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ABSTRACT
A recently developed scheme to produce high-dimensional coupled diabatic potential energy surfaces (PESs) based on artificial neural net-
works (ANNs) [D. M. G. Williams and W. Eisfeld, J. Chem. Phys. 149, 204106 (2019)] is tested for its viability for quantum dynamics
applications. The method, capable of reproducing high-quality ab initio data with excellent accuracy, utilizes simple coupling matrices to
produce a basic low-order diabatic potential matrix as an underlying backbone for the model. This crude model is then refined by making its
expansion coefficients geometry-dependent by the output neurons of the ANN. This structure, strongly guided by a straightforward physical
picture behind nonadiabatic coupling, combines structural simplicity with high accuracy, reproducing ab initio data without introducing
unphysical artifacts to the surface, even for systems with complicated electronic structure. The properties of diabatic potentials obtained by
this method are tested thoroughly in the present study. Vibrational/vibronic eigenstates are computed on the X̃ and Ã states of NO3, a noto-
riously difficult Jahn-Teller system featuring strong nonadiabatic couplings and complex spectra. The method is investigated in terms of how
consistently it produces dynamics results for PESs of similar (fitting) quality and how the results depend on the ANN size and ANN topogra-
phy. A central aspect of this work is to understand the convergence properties of the new method in order to evaluate its predictive power. A
previously developed, high-quality model utilizing a purely (high-order) polynomial ansatz is used as a reference to showcase improvements
of the overall quality which can be obtained by the new method.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5125851., s

I. INTRODUCTION

The development of accurate high-dimensional potential
energy surfaces (PESs) is of fundamental interest for the theoret-
ical treatment of molecular systems, providing a foundation for
quantum-dynamical studies. Several strategies have been established
for developing such PESs in the case of a single adiabatic electronic
state, such as local interpolation techniques,1–5 or least-squares fit-
ting approaches utilizing invariant polynomials encoding complete
nuclear permutation-inversion (CNPI) symmetry of indistinguish-
able nuclei.6 However, extending such approaches to PESs includ-
ing excited states proves difficult as state-state interactions enter the

picture. Attempts to tackle this issue include the use of the modi-
fied Shepard interpolation7–9 or more recently invariant polynomials
and the CNPI symmetry.10,11

A fundamental concern that arises when accounting for state-
state interactions is the appropriate representation of PESs and their
couplings as the Born-Oppenheimer approximation will not hold for
certain regions in nuclear configuration space (NCS) where inter-
actions among electronic states become significant. In such a case,
a quasidiabatic representation of the coupled electronic states has
been found to be of great advantage.12–25 For the sake of brevity,
we will refer to quasidiabatic representations as “diabatic” repre-
sentations from here on. Such a representation requires the state
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basis to represent the electronic Hamiltonian and to preserve the
character of the electronic states as much as possible throughout
NCS such that derivative coupling becomes small enough that it can
be neglected safely. As a consequence, the electronic Hamiltonian
is represented by a nondiagonal matrix encoding all state energies
and couplings. Accordingly, the matrix elements of the electronic
Hamiltonian become well-behaved functions of the nuclear coordi-
nates, decreasing the complexity required to express them analyti-
cally. A commonly used, straightforward approach utilizing diabatic
representations is the multimode linear vibronic coupling method
by Köppel, Domcke, and Cederbaum.26 Analogous methods have
been developed also by Yarkony and co-workers.27–30 Such meth-
ods, while well-suited for ultrafast nonadiabatic processes, do not
provide the flexibility needed to express extended regions of the
coupled PESs needed for more complicated dynamical processes.
Consequently, various approaches have been developed to prop-
erly account for extended regions of the PES, such as extensions of
vibronic coupling models to higher orders31–36 and methods utiliz-
ing properties of the adiabatic electronic wave functions for a dia-
batization.18,21,22,24,37–42 Members of the latter group of diabatization
approaches involving electronic wave function information usually
do not require a model diabatic matrix, thus not yielding a set of
PESs in closed form. Hence, these (pointwise) diabatization methods
require a second step in which an external model is used to construct
(fit) the diabatic matrix elements.

Overall, constructing accurate diabatic models in closed form
beyond simple models such as linear vibronic coupling remains a
significant problem for systems beyond triatomics.43–46 Attempts to
do so include the aforementioned extension of vibronic coupling
models in a variety of ways,31–36 using the modified Shepard interpo-
lation7–9 or invariant polynomials and the CNPI symmetry10 as well
as by choosing elaborate functional forms for the diabatic matrix ele-
ments.43–45 Nonetheless, instances of such diabatic surfaces remain
scarce in the literature.

An alternative, more recent approach to represent PESs
involves using artificial neural networks (ANNs),47–64 which are fit-
ted (“trained”) against ab initio or some reference data. ANNs, as
has been shown mathematically, are capable of uniformly represent-
ing any continuous real function of n dimensions up to arbitrary
accuracy.65 This makes them in principle suitable for representing
arbitrary PESs up to the limitations of the underlying data. Another
prominent feature of ANNs is that, once trained, they can be eval-
uated very efficiently as their evaluation consists mostly of matrix-
vector multiplications, making them particularly suitable for quan-
tum dynamics methods such as multi-configuration time-dependent
Hartree (MCTDH),66,67 especially when using the correlated discrete
variable representation (CDVR)68 scheme for which the evaluation
of the PES is the most time demanding part. Without using the
CDVR approach, a sum of products form of the PES model can
be accounted for by special formulations of the ANN.56,64,69 Despite
their mathematical properties, the principal capabilities of ANNs are
of course limited by practical concerns such as the acquisition of
data, limitations of the training algorithm, and an issue commonly
referred to as “overfitting.” However, ANNs have been used already
with impressive results to represent a single PES based on high-
level ab initio data.54,63,64 Very recently, the first attempts to extend
the use of ANNs to diabatic PES models were documented in the
literature.70–73

Our recently developed approach presented in Ref. 73 com-
bines the basic, simple structure of a low-order vibronic coupling
ansatz with the ANN introducing the flexibility needed to construct
highly accurate PESs. Planar (5D) NO3 was chosen as the first test
case because it is certainly a tough, nontrivial problem and, sec-
ond, plenty of data and experience are available. The new approach
has proven to perform better in terms of overall accuracy than the
previous approach which was based on inclusion of high-order poly-
nomial expansions.31,32,36,74 More than one parameterization of the
ANNs as defined in Ref. 73 leads to very similar rms vs the electronic
ab initio energies. Selecting one of them as the “most physically rele-
vant” is thus not straightforward. In the present study, we investigate
the performance of these ANN based coupled PESs by computing
the bound states they support. Similar to the previous paper,73 planar
NO3 serves as a benchmark system. The low-lying electronic states of
NO3 are a notoriously difficult system with strong Jahn-Teller (JT)
coupling.35,36,75–78 In this work, only planar geometries are consid-
ered, mostly because of the computational cost reduction in dealing
with a 5-dimensional instead of a 6-dimensional system. This pla-
narity constraint also allows us to determine the vibronic energies
of the first excited state of NO3 as it decouples from the other elec-
tronic states when NO3 stays planar. The first excited state presents
a strong JT effect. We investigate the method’s performance by con-
verged accurate quantum dynamics computations of the vibrational
states supported by the 2A′2 adiabatic electronic ground and of the
vibronic levels supported by the 2E′′ first excited state. Energies are
compared with the ones supported by the potential energy surfaces
previously published36,74 and based on a high-order polynomial dia-
batic model. A direct comparison is made possible due to the use of
the same underlying ab initio data set. The results are also compared
to the available experimental data for the two 2A′2 and 2E′′ electronic
states.

II. DIABATIC POTENTIAL MODEL
In this work, the properties of the recently developed restricted-

dimensional (5D) model of the lowest PESs corresponding to the
X̃ 2A′2, Ã2E′′, and B̃ 2E′ state of the planar NO3 radical are tested
thoroughly. A brief summary of the crucial aspects of the pre-
sented model and diabatization method is given below, all details
regarding both being available in Ref. 73. The core idea of this
method is to combine the advantages and general structure of a
low-order vibronic coupling model with the accuracy of ANNs.
To achieve this, we construct a minimal, symmetry-adapted poly-
nomial model and fit its coefficients by a nonlinear least squares
procedure yielding a qualitatively correct but not very accurate
initial model that follows the general shape of the final surfaces.
Then, in a second step, most of the obtained parameters are mod-
ified by an ANN making them coordinate dependent. This way,
the polynomial model dictates the overall structure of the cou-
pling model, while the neural network applies corrections to indi-
vidual terms yielding significantly improved (and in fact excellent)
accuracy.

