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Abstract

This work addresses the surface characterizatieanadrganic salt based on a piperidinium
cation and a halide anion, similar to a first gatien ionic liquid, using the Inverse Gas
Chromatography (IGC) technique. IGC was employeorder to assess the dispersive surface
energy and the acid/base character of 1-butyl-ghgigreridinium bromide, [@C4PIP]Br at a
temperature range (313.15-343.15 K) well below nitslting point, where the retention
mechanism is governed by the surface adsorptidheoprobes. This type of characterization
was possible due to the high melting point ofQ&P1P]Br, namely 413.15 K. The dispersive
component of the surface energy was estimated théhaid of the Schultz method and the
Dorris-Gray method. Results obtained using thet fimethod were higher than the ones
obtained by the latter. The discrepancy betweerivibemethods was found to increase with
the increase of temperature. The acid/base chamatien was implemented by using the
Flour and Papirer approach as well as the Brookarah Sawyer method. The acidity and
basicity constants of the surface of,(GPIP]Br revealed that it is amphoteric with a

predominantly basic character.
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1 Introduction

lonic liquids (ILs) are salts exhibiting low melgrpoints, typically below 10C, composed
of anions and large organic cations, such as imidan, pyridinium, pyrrolidinium and less
commonly piperidinium [1-6]. ILs have a number otaresting properties such as non-
volatility, non-flammability, high thermal and ianiconductivity and an enhanced solvation
ability for a wide range of materials [1, 4, 5, @n these grounds, ILs have been widely
explored as ‘green’ media in chemical and cataly&actions, distillations, liquid-liquid
extractions and solvent-aided crystallizations415]. Other studies report the utilization of
ILs as lubricants, in gas separation processesaanglas storage media [7]. ILs were also
employed as electrolytes in batteries, electrochahsiapacitors [3] and as catalysts [8].
Piperidinium based ILs are of special interest dt@ctrochemical applications due to their
water immiscibility, high conductivities and widdeetrochemical windows [9, 10]. As
piperidinium based ionic liquids contain only sated carbons, Shukla demonstrated that for
a given anion, these ILs exhibit higher meltingnteiand are thermally more stable than the
respective imidazolium ILs having the same alkydios appended on the cation [9, 10]. In
particular, piperidinium bromide salts exhibit vemygh melting points (in the vicinity of
200°C) whereas their homologous imidazolium bronsidks are either liquids or present low
melting points [9, 10]. When ionic liquids are imved in applications such as extraction and
catalysis, the presence of a second phase (lidugds) other than the ionic liquid is required.
Reactions, interactions and chemical exchangestahkat place at the interface of the two-
phase systems strongly depend on the surface piesperf each fluid [11]. Therefore, the
understanding of surface related properties ofcidiquids, such as their surface energy and
acid-base character is necessary for the elucraifothe mechanisms that govern these
reactions [7, 12-15].

Although there is a plethora of experimental stadiwestigating the surface tension of ionic
liquids with various techniques [16], only a resttd number of publications address the
estimation of the dispersive surface energy ofdadmjuids with the use of inverse gas
chromatography (IGC). Over the past years, invgese chromatography has proved to be a
valuable tool towards the characterization of theage and thermodynamic properties of
various inorganic and organic materials such agmpeits, fillers and pharmaceuticals [17]. It
should be outlined that the choice of the measunétesnperature range is crucial in IGC as
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it determines the state (melt or solid) of the mateinder study, governing thus the retention
mechanism of the probes (surface adsorption ircéise of solids or mixing with bulk of the
melt) [17].

Although during the last decade IGC appears to éxy ypopular for the thermodynamic
characterization of ionic liquids [8, 18-26], it haarely been utilized for their surface
characterization. This is due to the fact that scichracterization should be conducted at a
temperature range below the melting point of thanllorder to ensure that the interaction
mechanism between the probes and IL is surfacergtiso [17]. On these grounds, as ILs
exhibit low melting points, IGC is rather appropeidor the surface analysis of high melting
point salts or for the thermodynamic characteraratf ionic liquids.

