any hypersurface of degree d = 2n − 3 in Pn contains a line. The number of lines in a

general such hypersurface is 2

d · d!
n−3∑
k=0

(2k)!

k!(k + 1)!

∑
I⊂{1,...,n−2}, |I|=n−2−k

∏
i∈I

(d− 2i)2

i(d− i)
.

For instance, a general quintic threefold in P4 contains exactly 2875 lines [190].

De Jong–Debarre Conjecture states that dim(F1(X)) = δ for any smooth hypersurface in Pn
of degree d ≤ n. The upper bound n is optimal; indeed, for any d > n, there exists a smooth
hypersurface X of degree d in Pn with dim(F1(X)) > δ [39, Cor. 3.2].

For the Fano schemes of h-planes in hypersurfaces we have the following facts.

Theorem 2.2. If X is a smooth hypersurface of degree d in Pn, where n ≥ 3, then:

• Fh(X) is irreducible of the expected dimension δ = (h+ 1)(n− h)−
(
d+h
h

)
provided

2

(
d+ h− 1

h

)
≤ n− h;

• for 2h ≥ max{(n− 1)/2, n+ 2− d} one has [32]

dim(Fh(X)) ≤

{
(m− h)(h+ 1) if n = 2m+ 1

(m− h− 1)(h+ 1) if n = 2m ;

2See also [437] for another expression of this number.
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• if n is odd and d > 2 then there are at most finitely many (n− 1)/2-planes contained in
X. If n is even and d > 3 then there is at most a one-parameter family of (n/2−1)-planes
in X [32];

• assume X is general,
(
d+h
h

)
≤ (n − h)(h + 1), and d 6= 2 or n ≥ 2h + 1. Then there

are explicit formulas for the degree of Fh(X) [135, Ex. 14.7.13], [200, Thm. 1.1], [306,
Thms. 3.5.18, 4.3]. 3

For lines in an arbitrary subvariety in Pn one has the following fact.

Theorem 2.3. ([281, Thm. 1]; see [321] for m = 3) Let X be a projective variety of dimension
m in Pn. Assume X is covered by lines and through a general point of X pass a finite number
of lines. Then there are at most m! lines passing through a general point of X.

If X is a complete intersection of type (that is, of multidegree) d = (d1, . . . , ds) then the
expected dimension of Fh(X) is

(2) δ = δ(d, n, h) = (n− h)(h+ 1)−
s∑
i=1

(
di + h

h

)
.

In particular, the expected dimension of F1(X) is

δ = 2(n− 1)−
s∑
i=1

(di + 1) .

Let also

δ− = min{δ, n− 2h− s} .
For (a) and (b) of the following theorem see [57, 135, 281, 360] and the references therein.

Theorem 2.4. For a complete intersection X ⊂ Pn of type d = (d1, . . . , ds) the following holds.

(a) If δ− < 0 then Fh(X) = ∅ for a general X.
(b) If δ− ≥ 0 then Fh(X) has dimension δ, is smooth for a general X, and is irreducible if

δ− > 0.
(c) If δ− ≥ 0 and δ ≥ n− h− s then through any point x ∈ X passes an h-plane contained

in X [324].

See also [77, 230, 231, 232, 234] for the Fano schemes of toric varieties and of complete
intersections in toric varieties, and [284, 285] for applications to the machine learning.

Theorem 2.5. ([20, 324]; see [306] for s = 1) Let Σ(d, n) be the scheme which parameterizes
the complete intersections of type d = (d1, . . . , ds) in Pn, and let Σ(d, n, h) be the subvariety of
Σ(d, n) of points which correspond to the complete intersections which carry h-planes. Then

dim Σ(d, n) =

s∑
j=1

(
dj + n

dj

)
.

If γ(d, n, h) := −δ(d, n, h) > 0 then Σ(d, n, h) is a nonempty, irreducible and rational subvariety
of codimension γ(d, n, h) in Σ(d, n). The general point of Σ(d, n, h) corresponds to a complete
intersection which contains a unique linear subspace of dimension h and has singular locus of
dimension max{−1, 2h+s−n−1} along its unique h-dimensional linear subspace (in particular,
it is smooth provided n ≥ 2h+ s).

To determine the degree of Σ(d, n, h) we propose the following receipt.

3In the case of equality Fh(X) is zero-dimensional and deg(Fh(X)) is the number of h-planes in X.
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Theorem 2.6. ([94, Cor. 2.2]) Let X be a general complete intersection of type (d1, . . . , ds−1)
in Pn verifying

dim(Fh(X)) > 0 and dim(Σ(dm, X)) > γ(d, n, h) > 0 ,

where

Σ(dm, X) = |OX(dm)| .
Let Σ(ds, X, h) be the set of points in Σ(ds, X) which correspond to complete intersections of
type d = (d1, . . . , ds) contained in X and containing a linear subspace of dimension h. Then the

degree deg(Σ(dm, X, h)) equals the coefficient of the monomial xn0x
n−1
1 · · ·xn−hh in the product of

the following polynomials in x0, . . . , xh:

• the product Qh,d =
∏s−1
i=1 Qh,di of the polynomials

Qh,di =
∏

v0+...+vh=di

(v0x0 + · · ·+ vhxh) ;

• the homogeneous component of degree

ρ :=

(
ds + h

h

)
− γ(d, n, h) = dim(Fh(X))

of the polynomial ∏
v0+...+vh=dm

(1 + v0x0 + . . .+ vhxh) ;

• the Vandermonde polynomial V (x0, . . . , xh).

The general point of Σ(dm, X, h) corresponds to a complete intersection of type d = (d1, . . . , ds)
which contains a unique subspace of dimension h.

Notice that our assumptions hold automatically if γ(d, n, h) is sufficiently small, e.g., if
γ(d, n, h) = 1.

3. Geometry of the Fano scheme

In this section we consider the complete intersections of type d = (d1, . . . , ds) in Pn whose
Fano schemes have positive expected dimension δ = δ(d, n, h) > 0, see (2). We assume di ≥ 2,
i = 1, . . . , s. If also n ≥ 2h+ s+ 1 then by Theorem 2.5(b), for a general complete intersection
X of type d in Pn, the Fano variety Fh(X) of linear subspaces of dimension h contained in X is
a smooth, irreducible variety of dimension δ(d, n, h).

Theorem 3.1. ([135, Thm. 4.3]) In the notation and assumptions as before, the degree of
the Fano scheme Fh(X) under the Plücker embedding equals the coefficient of the monomial

xn0x
n−1
1 · · ·xn−hh of the product Qh,d · eδ · V where

• V stands for the Vandermonde polynomial V (x) =
∏

0≤i<j≤h(xi − xj);
• e(x) := x0 + · · ·+ xh and δ = δ(d, n, h);
• Qh,d is the product

∏s
i=1Qh,di of the polynomials

Qh,di =
∏

v0+...+vh=di

(v0x0 + · · ·+ vhxh) .

Remark 3.2. An alternative expression for deg(Fh(X)) based on the Bott residue formula can
be found in [94, Formula (4)], [200, Thm. 1.1], and [201, Thm. 2]; cf. also [169, Ex. 14.7.13],
[305], and [306, Sect. 3.5].
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There are formulas expressing certain numerical invariants of Fh(X) other than the degree. If
δ(d, n, h) = 1 then Fh(X) is a smooth curve; its genus was computed in [201]. In the case where
Fh(X) is a surface, that is, δ(d, n, h) = 2, the Chern numbers of this surface and its holomor-
phic Euler characteristic χ(OFh(X)) were computed in [94]. Actually, [94] contains formulas for
c1(Fh(X)) and c2(Fh(X)) in the general case provided δ(d, n, h) > 0. Applying these formulas
to the case where the Fano scheme is a surface, one can deduce the classically known values and
new ones, as in the following examples.