In the present case, our underlying ansatz for the dia-
batic matrix is expressed as a sum of diagonal and coupling
matrices,12,32,73
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Wd(Q) =Wd
diag(Q) +

⎛
⎜⎜
⎝

λ1 0T 0T

0 λ21 0
0 0 λ31

⎞
⎟⎟
⎠

+
⎛
⎜⎜
⎝

0 0T 0T

0 λ4εs + λ5εb 0
0 0 λ6εs + λ7εb

⎞
⎟⎟
⎠

+
⎛
⎜⎜
⎝

0 0T λ8ρs
T + λ9ρb

T

0 0 0
λ8ρs + λ9ρb 0 0

⎞
⎟⎟
⎠

. (1)

The matrices εs ,b are the first-order Jahn-Teller coupling blocks, and
the vectors ρs ,b are the pseudo-Jahn-Teller coupling blocks. These
couplings are given by

εs,b =
⎛
⎝

xs,b ys,b

ys,b −xs,b

⎞
⎠

and ρs,b =
⎛
⎝

xs,b

−ys,b

⎞
⎠

, (2)

where symmetry-adapted coordinates corresponding to the degen-
erate asymmetric bending and stretching modes xs ,b, ys ,b have
been used. These coordinates, together with a totally symmetric
stretch coordinate a, are collected in the nuclear coordinate vec-
tor Q. They have been presented in previous work33,36 and are
given in the Appendix for the ease of the reader. They are con-
structed from a set of primitive valence coordinates specifically cho-
sen to account for the basic asymptotic behavior in the underly-
ing low-order model. In Eq. (1), Wd

diag(Q) is a diagonal matrix
which contains first and second order terms as detailed in previ-
ous work33,36,73,74 and reproduced in the Appendix. The 12 param-
eters appearing in this matrix are not modified by the ANN pro-
cedure. The three subsequent 5 × 5 matrices of Eq. (1) refer to
the usual zero-order (or constant), linear Jahn-Teller and linear
pseudo-Jahn-Teller coupling matrices. When the parameters λj(Q)
are kept constant (i.e., independent of Q), the model resumes to the
usual linear vibronic coupling model in symmetry-adapted nuclear
coordinates with λ0

j , j = 1, 9 being the usual parameters of the
expansion. The ANN step modifies this picture by allowing the 9
parameters to vary with Q. These 9 coordinate-dependent λj are
given by

λj(Q) = λ0
j ⋅ (1 + cj ⋅ η(f )

j (Q)), (3)

where η(f )
j are the neural network outputs and the λ0

j are obtained
from a nonlinear least squares fit. Thus, the neural network output of
a single ANN depending on the five input coordinates only provides
corrections to the low-order polynomial model as a function of the
coordinates, going beyond constant coefficients in the expansions.
Additional scaling factors cj are introduced to allow for further flex-
ibility if particular λ0

j (read: the reference model terms) reside in a
different order of magnitude than other terms and hence require a
different treatment. The coupling blocks, together with their corre-
sponding λj, account for 2E′ and 2E′′ Jahn-Teller coupling as well as
pseudo-Jahn-Teller coupling between 2A′2 and 2E′, providing 6 inde-
pendent coupling terms in total. Additionally, the constants defin-
ing the energy differences between the electronic states at the D3h
reference geometry are modified by the ANN (λ1−3).

All neural networks tested belong to the broad category of feed-
forward neutral networks, that is, a function taking a vector η(1) as
input (layer) and processing it via intermediate results η(k), the so-
called hidden layers, to a final output vector η(f ) called the output
layer. The vector elements η(k)j of the kth layer are the neurons (per-
ceptrons). Each intermediate η(k) depends solely on the previous
layer η(k−1) by

η(k)j = f (k)(β(k)j +∑
l
ω(k)jl η(k−1)

l )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
f (k)(χ(k)

j )

. (4)

Here, f (k) is a function of one variable χ(k)j called the activation

function, χ(k)j being a weighted sum of the values of the neurons

η(k−1)
l of the previous layer with an added bias term β(k)j . In the

present case, f (k) is chosen to be tanh for all hidden layers and as
the identity Id for the output, respectively. The network architec-
ture ultimately to turn out as optimal in our present case features a
single hidden layer with 75 neurons, corresponding to a function of
roughly 1100 formal parameters. Both neural networks with more
or less neurons, respectively, as well as “deeper” architectures fea-
turing more hidden layers have also been investigated. All networks
have been trained using batches of 100 randomly generated initial
guesses for weights and biases which are then optimized utilizing a
specialized modification to a standard ANN Marquardt-Levenberg
method we developed alongside the present diabatization scheme.73

The inclusion of more than one initial guess arises from the nonlin-
ear nature of the fit. The reference model resulting from the fit of the
constants λ(0)j yields a root mean square (rms) error of 1730 cm−1

which is about two orders of magnitude higher than the final error
after the ANN training of 38.4 cm−1. More specifically, this model
reproduced ab initio energies of the 5 adiabatic electronic states
with an excellent accuracy with unweighted rms values of 22.9, 39.4,
29.3, 30.2, and 23.1 cm−1, respectively, for energy ranges up to 1 eV
above the energies of each state for the reference geometry point.
The 10th best network of the same batch shows very similar rms val-
ues. These (and all other later considered) fits used the same data
set containing roughly 90 000 adiabatic energies in total, of which
15% were withheld from the neural network fit for the sake of exter-
nal validation. The necessary energy data points for performing the
fit are taken from previous work74 and were computed at the Mul-
ticonfiguration Reference Singles and Doubles Configuration Inter-
action (MR-SDCI) level of theory based on Complete Active Space
Self-Consistent Field (CASSCF) reference wave functions using
a slightly adapted correlation consistent aug-cc-pVTZ standard
basis.79 For further details regarding the ab initio calculations, see
Refs. 36, 74, and 79–81.

At first glance, the remaining rms errors are slightly larger
than what has been achieved for single, uncoupled, adiabatic PESs
so far. However, the errors are similar to previous ANN repre-
sentations of diabatic potential models based on ab initio refer-
ence data.70,72 Smaller rms errors were obtained for a diabatic ANN
representation based on model reference data.71 One reason for
this observation most probably is the complicated topography of
the coupled adiabatic PESs to be reproduced. Very accurate ANN
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PESs can be obtained for spectroscopic purposes in the case of a
single adiabatic state single-well problem. This is not the case in
the present work, and it seems indicative that the second adiabatic
PES sheet, corresponding to a very pronounced triple-well PES with
low dissociation threshold, shows a significantly higher rms error
than the single-well ground state PES. This lower adiabatic sheet
of the Ã 2E′′ excited state dominates the vibronic energy levels
of the Ã state manifold (see below). A second reason most likely
lies in the reference data and explains why generally smaller rms
errors are obtained when analytic model PESs are used as refer-
ence data. It is a very demanding task to compute the electronic
structure of excited states for which usually multiconfiguration ref-
erence methods have to be applied. In the present case, the inter-
nally contracted MR-SDCI method by Werner and Knowles has
been used, which still is the state of the art.82,83 However, due to
the internal contraction scheme, the number of contractions (vari-
ational parameters) is not constant throughout extended regions
of the nuclear configuration space. Wherever the number of con-
tractions changes significantly, small jumps in energy are observed,
which can be up to about 30 cm−1 in our experience. This sets a
natural limit to the rms error that can be achieved by the ANN
diabatization without introducing artifacts by overfitting. A second
aspect worth mentioning is the required number of reference data.
For a 5D problem it might appear unnecessary to use 90 000 refer-
ence energies. However, since five adiabatic states are computed, this
corresponds only to about 18 000 different geometries. Furthermore,
nine independent matrix elements must be determined accurately
using these reference data. In this light, the number of used reference
data is certainly not too large but rather necessary to obtain robust
results.

Finally, a short note on choosing a 5D rather than the full-
dimensional 6D model is provided. First of all, NO3 is predomi-
nantly planar and many experimental observations can be simulated
without including the out-of-plane mode. Furthermore, the Ã state
is decoupled for planar geometries and thus, the vibronic eigenstates
can be obtained easily, which would be much more difficult in the
full-dimensional and fully coupled case. Second, the performance of
the ANN diabatization is tested by a large number of subsequent
quantum dynamics calculations. Such calculations can be performed
in 6D without problems, but doing literally hundreds to thousands
of such calculations as was necessary for the present study would
be prohibitively expensive without gaining more insight than by the
restriction to planar 5D NO3. However, a full 6D ANN model will
be published shortly.

III. COMPUTATIONAL DETAILS
Vibrational/vibronic energy levels have been calculated on the

adiabatic ground state as well as the (for planar geometries sep-
arable) first excited state in order to benchmark the novel ANN
diabatic PES model. The second excited state of 2E′ symmetry,
however, is coupled to the 2A′2 ground state by pseudo-JT cou-
pling, and thus, vibronic eigenstates would not be accessible easily
and are not computed in the present study. For the computation
of the vibrational/vibronic energy levels, a time-independent Her-
mite discrete variable representation (Hermite-DVR) was used84

in which the corresponding Hamiltonian has been diagonalized

by an exact short iterative Lanczos method. Normal coordinates
from MRCI calculations at the D3h point have been used, with
the out-of-plane umbrella bending mode (ν2, a′′2 ) being excluded
for these 5D calculations. The remaining coordinates correspond
to the symmetric stretch (ν1, a′1) as well as the asymmetric stretch
(ν3x ,3y, e′) and asymmetric bend (ν4x ,4y, e′). The kinetic energy
operator is transformed into the DVR grid point basis, neglect-
ing vibrational angular momenta, as previously established in
Ref. 74.

The associated number of DVR grid points (i.e., basis func-
tions) for each mode is 15, 17, 17, 17, and 17 for the ground state
and 19, 25, 25, 25, and 25 for the computations on the two cou-
pled surfaces of the first excited state. This yields total energies con-
verged to better than 10−1 cm−1, degeneracies being reproduced
better than 10−2 cm−1 for all calculated levels. The obtained vibra-
tional and vibronic eigenstates are analyzed in the same manner as
in our previous studies.36,74,78

Our previously developed high-order polynomial based 5 × 5
diabatic model74 has been used already to compute the vibrational
energy levels supported by ground electronic state in full dimen-
sionality. The vibronic levels supported by the E′′ state have also
been determined using an earlier 2 × 2 model in Ref. 36. In order
to generate usable reference data, we recomputed these data using
the older PES models in the reduced 5D dimensionality considered
here so that a comparison with the ANN models is possible. The
MCTDH approach,66,67,85 together with the state average and block
diagonalization scheme as described in Ref. 86, is employed to this
end. As in the previous studies, the six internal curvilinear coordi-
nates as proposed in Ref. 87 are utilized, that is ρ(cu), ϑ(cu), φ(cu),
θ(cu), ϕ(cu), χ(cu), keeping θ(cu) = π/2 to impose planarity. With this
choice of the coordinate system, the kinetic term is exact for D3h and
close to exact for the other geometries. As proposed in Ref. 87 and
used in Refs. 74 and 78, the fourth order Taylor expansion of the
only term not in the sum-of-product form is used here. The basis
set definitions used for the MCTDH approach are given in Table I.
The potential term is evaluated using the correlated discrete variable
representation (CDVR).33,68

