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Statistics for Gaussian Random Fields with Unknown Location and

Scale using Lipschitz-Killing Curvatures

Elena Di Bernardino∗, Céline Duval†

Abstract

In this paper we study some statistics linked to the average of Lipschitz-Killing (LK) curvatures of
the excursion set of a stationary non-standard isotropic Gaussian field X on R2. Under this hypothesis
of unknown location and scale parameters of X, we introduce novel fundamental quantities, that we
call effective level and effective spectral moment, and we derive unbiased and asymptotically normal
estimators of these parameters. Furthermore, empirical variance estimators of the asymptotic variance
of the third LK curvature of the excursion set (i.e., the area) and of the effective level are proposed.
Their consistency is established under a weak condition on the correlation function of X. Finally,
using the previous asymptotic results, we built a test to determine if two images of excursion sets can
be compared. This test is applied on both synthesized and real mammograms.

Key words: Gaussian random fields, Excursion sets, Euler characteristic, Test of Gaussianity,
Image analysis.

AMS Classification: 60G60, 62F12, 62F03, 62M40.

1 Introduction

Lipschitz-Killing (LK) curvatures are geometrical objects which permit to analyse d dimensional objects.
Considering a black and white image in dimension d = 2, there are three LK curvatures: the surface
area, the half perimeter and the Euler characteristic. Each of them brings a distinct information on
the geometry of the black (resp. white) zone. The surface area is related to its occupation density, the
perimeter to its regularity and the Euler characteristic to its connectivity.
In this paper, the images we consider are the excursion sets of the realization of a two-dimensional
Gaussian stationary and isotropic random field X above a given level u, i.e. a black and white image
indicating when the realization ofX is above or below the level u. Using random fields in the modelization
and analyzing their realizations with LK curvatures has been successfully exploited in many disciplines.
In cosmology, to study the Cosmic Microwave Background radiation (see, e.g., Casaponsa et al. (2016),
Schmalzing and Górski (1998), Gott et al. (2007)) or to analyze the distribution of galaxies (see, e.g.,
Gott et al. (2008)). The LK curvatures are also exploited in brain imaging (see Adler and Taylor (2011),
Section 5, and the references therein) or to model sea waves (see, e.g., Longuet-Higgins (1957), Wschebor
(2006), Lindgren (2000)).

The average LK curvatures of the excursion set have been studied in a wide variety of contexts and
depending on the nature of the underlying fieldsX, they can be computed explicitly (see Adler and Taylor
(2007, 2011), Biermé et al. (2019); see also Adler et al. (2012) for a focus on the Gaussian kinematic

∗Conservatoire National des Arts et Métiers, Paris, EA4629, 292 rue Saint-Martin, Paris Cedex 03, France;
elena.dibernardino@lecnam.net
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formula et Biermé and Desolneux (2016) in case X is a shot noise). The (empirical) LK curvatures
computed on an excursion set have also been studied when the size of the observation window increases.
Specific asymptotic results have been established in several cases and these results highly depend on the
nature of the underlying field X and the LK curvature considered (in the standard Gaussian random field
framework, see e.g., Estrade and León (2016) or Di Bernardino et al. (2017) for the Euler characteristic;
Bulinski et al. (2012) or Pham (2013) for the area also called sojourn times, Kratz and Vadlamani (2018),
Müller (2017) for the asymptotic joint study of all LK curvatures at the same time; in the random fields
defined on a discrete space framework, see e.g., Hug et al. (2016), Lachièze-Rey (2017), Ebner et al.
(2018)).
These asymptotic results can be considered as a starting point to derive consistent parameter estimators
and tests for the underlying field X (see Di Bernardino et al. (2017), Biermé et al. (2019), Berzin (2018)).
Note that inference methods and tests using LK curvature devices only rely on the sparse observation of
one excursion set and not on the covariance function nor on the marginal distribution of the field that
require the observation of the entire field. For this latter type of testing procedures the reader is referred
for instance to Epps (1987), Pantle et al. (2010), Nieto-Reyes et al. (2014).