Examples 3.3. • In the case of the Fano surface F = F1(X) of lines on the general cubic
threefold X in P4 one has [2, 294], [94, Ex. 4.1]

deg(F ) = 45, e(F ) = c2(F ) = 27, c1(F )2 = K2
F = 45, and χ(OF ) = 6 .

• For the Fano surface F = F1(X) of lines on a general quintic fourfold X in P5 one gets
[94, Ex. 4.2]

deg(F ) = 6125, e(F ) = c2(F ) = 309375, c21(F ) = K2
F = 496125, and χ(OF ) = 67125 .

• For the Fano surface F = F1(X) of lines on the intersection X of two general quadrics
in P5 one has [94, Ex. 4.3]

deg(F ) = 32, e(F ) = c2(F ) = 0, and K2
F = c1(F )2 = 0 .

In fact, F is an abelian surface [380].
• Finally, for the Fano scheme F = F2(X) of planes on a general cubic fivefold X in P6

one gets [94, Ex. 4.4]

deg(F ) = 2835, e(F ) = c2(F ) = 1304, K2
F = c1(F )2 = 25515, and χ(OF ) = 3213 .

As for the Picard numbers of the Fano schemes of complete intersections, one has the following
result.

Theorem 3.4. ([247, Thm. 03]; cf. also [135]) Let X be a very general complete intersection of
type d = (d1, . . . , ds) in Pn. Assume δ(d, n, h) ≥ 2. Then ρ(Fh(X)) = 1 except in the following
cases:

• X is a quadric in P2h+1, h ≥ 1. Then Fh(X) consists of two isomorphic smooth disjoint
components, and the Picard number of each component is 1;
• X is a quadric in P2h+3, h ≥ 1. Then ρ(Fh(X)) = 2;
• X is a complete intersection of two quadrics in P2h+4, h ≥ 1. Then ρ(Fh(X)) = 2h+ 6.

The assumption ‘very general’ of this theorem cannot be replaced by ‘general’; one can find
corresponding examples in [247].

Next we turn to the irregular Fano schemes of general complete intersections.

Theorem 3.5. ([94, Thm. 5.1]) Let X be a general complete intersection of type d = (d1, . . . , ds)
in Pn. Suppose that the Fano scheme F = Fh(X) of h-planes in X, h ≥ 1, is irreducible of
dimension δ ≥ 2. Then F is irregular if and only if one of the following holds:

(i) F = F1(X) is the variety of lines on a general cubic threefold X in P4 (dim(F ) = 2);
(ii) F = F2(X) is the variety of planes on a general cubic fivefold X in P6 (dim(F ) = 2);

(iii) F = Fh(X) is the variety of h-planes on the intersection X of two general quadrics in
P2h+3, h ∈ N (dim(F ) = h+ 1).

Remark 3.6. 1. The Fano surface of lines F = F1(X) on a smooth cubic threefold X ⊂ P4

in (i) was studied by Fano [161] who found, in particular, that q(F ) = 5. Using Example 3.3
we deduce pg(F ) = 10; cf. also [25, Thm. 4], [55, 102, 175, 294, 389, 428, 429], [380, Sect. 4.3].
There is an isomorphism Alb(F ) ' J(X) where J(X) is the intermediate Jacobian, see [102]



LINES, CONICS, AND ALL THAT 7

and Section 5. The latter holds as well for F = F2(X) where X ⊂ P6 is a smooth cubic fivefold
as in (ii) [107]. Thus, q(F ) > 0 in (i) and (ii).

Consider further the Fano scheme F = Fh(X) of h-planes on a smooth intersection X of two
quadrics in P2h+3 as in (iii). By a theorem of M. Reid [380, Thm. 4.8] (see also [146, Thm. 2],
[432]), F is isomorphic to the Jacobian J(C) of a hyperelliptic curve C of genus g(C) = h + 1
(of an elliptic curve if h = 0). Hence, one has q(F ) = dim(F ) = h + 1 > 0 for h ≥ 0. There is
an isomorphism F ' J(X) where J(X) is the intermediate Jacobian of X [150].

2. The complete intersections in (i)-(iii) are Fano varieties. The ones in (i) are Fano threefolds
of index 2 with a very ample generator of the Picard group. The Fano threefolds of index 1 with a
very ample anticanonical divisor which are complete intersections are the varieties V 3

2g−2 ⊂ Pg+1

of genera g = 3, 4, 5, that is (see [240, Ch. IV, Prop. 1.4]; cf. Section 5):

g = 3: the smooth quartics V 3
4 in P4;

g = 4: the smooth intersections V 3
6 of a quadric and a cubic in P5;

g = 5: the smooth intersections V 3
8 of three quadrics in P6.

The Fano scheme of lines F = F1 of a general Fano threefold V 3
2g−2 is a smooth curve of a positive

genus g(F ) > 0. In fact, g(F ) = 801 for g = 3, g(F ) = 271 for g = 4, and g(F ) = 129 for g = 5
[309], [201, Ex. 1-3], [244, Thm. 4.2.7]. For X = V 3

2g−2 with g ∈ {3, 4, 5}, the Abel-Jacobi map

J(F )→ J(X) to the intermediate Jacobian is an epimorphism, see [240] and [430, Lect. 4, Sect.
1, Ex. 1 and Sect. 3].

3. Besides the Fano threefolds V 3
2g−2, there are other complete intersections whose Fano

scheme of lines is a curve of positive genus. This holds, for instance, for the general hypersurface
of degree 2r−4 in Pr, r ≥ 4, and for the general complete intersections of types d = (n−3, n−2)
and d = (n − 4, n − 4) in Pn where n ≥ 5 and n ≥ 6, respectively [201, Ex. 1-3]. One can find
in [201] a formula for the genus of F in these cases.

4. Let X be a smooth intersection of two quadrics in P2k+2. Then the Fano scheme Fk(X) is
reduced and finite of cardinality 22k+2 [380, Ch. 2], whereas Fk−1(X) is a rational Fano variety
of dimension 2k and index 1, whose Picard number is ρ = 2k+ 4, see [6, 75], and the references
therein.

4. Counting conics in complete intersection

A conic in Pn is a curve whose Hilbert polynomial is 2t + 1. Any conic C is contained in a
unique plane and is either a smooth (reduced) plane conic, or a pair of distinct lines, or a double
line (see, e.g., [139, Lem. 2.2.6]). Thus, a pair of skew lines does not fit in our terminology.

Any smooth cubic surface S in P3 contains exactly 27 pencils of conics, and any smooth conic
in S belongs to a unique such pencil. Hence the variety of conics in S is reducible and consists
of 27 P1-components.

By contrast, the number of conics on a general quartic surface in P3 is finite. Furthermore,
one has

Theorem 4.1. ([22]) There exist smooth quartic surfaces in P3 which contain 432 smooth conics;
16 of these conics are mutually disjoint.

According to [344], 16 is the maximal number of disjoint rational curves on a quartic surface.
In [19] and [159] one can find constructions of two smooth quartic surfaces in P3 carrying 352 and
320 smooth conics, respectively. The maximal number of conics lying in a smooth quartic in P3

is unknown. However, given any smooth quartic surface S, a general pencil of quartic surfaces
through S contains exactly 5016 surfaces with a conic, counting things with multiplicities, see
Theorem 4.2. Let Σc(d, 3) be the variety of those degree d surfaces in P3 which contain conics.
Then a general point of Σc(4, 3) corresponds to a smooth quartic surface carrying exactly two
(coplanar) conics, and so, deg(Σc(4, 3)) = 5016/2 = 2508.
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For higher degree surfaces in P3 the following holds.