TABLE I. Wave function representations given by the number of single particle func-
tions (n), the number of Fourier points (N), and the range of the underlying box (in
a.u.) for the six curvilinear coordinates constructed using mass weighted Cartesian
coordinates. The two columns provide the details of the MCTDH basis for the 2A′2
ground state surface74 and for the 2E′′ first excited state coupled surfaces.36

2A′2
2E′′

Coord. n N Range n N Range

ρ(cu) 5 32 [628:694] 7 32 [640:800]
ϑ(cu) 7 32 [0.845:1.055] 10 32 [0.805:1.105]
φ(cu) 7 32 [0.655:0.915] 11 32 [0.615:0.955]
θ(cu) π/2 π/2
ϕ(cu) 9 32 [0.777:1.377] 9 32 [0.860:1.235]
χ(cu) 10 32 [2.641:3.541] 9 32 [2.829:3.454]
Electronic 1 1 2 2
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IV. RESULTS AND DISCUSSION
The various ANN parameterizations fitted and tested in Ref. 73

are studied systematically below. The results of that previous study
suggested that an ANN model with a single hidden layer of 75 neu-
rons would provide an optimal balance between fitting accuracy and
robustness against overfitting. However, that assessment was based
on fitting errors only, while the present study will focus on quantum
dynamics results obtained with those ANN models. The 75 neuron
model is chosen as a reference case and the other ANN models will
be compared with respect to these reference results. The dynamics
results of the various ANN models will also be compared with the
results obtained with our previously developed purely polynomial
models36,74,78 for both ground and 2E′′ excited states. Our earlier
polynomial PES models reproduce the reference data with similar
rms errors but are much harder to fit. The performance of the new
approach finally will be assessed by its capability of reproducing the
available experimental data.88,89

A. Impact of the hidden layer size
Since both the size of the input layer (coordinates) and the

size of the output layer (modified coefficients) are dictated by the
general model, the number of neurons in the hidden layer is the pri-
mary convergence parameter left for fitting a given ab initio data
set. As such, it will be the primary focus of our investigations. If
an ANN is viewed as a simple, parameterized function, the num-
ber of hidden layers as well as each hidden layer size determines the
neural network’s number of formal parameters. More specifically, in
the case of a single hidden layer, each neuron exactly corresponds
to a set of 15 formal parameters to be fitted additionally (9 + 5
weights, 1 bias). While the number of formal parameters increases
in a more involved manner for multiple hidden layers, we will focus
solely on the single layer case in this section. The central question
here is whether or to which degree increasing/decreasing the num-
ber of hidden layer neurons (thus, fitting parameters) significantly
influences computed energy levels. Therefore, in this section, we

are not particularly interested in the energy levels themselves, but
rather ask how much equivalent levels deviate from the reference
model.

In order to properly quantify what a significant influence on
the computed energy levels is, let us first consider otherwise iden-
tical neural networks that differ only in the explicit values of their
weights and biases and marginally in terms of fitting error. Due to
the nonlinearity of ANNs, many fits with different initial guesses
are performed and ranked according to the resulting fitting error.
For the NO3 system, we found that the fitting errors of the best
10 obtained parameterizations hardly differ (41 cm−1 vs 38 cm−1).
Therefore, we compare the ten best out of 100 fitted ANNs includ-
ing the 75 neuron reference network. They are hereafter referenced
to by their “rank,” rank n meaning the nth best model when consid-
ering the fitting error. The computed vibrational excitation energies
on the adiabatic electronic ground state PES are presented in Table II
for the best ANN.

The computed vibrational excitation energies of the compet-
ing networks (rank 2–10) are provided in terms of deviations from
the best network. The two last columns of Table II provide the
average excitation energies over the 10 ANNs, as well as the stan-
dard deviation. Considering this set of competing networks, one
finds that the produced energies differ within a few cm−1, the stan-
dard deviation over all states being roughly 2 cm−1. The values
of Table II are reproduced in Fig. 1 in order to better visualize
how the results of the different networks are spread around the
average energies. It is observed that, considering that these 10 net-
work parameterizations are of very similar quality in terms of fitting
error, the deviations among the vibrational level energies within
the given spread are intrinsic to the model. This means that they
are produced by the flexibility of the ANN approach to reproduce
the ab initio reference data. In this sense, we consider all changes
to the model that only produce deviations within this range to be
insignificant as they become a priori indistinguishable from com-
peting networks of the same architecture as our reference. Thus,
from here on, we will denote the excitation energies with a ±σi to

TABLE II. Comparison of computed transition energies for the X̃2A′2 state of 14NO3 (in cm−1) for the 10 best (in terms of fitting error) ANNs from a set of 100 fitted neural
networks, including the reference ANN. Standard deviation is provided with respect to average energy levels μi .

Best 2nd 3rd 4th 5th 6th 7th 8th 9th 10th μi σi

State Ei − E0 Deviations from best network Mean Std. dev.

1/2 366.8 3.9 1.8 4.1 3.1 1.5 4.6 3.7 1.8 3.7 364.0 1.5
3 756.3 3.9 0.5 4.3 −0.6 −0.8 3.9 1.2 −3.2 3.5 755.1 2.5
4/5 774.6 6.1 2.4 3.8 3.6 1.2 6.1 5.6 0.8 2.9 771.3 2.2
6/7 1039.7 3.4 −2.5 −1.3 −0.8 1.8 3.3 −2.7 3.0 0.2 1039.3 2.3
8 1054.9 0.2 −0.2 −0.7 0.0 −0.4 0.6 −1.1 1.0 −1.0 1055.1 0.7
9/10 1179.3 3.7 1.4 3.6 −2.6 −2.3 3.0 −0.7 −5.0 −0.4 1179.2 2.9
11 1187.7 5.6 2.1 2.4 1.8 −0.7 5.6 4.4 −4.7 2.2 1185.8 3.1
12 1215.1 8.7 4.4 4.2 5.6 1.7 8.5 8.0 0.8 0.7 1210.9 3.4
13 1344.9 3.7 −3.2 0.6 −1.3 1.4 5.0 −3.1 −0.3 0.4 1344.5 2.6
14/15 1417.7 2.9 0.5 2.1 1.9 0.5 4.1 1.0 1.7 1.8 1416.1 1.2
16/17 1490.0 4.1 −1.0 1.0 1.9 1.7 4.3 −2.0 0.2 1.3 1488.9 2.0
18 1498.2 8.7 0.5 −0.1 5.3 3.2 9.8 0.9 7.5 1.9 1494.4 3.8
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FIG. 1. Visual representation of the first 15 states given in Table II, showing devi-
ations of the 10 best networks from respective average state energies. Level
distances, not to scale, correspond to a deviation of 20 cm−1 from average. Gray:
Standard deviations σ i around average energies. Average energies are provided
on the right-hand side together with the deviation σ i in cm−1.

emphasize this point. While individual networks deviate more from
the average than others (e.g., network 7), the overall spread achieved
remains around or below 10 cm−1. This indicates that the method
does not produce a single exceptional network among the number

of tested reasonable parameterizations. Instead, the method appears
to produce several network parameterizations yielding consistent
results under present conditions. Thus, the method appears to work
robustly.

Deviations in excitation energies for a representative subset
of hidden layer sizes are summarized in Table III, which can now
be interpreted within the limits of our estimated intrinsic errors.
The 40 neuron network, having almost half the number of for-
mal parameters, deviates significantly for individual excitations (in
particular 4/5, 11, and 12), causing energy levels to be signifi-
cantly spread around the reference computation. This is intuitively
understandable as the significant loss of flexibility compared to
the reference model eventually limits the quality of the surface in
areas relevant for the quantum dynamics. The 60 neuron network
shows similar features although they are less pronounced as the
network is significantly more flexible. In general, states 1/2, 8, and
14/15, which already proved to be extremely robust with respect
to the network choice within the same set, show very low devia-
tion among reasonable network sizes. Increasing or decreasing net-
work size by 5 neurons (that is 70 and 80 neurons) largely leaves
the overall quality of the model unchanged, with the ANN being
marginally more susceptible to a decrease in parameters than to
an increase. Similarly, increasing the number of neurons to 100
(over 30% more parameters) yields no energy shift that is distin-
guishable from noise caused by choosing a different 75 neuron
network.

The vibronic levels supported by the 2E′′ first excited state of
the radical are an even more stringent test of the robustness of
the proposed ANN parameterizations of coupled surfaces as the
coupling terms are directly used in the dynamics computations.
Vibronic energy levels for the reference coupled surfaces (single hid-
den layer with 75 neurons) as well as deviations obtained among the
ten best networks of this architecture are summarized in Table IV in
analogy to Table II. The data are reproduced, furthermore, in Fig. 2

TABLE III. Comparison of computed transition energies for the X̃2A′2 state of 14NO3 (in cm−1) for different hidden layer
sizes. The vibrational excitation energies of the reference (75) surface are reported together with the deviation σ i as defined
before (see text). For the five hidden layer sizes tested, δ(Ei − E0) provides level shifts compared to the reference network
(75). The dotted vertical line materializes the separation between increased and decreased hidden layer sizes with respect to
the reference.

75 40 60 70 80 100

State Ei − E0 ± σi δ(Ei − E0) δ(Ei − E0) δ(Ei − E0) δ(Ei − E0) δ(Ei − E0)

1/2 366.8 ± 1.5 6.2 7.8 1.2 ⋮ 3.0 1.5
3 756.3 ± 2.5 5.2 5.8 −5.1 ⋮ 3.0 2.6
4/5 774.6 ± 2.2 13.6 10.7 3.1 ⋮ 4.9 2.9
6/7 1039.7 ± 2.3 −0.6 0.7 3.9 ⋮ −4.1 1.6
8 1054.9 ± 0.7 0.6 0.2 0.0 ⋮ −0.4 0.0
9/10 1179.3 ± 2.9 9.0 5.9 −6.1 ⋮ 2.8 3.3
11 1187.7 ± 3.1 15.3 7.1 −1.0 ⋮ 3.6 3.0
12 1215.1 ± 3.4 21.9 13.3 7.6 ⋮ 7.8 3.1
13 1344.9 ± 2.6 7.0 5.3 −1.7 ⋮ −4.3 0.1
14/15 1417.7 ± 1.2 4.7 6.2 −0.8 ⋮ 0.8 1.0
16/17 1490.0 ± 2.0 −0.1 0.8 1.4 ⋮ −0.4 2.6
18 1498.2 ± 3.8 6.0 4.4 9.6 ⋮ 1.7 6.0

J. Chem. Phys. 151, 164118 (2019); doi: 10.1063/1.5125851 151, 164118-6

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE IV. Comparison of computed transition energies for 14NO3 (in cm−1) on the Ã state for the 10 best (in terms of fitting error) ANNs in analogy to Table II. All states are
given labels in terms of excitations in the breathing mode (a) as well as radial and tangential excitations in the degenerate stretch and bend modes (rs ,b, ts ,b). Assignments
marked with (∗) display visible contamination of other rs excitation(s). States to which no meaningful label could be assigned are marked with ?