The group of Wang has published a series of papersthe surface [27-29] and
thermodynamic characterization [8, 18, 30-33] otlgkimidazolium ILs by means of IGC.
To our knowledge, these are the only IGC studiebemsing the surface characterization of
ionic liquids [27-29]. It has to be stressed tlt &duthors conducted both the surface and the
thermodynamic characterizations at the same expetahtemperature range, which is well
above the melting point of the studied ILs [34]v&i the fact that the studied substances
were in all cases in the liquid state and thusghabes’ interaction mechanism was bulk
absorption, the measurement temperatures usedse three studies were not appropriate for
the surface characterization of the methyl imidazolILs.

In the current contribution, we present the resaftshe IGC surface characterization of 1-
butyl-1-ethylpiperidinium bromide [§C,PIP]Br. Piperidinium based ILs is a family of ionic
liquids much less studied than those based on mulaem or pyridinium cations for example
[35]. Concerning their IGC characterizations, oaliimited number of studies have reported
the estimation of the thermodynamic properties ipepdinium-based ILs bearing anions
other than the bromide anion, or with differentyalghain appended onto the cation, as those
present in [GC4PIP]Br [36-38]. 1-butyl-1-ethylpiperidinium bromide an organic salt being
by all aspects similar to halide-based ionic liquidth the exception that its melting point is
above 373 K. Hence, IGC measurements were perfoan8d3.15-343.15 K, a temperature
range which is below the melting point of{GGPIP]Br. The energy, enthalpy and entropy of
adsorption of polar probes on the surface of thie thee dispersive component of the surface
energy and the Lewis acidity and basicity constafitfC,C,PIP]Br were determined. The
dispersive interactions were investigated with &gk of well-known methods proposed by
Dorris and Gray and by Schultz, whereas the spetiferactions of the polar probes were

calculated using the Brookman and Sawyer approaghhe Flour and Papirer method.

4
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In this article, after the theoretical backgrouedt®n and a section dedicated to detailing the

procedure used for carrying out the IGC analysisults will be presented and discussed.

2 Theoretical background

Contrary to the conventional gas chromatographyGi@, the material under study is packed
into the column where injections of carefully sédecprobes with known physicochemical
properties are made [17, 39, 40]. The probes canjéeted onto the column either at infinite
dilution or at finite concentration. In the case iofinite dilution, the injection of minor
amounts of the tested solvent makes sure thatetemtion is governed by the stationary
phase-probe interactions and the probe-probe ctters are avoided [17].

The key measurement in IGC experiments is theatehtion volume of the probésgy. It is
expressed as the volume of the carrier gas negessalute the solute from the column and is

calculated by the following equation [41]:

) T
Vy = jFy(tgr — tM)E(l —I;_‘j: (1)

wheretg, t), are the probe’s and marker’s retention times,aetbgely, F,, is the carrier gas
flow rate measured at the column outlet at amlpeegsurep, and at room temperaturg; .
Also, T is the column temperaturey,, is the vapor pressure of waterTatand;j is the James

and Martin factor used to correct the gas caroengressibility, defined as [41]:

- 3 (pi/po)z_ll 2
] =3 [(pi/po)3—1 2)

wherep; andp, are the column inlet and outlet pressures, res@gt

21 Dispersiveinteractions
The dispersive component of the surface energysaflid, y&, can be determined, using the
Dorris-Gray method [36], as described by the follmywequation:

a_(_1 —AGCH2>2
)/S (4VCH2) ( NaCHZ (3)

where AGHz is the adsorption free energy of one methylenaigrey is the Avogadro’s

number,acy, is the cross-sectional area of an adsorbed methgeup (6 A andycy,is the

surface free energy of a solid material constituigdnethylene groups only, such as linear
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polyethylene f.y, = 35.6 — 0.058t, with t being the working temperature, in °C)]. €Th

adsorption free energy of one methylene grouplmutsted by the following equation:

AGCHz = —_RT In (M) (4)

VNm)
where Vy 41y and Vy,) are the retention volumes ofalkanes with n+1 and n carbon
atoms, respectively; is the column temperature aRds the ideal gas constant. The slope of
the straight line obtained by a plot of the surfabee energy of adsorption
of n-alkanesRT InVy versus the number of their carbon atoms is equ#id free energy of
adsorption of a methylene groug ¢z,
Another method used for the calculation of the elisfye component of the surface free

energy, is the one proposed by Schultz et al. §#]is based on the following equation:

—AG, = RTInVy = 2Na /ysdyld +C (5)

wherea is the surface area of the probe moleculgsandy? are the dispersive components
of the surface energy of the solid and the liquidbe, respectively and is a constant.

y& can be extracted from the slope of the linear pfothe RT InVy values ofn-alkanes

versus the termx_|y2 .

22 Specific interactions

The non-dispersive character of the stationary @l&studied by the employment of probes
that can also interact through specific intermol@ctorces with the stationary phase. When a
polar probe is injected in the column, it interaetgh the material under study by both
dispersive and specific interactions. The term gigeincludes all types of interactions, i.e.
polar, hydrogen bonding, metallic or magnetic, agesm the dispersive ones (London
forces) [17]. Hence, the contribution of specifiteractions to the free energy of adsorption,
AGS?, can be considered as the difference betweerothkftee energy of adsorptiong %43,
and the dispersive contribution to the free enerfygdsorptionAG?. Several methods have
been proposed for the determination of Hh&? [17]. In the present studyAG°P was
calculated through the use of the Flour and Pag@ipgroach [43] and the Brookman and
Sawyer method [44]. The estimation &GP is based on a plot &G or simply RT In 'V,
values of both polar and apolar probes versus b@iing temperaturesy, in °C) according

to the Brookman and Sawyer method, or thgp®, logarithm of their saturated vapor

pressure, according to the Flour and Papirer mefhloein-alkane series leads to a linear plot,

6
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which constitutes a reference straight line for digpersive interactions. The contribution of
specific interactions to the free energy of adsorptAG®P, corresponds to the vertical
distance between theAG %S value and the reference line according to the émuat

(—AG*P) = (—AG*) — (—AG™) = RT In(Vy/Viy rer) (6)
whereVy is the net retention volume of the polar probe &pngl. - the net retention volume of
a hypothetical alkane with the same boiling poinsaturated vapor pressure as that of the
polar probe.
The specific enthalpyAH®?,can be determined after the calculation of the ifipec
component of the free energy of adsorption at wari@mperatures. When plotting thé*?
values as a function of the reciprocal temperatliré, AHS? is calculated from the slope of
the straight line corresponding to the followintaten:

AGS? /T = AH? -1/T — ASSP 7)

The enthalpies of specific interactions betweenetkeemined surface and the polar probe can
be used for the estimation of thg andKj indices reflecting the acidity (electron acceptor)
and basicity (electron donor) of a solid surfaespectively [17, 45-47] and are related to the
acidic or basic character through the equation:

—AHS?JAN* = K, - DN/AN* + Ky (8)
where DN [45] andAN* [47] are Gutmann’s donor and modified acceptor pers of the
polar probes, respectively. Hendg, and Kz can be determined by the slope and intercept,
respectively, of the straight line obtained wheaottphg AHS? /AN* versus DN/AN*. The
Ky /K, ratio provides an empirical basis for the clasatimn of a surface with respect to
acidity-basicity. At Kz /K, > 1 the surface is considered to be basic, whilekipfK, < 1

the surface is considered to be acidic [17].

3 Experimental

31 Materials

For the synthesis of the ionic liquid, 1-bromob&ai®9%), 1-ethylpiperidine (99%) and
acetonitrile were used and were purchased from &igjlarich.