Theorem 4.2. ([305]; see also [303, Prop. 7.1])

• For d ≥ 4, Σc(d, 3) is an irreducible subvariety of codimension 2d − 7 in Σ(d, 3). In
particular, Σc(4, 3) is a hypersurface of degree 2508 in Σ(4, 3). 4

• For d ≥ 5, a general point of Σc(d, 3) corresponds to a surface which contains a unique
(smooth) conic, and one has

deg(Σc(d, 3)) =

(
d

4

)
(d2 − d+ 8)(d2 − d+ 6)(207d8 − 288d7 + 498d6 + 5068d5

−15693d4 + 31732d3 − 37332d2 + 9280d− 47040)/967680 .

For higher dimensional hypersurfaces we have the following results.

Theorem 4.3. (a) Let X be a hypersurface of degree n in Pn, n ≥ 2. Then X is covered by
a family of conics. For the general such X, the number of conics in X passing through
a general point equals

(2n)!

2n+1
− (n!)2

2
[56, Prop. 3.2], see also [289, Thm. 0.1], [416] (n = 4), [110, Thm. 2] (n = 5). For n ≥ 4
and a general X, the variety R2(X) of smooth conics in X is smooth, irreducible, of
dimension n− 2.

(b) For the general hypersurface X of degree d in Pn, where n ≥ 3, R2(X) is smooth of the
expected dimension µ(d, n) := 3n− 2d− 2 provided µ(d, n) ≥ 0, and is empty otherwise.
It is irreducible provided µ(d, n) ≥ 1 and X is not a smooth cubic surface in P3 [171,
Thm. 1.1].

(c) If X is general and d ≥ 3n− 1, then X contains no reducible conic [386, Thm. 3.4].
(d) Let further X be an arbitrary smooth hypersurface of degree d in Pn.

– Assume n ≥ 6 and d ≤ 6 (so, X is Fano). Let R 6= ∅ be an irreducible component
of R2(X) such that the plane spanned by a general conic in R is not contained in
X. Then dim(R) = µ(d, n) = 3n− 2d− 2 [172].

– Let X be a smooth quartic threefold in P4 (n = d = 4). Then dimR ≥ µ(4, 4) = 2
for any irreducible component R of R2(X). Through a general point of X passes
972 conics [109, 238, 416].

For instance, for a general sextic hypersurface X in P5 (n = 5, d = 6, and X is Calabi-Yau) the
Fano scheme Fc(X) of conics in X is a smooth projective curve, whose general point corresponds
to a smooth conic [69, Prop. 1.3-1.4]. By (b), for a general Fano hypersurface X in Pn (that is,
d ≤ n), R2(X) is smooth, irreducible, of dimension µ(d, n) ≥ 1 if n ≥ 4.

For conics in Fano complete intersections we have the following facts.

Theorem 4.4. ([403, Lem. 1]) Let X ⊂ Pn be the general complete intersection of dimension
≥ 3. Then the Fano scheme of conics in X is a smooth projective variety.

Theorem 4.5. ([27, 56]) Consider a smooth complete intersection X ⊂ Pn of type d = (d1, . . . , ds).
Assume

(3) 2
s∑
i=1

di = n− s+ 1 .

Then the following holds.

• X is a Fano variety with Picard number one of index ι(X) = n−s+1
2 . The anticanonical

degree of a conic in X equals n− s+ 1.

4Cf. [313].
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• For a general X the family of conics in X is a nonempty, smooth and irreducible com-
ponent of the Chow scheme of X 5, of dimension 2(n− s− 1).
• Let e(X) (e0(X), respectively) be the number of conics passing through a general pair of

points of X (passing through a general point x ∈ X and having a given general tangent
direction at x, respectively). Then for a general X these conics are smooth, and one has

e0(X) = e(X) =

s∏
i=1

(di − 1)!di! .

See [27] for formulas for the numbers of lines and conics in X meeting three general linear
subspaces in Pr of suitable dimensions; cf. also [294] in the case of lines, [36, Cor. 1.5], and [435].

Set
ε(d, n) = 2d+ 2− 3n = −µ(d, n) .

Consider the subvariety Σc(d, r) of Σ(d, r) whose points correspond to hypersurfaces containing
plane conics.

Theorem 4.6. ([94, Thms. 6.1, 6.6]) Assume d ≥ 2, n ≥ 3, and ε(d, n) ≥ 0. Then the following
holds.

(a) Σc(d, n) is irreducible of codimension ε(d, n) in Σ(d, n).
(b) If ε(d, n) > 0 and (d, n) 6= (4, 3) then the hypersurface corresponding to the general point

of Σc(d, n) contains a unique conic, and this conic is smooth. In the case (d, n) = (4, 3)
it contains exactly two distinct conics, and these conics are smooth and coplanar.

(c) If ε(d, n) > 0 and (d, n) 6= (4, 3) then one has

deg(Σc(d, n)) = − 5

32

(
n+ 1

3

)
η(1, 1, 1) ,

where η is the homogeneous form of degree 3n−1 in the formal power series decomposition
of ∏

|v|=d

(1 + 〈v,x〉)

 ·
 ∏
|v|=d−2

(1 + 〈v,x〉)

−1
with x = (x1, x2, x3), v = (v1, v2, v3) ∈ (Z≥0)3, and |v| = v1 + v2 + v3.

The latter formulas are obtained by applying Bott’s residue formula; see, e.g., [58, 60, 154,
200, 316] for generalities.

Recall the definition of the Kontsevich moduli spaces of stable maps [267]. Let X be a
smooth projective variety in Pn. The Kontsevich moduli space Mg,r(X, e) parameterizes the
isomorphism classes of corteges (C, f, x1, · · · , xr) where

• C is a proper, connected, nodal curve of arithmetic genus g;
• f : C → X is a morphism whose image is a curve of degree e in Pn;
• (x1, · · · , xr) is an ordered collection of distinct smooth points of C;
• the cortege (C, f, x1, · · · , xr) admits only finitely many automorphisms.

In general,Mg,r(X, e) is a proper Deligne-Mumford stack. The underlying variety ofMg,r(X, e)

is projective, but does not need to be smooth or irreducible. However,M0,0(X, e) is a compact-
ification of the variety Re(X) of smooth rational curves in X of degree e.

Recall that a curve C ' P1 in a smooth projective variety X of dimension m is called free
if NC/X ' O(a1) ⊕ . . . ⊕ O(am−1) where ai ≥ 0 ∀i. Statement (a) of the next theorem follows
from Theorem 4.3(b).

Theorem 4.7. (a) Let X be a smooth hypersurface in Pn of degree d < n.

5The latter holds as well if the equality in (3) is replaced by the inequality “≤” [56, Cor. 2.1].
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– If X is general thenM0,0(X, 2) is irreducible and of the expected dimension µ(d, n) =
3n− 2d− 2 [139, 2.3.4].

– If X is arbitrary (but smooth) then there is a unique component of M0,0(X, 2)
which contains a conic passing through the general point of X. Moreover, if the
dimension of the variety of non-free lines on X is at most n − 3 then there is
a unique component of R2(X) whose general point corresponds to a smooth conic
through the general point of X [139, 2.3.6].

(b) Let X be the Fermat hypersurface in Pn of degree d. Then the moduli space M0,0(X, e)
is irreducible of the expected dimension e(n+ 1− d) + (n− 4) in the following cases:

– e ≥ 2 and ed ≤ n+ 1;
– e ≥ 3 and ed ≤ n− 1.

It is irreducible as well if e = 3 and 3d ≤ n+ 5 [139, 2.4.4–2.4.6, 2.4.23, 2.4.30, 2.4.36].