Best 2nd 3rd 4th 5th 6th 7th 8th 9th 10th μi σi

State Assignment Ei − E0 Deviations from best network Mean Std. dev.

2 0 a′′1 56.6 −2.5 3.2 2.9 3.4 0.6 0.9 3.5 6.3 −1.8 55.0 2.7
3/4 r1

s e′′ 516.2 −15.3 26.0 4.3 1.2 −14.0 −6.5 0.8 18.8 2.2 514.5 12.9
5 t1

b a′′2 539.3 −5.6 −4.0 −3.2 −7.2 −9.7 −5.9 −0.2 −8.0 −2.2 543.9 3.3
6 r1

s a′′1 576.4 −18.4 22.8 −0.4 −2.0 −11.8 −6.5 −2.9 17.1 −0.4 576.7 12.2
7/8 t1

b e′′ 604.7 −14.5 2.8 0.9 −3.3 −10.5 −5.3 2.6 0.1 −2.7 607.7 5.7
9/10 r1

b e′′ 790.0 −1.6 16.8 −3.4 14.2 10.5 −4.3 7.4 11.1 −10.6 786.0 9.2
11 r1

b (∗) a′′1 833.9 −17.8 39.1 2.6 16.1 −3.7 −3.7 4.6 19.0 −10.6 829.3 16.4
12/13 r2

s e′′ 1013.4 −38.3 59.3 1.7 −3.2 −30.6 −7.1 −5.5 35.5 −6.4 1012.9 28.5
14 r1

s t1
b a′′2 1024.8 −19.5 21.5 2.8 −2.1 −18.8 −10.1 2.3 15.9 4.8 1025.2 13.3

15 r2
s a′′1 1084.4 −35.9 48.8 −2.3 −3.9 −20.2 −10.5 −3.9 31.2 −8.3 1084.9 24.2

16/17 t2
b (∗) e′′ 1100.1 −27.4 15.9 −2.8 −11.4 −21.5 −8.7 −3.4 5.4 −4.5 1105.9 12.5

18/19 r1
s t1

b (∗) e′′ 1151.2 −29.7 7.9 0.1 −8.5 −18.3 −8.5 0.9 1.4 −1.0 1156.8 11.1
20 t2

b a′′1 1161.8 −24.4 0.7 0.1 −9.5 −16.8 −6.3 2.9 −6.0 −3.6 1168.1 8.6
21/22 a1 e′′ 1179.8 6.3 8.6 5.0 1.2 −2.6 4.3 0.5 4.1 4.0 1176.7 3.3
23 t1

s a′′2 1276.1 −0.6 0.2 −7.6 −4.3 −4.3 −11.2 −3.6 −5.0 1.4 1279.6 3.9
24 a1 (∗) a′′1 1291.4 −0.1 51.6 16.5 17.5 −1.3 16.0 5.9 21.9 −4.2 1279.1 16.7
25/26 r1

br1
s e′′ 1302.8 −25.3 54.3 0.0 19.1 −4.0 −0.2 5.6 22.1 −7.6 1296.4 21.4

27/28 ? e′′ 1357.4 −19.4 25.2 −1.7 4.1 −5.1 −7.0 4.6 9.8 −11.4 1357.5 12.3

FIG. 2. Visual representation of the first 15 states of Table IV, showing deviations
of the 10 best networks from respective average state energies. Level distances,
not to scale, correspond to a deviation of 100 cm−1 from average. Gray: Stan-
dard deviation σ i around average energies. Excitation energies together with the
deviation σ i are given at the right-hand side.

for better visualization. In addition to the energies, Table IV also
provides D3h labels and state assignments based on symmetry infor-
mation and projected wave function densities. State assignments in
the degenerate stretch and bend coordinates are given in terms of
radial rn

s,b and tangential excitations tn
s,b,90 while excitations in the

totally symmetric mode are denoted with an. In contrast to ground
state calculations, the “spread” of individual energy levels is between
1 and 30 cm−1, the standard deviation over all vibronic states being
roughly 13 cm−1, with few states showing individual deviations up
to around 50 cm−1. At first glance, such an increase in error may
be fully attributed to the fact that the lower adiabatic sheet has been
found to be a very dominant contribution to the fitting error, making
it the most difficult part for the ANN to fit. In addition to this factor,
the deviations are not evenly distributed among the vibronic lev-
els but well-structured. More specifically, the ground state tunneling
first excitation of 57 cm−1 is robustly reproduced by the 10 param-
eterizations. Similarly, levels without noticeable contributions of rs
excitations show lower deviations than the ones with considerable rs
excitations. This means that, while the triple well structure is overall
well-described for dynamics, the accuracy of the surface diminishes
for larger displacements in the asymmetric stretch. The reason for
this observation is not clear but could be due to the sampling of the
reference data.

In analogy to the vibrational levels supported by the ground
electronic states (see Table III), the effect of the number of hidden
neurons used in the ANN is tested for the vibronic levels of the
2E′′ coupled surfaces and the results are summarized in Table V.
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TABLE V. Comparison of computed transition energies for 14NO3 (in cm−1) on the Ã state for different hidden layer sizes.
δ(Ei − E0) provides level shifts compared to the reference network (75). Assignments are identical to that of Table IV.
The dotted vertical line materializes the separation between increased and decreased hidden layer sizes with respect to the
reference.

75 40 60 70 80 100

State Assignment Ei − E0 δ(Ei − E0) δ(Ei − E0) δ(Ei − E0) δ(Ei − E0) δ(Ei − E0)

2 0 a′′1 56.6 ± 2.7 −0.1 −1.2 −0.9 ⋮ 1.8 5.6
3/4 r1

s e′′ 516.2 ± 12.9 −16.4 −15.6 −10.9 ⋮ 7.4 30.1
5 t1

b a′′2 539.3 ± 3.3 −8.8 −4.3 −8.9 ⋮ 4.1 −9.2
6 r1

s a′′1 576.4 ± 12.2 −12.1 −13.3 −11.6 ⋮ 4.1 25.7
7/8 t1

b e′′ 604.7 ± 5.7 −8.3 −11.5 −13.7 ⋮ 6.1 −0.2
9/10 r1

b e′′ 790.0 ± 9.2 −27.7 10.0 9.0 ⋮ 25.7 22.1
11 r1

b (∗) a′′1 833.9 ± 16.4 −55.6 −6.2 −2.9 ⋮ 31.4 42.4
12/13 r2

s e′′ 1013.4 ± 28.5 −47.1 −31.8 −27.2 ⋮ 17.1 60.6
14 r1

s t1
b a′′2 1024.8 ± 13.3 −21.4 −17.6 −16.4 ⋮ 14.6 23.4

15 r2
s a′′1 1084.4 ± 24.2 −32.9 −23.9 −24.2 ⋮ 13.4 50.1

16/17 t2
b (∗) e′′ 1100.1 ± 12.5 −26.0 −17.7 −22.1 ⋮ 10.4 13.1

18/19 r1
s t1

b (∗) e′′ 1151.2 ± 11.1 −13.5 −20.2 −22.6 ⋮ 12.1 4.0
20 t2

b a′′1 1161.8 ± 8.6 −13.1 −15.8 −21.6 ⋮ 11.7 −4.3
21/22 a1 e′′ 1179.8 ± 3.3 −3.9 1.3 1.4 ⋮ 7.7 6.4
23 t1

s a′′2 1276.1 ± 3.9 −4.5 2.2 1.5 ⋮ 4.1 0.0
24 a1 (∗) a′′1 1291.4 ± 16.7 −44.9 2.3 7.0 ⋮ 42.8 44.2
25/26 r1

br1
s e′′ 1302.8 ± 21.4 −62.2 −5.2 −3.6 ⋮ 47.3 52.5

27/28 ? e′′ 1357.4 ± 12.3 −39.0 −4.6 −6.8 ⋮ 29.6 27.2

In contrast to ground state calculations, we find the 40 neuron
network to just marginally deviate for most r0

s states such as 2,
5, and 7/8, while producing a significant difference for the rb
fundamental. Overall, agreement increases for increased network
size up to the 80 and 100 neuron network, where, for exam-
ple, state 9/10 suddenly shows an increase in deviation. The lat-
ter may actually be an overfitting effect as both the dynamics on
the excited state and the fitting error are dominated by the lower
adiabatic sheet and both begin to show discrepancies past the 75
neuron mark (one in the form of yielding different energy lev-
els and the other in the form of being less consistent with the
validation set).

In conclusion, our findings regarding the behavior of the
model with respect to the hidden layer size coincide with pre-
vious conclusions drawn from fitting performance alone, that is,
while reducing the number of hidden layer neurons has a signif-
icant influence on ground state dynamics, increasing the network
size has an unclear effect. Furthermore, the dynamics on the first
excited electronic state produce results analogous to previous find-
ings, suggesting that networks significantly greater than the ref-
erence reproduce the ab initio data less consistently. As a conse-
quence, the 75 neuron model remains the ideal candidate for further
testing. In addition, the vibronic level analysis also suggests that
this instability may result from lacking data in certain regions of
the NCS.