For the IGC analysis, the following solvents wesed as probes: n-octane, n-nonane, n-
decane, n-undecane, n-dodecane, acetonitrile, anblit pyridine and chloroform. The
characteristics of the solvents used for the IG@lyais are presented in Table 1. All solvents

were of the highest available purity and were paseld from Sigma Aldrich. Chromosorb W



213 HP (100/120) mesh was used as the solid suppotelianFrance). All the gases used were
214  purchased from Air Liquide and were of high purity.

215

216

217

218 Table 1. Physical and chemical properties of the probes tadthe IGC analysis [27, 47-52]

Probe Boiling Saturated a Y2 DN AN~ Character
point  vapor  (10°m?) (mJ/inf) (kI mol') (kJ mol?)
O pressure

(kPa)

n-Octane 125.7 1.871 6.29 21.3 n/a n/a Neutral

n-Nonane 150.8 0.580 6.89 22.7 n/a n/a Neutral

n-Decane 174.2 0.181 7.5 23.4 n/a n/a Neutral
n-Undecane 195.9 0.056 8.1 24.6 n/a n/a Neutral
n-Dodecane 216.3 0.018 8.7 25.4 n/a n/a Neutral

n-Butanol 117.7 0.930 - - 0 38.1 Acidic

Pyridine 115.3 2.772 - - 138.6 0.6 Basic
Chloroform  61.2 26.165 - - 0 22.6 Acidic
Acetonitrile 81.6 12.147 - - 59 19.7 Amphoteric

219

220 3.2 Synthesisand characterization of 1-butyl-1-ethyl piperidinium bromide

221 1-butyl-1-ethylpiperidinium bromide (Figure 1) wagnthesized as previously reported [53].
222 Briefly, 1-bromobutane was mixed with 1-ethylpiginie in 100 mL acetonitrile at reflux for
223 2 days. The solvent was then evaporated usingaayr@vaporator. The resulting product
224 appearing as a white solid was washed several twitbsethyl acetate. After filtering, the
225  product was initially dried on a rotary evaporaimiremove the remaining solvent and then
226  dried under vacuum (~0.1 mbar) for 24 hours. Thalfproduct was obtained as a white solid.
227  Purity was checked by Nuclear Magnetic Resonaneet8scopy H NMR). The'H NMR
228 spectrum was collected on a Bruker WM 400 MHz spectter in Dimethysulfoxide
229 (DMSO-d6) as solvent. The spectrum is given inSk@plementary Material section (Figure
230 S1). The chemical shift of different protons fro@,C,PIP]Br are at: 3.36-3.30, (6H, m,
231  (CHy)s-N*, 3,6), 3.25-3.21, (2H, t, GFN*, 4), 1.77 (4H, m, 2 CK 2), 1.58-1.53 (4H, m,
232 CHy, 1,7),1.37-1.28 (2H, m, Gi8), 1.19-1.15 (3H, t, C415), 0.95-0.92 (3H, t, CH9).
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Figure 1. Structure of [GC4PIP]Br. The protons observed in the NMR spectrunrewe
identified.

The melting point of [@C4PIP]Br was assessed by Differential Scanning Qaleiry using a
TA Instruments DSC 2920 modulated DSC device. Tamapte was heated from Z5 to
250C at a heating rate of 5K/min. The DSC thermograrpresented in the Supplementary
Material section (Figure S2). The melting pointté [GC,PIP]Br was found to be 14G.

3.3  Column preparation and 1GC setup

The IGC experiments were performed using a PerkimeE Clarus 480 gas chromatograph,
equipped with a flame ionization detector (FID).eTHata acquisition was made with the
AZUR software. The retention times of the probesengetermined after the calculation of
the first-order moment of the concentration disttin. This was necessary due to the slight
“tailing” observed at the elution profile of thegtres [41]. High purity helium was used as the
carrier gas and methane was used as a markerlovhedte of helium was measured with a
soap bubble flowmeter connected to the end of thlenm, at room temperature. The
experiments were performed at infinite dilution, ibjecting manually 0.1uL of each probe
with a 1 uL Hamilton syringe. At least three injections ofckgorobe were made and the
retention time was taken as the average of thes threasurements. The standard deviation
was less than 2% in all cases.