5. Lines and conics on Fano threefolds and the Abel-Jacobi mapping

5.1. The Fano-Iskovskikh classification. The content of this section is partially borrowed
from [244, Sect. 4.1] and [274, Sect. 2]. Let X be a smooth Fano threefold, that is, a smooth
threefold with an ample anticanonical divisor −KX . One attributes to X the following integers:

• the genus6

g(X) = (−KX)3/2 + 1 = dim | −KX | − 1 ≥ 2 ;

• the index ι(X), that is, the maximal natural number in {1, . . . , 4} such that −KX =
ι(X)H for an ample divisor H on X;

• the Picard rank ρ(X) such that Pic(X) ' Zρ(X);
• the degree d(X) = H3;
• the Matsusaka constant m0 = m0(X), that is, the minimal integer such that m0H is

very ample.

One has g(X) = ι(X)3d(X)/2 + 1. Hence d(X) = 2g(X)− 2 if and only if ι(X) = 1.
The Fano-Iskovskikh classification of the Fano threefolds with Picard rank ρ(X) = 1 yields

Theorem 5.1. ([240], [244, Sect. 4.1]) Let X be a smooth Fano threefold of genus g with ρ(X) =
1. Then one of the following (i)–(iii) holds.

(i) The anticanonical divisor is very ample, and the linear system | −KX | defines an em-
bedding ϕ of X onto a projectively normal threefold ϕ(X) of degree 2g − 2 in Pg+1 with
one of the following:
(i3) g = 3 and ϕ(X) ⊂ P4 is a smooth quartic threefold;
(i4) g = 4 and ϕ(X) ⊂ P5 is complete intersection of a quadric and a cubic hypersur-

faces;
(i5) g = 5 and ϕ(X) ⊂ P6 is complete intersection of three quadric hypersurfaces;
(ig) g ≥ 6 and ϕ(X) ⊂ Pg+1 is an intersection of quadric hypersurfaces.

(ii) g = 2 and X is a sextic double solid, that is, | − KX | defines a double cover X → P3

ramified along a smooth surface S ⊂ P3 of degree 6;
(iii) g = 3 and |−KX | defines a double cover X → Q over a smooth quadric threefold Q ⊂ P4

ramified along a smooth surface S ⊂ Q of degree 8.

The table of numerical data of the Fano threefolds with ρ(X) = 1 can be found in [244, Sect.
12.2]. These threefolds form 17 deformation families. According to the index, these are:

ι = 1 : 10 families with genera varying from 2 to 12 excluding 11;
ι = 2 : 5 families of del Pezzo threefolds with anticanonical degree −K3

X = 8d, d = 1, 2, 3, 4, 5;
ι = 3 : the smooth quadric Q in P4 with anticanonical degree 54;

6The genus g(X) is equal to the genus g of a general curve section of the anticanonical model of X.
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ι = 4 : P3 with anticanonical degree 64.

The families of Fano threefolds V 3
2g−2 ⊂ Pg+1 with ρ = 1 and ι = 1 are classified according to

the genus g as follows.

g = 2, 3, 4, 5: the Fano threefolds listed in (i3)-(i5), (ii), and (iii);
g = 6: the smooth intersections Gr(2; 5) ∩ P7 ∩ Q of the Grassmannian Gr(2; 5) with a linear

subspace P7 and a quadric Q in P9, and
g = 6: the Gushel threefolds of genus 6, that is, the double covers of the del Pezzo threefold

Y = Gr(2; 5) ∩ P6 ⊂ P9 of degree 5 branched along a smooth quadric section Q ∩ Y ;
g = 7: the smooth linear sections OGr+(5; 10) ∩ P8 of a connected component OGr+(5; 10) of

the orthogonal Lagrangian Grassmannian in P15;
g = 8: the smooth linear sections Gr(2; 6) ∩ P9 of the Grassmannian Gr(2; 6) ⊂ P14;
g = 9: the smooth linear sections LGr(3; 6) ∩ P10 of the symplectic Lagrangian Grassmannian

LGr(3; 6) ⊂ P13;
g = 10: the smooth linear sections Ω5∩P11 of the homogeneous G2-fivefold Ω5 ⊂ P13 (an adjoint

orbit of the group G2);
g = 12: the smooth zero loci of triplets of sections of the rank 3 vector bundle Λ2E∨, where E is

the universal bundle over the Grassmannian Gr(3; 7).

Initially, the Fano threefolds V 3
2g−2 with g = 7, 9, 12 were obtained from simpler ones via

certain birational transformations (elementary Sarkisov links); see, e.g., [244, Prop. 3.4.1, 4.4.1,
Thm. 4.3.3, 4.4.11], [415]. We use above the Mukai description [334, 335, 336, 337] of the V 3

2g−2
with g = 7, . . . , 10 as linear sectionsXn

2g−2∩Pg+1 of certain special GrassmanniansXn
2g−2 = G/P ,

which are flag varieties embedded in Pg+n−2.
Notice that the family of Gushel threefolds of genus 6 (called also special Gushel-Mukai three-

folds) is a flat specialization of the family Gr(2; 5) ∩ P7 ∩Q of general Gushel-Mukai threefolds.
Thus, the Fano threefolds of genus 6 form one deformation family of Gushel-Mukai threefolds.
The same holds for the Fano threefolds of genus 3; indeed, the family of smooth quartic three-
folds in P4 specializes to the double covers X → Q ramified along Q ∩ Y , where Y is a quartic
in P4.

The families of Fano threefolds with ρ = 1 and ι = 2 are classified according to the anticanon-
ical degree −K3

X ∈ {8d, d = 1, 2, 3, 4, 5} as follows (Fujita [168]; see [244, Thm. 3.3.1]).

d = 1: the smooth hypersurfaces of degree 6 in the weighted projective space P(3, 2, 1, 1, 1).
Another realization: the Veronese double cones, that is, the double covers X → V ,
where V ⊂ P6 is the cone over the second Veronese surface in P5, branched at the vertex
v of V and along a smooth intersection of V with a cubic hypersurface which does not
pass through v [238, 420], see also [182, 183, 214];

d = 2: the quartic double solids, that is, the double covers X → P3 branched along a smooth
quartic surface S ⊂ P3;

d = 3: the smooth cubic threefolds X ⊂ P4;
d = 4: the smooth complete intersections of two quadrics in P5;
d = 5: the smooth linear sections Gr(2; 5) ∩ P6 of the Grassmannian Gr(2; 5) ⊂ P9.

5.2. Lines and conics on Fano threefolds. Let X be a Fano variety of index ι(X), and let
H = KX/ι(X) ∈ Pic(X). The lines and conics on X are the curves C in X satisfying C ·H = 1
and C ·H = 2, respectively. One considers the Fano schemes F1(X) of lines and Fc(X) of conics
in X meaning actually the unions of the components of the Hilbert schemes of X whose general
points correspond to lines and conics on X, respectively.

In the case where −KX is very ample, e.g., if ρ(X) = ι(X) = 1, the lines and conics on

X are sent to the usual lines and conics under the anticanonical embedding X ↪→ P2g(X)−2.
Otherwise, consider, for instance, a double solid, that is, a double cover π : X → P3 branched
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along a smooth surface S ⊂ P3 of degree 4 (degree 6, respectively) which does not contain any
line (any conic, respectively). An irreducible curve C on X is a line (a conic, respectively) if and
only if C ′ = π(C) is a bitangent line of S in P3 (a conic in P3 with only even local intersection
indices with S, respectively). In these cases π∗(C ′) = C + i(C) has two irreducible components,
where i is the involution associated to π.