B. Comparison of different ANN (and fitting) setups

Up to this point, we have only investigated the impact of the
network size (i.e., the number of formal parameters of the model)
with a single hidden layer architecture on the ground and excited
state dynamics of the resulting surfaces. We have found that our
initial reference of 75 neurons produces ground state excitations reli-
ably and consistently across different parameterizations arising from
different initial guesses. In the following, we give a brief summary of
the impact of two other factors independent of the number of for-
mal parameters of the fitting function. These tests are in analogy to
the study discussed in Ref. 73 based on fitting performance. For the
following two cases, we will focus on ground state dynamics as they
give easier insight into the surfaces’ overall quality without sampling
effects.

Early stopping91 as used in the present work is a means of avoid-
ing overfitting by imposing an additional convergence criterion. For
this, we reserved about 15% of all ab initio data for an external val-
idation set for which an independent fitting error is computed at
each iteration. If this validation error does not improve along with
the fitting error for three times in a row, the last parameter set to
improve the validation error is considered converged. The valida-
tion set itself is not used for the training of the ANN. In order to
investigate potential downsides of this method, the identical set of
100 initial guesses that produced the 75 neuron reference ANN is
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refitted with early stopping disabled and a maximum number of
1000 Marquardt-Levenberg iterations. The deviations produced by
this network, referred to as network 75∗ for brevity, are listed in
Table VI alongside another networks discussed below. Deviations
found remain indistinguishable from differences between compet-
ing networks within the same fitting set, meaning that while early
stopping (in our present case) shows no clear advantage beyond
serving as an algorithmic safeguard and speeding up the training,
no discernible disadvantages of using it have been found.

One further aspect of relevance besides the number of free
parameters is the actual ANN architecture. As we have noted pre-
viously, each neuron depends on a small set of formal parameters
to fit, if we consider ANNs merely as fitting functions of a particu-
lar analytical form. This notion becomes marginally more involved
when considering networks with more than one hidden layer. This
is due to the fact that the number of formal parameters is roughly
equal to the number of connections between individual nodes in the
network. Hence, an ANN with 50 hidden layer neurons, one input
and one output, will have a different number of formal parameters
depending on whether it is one hidden layer with 50 neurons (100
connections, 50 in and 50 out) or two hidden layers with 25 each
(675 connections, 25 in, 625 intermediate, 25 out). This makes com-
paring different architectures particularly difficult. Hence, for our
practical purposes, we have chosen to take our best working model
(75 neurons) and produce multilayered networks with close to the
same number of formal parameters. For the sake of simplicity, we
further chose the number of neurons to be the same for each hid-
den layer, keeping all other technical details of the fit the same. Of all
network topographies considered, the only one that even remotely
compared in terms of fitting error to the single layer case was a
5–20–20–20–9 network (see Ref. 73). Other tested topographies
include two and four hidden layers. Considering again devia-
tions of ground state excitation energies, Table VI shows that the

TABLE VI. Comparison of computed transition energies for 14NO3 (in cm−1) on the X̃
state for various networks (see Sec. IV B). δ(Ei − E0) provides level shifts compared
to reference network (75). Networks fitted without early stopping are denoted with an
asterisk (∗). Networks fitted with more than one hidden layer list neuron numbers
separated by –.

75 75∗ 5–20–20–20–9

State Ei − E0 δ(Ei − E0) δ(Ei − E0)

1/2 366.8 ± 1.5 0.6 2.6
3 756.3 ± 2.5 0.1 2.9
4/5 774.6 ± 2.2 2.2 5.6
6/7 1039.7 ± 2.3 0.2 2.7
8 1054.9 ± 0.7 0.2 −1.0
9/10 1179.3 ± 2.9 1.0 5.9
11 1187.7 ± 3.1 1.8 2.3
12 1215.1 ± 3.4 3.4 9.4
13 1344.9 ± 2.6 −1.4 0.5
14/15 1417.7 ± 1.2 0.0 0.1
16/17 1490.0 ± 2.0 −0.1 −0.1
18 1498.2 ± 3.8 3.2 7.3

5–20–20–20–9 network, while “noisier” than, for example, the 75∗

network discussed above, shows deviations of the same order of
magnitude as the scattering of values among the best ten parame-
terizations of the 75 neuron reference model. While a more in-depth
investigation could provide further insight into the intricacies of the
effects more sophisticated network topographies could have, our
current findings suggest that the added value might be marginal,
while the sheer combinatorial effort required would be immense.
We thus conclude that a single-layer topography might be the most
robust and recommendable choice.

C. Comparison with experimental and previous
theoretical data

So far we investigated the impact of the ANN design parameters
on the quantum dynamics results by comparison with a reference
ANN model. Special attention has been paid to how the number
of hidden layer neurons influences the quality of the resulting sur-
face. These comparisons aim at estimating the intrinsic error of the
model with respect to differences in excitation energies produced by
ANNs of (in terms of fitting error) indistinguishable quality. In the
following, the focus will be on the quality of the surfaces based on
external consistency with experimental data, considering X̃ and Ã
state transition energies.

1. Vibrational eigenstates in the X̃2A′2 electronic state
The results of the vibrational eigenstates of the X̃ state are given

in Table VII in which comparisons between experimental frequen-
cies and computed transitions for both the novel ANN model and
the previous purely polynomial ansatz are listed. The MCTDH com-
putations with the earlier PES models74 are repeated in reduced
(5D) dimensionality excluding the umbrella mode in order to eval-
uate the effect of the reduced dimensionality. As apparent from
the third and fourth column of Table VII, the differences between
the original 6D and the new 5D calculation (with the previous
PES model) is rather small with a maximum absolute deviation of
3.5 cm−1. In previous work, we also ensured that the deviations
between the DVR method and the MCTDH calculations are very
small. This was confirmed again computing the vibrational and
vibronic states on the reference ANN PESs with both MCTDH and
DVR. Thus, the 5D ANN results of the DVR calculations, also used
to check for internal consistency (see above), are estimated to be
within about 5 cm−1 of corresponding 6D MCTDH calculations
once the full 6D ANN model is available. In the following, the focus
will be on the comparison of the 5D data with available experi-
ments and the improvements over the previous polynomial model
(Ref. 74).

We report a striking decrease in the overall deviation from
experimental data by about an order of magnitude for almost all
states compared to Ref. 74, which is easily seen from the last two
columns in Table VII. All assignments remain the same as for the
corresponding state(s) in the polynomial model calculation. As in
the case of the polynomial model,74 the long-debated 31 fundamen-
tal can be assigned confidently to a state computed at 1039.7 cm−1

(previously 1021.8 cm−1 in 6D and 1025.3 cm−1 in 5D) with signif-
icantly improved agreement to experiment. This assignment, now
at higher energy, agrees well with other theoretical treatments92–95

and recent experimental assignments.88,96,97 The second state of
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TABLE VII. Summary of the comparison between experimental and computed transition energies for 14NO3 (in cm−1).
The “assignment” column provides the corresponding D3h labels as well as state assignments including dominant state
contributions. E6D,5D

theo provide excitation energies using the previous (polynomial) model74 and EANN
theo the ones obtained for

the present ANN based model.73 The remaining two columns provide respective differences from experimental data as listed
under Eexp reported from Ref. 88. See text for discussion.

E6D
theo E5D

theo

Assignment Eexp Polynomial model74 EANN
theo δE5D

exp δEANN
exp

41 e′ 365.5 361.1 361.1 366.8 4.3 −1.3
42 a′1 752.4 711.0 711.1 756.3 41.3 −3.9
42 e′ 771.8 742.2 742.3 774.6 29.5 −2.8
11 a′1 1051.2 1038.6 1040.2 1054.9 11.0 −3.7
31 e′ 1055.3 1021.8 1025.3 1039.7 30.0 15.6
43 e′ 1173.6 1082.5 1082.7 1179.3 90.9 −5.7
43 a′1 1214 1139.7 1140.1 1215.1 73.9 −1.1
1141 e′ 1413.6 1388.1 1390.0 1417.7 23.6 −4.1
3141 a′2 1491 1302.4 1305.9 1344.9 185.1 146.1
3141 e′ 1492.4 1438.6 1441.9 1490.0 50.5 2.4
3141 a′1 1499.8 . . . . . . 1498.2 52.2 1.6

particular interest is the combination mode 3141, giving rise to three
sublevels of e′, a′1, and a′2 symmetry, respectively. Much like the fun-
damental mode, the 3141 e′ transition now computed at 1490.0 cm−1

displays significantly improved agreement with the experimental
value at 1492.4 cm−1 with a deviation of only 2.4 cm−1. This gives
further strong evidence that this energy level does not correspond
to the 31 fundamental. The effect of the 5D approximation to the
6D dynamics using the polynomial model on this transition is found
to be less than 4 cm−1 (1438.6 cm−1 vs 1442.0 cm−1). Similarly, the
3141 a′1 state, to which no state could be assigned using the polyno-
mial model, now can be assigned with certainty to an energy level
at 1498.2 cm−1. Indeed, the harmonic oscillator basis function of
the DVR calculations corresponding to the 3141 a′1 state accounts
for over 70% of the total vibrational wave function. Finally, the
3141 a′2 state, computed at an energy level of 1344.9 cm−1, shows
significant deviation from the experimental assignment to a level
at 1491 cm−1. This disagreement of more than 150 cm−1 is one
order of magnitude larger than the second largest deviation (about
16 cm−1) and over 25 times greater than the third largest deviation
(about 6 cm−1). Considering, however, that excitations even higher
in energy, namely, 3141 e′ and a′1, do not deviate more than a few
cm−1 from the experimental values suggests that this deviation is
more likely to be due to an incorrect experimental assignment. It is
worth noting that deviations between the new ANN results and the
experimental assignments for most states reside well within devia-
tions between different ANNs from the same fitting set as described
in Sec. IV A. The impact of the ANN size on the quantum dynam-
ics results is put into perspective with respect to experimental val-
ues in Table VIII. We find larger hidden layer sizes to have no
significant effect on the agreement with experimental data when
compared with the competing reference network of 75 hidden neu-
rons. The same is observed when comparing with the 75∗ ANN
results.