The IGC experimental conditions and the column ati@ristics are presented in Table 2. A
stainless steel column was used for the measuremedt was washed with acetone prior to
use. The stationary phase of the column was prdpaaethe coating method proposed by Al-
Saigh and Munk in order to better control the amaifrthe salt coated on the solid support
[54]. [C.C4PIP]Br was coated onto Chromosorb W HP at a loadih@0.7% w/w. The
column was preconditioned overnight to the workeogditions (temperature and helium flow
rate) in order to remove any possible contamindrgscould be eluted during measurements.
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The protocol regarding the preparation of the columas described in detail elsewhere [50,
55, 56].

Table 2. Chromatographic conditions and column specificegio

1-butyl-1-ethylpiperidinium bromide

Injector temperature (K) 473.15

Detector temperature (K) 473.15

Column temperatures (K) 313.15, 323.15, 333.15,1%3
Column type of material SS 316 ASTM A-269
Column length (cm) 70

Column O.D (inch) 1/8

[C.C4PIP]Br loading (%) 20.7

Flow rate (mL/min) 10

4 Results

4.1  Dispersive component of the surface energy

The dispersive component of the surface energymit§l-1-ethylpiperidinium bromide was
calculated at the temperature range 313.15-343,18siKg the Dorris-Gray method and the
approach proposed by Schultz.

4.1.1 Dorris-Gray method

The slope of the line obtained when plotting ®EIn Vy values ofn-alkanes versus their
number of carbon atoms yields the free energy ebaudion of a methylene groupG ¢z as
indicated by EqQ. (4). The corresponding plot isstrated in Figure 2. The dispersive
component of the surface energy ob@zPIP]Br was calculated via Eg. (3) according to the
Dorris-Gray method. The values pf together with their maximum errors are presented i

Table 3.

10
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Figure 2. Surface free energy of adsorptionmealkanesRT InVy on [GC4PIP]Br versus

their number of carbon atoms, measured at the tenpe range 313.15-343.15 K.

4.1.2 Schultz method
Figure 3 illustrates the surface free energy ofogugn of n-alkanes RT'InVy, on

[C.C4PIP]Br as a function of the termn /yld , measured between 313.15 and 343.15 K ,

according to the Schultz method. The values ofthréace area af-alkanes and the values of
their dispersive surface energies listed in Table @¢ombination with Eq. (5) were used for

this purpose. Results are listed in Table 3.

11
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292  Figure 3. Surface free energy of adsorptionreélkanesRT InVy , on [GC4PIP]Br versus

293 a /yld measured at the temperature range 313.15-343.15 K.

294
295 Table 3. Dispersive component of the surface energy eCEIP]Br at the temperature range

296 313.15-343.15 K, obtained by the Dorris-Gray aredSlchultz methods

T (K) Dorris-Gray method Schultz method

r& (mJ/nf) R? ¥& (mJ/nf) R?
313.15 375+1.7 0.998 34.0 £1.7 0.998
323.15 35.2+0.8 0.999 31.3+x1.2 0.999
333.15 339 £1.3 0.999 29.7+14 0.998
343.15 30.6 0.7 0.999 26.3+1.0 0.999

12
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Figure 4. Variation of the dispersive component of the swefaoergy of [@C4PIP]Br with
temperature, at the temperature range 313.15-343.bbtained by the Dorris-Gray and the

Schultz methods

Focusing on Figure 2 and Figure 3 we notice thaidgbnearity was achieved for the

dependence of the free energy of adsorption wighirtbreasing number of aliphatic carbons

(Dorris-Gray method) or with the [y term (Schultz method). The dispersive component of

the surface energy of jC,PIP]Br obtained by the Dorris-Gray and the Schoigthods was
plotted as a function of temperature (Figure 43 Hre values are given in Table 3. For all
studied temperatures, high correlation coefficidRtsvalues were found. It appears that the
dispersive component of the surface energy eC}EIP]Br presents a decreasing trend with
the increase of temperature [57]. Moreover, base#ligure 4 we notice that the dependence
of y& with temperature is almost linear, and when coingathe slopes corresponding at the
descending trend obtained by both methods, we wbskat they are similar.