The following theorem summarizes results from [76, 109, 107, 221, 240, 288, 297, 409, 415, 416].

Theorem 5.2. Let X be a Fano threefold with ρ(X) = 1 of index ι(X) = 1 and genus g = g(X).
Then the following holds.

• Every line on X meets l(g) lines counting things with multiplicities, where
– l(2) = 625;
– l(3) = 81 if X of genus g = 3 is a double cover of a quadric Q ⊂ P4;
– l(4) = 31;
– l(5) = 17;
– l(6) = 11;
– l(8) = 6 provided X of genus g = 8 is general [48, 309].

• If −KX is very ample and g ≥ 3 then F1(X) is of pure dimension 1; it is smooth, reduced
and irreducible for a general X. Through a point of X passes at most a finite number of
lines if g = 3 and X is a general quartic surface in P4, at most 6 lines if g = 4, and at
most 4 lines if g ≥ 5 [244, 4.2.2, 4.2.7].
• Assume −KX is very ample and g ≥ 5. Then Fc(X) is two-dimensional. Furthermore,

through almost any point of X (any point if g ≥ 10) passes at most a finite number of
conics. A general conic in X meets at most a finite number of lines if g ≥ 5; the latter
is true for any conic if g ≥ 9 [244, 4.2.5–4.2.6].

Notice that there are smooth quartic threefolds in P4 (for instance, the Fermat quartic) which
contain cones over curves. However, through a general point of any smooth quartic in P4 passes
exactly 972 conics [109, 238]. See also [244, 4.2.7] for the genera of the curve F1(X) for a general
X as in the theorem.

The following two theorems summarize the results of [2, 59, 146, 173, 222, 224, 240, 274, 309,
367, 416].

Theorem 5.3. ([274, Thm. 1.1.1]) Let X be a smooth Fano threefold with ρ(X) = 1 of index
ι = 2 and degree d = d(X) ≥ 3. Then the Fano scheme of lines F1(X) is a smooth irreducible
surface. In particular,

d = 3: F1(X) is a minimal surface of general type with irregularity 5, geometric genus 10, and
canonical degree K2

F1(X) = 45;

d = 4: F1(X) is an abelian surface;
d = 5: F1(X) ' P2.

Theorem 5.4. ([274, Thm. 1.1.1]) Let X be a smooth Fano threefold with ρ(X) = 1 of index
1 and genus g = g(X) ≥ 7. Then the Fano scheme of conics Fc(X) is a smooth irreducible
surface. More precisely,

g = 7: Fc(X) is symmetric square of a smooth curve of genus 7;
g = 8: Fc(X) is a minimal surface of general type with irregularity 5, geometric genus 10, and

canonical degree K2
Fc(X) = 45;

g = 9: Fc(X) is a ruled surface isomorphic to the projectivization of a simple rank 2 vector
bundle on a smooth curve of genus 3;

g = 10 : Fc(X) is an abelian surface;
g = 12: Fc(X) ' P2.
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There exists the following duality between the Fano threefolds of indices 1 and 2 based on
the Mukai construction [335, 336].

Theorem 5.5. ([275]; see also [274, Appendix B]) For any smooth Fano threefold X with
ρ(X) = 1, ι(X) = 1, and g(X) ∈ {8, 10, 12} there is a smooth Fano threefold Y with ρ(Y ) = 1,
ι(Y ) = 2, and d(Y ) = g(X)/2 − 1 such that F1(X) ' Fc(Y ) (and the derived categories of X
and Y are equivalent).

See also [414] for lines and conics on del Pezzo threefolds.

5.3. The Abel-Jacobi mapping. Recall [102] that the intermediate Jacobian

J(X) = H2,1(X)∗/(H3(X,Z) modulo torsion)

of a smooth Fano threefold X is a principally polarized abelian variety. Using a fine structure of
the intermediate Jacobian one can detect the non-rationality of X; see, e.g., [30, 102, 263, 364,
446, 460], cf. also [8, 79, 362, 388]. Given a variety F we let A(F ) be the Albanese variety of
F . For a Fano scheme F (X) of a Fano threefold X the Abel-Jacobi mapping A(F (X))→ J(X)
is defined via the cylinder homomorphism H1(F (X),Z) → H3(X,Z), see the next section. For
the Fano threefolds X one considers the Fano surface of lines F (X) = F1(X) if ι(X) = 2 and of
conics F (X) = Fc(X) if ι(X) = 1. For certain Fano threefolds X, the Abel-Jacobi mapping is
known to be either an isomorphism, or an isogeny, hence q(F ) = h2,1(X). We summarize these
results in the following theorem. See Table 12.2 in [244] for the values of h2,1(X).

Theorem 5.6. ([244, §8.2]) Consider a Fano threefold X with ρ(X) = 1 of genus g = g(X),
degree d = d(X), and index ι = ι(X) ∈ {1, 2}.
ι = 2: Assume ι = 2, and let F = F1(X) be the Fano scheme of lines on X. Then the following

holds.
d = 5: A(F ) and J(X) are both trivial [240].
d = 2, 3, 4: F is a smooth irreducible surface, the Abel-Jacobi mapping A(F )→ J(X) is

an isomorphism, and X is uniquely determined by F in the following cases:
d = 2: X → P3 is a quartic double solid whose branching surface S ⊂ P3 has no

line. One has q(F ) = 10 [240, Ch. III, Sect. 1], [96, 101, 418, 419, 456, 457];
d = 3: X is a smooth cubic threefold in P4. One has q(F ) = 5 [102];
d = 4: X is a smooth complete intersection of two quadrics in P5. One has q(F ) =

2, F ∼= J(X) is an abelian surface [146, 150, 380, 432].
d = 1: Let X → V be a double Veronese cone branched along a smooth surface W ⊂ V

cut out by a cubic hypersurface in P6, and let F0 be the Hilbert scheme of conics in V
3-tangent to W . Then F and F0 are smooth irreducible surfaces, there is a branched
double covering π : F → F0, the Fano scheme F(X) is not reduced and consists of
F and the embedded ramification curve of π, and the Abel-Jacobi mapping yields an
isogeny A(F )/π∗A(F0) → J(X) where dim J(X) = h2,1(X) = 21, and X → V is
uniquely determined by the pair (F, π) [420].

ι = 1: Assume ι = 1, and let F = Fc(X) be the Fano scheme of conics on X. Then the following
holds.
g = 2, 3, 4, 5: F is a smooth irreducible surface and the Abel-Jacobi mapping A(F ) →

J(X) is an isomorphism in the following cases:
g = 2: X → P3 is the general sextic double solid. One has q(F ) = 52 [76, Thm.

3.3];
g = 3: X is the general quartic threefold in P4. One has q(F ) = 30 [109, Prop. 3.6],

[288, Prop. 1], [416];
g = 3: X → Q is the general double cover of a smooth quadric Q ⊂ P4 branched

along a smooth surface S ⊂ Q of degree 8. One has q(F ) = 30 [270];
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g = 4: X is the general complete intersection of a quadric and a cubic hypersurfaces
in P5. One has q(F ) = 20, c1(F )2 = 23355, c2(F ) = 11961, pa(F ) = 2942
[225, Cor. 18, Thm. 20], [309];

g = 5: X is the general complete intersection of three quadrics in P6 [25, 357, 456].
One has q(F ) = 14, and X is uniquely determined by F [24, 125, 167, 286],
[432, §5].

g = 6: F is irreducible for any smooth X = Gr(2; 5)∩P7∩Q ⊂ P9 [130, Cor. 8.3]. For the
general such X, the Abel-Jacobi mapping A(F ) → J(X) is an isogeny, q(F ) = 10,
the image of F in J(X) is algebraically equivalent to 2Θ8/8! where Θ ⊂ J(X) is a
Poincaré divisor, and X is uniquely determined by F [297, Thms. 0.15, 0.16, 0.18],
[219];

– Consider a special Gushel threefold π : X → Y of genus 6. Suppose X is general,
that is, X is the double cover of a quintic threefold Y = Gr(2; 5)∩P6 in P9 branched
along a quadric section Y ∩ Q, where P6 ⊂ P9 and Q are general. Then one has
F = F ′ ∪ F ′′ where F ′ = π∗(F1(Y )) is rational and F ′′ is a non-normal irreducible

surface with q(F ′′) = 10. For the normalization F̃ ′′ of F ′′, the Abel-Jacobi mapping

A(F̃ ′′)→ J(X) is an isomorphism [220, 221].
g ≥ 7: F is a smooth irreducible surface with q(F ) = h2,1(X), cf. Theorem 5.4 and [244,

12.2].