Asymptotic variance estimation One practical problem encountered when calibrating testing pro-
cedures or studying the deviations of the estimators is that these quantities often depend on the unknown
asymptotic variances of the empirical LK curvatures. Having estimators of this asymptotic variance is
crucial for the statistical study of these objects, to control the deviation of the estimated quantities with
respect to their actual value and to build consistent statistical procedures. Estimation strategies are
known and used in practice in a wide range of contexts, even though there are few theoretical results.
Their consistency is established only in the case of the area if X is a Gaussian random field and un-
der conditions on the correlation function of X that are difficult to check (see Mattfeldt et al. (2011),
Bulinski et al. (2012)).

In case X is a stationary and isotropic Gaussian field whose correlation function decays polynomially (see
Assumption (A1) below), using the Itô-Wiener decomposition of Itô-Wiener chaos of the LK curvatures
jointly with the diagram formula (see Taqqu (1977)), we propose a consistent empirical variance estimator
for the empirical area. We also argue why this estimator should remain consistent to estimate the Euler
characteristic variance.

Removing the known mean and variance assumption If X is a stationary and isotropic Gaussian
random field, excursion sets can be easily simulated and the global properties of the simulated images
can be directly related to the model parameters. A large literature has been developed concerning known
mean and variance stationary Gaussian random field (typically zero mean and unit variance).
However, it seems more realistic and less restrictive in the real-life applications to consider images with
unknown location and scale parameters. Indeed, assuming that the field is, e.g., centered with unit
variance, imposes (in particular if the field is symmetric, which is the case of Gaussian fields) that the
Euler characteristic of the set is null at level u = 0 and that its area is 1/2 at this same level. Worse, if
one has only the observation of an excursion set –and not the whole field– it is often impossible to test
whether the underlying field is centered or has unit variance. It is neither possible to estimate its mean
and variance from the only observation of the excursion set.

We focus on the more realistic setting of a stationary and isotropic Gaussian random field with unknown
location and scale parameters (see Assumption (A0) below). This context has deserved only a few
attention in the literature, we can mention, for instance, David and Worsley (1995) based on the Hadwiger
characteristic. This modification that may appear minor, in fact removes all the information on the
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scaling of the field and on the locations where the excursion set shows black and white zones in comparable
proportions. In order to compare geometries of two given excursion sets, this information turns out to
be crucial and can be estimated from the LK curvatures via two quantities that we introduce in the
present paper and that we call in the sequel effective level and effective spectral moment of the field
(see Proposition 1.1, below). They contain simultaneously the knowledge of the variance and mean of
the field and of the observation level u of the considered excursion set. Notice that, if the underlying
Gaussian field X is centered with unit variance, the effective level simply coincides with the observation
level u and the effective spectral moment with the spectral moment of X.

Comparing images of exclusion sets We underline that, when one wishes to compare two different
fields from the observation of one excursion set of each, observing them at the same level u is irrelevant
if the underlying fields have distant mean and/or variance. On the contrary if these excursion sets are
observed the same effective level and effective spectral moment, comparing them using LK curvature
devices is meaningful. This behavior can be visualized in Figure 3 (left) below. This is why in Section
4.1 we propose a consistent test to decide whether two images of excursion sets have the same effective
level or not. The construction of this test makes a full use of the asymptotically normal estimator of
effective level as well as the consistent estimator of its limit variance, introduced in the present work.

Main contributions of the paper In this article, we are mainly interested in the Euler characteristic
and area as they are numerically more stable to compute (see, e.g., the discussion about the well known
numerical instability of the perimeter estimation in Biermé et al. (2019)). Moreover, as we prove results
on the asymptotic variance of the area, the numerical results in Section 4.1 rely only on this latter
quantity.

To sum up, the contributions of this paper are the following.

1. We introduce the notions of effective level and effective spectral moment for stationary non-standard
isotropic Gaussian fields. From the formulae of the average LK curvatures of the excursion sets of
such fields, we derive unbiased and asymptotically normal estimators of the effective level and the
effective spectral moment (see Propositions 2.1 and 2.2).