In addition, we notice that the® values calculated with the aid of the Dorris-Gnagthod are
higher with respect to those obtained with the 8zhmethod. The discrepancy between the
results calculated by these methods increasestentperature. This trend is in line with the
results presented in pertinent literature [58-66].

As it was mentioned in the introduction, there 1 study in literature addressing the

estimation of the dispersive surface energy of quijpgum or bromide based ILs. However,

13
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the surface tension of piperidinium ILs has beesessed by techniques other than IGC (see
Table 4).

Table 4. Surface tension values of piperidinium based Ikemafrom literature and dispersive

component of the surface energy results oCIP]Br of the present study

¥ (mJ/nf) ¥& (md/nf)
T (K) [C3CiPIP][NTf]  [C4CiPIP][NTf,] [68] [C,C4PIP]Br
(this work)
298 35.2%/ 35,31 34.2 i
303.2 34.%°7 | 35.11%% 34.0 -
313.2 34.8%8 33.5 34.0 -375
323.2 34.0% 33.0 31.3-35.2
333.2 33.58% 32.5 29.7 - 34.0
343.2 33.0% 32.1 26.3 - 30.6

Osada et al. [67] reported the surface energy ofeflryl-1-propylpiperidinium
bis(trifluoromethanesulfonyl)imide (KC.PIP][NTf;]) measured with the Dynamic Light
Scattering (DLS) technique. Bhattacharjee et aB] [@ssessed the surface energy of
[C3C1PIP][NTf,;] and [GCiPIP][NTf,] (1-Butyl-1-methylpiperidinium bis (trifluoromethy
sulfonyl)imide) by using the contact angle methdde comparison between our results (last
column in Table 4) with literature data is not ghaforward for several reasons; firstly, the
latter concern surface energy values contraryeddhmer which concern values of dispersive
surface energy. Furthermore, as it has been shibvenneasuring techniques of the surface
energy as well as the sample purity have an impathe values ofy [16, 68]. Moreover, the
anion [NTH]" ((bistrifluoromethanesulfonyl)imide) reported imetliterature is a polyatomic,
bulky and very weakly coordinating anion. It is shuery different from the small and
coordinating bromide ion studied here. On thesample, only a rough comparison between
literature data and the results of this study cenntade. As a first remark, the same
temperature dependence pfand isy& observed for all ILs, all values decrease with
increasing temperature. It is well known that theface tension depends on the contribution
of the groups which are exposed at the surfaced8p,In the case of ionic liquids, when the
cation bears long alkyl side chains and is thugibulthan the anion, the surface tension is

affected primarily by the nature of the cation [68].
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4.2  Acid-baseinteractions

The ability of the ionic liquid to intermoleculapeacific interactions with other substances is
strongly dependent on the presence of acidic asit Bédes on its surface.

The assessment of the acid-base interactions aifrface includes the calculation of the
specific component of the free energy of adsorptiba probeAG*?, the specific component

of the free enthalpy of adsorption of a proAé/? and the raticdkz /K, of the examined
surface [17]. As it has been mentioned in Sec®@) several methods have been developed
for the acid-base characterisation of a materieduph the use of the IGC technique. The

Schultz method allows the estimation/df*? through the use of the terq% , Whereas the

Papirer method and the Brookman and Sawyer meth@dased on the saturated vapor
pressures and the boiling points of the probegeas/ely. The latter two properties are
readily available in literature, contrary to thelswular area and the dispersive component of
the surface tension of polar probes. The discrgphetween the values @f anda of polar
probes appearing in literature [65, 70] is dueh® piresence of one or more functional groups
[59]. For the above reasons, although in the ptesteidy the Schultz method was employed
for the dispersive surface energy calculation offPIP]Br, the acid-base interactions were

studied with the aid of the Flour and Papirer mdtand the Brookman and Sawyer method.