Similar results were established in [129, 131, 165, 185, 310, 368, 421, 422, 430, 442, 458] for
various, possibly singular, Fano threefolds with ρ = 1 and for various families of curves. See
also, e.g., [47, 48, 107, 149, 150, 180, 253, 272, 286, 301, 302, 317, 318, 345, 357, 365, 432, 441],
[244, Thm. 8.2.1] and Theorem 5.10 below for some variations and higher dimensional analogs.

5.4. The cylinder homomorphism. The results of the previous subsection are ultimately
related to the studies of various cylinder homomorphisms.

Definition 5.7. Let X ⊂ Pn be a projective variety of dimension m, and let π : C → S be a
family of irreducible curves in X over an irreducible base S. Then the cylinder homomorphism
associated with C is defined as follows:

ΨC : Hm−2(S,Z)→ Hm(X,Z), γ 7→
⋃
s∈γ

Cs ,

where γ is a topological (m − 2)-cycle in S and Cs = π−1(s). We let ΨC,Q : Hm−2(S,Q) →
Hm(X,Q) be the induced homomorphism.

For instance, if S = F1(X) then π : C → S is the universal family of lines in X, and if
S = Fc(X) then π : C → S is the universal family of conics in X, etc. Choosing for S the Fano
scheme of lines F1(X) and letting Ψ1,Ψ1,Q be the associated cylinder homomorphisms, we have
the following.

Theorem 5.8. ([402]) Let X be a hypersurface in Pn of degree d. Assume n ≥ 4, d ≤ n − 1,
and either X is general, or d = 3 and X is smooth. Then the following holds.

Even n: Ψ1 is an isomorphism modulo torsion;
Odd n: dim(ker(Ψ1,Q)) ≤ (n− 3)/4, and Ψ1 is surjective for d ≤ (n+ 5)/2.

In particular [31, 102],

d ≤ 4: Ψ1 is an isomorphism modulo torsion for n = 5;
d = 3: Ψ1 is surjective, and Ψ1 is an isomorphism modulo torsion for even n;
d = 3: Ψ1 is an isomorphism for n = 4, 5.

Recall [304, Sect. 1], [403] that a smooth complete intersection X ⊂ Pn of multidegree
(d1, . . . , ds) is a Fano variety of index ι if and only if ι := n+ 1−

∑s
i=1 di > 0.
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Theorem 5.9. Let X ⊂ Pn be a smooth Fano complete intersection. Then the following holds.

• X is covered by conics [110, 111, 289];
• X is covered by lines provided ι(X) ≥ 2 [430, Lect. 4, Proof of Lemma 1];
• the lines in X sweep out a hypersurface provided ι(X) = 1 [402].

The following theorem comprise certain results of [290, 291] for the case of Fano complete
intersections of index 1.

Theorem 5.10. ([403]) Let X be a general Fano complete intersection in Pn of dimension k ≥ 3.
Then

• both Ψ1,Q and Ψc,Q are surjective;
• if k = 2s− 1 is odd, then the Abel-Jacobi mappings

Js−1(F1(X))→ Js(X) = J(X) and Js−1(Fc(X))→ Js(X) = J(X)

are surjective.

See also, e.g., [48, 256, 255, 290, 291, 292, 349, 408, 446] and the literature therein for the
cylinder mappings on the cycles of other intermediate dimensions.

6. Counting rational curves

6.1. Varieties of rational curves in hypersurfaces. Given a hypersurface X of degree d in
Pn, we let Re(X) be the space of smooth rational curves of degree e in Pn lying in X. This is
an open subscheme of the Hilbert scheme Hilbet+1(X). The number

(4) µe = µe(d, n) = (n+ 1− d)e+ n− 4

is called the expected dimension of Re(X). Notice that

µ2 = µ2(d, n) = −ε(d, n) = 3n− 2d− 2 .

Theorem 6.1. Let X be the general hypersurface of degree d ≥ 2 in Pn, where n ≥ 3. Then the
following holds.

(a) Re = ∅ if µe < 0 and e ≤ d+ 1 [171, Thm. 1.1].
(b) – Re(X) is smooth of dimension µe if µe ≥ 0 and either e ≤ 3, or 2e ≤ d+ 3;

– Re(X) is an integral, locally complete intersection scheme of dimension µe if d ≤
n− 2 [36, 385], [171, Thm. 1.1], [193, Thm. 1.1], see also [66, 195, 411, 412];

– Re(X) is irreducible, generically smooth and of dimension µe if n ≥ 4, d ≤ n − 1,
and e ≤ d− 1 [379, Thm. 21], [427].

(c) If 2d ≤ n + 1 then through any point of X passes a family of degree e rational curves
of dimension e(n + 1 − d) − 2 ≥ ed. In particular, through any point of X passes a
2(n− d)-dimensional family of smooth conics [193].

(d) Let R be a sweeping component of Re(X), that is, the corresponding rational curves
sweep out an open subset of X. If (n + 1)/2 ≤ d ≤ n − 3, then R is not uniruled [34,
Thm. 1.1].

Notice that the dimension of Re(X) can be strictly larger than µe for particular smooth
hypersurfaces X. For instance [439], the family of lines on the Fermat quartic in P4 is two-
dimensional, while the general quartic in P4 carries a one-parameter family of lines. See further
examples in [172, Ex. 3.17–3.18]. See also [36, 117] for results on the Gromov-Witten invariants.

Concerning arbitrary smooth hypersurfaces, we have the following results.

Theorem 6.2. Let X be a hypersurface of degree d in Pn.

(a) If X is smooth along C for some C ∈ Re(X) then dimC Re(X) ≥ µe = χ(NC/X) [172,
Rem. 3.2], [261, II, Thm. 1.2].
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(b) For any smooth hypersurface X ⊂ Pn of degree d where either d = 3 and n ≥ 5, or
d ≥ 4 and n ≥ 2d−1(5d− 4), the scheme Re(X) is irreducible of the expected dimension
µe [66, 117].

(c) Assume X is smooth and d+ 2k − n ≥ 3. Then the quadrics of dimension k sweep out
a subvariety of dimension at most n− k − 1 in X [32]. 7

(d) Assume d = n ≥ 5. Then there is a countable set of closed, codimension two subvarieties
of X such that the image of any generically finite, regular morphism from a del Pezzo
surface to X is contained in one of these [39, Thm. 1.4].

In [412] one can find restrictions under which the Kontsevich moduli space M0,0(X, e) is of
general type.

Recall that a projective variety X is rationally connected if each pair of closed points of X
is contained in a rational curve, see [127, 261]. Notice that any Fano variety X is rationally
connected and covered by the rational curves of degree ≤ dim(X) + 1. These curves generate
the Mori cone of effective 1-cycles on X [68, 265, 325], [261, Sect. IV.3, Cor. IV.1.15]. See also
[136] for criteria of simple rational connectedness.