2. We propose an empirical variance estimator of the asymptotic variance of the area and of the
effective level and we establish their consistency (see main Theorem 3.1 and Corollary 3.1) under
a weak condition on the correlation function of the field X (see Assumption (A1)). Furthermore,
we provide arguments (see Conjectures 3.1 and 3.2) why the empirical variance estimator of the
Euler characteristic should also be consistent under an additional decay assumption (see Assump-
tion (A3)).

3. We provide a test to determine if two images of excursion sets are comparable using LK curvatures
or not (see Corollary 4.1). The performances and the practical usefulness of this test is discussed
on both synthesized and real mammograms.

Outline of the paper The paper is organized as follows. In the remaining of this section we define
the three objects of interest, i.e., the LK densities for the excursion sets of a two-dimensional Gaussian
random field which is non centered and whose variance is not necessarily one. These formulae depend on
two identifiable parameters, called effective level and effective spectral moment. In Section 2 we estimate
these parameters and establish asymptotic normality results. The associated asymptotic variances are
estimated in Section 3, using a subwindow technique. The consistency of the proposed subwindow
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empirical variance estimators is studied in Section 3.1 as well as some statistical implications in Section
3.2. In Section 4 we build a test based on the effective level to compare two images of excursion sets.
This test is put into practice in Section 4.1 on synthesized 2D digital mammograms provided by GE
Healthcare France (department Mammography) and in Section 4.2 on real digital mammograms provided
by the Mammographic Image Analysis Society (MIAS). Finally, two appendix sections gather the proofs
of the technical results (Appendix A) and some additional numerical results (Appendix B).

1.1 Definitions and preliminary notions

In the whole paper, |.| denotes equally the absolute value or the two dimensional Lebesque measure and
by | · |1 its one-dimensional Hausdorff measure, ‖.‖ denotes the Euclidian norm. We consider X being a
Gaussian field defined on R2 satisfying the following hypothesis.

(A0) The Gaussian field X is stationary, isotropic with mean E[X(0)] = µ, variance V(X(0)) = σ2 and
V(X ′(0)) = λI2 for λ > 0, the second spectral moment, σ > 0, µ ∈ R and I2 the 2 × 2 identity
matrix. Moreover, the trajectories of X are almost surely of class C3.

Denote by r the covariance function of X, i.e., for any fixed t, r(t) = Cov(X(0), X(t)) and by ρ the
correlation function ρ(t) = corr(X(0), X(t)). Under Assumption (A0) the field is suppose to be C3, then
the covariance function is C6. In some cases, e.g., to get the asymptotic normality or consistency of our
estimators, we impose additional assumptions on covariance and correlation functions of X gathered in
the following.

(A1) t 7→ ρ(t) is decreasing and |ρ(t)| ≤ (1 + ‖t‖)−γ , γ > 2.

(A2) For any fixed t in R2, the covariance matrix of the random vector (X(t), X
′
(t), X

′′
(t)) has full rank

and the covariance function r of X is such that,∫
R2

r(s) ds > 0, Mr(t)→ 0 when ‖t‖ → +∞ and Mr ∈ L1(R2) ,

where

Mr(t) = max

(∣∣∣ ∂k
∂tk

r(t)
∣∣∣; k = (i1, . . . , i`) ∈ {1, 2}`, 0 ≤ ` ≤ 4

)
and ∂kr

∂tk
(t) = ∂`

∂xi1 ...∂xi`
r(t).

Assumptions (A0), (A1) and (A2) are standard when studying limit laws of non linear functionals of
stationary Gaussian random fields.