4.2.1 Flour and Papirer method

Figure 5 presents the results of the energies siration ofn-alkanes and polar probes on the
surface of [GC4PIP]Br versus the logarithm of their saturated waparessure, according to

the Flour and Papirer method. The straight refexeliee defines the London dispersive

interactions, while the energies of adsorption pptabes lie above this line.
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Figure 5. Energy of adsorption af-alkanes and polar probes on the surface gC{EIP]Br
versus the logarithm of their saturated vapoursuness at 343.15 K.

The values of the specific component of the freergy of adsorptiomMG*?P of the polar
probes used in this study are high. The fact thaiAt*? values of the Lewis acidic, basic,
and amphoteric probes lie above the referencedine-alkanes suggests that all types of
active sites are present on the surface oiCJBIP]Br [71]. The highestAG®P values,

correspond to acetonitrile, which has an amphotdraracter.

4.2.2 Brookman and Sawyer method
The contribution of specific interactions to thedrenergy of adsorptioAGP of polar

probes, was calculated by the aid of the BrooknmehSawyer method, as shown in Figure 6.

10
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Figure 6. Energy of adsorption af-alkanes and polar probes on the surface eCJEIP]Br

versus their boiling temperatures, at 343.15 K.

The AG*P values obtained by both methods exhibit the saiemlt Similarly to the conclusion
extracted by the Flour and Papirer analysis, reslibw that both acidic and basic sites exist
on the surface of [£C4PIP]Br. However, the dominant character of theaefis determined
by means of theK /K, ratio.

For such an estimation, the values of the enthatpy entropy of adsorption of polar probes

on the surface of [£C,PIP]Br were calculated by the aid of Eq. (7) and &iplot ofAG*?
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values versus the reciprocal temperatufe!l. The results obtained by both methods

employed are reported in Table 5.

Table 5. Specific components of the enthalpy and entropgdsforption of polar probes on
the surface of [@C4PIP]Br at the temperature range 313.15-343.15 K

Flour and Papirer method Brookman and Sawyer method
Probe _AHS? -ASSP —AHSP -ASSP
(kJ/mol) (J/mol K) (kJ/mol) (kJ/mol K)
n-Butanol 5.59 6.48 11.31 15.56
Pyridine 7.74 6.51 9.30 8.99
Chloroform 24.07 59.58 28.73 66.41
Acetonitrile 0.63 -18.48 3.55 -13.84

The enthalpies and entropies of adsorption of pptabes on the surface of JC,PIP]Br
estimated with the Flour and the Brookman methedscamparable, with the exception of n-
butanol. The enthalpy of adsorption of all probessviound to be exothermic in all cases.
Acetonitrile which is an amphoteric probe presehéshighest enthalpy of adsorption whereas
chloroform which is acidic has the lowesi*P implying that [GC4PIP]Br is amphoteric with

a basic character. The values of the specific corapis of the entropy of adsorption of polar
probes on the surface of JC,PIP]Br follow the same trend as discussed abovetditrile
has the highesAaS?P values, indicating that the surface is amphotevioreover, we notice
that allAS*®P values are negative, with the exception of acé&itmi The adsorption of a probe
from a surface is usually accompanied by an enttogy as the probe passes from the less
ordered vapor phase to the more ordered adsorbaseplin the case of acetonitrile, the
entropy increase implies an increase in the degreé®edom which could be attributed to

the rearrangement of the surface [72].