The following results concern rational curves and rational surfaces in smooth complete inter-
section Fano varieties. It is known that a general such variety of sufficiently small multidegree
is unirational [8, 261, 262, 264, 353, 448].

Theorem 6.3. Let X ⊂ Pn be a smooth complete intersection of type d = (d1, . . . , ds). Then
the following holds.

(a) X is rationally connected if and only if
∑s

i=1 di ≤ n, that is, X is a Fano variety [136].
(b) Assume ωX ' OX(−1) that is,

∑s
i=1 di = n. Let S be a smooth variety of dimension 2 ≤

dim(S) ≤ dim(X) − 2 with ω∨S nef. Consider a generically finite morphism f : S → X.
In the case ωS ' OS assume further that f(S) ⊂ Pn is linearly non-degenerate. Suppose
f extends to a morphism F : S → X, where S → B is a deformation family containing
S as a fiber. Then the image F (S) is contained in a subvariety of codimension at least
two in X [417, Thm. 1.1].

Notice that statement (b) generalizes Theorem 6.2(d). See also [435, 436] for count of rational
and elliptic curves on rational surfaces and in projective spaces, [396, 397] for count of rational
curves in Fano threefolds and Fermat hypersurfaces, and [467] for count of rational curves in del
Pezzo manifolds.

6.2. Twisted cubics in complete intersections. The next results concern enumeration of
twisted cubics on Fano complete intersections.

Theorem 6.4. (a) Let Σtc(d, 3) ⊂ Σ(d, 3) be the locus of degree d surfaces in P3 which
contain twisted cubic curves. There is an explicit expression of the degree of Σtc(d, 3) as
a polynomial in d of degree 24 [303, §8].

(b) Let X ⊂ Pn be a smooth complete intersection of type (d1, . . . , ds) where
s∑
i=1

(di − 1) =
n− s

3
+ 1 .

Then the number of twisted cubics in X passing through three general points in X equals
s∏
i=1

((di − 1)!)2di! .

In particular, through three general points of a smooth cubic threefold X ⊂ P4 pass exactly
24 twisted cubics in X [27].

7In particular, for d ≥ n + 1 the conics contained in X do not cover X. The latter can be shown directly.
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See also [359], the survey article [358], and the references threrein.

7. Hypersurfaces with few rational curves

7.1. Rational curves on K3 surfaces. Recall the following theorem.

Theorem 7.1. ([327]) Let d > 0 and g ≥ 0 be integers. There is a smooth curve C of degree
d and genus g lying in a smooth quartic surface X in P3 if and only if either g = d2/8 + 1, or
g < d2/8 and (d, g) 6= (5, 3).

For surfaces in P3 containing smooth elliptic quartic curves, there are the following facts.

Theorem 7.2. Let Σell,4(d, 3) be the locus of surfaces of degree d in P3 containing an elliptic
quartic curve. Then the following holds.

(a) Σell,4(4, 3) is a hypersurface in Σ(4, 3) of degree 38475 [122, §3.2].
(b) There is an explicit expression of deg(Σell,4(d, 3)) for d ≥ 5 as a polynomial in d of degree

32 obtained via Bott’s residue formula [122, §4.3].

Recall (see, e.g., [289]) that a smooth hypersurface X in Pn of degree d ≥ n + 1 cannot be
covered by rational curves. This concerns, in particular, smooth quartic surfaces in P3, and
holds, more generally, for any K3 surface. Nonetheless, a projective K3 surface carries infinitely
many rational curves, see (a) in the next theorem. This generalizes a previous partial result due
to Bogomolov, Mumford, Mori-Mukai [329], see also [17, 50, 51, 52, 83, 293].

Theorem 7.3. Let X be a projective K3 surface over an algebraically closed field. Then the
following holds.

(a) X contains infinitely many rational curves [85].
(b) Consider the subset Sg of the moduli scheme of the K3 surfaces of genus g which pa-

rameterizes the surfaces X such that the union of rational curves on X is dense in the
Hausdorff topology. Then Sg is of the second Baire category [86].

(c) Any rational curve on a general K3 surface X of genus g ≥ 2 is nodal.8

(d) Given d ∈ N, for all h � 0 and for any K3 surface X of degree 2h over a field k of
characteristic p 6= 2, 3 the number of rational curves in X of degree at most d does not
exceed 24. This upper bound is exact for any d ≥ 3 [323], [375, Thm. 1.1].

See also [208] for a discussion related to (b). As for the count of curves on a K3 surface in
terms of the Gromov-Witten invariant, see, e.g., [28, 287, 313, 461, 462].

7.2. Rational curves in hypersurfaces. The next theorem deals with hypersurfaces which
contain few rational curves. Recall the notation ε(d, n) = 2d+ 2− 3n.

Theorem 7.4. Let X be a hypersurface of degree d in Pn. Then the following holds.

(a) For n ≥ 3 and ε(d, n) ≥ 3 any rational curve in a very general X is contained in the
maximal subvariety L(X) of X swept out by lines in X[386, Cor. 3.2].

(b) In the range n ≥ 7 and d ∈ [3n+1
2 , 2n − 3] the general X contains lines but no other

rational curves [386, Thm. 1.3]. This is true as well for n = 6 and d = 2n− 3 [347], but
fails for n = 4 and ε(d, n) = 0, that is, for a general quintic threefold in P4.

(c) For n = 5 and d ≥ 2n− 3 the general X contains just a finite number of rational curves
of any given degree (that is, X does not contain any one-parameter family of rational
curves) [444].

(d) If X is very general, n ≥ 4, and ε(d, n) ≥ n − 2 (that is, d ≥ 2n − 2) then X contains
no rational curve [444].

8The generality assumption is essential; indeed, there are smooth quartic surfaces in P3 which contain a rational
3-cuspidal plane quartic [83, 84].
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Notice that (d) fails for n = 3. Indeed, by Theorem 7.3(a), any smooth quartic surface in P3

contains a sequence of rational curves of growing degrees. Statement (c) is a strengthening of
the previous results in [95, 155, 156]. The validity of an analog of (c) for n = 4 and e ≥ 13 is
still open; this is the famous Clemens Conjecture.

7.3. Clemens’ Conjecture. This conjecture [95] suggests that a general quintic threefold in
P4 contains a positive finite number of smooth rational curves of any given degree, and the
scheme of such curves is reduced. The next theorem gives a brief summary of some results on
Clemens’ Conjecture.

Theorem 7.5. (a) The Clemens Conjecture holds for curves of degree ≤ 12 [16, 118, 119,
250, 254].

(b) For any d ≥ 1 a general quintic threefold in P4 contains a smooth rational curve C of
degree d [254].

(c) Any smooth rational curve C in a general quintic threefold X in P4 is embedded with
normal bundle OP1(−1)⊕OP1(−1). Any singular rational curve in X is a plane 6-nodal
quintic [118, 119], [250], [254], [344].

(d) The number of smooth rational curves of degree 1, 2, 3, 4, ...10 in a general quintic three-
fold in P4 is, respectively,

2875, 609250, 317206375, 242467530000, . . . , 704288164978454686113488249750 ,

where the number 2875 of lines is due to Schubert [391]; see [358], [45, §10.6] and the
references therein.

For instance [254], [407], a general hypersurface of degree d > 3
2n− 1 in Pn does not contain

any smooth conic; however, a general quintic threefold in P4 does.
For any natural number d ≥ 1 there is a Mirror Symmetry prediction for the number of

smooth rational curves of degree d in a general quintic threefold in P4. Actually, these virtual
numbers count pseudoholomorphic curves in a general almost complex symplectic deformation
of the quintic threefold via quantum cohomology, see, e.g., [45, 267, 268, 314].