The agreement of the present results with experimental data
shows that the PES model must be very accurate and certainly must
be qualitatively correct. This allows us to shine some light on another
controversy in the literature. The equilibrium geometry of NO3 in
its electronic ground state has been subject to debate since the late
1970s (see Ref. 80 for an extensive discussion). Electronic structure
calculations mostly yield a C2v equilibrium geometry, but it was
shown by one of the authors that this is an artifact due to artificial
symmetry breaking of the electronic wave function caused by the
use of single reference wave functions.80 The adiabatic ground state
PES resulting from the present diabatic model clearly has a single
PES minimum of D3h symmetry, thus supporting a D3h equilibrium
geometry. With this strong evidence from the current dynamics cal-
culations using this PES model and the excellent agreement obtained
with respect to experimental spectroscopy data, it is nearly unimag-
inable that a distorted C2v equilibrium structure is more than an
artifact.

2. Vibronic eigenstates in the Ã 2E′′ electronic state
For the electronically excited 2E′′ state, there are only a total

of 3 experimentally measured transitions to compare with as all
other observed transitions involve umbrella excitations and can-
not be computed with the present ANN model. The corresponding
results are gathered in Table IX together with their assignments. Due
to the strength of the Jahn-Teller coupling in this system and the
resulting triple-well structure on the lower diabatic sheet, the assign-
ment of the D3h labels based on normal mode excitations is not as
straightforward compared to the X̃ state labeling. The assignments
used in Sec. IV A in terms of radial and tangential excitations pro-
vide deeper insights regarding the limits of accuracy of the model as
states corresponding to rs excitations have been found to be more
limited in terms of accuracy. Further explanation as to how tunnel-
ing and geometric phase effects influence both the complexity of the
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TABLE VIII. Comparison of absolute differences between experimental and computed (ground state) transition energies for
14NO3 (in cm−1) for different hidden layer sizes. Assignments are identical to that of Table VII. |δEexp| corresponds to δEANN

exp
from the same table. δ(|δEexp|) provides decreases (negative) or increases (positive) in deviation from experiment compared
to the first column. The third column provides data for the 10th percentile instead of the (in terms of fitting error) best fitted ANN
from a set of 100 fitted neural networks, including the reference ANN. Bottom rows: average increase/decrease in deviation
over all states and root mean square variations around the reference surface, disregarding the outlier state 3141 a′2; see
Sec. IV C 1.

75 75 (10th best) 40 70 80 100

Assignment |δEexp| δ(|δEexp|) δ(|δEexp|) δ(|δEexp|) δ(|δEexp|) δ(|δEexp|)

41 e′ 1.3 1.0 3.6 −1.2 0.3 −1.2
42 a′1 3.9 −3.5 −2.6 5.1 −3.0 −2.6
42 e′ 2.8 −2.7 8.0 −2.6 −0.8 −2.7
11 a′1 15.6 0.2 −0.6 3.9 −4.1 1.6
31 e′ 3.7 1.0 −0.6 0.0 0.4 0.0
43 e′ 5.7 0.4 −2.4 6.1 −2.8 −3.3
43 a′1 1.1 −0.7 19.6 5.4 5.5 0.8
1141 e′ 4.1 −1.8 −3.5 0.8 −0.8 −1.0
3141 a′2 146.1 0.4 7.0 −1.7 −4.3 0.1
3141 e′ 2.4 1.3 −0.1 1.4 −0.4 2.6
3141 a′1 1.6 1.9 6.0 9.6 1.7 6.0

Mean increase −0.3 2.7 2.9 −0.4 0.0
Variance 1.7 7.2 4.4 2.8 2.6

resulting spectra and the structure of the vibronic eigenstates can be
found in greater detail in Refs. 78 and 90. The deviations between
experimental assignments and both the new ANN model and the
prior, purely polynomial ansatz are given in Table IX. Of the three
states for which experimental data are available, all show significant
improvement in terms of reproducing experimental data over the
previous polynomial model. Both computed purely tangential exci-
tations reproduce experimental data up to a few cm−1, while the rs
excited state shows a larger deviation. This means that the relative
improvement of the 2E′′ model is consistent with that of the ground
state, with dissociative motions being a limiting factor on the excited
state surface.

3. Numerical stability and potential artifacts

In Secs. IV C 1 and IV C 2, we outlined how our present ANN
scheme significantly outperforms the previous purely polynomial-
based ansatz. One of the reasons for why the neural network per-
forms better than the polynomial model certainly is the more flexible
functional form of the ANN compared to the previously used poly-
nomial approach. To achieve higher flexibility with the polynomial
ansatz, one would have to increase the polynomial order consid-
erably. However, it is a fundamental property of polynomials that
as the order increases, the function starts oscillating rapidly or get-
ting unbound in areas not well sampled. This unphysical behavior

TABLE IX. Summary of the comparison between experimental and computed transition energies on the Ã2E′′ state of NO3
(in cm−1). Assignments in the first column correspond to those of Table VI of Ref. 89, with assignments from Table V given in
parentheses. E6D,5D

theo provide excitation energies using the previous (polynomial) model,36,78 the E6D
theo being reproduced from

Ref. 78 and EANN
theo the ones obtained for the present ANN based model.73 The remaining two columns provide respective

differences from experimental data.

E6D
theo E5D

theo

Assignment Eexp Polynomial model36,78 EANN
theo δE5D

exp δEANN
exp

41
0 (t1

b) 539.5 549.1 544.9 539.3 −5.4 0.2
42

0 (r1
s t1

b) 1056.6 1136.9 1142.2 1024.8 −85.6 31.8
31

0 (t1
s ) 1270.5 1300.1 1291.5 1276.1 −21.0 −5.6
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becomes a problem for dynamics treatment even for physically irrel-
evant nuclear configurations when the oscillation tends to negative
infinity. Such regions cause the wave packet to get trapped in these
unphysical regions. However, since these artifacts only occur where
little to no data are sampled, they only become apparent when the
wave packet dynamics on the PESs are investigated, meaning that
there is no structured, a priori method to predict or detect such
regions in a high dimensional nuclear configuration space. There-
fore, the development of high-dimensional coupled PESs, especially
when using some sort of polynomial model, is usually plagued by the
occurrence of such artifacts.

However, the general structure of the ANN approach tested
in this work shows a crucial difference. Unlike polynomial terms
of increasing order, the functional shape of hidden layer neurons
is bounded as they are composed of sigmoid functions depending
on weighted sums of coordinates. Furthermore, all hidden layer
neurons are homogeneous in the sense that increasing the num-
ber of neurons always adds a term of the same functional form as
the previous ones, merely differently parameterized, in stark con-
trast to adding a higher-order polynomial term to a function. As
a consequence, none of the investigated ANNs produced the arti-
facts discussed above in any of the dynamics calculations performed
here. This suggests that all ANN surfaces produced by our current
method, even if insufficiently parameterized to describe the PESs
well (e.g., the 40 neuron network) or potentially overfitted (e.g., the
100 neuron network) are well-behaved and free of severe oscilla-
tions or unbound areas comparable to those commonly occurring
in polynomial fits. This is a property of the new ANN approach of
invaluable importance for future applications.

V. CONCLUSIONS AND OUTLOOK
In the present study, we investigate the viability of our recently

developed diabatization method as a means to produce coupled PESs
for reliable high-dimensional quantum dynamics calculations. This
method, combining vibronic coupling models with artificial neu-
ral networks (ANNs), has been tested using the NO3 radical as a
benchmark system of exceptional complexity. For the purpose of
this work, the molecule has been restricted to planar geometries,
which will be extended to a full 6D space in future work. Using a
time-independent DVR method, the behavior of vibrational eigen-
states on the 2A′2 ground state as well as vibronic eigenstates on
the first excited 2E′′ state has been investigated depending on the
number of hidden layer neurons (corresponding to the number of
formal parameters) and to a lesser extent depending on the num-
ber of hidden layers (conserving the number of formal parameters).
The various resulting surfaces, exclusively differing in the underly-
ing ANN, have been compared among one another as well as with
previous efforts using a purely polynomial ansatz. To this end, the
MCTDH approach has been used to evaluate the effect of the planar
geometry restriction. The ANN results are also compared with avail-
able experimental data. The investigated approach utilizes the basic
structure (and simplicity) of low-order vibronic coupling models
and achieves the high accuracy needed for reliable dynamics simula-
tions by the neural network. Despite the highly nonlinear nature of
the fitting procedure, the presented method produces PESs of con-
sistent quality for a large number of initial guesses, with deviations

of fitting errors as well as excitation frequencies of a few cm−1 for
the best 10 out of 100 fitted networks for a fixed but reasonably large
number of hidden layer neurons. Similarly, despite being restricted
to planar geometries, the model reproduces measured transition
energies (excluding umbrella mode excitations) with unprecedented
accuracy, with deviations of only a few cm−1. It therefore is par-
ticularly noteworthy that for the vast majority of measured exci-
tations, deviations between best ANN results and experiment are
of the same order of magnitude as deviations among ANN results
of similar fitting quality but different parameterizations (different
initial guesses). While deviations on the excited 2E′′ state can be
significantly larger (10 cm−1 range), they remain well-structured.
The larger deviations correlate with radial excitations in the asym-
metric stretching mode (rs), which might indicate insufficient data
in the dissociative motions. Overall, when compared to experimen-
tal data, the surface model based on our new approach produces
vibrational/vibronic excitation frequencies that are an order of mag-
nitude better than our previous polynomial model. This allows us
to assign debated ground-state transitions with great confidence.
The numerical results indicate that our new, ANN-based model is
thus capable of providing reliable interpretations of experimental
data. In this context, we report a resolution of the disputed assign-
ment of the 31 e′ state, now confirmed at 1055.5 cm−1 (computed
at 1039.7 cm−1) and the measured excitation at 1492.4 cm−1 (com-
puted at 1490.0 cm−1) corresponding to the 3141 e′ state. Given the
accuracy reached, we can also confirm the measured transition cor-
responding to the 3141 a′2 state to be most certainly an incorrect
experimental assignment, as previously suggested by our polyno-
mial model. This is supported by the fact that this state is the only
one deviating from computed excitations by about 150 cm−1 across
all investigated ANN models, an order of magnitude higher than
any other (experimental or computational) deviation. Apart from
a significant increase in accuracy, it is also found that throughout
all investigated ANN-based PESs, there is not a single instance of
oscillations producing deep, unphysical minima in scarcely sampled
regions, a common problem with polynomial models. Such artifacts,
if close enough to physically relevant areas in NCS, can cause wave
packets to be trapped producing unphysical results. Consequently,
these results suggest that the present model not only produces PESs
of much higher accuracy than possible before but also better adapted
to dynamics calculations.