Rectangles, denoted by T , in R2 are bounded and with non empty interior. In the following notation
T ↗ R2 stands for the limit along any sequence of bounded rectangles that grows to R2. For that, set
N > 0 and define

T (N) :=
{
Nt : t ∈ T

}
the image of a fixed rectangle T by the dilatation t 7→ Nt and then letting T ↗ R2 is equivalent to
N →∞. Then, T (N) is a Van Hove-growing sequence (VH-growing sequence, see Definition 6 in Bulinski
et al. (2012)), i.e., |∂T (N)|1/|T (N)| → 0 as N → ∞, where ∂T stands for the frontier of the set T . In
the sequel, we sometimes drop the dependency in N of the rectangle T to soften notation.
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1.2 Lipschitz-Killing curvatures of a given excursion set

Let u ∈ R. For X a real-valued stationary random field defined on R2, we consider the excursion set
within T above level u:

{t ∈ T : X(t) ≥ u} = T ∩ EX(u), where EX(u) := X−1([u,+∞)).

Definition 1.1 (LK curvatures of EX(u)). Let X be a Gaussian field satisfying Assumption (A0).
Define the following Lipschitz-Killing curvatures for the excursion set EX(u), for u ∈ R,

L2(X,u, T ) : = |T ∩ EX(u)| =
∫
T

1{EX(u)}(t) dt, (1)

L1(X,u, T ) : = |∂(T ∩ EX(u))|1 =
1

2
lim
ε→0

∫
T
δ]u−ε,u+ε[(X(t)) ‖∇X(t)‖ dt, (2)

L0(X,u, T ) : = ] connected components in T ∩ EX(u)− ] holes in T ∩ EX(u), (3)

=
1

|T |
(
](T ∩ Cextr.)− ](T ∩ Csaddle)

)
, (4)

where Cextr. =
{
t : X(t) ≥ u,∇X(t) = 0, t is a local extremum

}
, Csaddle =

{
t : X(t) ≥ u,∇X(t) = 0, t

is a saddle point
}

, δu the Dirac mass at u and ∇X is the gradient field.

These three additive functionals, Lj for j = 0, 1, 2 in Definition 1.1 are called in the literature intrinsic
volumes, Minkowski functionals or Lipschitz-Killing curvatures. Roughly speaking, for A a Borelian set
in R2, L0(A) stands for the Euler characteristic of A, L1(A) for the half perimeter of the boundary of A
and L2(A) is equal to the area of A, i.e., the two-dimensional Lebesgue measure.

In particular, when T is a bounded rectangle in R2 with non empty interior,

L0(T ) = 1, L1(T ) =
1

2
|∂T |1, L2(T ) = |T |. (5)

Using the same formalism as in Biermé et al. (2019), the normalized LK curvatures are given by

C
/T
i (X,u) :=

Li(X,u, T )

|T |
, for i = 0, 1, 2,

and the associated LK densities by

C∗i (X,u) := lim
T↗R2

E[C
/T
i (X,u)], for i = 0, 1, 2. (6)

In the case i = 2, one can easily write C∗2 (X,u) = E[C
/T
2 (X,u)] = P(X(0) ≥ u). Computationally

C
/T
2 (X,u) C

/T
1 (X,u) and C

/T
0 (X,u) in (1), (2) and (3) can be evaluated in a given image by using the

Matlab functions bwarea, bwperim and bweuler respectively. The numerical evaluation of (4) can be
obtained for instance by finding local maxima, local minima and saddle points with the Matlab function
imextrema.

Definition 1.2. Let X be a Gaussian random field satisfying Assumption (A0). We define the effective
observation level (effective level in the sequel)

su :=
u− µ
σ

and the effective second spectral moment (effective spectral moment in the sequel) of the field X

a :=
λ

σ2
.
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Using su and a as in Definition 1.2, we now compute the expected value of these empirical LK cur-
vatures of excursion sets of a Gaussian random field with unknown location and scale and derive the
corresponding LK densities.

Proposition 1.1. Let X be a Gaussian random field satisfying Assumption (A0), denote ψ(x) =
P(N (0, 1) ≥ x).Then, it holds that

E[C
/T
0 (X,u)] =

ψ (su)

|T |
+

√
a

2π
exp

{
−1

2
s2
u

}
|∂T |1
2|T |

+
a

(2π)3/2
exp

{
−1

2
s2
u

}
su,

E[C
/T
1 (X,u)] = ψ (su)

|∂T |1
2|T |

+

√
a

4
exp

{
−1

2
s2
u

}
,

E[C
/T
2 (X,u)] = ψ (su) .