4.2.3 Acidity and basicity constants

The values for the specific enthalpies of polagowere employed in order to evaluate the
acidity and basicity constants of JGPIP]Br. According to Eq. (8) th&, andK; constants
can be assessed by the slope and the intercepicte®ly, of a plot oAH? /AN versus
DN/AN*. Based on the values of the Gutmann’s donor andifred acceptor numbers of the
polar probes presented in Table 1 as well as theesafAHP obtained by the two methods

used,K, andKy constants were evaluated (Figures 7 and 8). Exagithe two plots we can
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420 deduce that, in both cases, linear dependenciasl 8t/ AN *versusDN /AN * were achieved,
421  based on the high values of the regression coeffisi Similar plots for the estimation of the
422 K, and Ky constants appear in literature [27, 51, 62, 68Je Tesults of the acidity and

423  basicity constants of the surface ob@GPIP]Br are reported in Table 6.
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425  Figure 7. Determination of the&l, andKy values of the of [@C4PIP]Br based on the Flour
426  and Papirer approach.
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Figure 8. Determination of theX, and K values of the of [¢C4PIP]Br based on the

Brookman and Sawyer method.

Table 6. Acidity and basicity constants of the surface ofQ&PIP]Br

Method K, Ky Kg/K,
Flour and Papirer 0.054 0.36 6.67
Brookman and Sawyer 0.065 0.52 8.00

The Kz /K, ratios calculated by the Flour and Papirer methutitae Brookman and Sawyer
method suggest that the surface of 1-butyl-1-etpghidinium bromide has a predominantly
Lewis basic character. This conclusion is in linthwhe findings of the analysis based on the
values of the energy and enthalpy of polar propessented in paragraphs 4.2.1 and 4.2.2.
Despite the fact that thé&/K, ratios are not similar, we can safely conclude that
[C.C4PIP]Br is a Lewis base, since in both casesi}&K, ratio is greater than 1.

Bearing in mind the structure of 1-butyl-1-ethyigifginium bromide, we notice that both
acidic and basic moieties are present in the mtdedds no comparable work has been
carried out previously for solid organic salts amic liquids below their melting point, neither
the comparison with literature nor the interpretatiof our results are straightforward.
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Nevertheless, a tentative explanation can be gagefollowing. Since in our case, the ions of
the salt are relatively small and bound togethes,dverall basicity of [&C4PIP]Br is due to
an average of all of its parts, i.e. the alkyl greuthe positive charge on the nitrogen atom
and the Branion. As reported previously in IGC studies deglvith polymers, Chland CH
groups are known to be weak Lewis acidic sites J&),73]. On the other hand, Bas For

CI" anions, is a dense, monoatomic and relativelytreleegative anion, and is known to be
basic [50, 74]. The positive charge on the nitroggeacidic, but is expected to be hidden and
to be sterically hindered by the alkyl groups botmdt. Therefore, we can surmise that the
general basic character of JGPIP]Br is due to the relatively dense and monoatdmbomide

anion.

Conclusions

This contribution reports for the first time on therface characterization of a piperidinium
based organic salt, 1-butyl-1-ethylpiperidinium roide, by means of IGC. Measurements
were conducted at a temperature range (313.15843.1well below the melting point of
[C.C4PIP]Br (413.15 K) to ensure that the dominant met& mechanism of the probes is
adsorption onto the surface. The Schultz and thei®Gray methods were used for the
calculation of the dispersive component of the aefenergy. Results showed thet
decreases with temperature. Moreover, the compan$dhe dispersive component of the
surface energy of [{C4PIP]Br with that of two piperidinium based ILs reded that the
results of this study are comparable with literatualues. The anion does therefore not appear
to play a crucial role in the surface energy of pigeridnium-based organic salts studied here
and in the literature. The acid/base charactedmatiased on the Flour and Papirer approach
and the Brookman and Sawyer method showed thatuttiace of [GC4PIP]Br is amphoteric
with a predominantely basic character, a conclusgibith is further supported by taking into
account the molecular structure of,{zPIP]Br bearing, both, weak Lewis acidic and basic
sites.
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