The influence of ANN size (in terms of free parameter num-
ber) and ANN design (number of hidden layers) on the dynamics
results is also studied. The same set of ANNs is investigated, which
previously was assessed purely on the basis of the fitting error. The
findings of the previous study confirmed (within the small scope
of this study) that multilayered network architectures are not supe-
rior to single-layer ANNs for our diabatization scheme. Similarly,
no significant disadvantage is found to be caused by omitting early
stopping from the fitting procedure as PESs produced remained
indistinguishable from those of the unmodified fit. The previously
reported indicator for overfitting is in agreement with the current
finding that hidden layer sizes beyond that point either do not
improve the dynamics results or even can lead to worse dynamics
results.

In conclusion, our present findings (based on quantum dynam-
ics calculations and experimental data) demonstrate that PESs pro-
duced by our novel ANN diabatization method, despite its simple
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setup, are not only very accurate but also robust against typical arti-
facts. Furthermore, the obtained PES models are very suitable for
quantum dynamics calculations and yield results of high accuracy.
The spread of quantum dynamics results among different parame-
terizations yielding a similar fitting error is rather small and gives a
good idea of the size of errors to be expected in general. Remaining
goals for future investigations include extending the model to a full-
dimensional description of NO3, including the umbrella motion, as
well as corresponding couplings in the diabatic matrix, and applying
the method to different kinds of coupling (e.g., relativistic coupling).
Corresponding work is in progress.
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APPENDIX: SUPPLEMENTARY EQUATIONS
1. Coordinates

The symmetry-adapted coordinates are constructed from a
set of primitive valence coordinates as already described in previ-
ous work33,36 and account for the basic asymptotic behavior in the
underlying low-order model. The primitive coordinates comprising
the three N–O distances ri and a set of O–N–O angles αi are first
transformed nonlinearly as

mi = 1 − exp(−γ(ri − r0)), (A1)

α′i =
αi − α0

rjrk
, i ≠ j ≠ k, (A2)

where r0 and α0 are the respective distances and angles at the
reference point and γ is a chosen Morse-parameter. The out-
of-plane umbrella coordinate is omitted in the present study.
These primitive coordinates then are linearly transformed to
yield the symmetry-adapted coordinates a (breathing mode) and
the degenerate asymmetric modes xs, ys (stretching) and xb, yb
(bending),

a =
√

1
3
(m1 + m2 + m3), (A3)

xs =
√

1
6
(2m1 −m2 −m3), (A4)

ys =
√

1
2
(m2 −m3), (A5)

xb =
√

1
6
(2α′1 − α′2 − α′3), (A6)

yb =
√

1
2
(α′2 − α′3). (A7)

2. Diagonal model terms
For the sake of simplicity, let r2

s,b be given as

r2
s,b = x2

s,b + y2
s,b. (A8)

The totally symmetric diagonal contributions of the reference model
are expressed here in terms of three independent scalar functions
Vi(Q),

Wd
diag(Q) =

⎛
⎜⎜⎜
⎝

V1(Q) 0T 0T

0 V2(Q)1 0

0 0 V3(Q)1

⎞
⎟⎟⎟
⎠

. (A9)

Apart from the constant terms, referring to the vertical excita-
tion energies at the reference point, an expansion of each Vi(Q),
i = 1, 2, 3 up to second order yields four (constant) coefficients μi

k
and corresponding polynomial terms,

Vi(Q) = μi
1 ⋅ a + μi

2 ⋅ a2 + μi
3 ⋅ r2

s + μi
4 ⋅ r2

b . (A10)

REFERENCES
1M. A. Collins and D. F. Parsons, J. Chem. Phys. 99, 6756 (1993).
2J. Ischtwan and M. A. Collins, J. Chem. Phys. 100, 8080 (1994).
3T. S. Ho and H. Rabitz, J. Chem. Phys. 104, 2584 (1996).
4G. G. Maisuradze, D. L. Thompson, A. F. Wagner, and M. Minkoff, J. Chem.
Phys. 119, 10002 (2003).
5G. G. Maisuradze, A. Kawano, D. L. Thompson, A. F. Wagner, and M. Minkoff,
J. Chem. Phys. 121, 10329 (2004).
6B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577 (2009).
7C. R. Evenhuis and M. A. Collins, J. Chem. Phys. 121, 2515 (2004).
8C. R. Evenhuis, X. Lin, D. H. Zhang, D. Yarkony, and M. A. Collins, J. Chem.
Phys. 123, 134110 (2005).
9O. Godsi, C. R. Evenhuis, and M. A. Collins, J. Chem. Phys. 125, 104105 (2006).
10X. Zhu, J. Y. Ma, D. R. Yarkony, and H. Guo, J. Chem. Phys. 136, 234301 (2012).
11C. Xie, J. Ma, X. Zhu, D. H. Zhang, D. R. Yarkony, D. Xie, and H. Guo, J. Phys.
Chem. Lett. 5, 1055 (2014).
12Conical Intersections: Electronic Structure, Dynamics and Spectroscopy, edited by
W. Domcke, D. R. Yarkony, and H. Köppel (World Scientific, Singapore, 2004).
13H. C. Longuet-Higgins, Adv. Spectrosc. 2, 429 (1961).
14W. Lichten, Phys. Rev. 131, 229 (1963).
15W. Lichten, Phys. Rev. 164, 131 (1967).
16F. T. Smith, Phys. Rev. 179, 111 (1969).
17M. Baer, Chem. Phys. 15, 49 (1976).
18H. Werner and W. Meyer, J. Chem. Phys. 74, 5802 (1981).
19C. A. Mead and D. G. Truhlar, J. Chem. Phys. 77, 6090 (1982).
20C. A. Mead, J. Chem. Phys. 78, 807 (1983).
21H.-J. Werner, B. Follmeg, and M. H. Alexander, J. Chem. Phys. 89, 3139 (1988).
22T. Pacher, L. S. Cederbaum, and H. Köppel, J. Chem. Phys. 89, 7367 (1988).
23T. Pacher, C. A. Mead, L. S. Cederbaum, and H. Köppel, J. Chem. Phys. 91, 7057
(1989).
24T. Pacher, H. Köppel, and L. S. Cederbaum, J. Chem. Phys. 95, 6668 (1991).
25T. Pacher, L. S. Cederbaum, and H. Köppel, Adv. Chem. Phys. 84, 293 (1993).
26H. Köppel, W. Domcke, and L. S. Cederbaum, Adv. Chem. Phys. 57, 59 (1984).
27M. S. Schuurman and D. R. Yarkony, J. Chem. Phys. 127, 094104 (2007).
28B. N. Papas, M. S. Schuurman, and D. R. Yarkony, J. Chem. Phys. 129, 124104
(2008).
29X. Zhu and D. R. Yarkony, J. Chem. Phys. 130, 234108 (2009).
30X. Zhu and D. R. Yarkony, J. Chem. Phys. 132, 104101 (2010).
31A. Viel and W. Eisfeld, J. Chem. Phys. 120, 4603 (2004).

J. Chem. Phys. 151, 164118 (2019); doi: 10.1063/1.5125851 151, 164118-13

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.465819
https://doi.org/10.1063/1.466801
https://doi.org/10.1063/1.470984
https://doi.org/10.1063/1.1617271
https://doi.org/10.1063/1.1617271
https://doi.org/10.1063/1.1810477
https://doi.org/10.1080/01442350903234923
https://doi.org/10.1063/1.1770756
https://doi.org/10.1063/1.2047569
https://doi.org/10.1063/1.2047569
https://doi.org/10.1063/1.2338912
https://doi.org/10.1063/1.4725496
https://doi.org/10.1021/jz500227d
https://doi.org/10.1021/jz500227d
https://doi.org/10.1103/physrev.131.229
https://doi.org/10.1103/physrev.164.131
https://doi.org/10.1103/physrev.179.111
https://doi.org/10.1016/0301-0104(76)89006-4
https://doi.org/10.1063/1.440893
https://doi.org/10.1063/1.443853
https://doi.org/10.1063/1.444780
https://doi.org/10.1063/1.454971
https://doi.org/10.1063/1.455268
https://doi.org/10.1063/1.457323
https://doi.org/10.1063/1.461537
https://doi.org/10.1002/9780470141427.ch4
https://doi.org/10.1002/9780470142813.ch2
https://doi.org/10.1063/1.2756540
https://doi.org/10.1063/1.2978389
https://doi.org/10.1063/1.3155392
https://doi.org/10.1063/1.3324982
https://doi.org/10.1063/1.1646371