Having T ↗ R2, it follows that the LK densities defined in (6) are given by

C∗0 (X,u) =
a

(2π)3/2
exp{−1

2
s2
u}su, C∗1 (X,u) =

√
a

4
exp{−1

2
s2
u}, C∗2 (X,u) = ψ (su) . (7)

Proof of Proposition 1.1 is postponed to Section A.2.

Remark 1 (Unbiased estimators for LK densities). Let u ∈ R and X be a stationary isotropic Gaussian
random field defined on R2 satisfying Assumption (A0). Assume we observe T ∩EX(u) for T a rectangle
in R2. The following quantities are unbiased estimator of C∗i (X,u) in (7) (see also Biermé et al. (2019)):

Ĉ2,T (X,u) = C
/T
2 (X,u), (8)

Ĉ1,T (X,u) = C
/T
1 (X,u)− |∂T |1

2|T |
C
/T
2 (X,u), (9)

Ĉ0,T (X,u) = C
/T
0 (X,u)− |∂T |1

π|T |
C
/T
1 (X,u) +

(
1

2π

(
|∂T |1
|T |

)2

− 1

|T |

)
C
/T
2 (X,u), (10)

2 Estimators of the effective level su and effective spectral moment a

We focus on stationary Gaussian random fields with unknown location and scale parameters. From the
LK densities given by (7) only su and a are identifiable. Comparing these values with the case of a
centered field with unit variance, one can consider su as effective observation level (effective level in
the sequel) and a as the effective spectral moment of the field X. Indeed, a comparison between two
images (with unknown and eventually different location and scale parameters) can be proposed by using
excursion sets and relative LK curvatures only if the considered level of the excursion set makes sense
in terms of mean and variance. In this sense, for a given u ∈ R, the level (resp. spectral moment) of
interest is the unknown su (resp. a) appearing Proposition 1.1. Remark that the LK densities C∗i in
Proposition 1.1 only depend on these two parameters. In this section we build consistent estimators for
su and a in Definition 1.2 relying on (8), (10) and Proposition 1.1.

Definition 2.1 (Estimators for su and a). Define the estimator of su built on the observation T∩EX(u), u
being fixed, by arg mins∈R |ψ(s)− Ĉ2,T (X,u)|, i.e.

ŝu,T := ψ−1(Ĉ2,T (X,u)). (11)
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Let T1 and T2 be two rectangles in T such that dist(T1, T2) > 0 and |T1| = |T2| > 0. Define the estimator
of a built on the observation T ∩ EX(u), u 6= µ being fixed, by

âu,T :=
Ĉ0,T1(X,u)(2π)3/2

ŝu,T2 exp{−1
2(ŝu,T2)2}

. (12)

Remark 2 (Bias for ŝu,T and âu,T ). Estimator ŝu,T in (11) is the quantile of the standard Gaussian

distribution at random level 1 − Ĉ2,T (X,u), where Ĉ2,T (X,u) defined in (8) is unbiased. It follows
that ŝu,T is biased, as the function ψ−1 is convex in (0, 0.5) (resp. concave in (0.5, 1)), then it holds

E[ŝu,T ] > su if Ĉ
/T
2 (X,u) in (0,0.5) (resp. E[ŝu,T ] < su if Ĉ

/T
2 (X,u) in (0.5,1)). The bias of ŝu,T

certainly generates a bias also in the estimation of a. This bias for ŝu,T can be assessed in Figure 9 (see
Appendix B).

Remark 3. Let X be a stationary random field, non necessarily Gaussian, with finite variance. It

holds E[C
/T
2 (X,u)] = P(X(0) ≥ u) = P

(X(0)−µ
σ ≥ su

)
=: F (su). Then, given a family for the marginal

distribution F of the field, known up two its first two moments, the effective level of the field can always

be recovered using ŝu = F−1(C
/T
2 (X,u)). This is not derived from the kinematic formula contrary to

the equation leading to the computing of a.