The same methods work for certain smooth Calabi-Yau complete intersections (CICY, for
short). Besides the quintic threefolds in P4, there are exactly 4 types of smooth CICY threefolds
of type, respectively, (3, 3) and (2, 4) in P5, (2, 2, 3) in P6, and (2, 2, 2, 2) in P7. The Mirror
Symmetry prediction for the number of smooth rational curves of degree d ≤ 10 in a general
CICY threefold can be found in [295]. For d ≤ 6 this prediction gives the correct number
of curves, see [202, 294]. The next theorem addresses rational and elliptic curves in general
Calabi-Yau complete intersection threefolds.

Theorem 7.6. ([158, 257, 259]) Let X be a general CICY threefold. Then for g = 0, 1, 2, 3 there
is an integer dg ≥ 0, where d0 = 0, such that, for any d > dg, X contains an isolated smooth
curve of degree d and genus g.

In [257], some of these results are claimed to hold for any smooth CICY threefolds. However,
there is a gap in the proof in [257]; see [259]. Similar facts hold for certain higher genera curves
under more severe restrictions, see [259, Thm. 1.2].

The following theorem gives a short account of sporadic results for curves in hypersurfaces.

Theorem 7.7. • A very general hypersurface of degree d > 2n− 1 in Pn does not contain
any smooth elliptic curve [449].
• The degree of an elliptic curve on a very general heptic hypersurface X in P4 is a multiple

of 7 [164].
• Let X be the general heptic hypersurface in P5. Then X does not contain any rational

curve of degree d ∈ {2, . . . , 16} [120, 332, 406], any smooth elliptic curve of degree e ≤ 14,
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and any smooth curve C of degree e ≤ 16 and genus 1 ≤ g ≤ 3 provided the dimension
of the linear span of C is not equal to 3 [14].
• A general hypersurface of degree 54 in P30 does not contain any rational quartic curve

[450].

The second statement goes in the direction of the conjecture of Griffiths and Harris [181]
which says that for a very general hypersurface of degree d ≥ 6 in Pn and for any curve C in
H one has d|deg(C). This is true for n = 3 due to the Noether-Lefschetz theorem; see [15] for
further results.

8. Counting curves of higher genera

It is worthwhile to compare previous results with the following finiteness theorems related to
Kobayashi hyperbolicity and the Green-Griffiths-Lang Conjecture.

Theorem 8.1. (a) Consider a projective variety X ⊂ Pn. If X is Kobayashi hyperbolic then
there exists ε > 0 such that for any curve C of geometric genus g in X one has [142]

(5) 2g − 2 ≥ ε deg(C) .

Consequently, the curves of a given geometric genus in X form a bounded family.
(b) A general hypersurface X in Pn of degree d ≥ n2n is Kobayashi hyperbolic [63, 143, 144,

319, 410]. The latter holds for n = 3 starting with d = 18 [355] and for n = 4 starting
with d = 593 [148].

A weaker form of (5) called algebraic hyperbolicity implies the absence of rational and elliptic
curves; see, e.g., [82, 87, 115, 189]. See also [31, 123] for logarithmic versions of (b). There are
examples of smooth hyperbolic surfaces in P3 of any given degree d ≥ 6 [93, 153, 398, 400, 401,
468] and of hyperbolic hypersurfaces in Pn of degree d ∼ n2/4 [208, 399].

Theorem 8.2. (a) The number of rational and elliptic curves on a minimal smooth surface
of general type with c21 > c2 is bounded above by an effective function of c1 and c2
[49, 323], [282, Thm. 10.1].

(b) Let X be a very general surface of degree d ≥ 5 in P3. Then for any curve C of geometric
genus g on X one has

(6) 2g − 2 ≥ max
{
d2 − 3d− 6,

(
d+

1

d
− 5

)
deg(C)

}
.

In particular, for d = 5 one has

2g − 2 ≥ max
{

4,
1

5
deg(C)

}
,

which yields g ≥ 3. The absolute lower bound 2g− 2 ≥ d2 − 3d− 6 is sharp; for d ≥ 6 it
is achieved by the tritangent hyperplane sections only [87, 115, 463].

Cf. also [298, 299, 461] for (a).

Theorem 8.3. ([348]) For n ≥ 6 and for a very general hypersurface X in Pn of degree d ≥
2n− 2, any subvariety Y ⊂ X is of general type.

Cf. also [463, 464, 465].
For the genera of curves on smooth surfaces in P3 the following is known.

Theorem 8.4. For d > 4 let Gaps(d) be the set of all the non–negative integers which cannot
be realized as geometric genera of irreducible curves on a very general surface of degree d in P3.
Then Gaps(d) is the union of finitely many disjoint and separated integer intervals Gapsj(d),
j = 0, 1, . . .. One has:



20 C. CILIBERTO, M. ZAIDENBERG

• Gaps(5) = {0, 1, 2} [463];

• Gaps0(d) =
[
0, d(d−3)

2 − 3
]

for all d > 5 [463];

• Gaps1(d) =
[
d2−3d+4

2 , d2 − 2d− 9
]

for all d > 6 [89].

In the other direction, for the existence of subvarieties with a given geometric genus, we have
the following result.

Theorem 8.5. ([81] for s = 1, [90, Thm. 0.1]) Let X be a smooth irreducible projective variety
of dimension n > 1, let L be a very ample divisor on X, and let s ∈ {1, . . . , n− 1}. Then there
is an integer pX,L,s (depending on X, L and s) such that for any p > pX,L,s one can find an
irreducible subvariety Y of X of dimension s with at most ordinary points of multiplicity s+ 1
as singularities such that pg(Y ) = p. Moreover, one can choose Y to be a complete intersection
Y = D1 ∩ . . . ∩ Dn−s, where Di ∈ |L| for i = 1, . . . , n − s − 1 are smooth and transversal and
Dn−s ∈ |mL| for some m > 1 is such that Y has ordinary singularities of multiplicity s+ 1.

Corollary 8.6. (a) For any integer d ≥ 4, there exists an integer c(d) such that, for any smooth
surface S in P3 of degree d and any integer g ≥ c(d), S carries a reduced, irreducible nodal curve
of geometric genus g, whose nodes can be prescribed generically on S [81], [90, Cor. 3.1].

(b) For any positive integer d and for any non-negative integer g, there is a smooth surface S
in P3 of degree d and an irreducible, nodal curve C on S with geometric genus g [90, Thm. 3.3].

Recall the famous

Green-Griffiths-Lang Conjecture. ([178, 281]; see also [43, 143]) Let X be a projective
variety of general type. Then there exists a proper closed subset Z ⊂ X such that any subvariety
Y ⊂ X not of general type is contained in Z.

There are the following related conjectures.

Conjecture. (C. Ciliberto, F. Flamini, and M. Zaidenberg [91]) There exists a strictly
growing function ϕ : N→ N such that the number of curves of geometric genus g 6 ϕ(d) in any
smooth surface S of degree d > 5 in P3 is finite and bounded by a function of d.

Conjecture. (C. Voisin [445]) Let X ⊂ Pn be a very general hypersurface of degree d > n+2.
Then the degrees of rational curves in X are bounded.

Conjecture. (P. Autissier, A. Chambert-Loir, and C. Gasbarri [10]) Let X be a smooth
projective variety of general type with canonical line bundle KX . Then there exist real numbers
A and B, and a proper Zariski closed subset Z ⊂ X such that for any curve C of geometric
genus g in X not contained in Z, one has degC(KX) 6 A(2g − 2) +B.
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