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

32W. Eisfeld and A. Viel, J. Chem. Phys. 122, 204317 (2005).
33A. Viel, W. Eisfeld, S. Neumann, W. Domcke, and U. Manthe, J. Chem. Phys.
124, 214306 (2006).
34A. Viel, W. Eisfeld, C. R. Evenhuis, and U. Manthe, Chem. Phys. 347, 331 (2008).
35S. Faraji, H. Köppel, W. Eisfeld, and S. Mahapatra, Chem. Phys. 347, 110 (2008).
36W. Eisfeld, O. Vieuxmaire, and A. Viel, J. Chem. Phys. 140, 224109 (2014).
37R. Cimiraglia, J. P. Malrieu, M. Persico, and F. Spiegelmann, J. Phys. B: At. Mol.
Phys. 18, 3073 (1985).
38W. Domcke and C. Woywod, Chem. Phys. Lett. 216, 362 (1993).
39G. J. Atchity and K. Ruedenberg, Theor. Chem. Acc. 97, 47 (1997).
40H. Nakamura and D. G. Truhlar, J. Chem. Phys. 115, 10353 (2001).
41H. Nakamura and D. G. Truhlar, J. Chem. Phys. 117, 5576 (2002).
42H. Nakamura and D. G. Truhlar, J. Chem. Phys. 118, 6816 (2003).
43P. Cattaneo and M. Persico, Theor. Chem. Acc. 103, 390 (2000).
44S. Nangia and D. G. Truhlar, J. Chem. Phys. 124, 124309 (2006).
45Z. H. Li, R. Valero, and D. G. Truhlar, Theor. Chem. Acc. 118, 9 (2007).
46X. Zhu and D. R. Yarkony, J. Chem. Phys. 140, 024112 (2014).
47T. B. Blank, S. D. Brown, A. W. Calhoun, and D. J. Doren, J. Chem. Phys. 103,
4129 (1995).
48D. F. R. Brown, M. N. Gibbs, and D. C. Clary, J. Chem. Phys. 105, 7597 (1996).
49K. T. No, B. H. Chang, S. Y. Kim, M. S. Jhon, and H. A. Scheraga, Chem. Phys.
Lett. 271, 152 (1997).
50F. V. Prudente, P. H. Acioli, and J. J. S. Neto, J. Chem. Phys. 109, 8801 (1998).
51S. Lorenz, A. Gross, and M. Scheffler, Chem. Phys. Lett. 395, 210 (2004).
52L. M. Raff, M. Malshe, M. Hagan, D. I. Doughan, M. G. Rockley, and R.
Komanduri, J. Chem. Phys. 122, 084104 (2005).
53S. Lorenz, M. Scheffler, and A. Gross, Phys. Rev. B 73, 115431 (2006).
54S. Manzhos, X. G. Wang, R. Dawes, and T. Carrington, J. Phys. Chem. A 110,
5295 (2006).
55S. Manzhos and T. Carrington, Jr., J. Chem. Phys. 125, 084109 (2006).
56S. Manzhos and T. Carrington, Jr., J. Chem. Phys. 125, 194105 (2006).
57J. Behler and M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007).
58S. Manzhos and T. Carrington, Jr., J. Chem. Phys. 127, 014103 (2007).
59M. Malshe, R. Narulkar, L. M. Raff, M. Hagan, S. Bukkapatnam, and R.
Komanduri, J. Chem. Phys. 129, 044111 (2008).
60S. Manzhos and T. Carrington, Jr., J. Chem. Phys. 129, 224104 (2008).
61J. Behler, J. Chem. Phys. 134, 074106 (2011).
62H. T. T. Nguyen and H. M. Le, J. Phys. Chem. A 116, 4629 (2012).
63B. Jiang and H. Guo, J. Chem. Phys. 139, 054112 (2013).

64W. Koch and D. H. Zhang, J. Chem. Phys. 141, 021101 (2014).
65G. Cybenko, Math. Control Signals Syst. 2, 303 (1989).
66H. D. Meyer, U. Manthe, and L. S. Cederbaum, Chem. Phys. Lett. 165, 73 (1990).
67U. Manthe, H. D. Meyer, and L. S. Cederbaum, J. Chem. Phys. 97, 3199 (1992).
68U. Manthe, J. Chem. Phys. 105, 6989 (1996).
69A. Brown and E. Pradhan, J. Theor. Comput. Chem. 16, 1730001 (2017).
70Y. Guan, B. Fu, and D. H. Zhang, J. Chem. Phys. 147, 224307 (2017).
71T. Lenzen and U. Manthe, J. Chem. Phys. 147, 084105 (2017).
72C. Xie, X. Zhu, D. R. Yarkony, and H. Guo, J. Chem. Phys. 149, 144107 (2018).
73D. M. G. Williams and W. Eisfeld, J. Chem. Phys. 149, 204106 (2018).
74A. Viel and W. Eisfeld, Chem. Phys. 509, 81 (2018).
75M. Mayer, L. S. Cederbaum, and H. Köppel, J. Chem. Phys. 100, 899 (1994).
76M. Okumura, J. Stanton, A. Deev, and J. Sommar, Phys. Scr. 73, C64 (2006).
77S. Mahapatra, W. Eisfeld, and H. Köppel, Chem. Phys. Lett. 441, 7 (2007).
78W. Eisfeld and A. Viel, J. Chem. Phys. 146, 034303 (2017).
79W. Eisfeld and K. Morokuma, J. Chem. Phys. 114, 9430 (2001).
80W. Eisfeld and K. Morokuma, J. Chem. Phys. 113, 5587 (2000).
81W. Eisfeld, J. Chem. Phys. 134, 054303 (2011).
82P. J. Knowles and H.-J. Werner, Chem. Phys. Lett. 145, 514 (1988).
83H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988).
84J. C. Light and T. Carrington, Adv. Chem. Phys. 114, 263 (2000).
85U. Manthe, J. Phys.: Condens. Matter 29, 253001 (2017).
86U. Manthe, J. Chem. Phys. 128, 064108 (2008).
87C. Evenhuis, G. Nyman, and U. Manthe, J. Chem. Phys. 127, 144302 (2007).
88K. Kawaguchi, T. Narahara, R. Fujimori, J. Tang, and T. Ishiwata, J. Mol.
Spectrosc. 334, 10 (2017).
89T. Codd, M.-W. Chen, M. Roudjane, J. F. Stanton, and T. A. Miller, J. Chem.
Phys. 142, 184305 (2015).
90T. Weike, D. M. G. Williams, A. Viel, and W. Eisfeld, J. Chem. Phys. 151, 074302
(2019).
91M. Hagan, H. Demuth, M. Beale, and O. De Jesús, in Neural Network Design,
2nd ed., edited by M. Hagan (2014), ISBN: 9780971732117.
92J. F. Stanton, J. Chem. Phys. 126, 134309 (2007).
93J. F. Stanton, Mol. Phys. 107, 1059 (2009).
94C. S. Simmons, T. Ichino, and J. F. Stanton, J. Phys. Chem. Lett. 3, 1946 (2012).
95Z. Homayoon and J. M. Bowman, J. Chem. Phys. 141, 161104 (2014).
96M. E. Jacox and W. E. Thompson, J. Chem. Phys. 129, 204306 (2008).
97K. Kawaguchi, R. Fujimori, J. Tang, and T. Ishiwata, J. Mol. Spectrosc. 314, 73
(2015).

J. Chem. Phys. 151, 164118 (2019); doi: 10.1063/1.5125851 151, 164118-14

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.1904594
https://doi.org/10.1063/1.2202316
https://doi.org/10.1016/j.chemphys.2007.10.001
https://doi.org/10.1016/j.chemphys.2007.10.006
https://doi.org/10.1063/1.4879655
https://doi.org/10.1088/0022-3700/18/15/014
https://doi.org/10.1088/0022-3700/18/15/014
https://doi.org/10.1016/0009-2614(93)90110-m
https://doi.org/10.1007/s002140050236
https://doi.org/10.1063/1.1412879
https://doi.org/10.1063/1.1500734
https://doi.org/10.1063/1.1540622
https://doi.org/10.1007/s002149900045
https://doi.org/10.1063/1.2168447
https://doi.org/10.1007/s00214-006-0237-7
https://doi.org/10.1063/1.4857335
https://doi.org/10.1063/1.469597
https://doi.org/10.1063/1.472596
https://doi.org/10.1016/s0009-2614(97)00448-x
https://doi.org/10.1016/s0009-2614(97)00448-x
https://doi.org/10.1063/1.477550
https://doi.org/10.1016/j.cplett.2004.07.076
https://doi.org/10.1063/1.1850458
https://doi.org/10.1103/physrevb.73.115431
https://doi.org/10.1021/jp055253z
https://doi.org/10.1063/1.2336223
https://doi.org/10.1063/1.2387950
https://doi.org/10.1103/physrevlett.98.146401
https://doi.org/10.1063/1.2746846
https://doi.org/10.1063/1.2957490
https://doi.org/10.1063/1.3021471
https://doi.org/10.1063/1.3553717
https://doi.org/10.1021/jp3020386
https://doi.org/10.1063/1.4817187
https://doi.org/10.1063/1.4887508
https://doi.org/10.1007/bf02551274
https://doi.org/10.1016/0009-2614(90)87014-i
https://doi.org/10.1063/1.463007
https://doi.org/10.1063/1.471847
https://doi.org/10.1142/s0219633617300014
https://doi.org/10.1063/1.5007031
https://doi.org/10.1063/1.4997995
https://doi.org/10.1063/1.5054310
https://doi.org/10.1063/1.5053664
https://doi.org/10.1016/j.chemphys.2018.01.003
https://doi.org/10.1063/1.466572
https://doi.org/10.1088/0031-8949/73/1/n12
https://doi.org/10.1016/j.cplett.2007.04.076
https://doi.org/10.1063/1.4973983
https://doi.org/10.1063/1.1370065
https://doi.org/10.1063/1.1290607
https://doi.org/10.1063/1.3544213
https://doi.org/10.1016/0009-2614(88)87412-8
https://doi.org/10.1063/1.455556
https://doi.org/10.1002/9780470141731.ch4
https://doi.org/10.1088/1361-648x/aa6e96
https://doi.org/10.1063/1.2829404
https://doi.org/10.1063/1.2779034
https://doi.org/10.1016/j.jms.2017.02.008
https://doi.org/10.1016/j.jms.2017.02.008
https://doi.org/10.1063/1.4919690
https://doi.org/10.1063/1.4919690
https://doi.org/10.1063/1.5115396
https://doi.org/10.1063/1.2715547
https://doi.org/10.1080/00268970902740530
https://doi.org/10.1021/jz300721b
https://doi.org/10.1063/1.4900734
https://doi.org/10.1063/1.3020753
https://doi.org/10.1016/j.jms.2015.06.008