Proposition 2.1 (Asymptotic normality of (ŝu1,T , . . . , ŝum,T )). Let X be a Gaussian random field satis-
fying Assumptions (A0) and (A1). For a positive integer N , consider T (N) = {Nt : t ∈ T} and ŝui,T (N)

the estimator defined in (11) built on the observation T (N) ∩EX(ui), where u1, . . . , um are fixed. Then,√
|T (N)|(ŝu1,T (N) − su1 , . . . , ŝum,T (N) − sum) converges in distribution to a centered Gaussian vector with

covariance matrix (Σ2
s,(ui,uj)

)1≤i,j≤m, with Σ2
s,(ui,uj)

=
∫
R2

∫ ρ(t)
0 h(ui,uj)(r)dr dt ∈ (0,+∞), where

h(ui,uj)(r) =
1√

1− r2
exp

{
2rsuisuj − r2s2

ui − r
2s2
uj

2(1− r2)

}
.

Proposition 2.1 is a consequence of Proposition A.2 and a multidimensional version of the delta method.

In the sequel we denote by σ2
su := Σ2

s,(u,u) i.e.,

σ2
su =

∫
R2

∫ ρ(t)

0

1√
1− r2

exp

{
s2
u r

1 + r

}
dr dt ∈ (0,+∞). (13)

The function s2
u 7→ σ2

su is an increasing function, it is minimal when s2
u is minimal i.e. at u = µ. This

leads to the following result.

Corollary 2.1 (Asymptotic variance for ŝu=µ,T ). Under assumptions of Proposition 2.1, the variance
σ2
su in (13) attains its minimum at u = µ, i.e., su = 0, and this minimum is

σ2
sµ =

∫
R2

arcsin(ρ(t)) dt.

Corollary 2.1 will be useful in Sections 4.1 and 4.2, where we frequently choose the observation level u
such that the associated effective level su is null. This procedure will guarantee that the estimator has
minimal variance.
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Proposition 2.2 (Asymptotic normality of (âu1 , . . . , âum)). Let X be a Gaussian random field satisfying
Assumptions (A0), (A1) and (A2). Let T1 and T2 be two rectangles in T such that dist(T1, T2) > 0 and

|T1| = |T2| > 0. For a positive integer N , let T
(N)
i = {Nt : t ∈ Ti}, i ∈ {1, 2}. Consider âui,T (N) the

estimator defined in (12) built on the observation T (N) ∩ EX(ui), ui 6= µ being fixed, for i = 1, . . . ,m.

Then,

√
|T (N)

1 |
(
âu1,T (N) − a, . . . , âum,T (N) − a

)
converges in distribution to a centered Gaussian vector

with covariance matrix (Σ2
a,(ui,uj)

)1≤i,j≤m given by

Σ2
a,(ui,uj)

=
(2π)3

(
Σ2
C∗0 ,(ui,uj)

+ Σ2
s,(ui,uj)

(s2
ui − 1)(s2

uj − 1)C∗0 (X,ui)C
∗
0 (X,uj)

)
s2
uis

2
uj exp{−(

s2ui
2 +

s2uj
2 )}

< +∞,

with Σ2
C∗0 ,(ui,uj)

as in Proposition A.1 and Σ2
s,(ui,uj)

as in Proposition 2.1.

Proof of Proposition 2.2 is postponed to Section A.2.

Remark 4. The fact that Σ2
C∗0 ,(u,u) is nonzero for all levels u still is an open problem. In Estrade and

León (2016) the first Itô-Wiener chaos element of the series of Σ2
C∗0 ,(u,u) has been calculated for all levels

u. However, to guarantee that it is nonzero, higher order elements of this series need to be explored.
Conversely, the first Itô-Wiener chaos element of the series of σ2

C∗2 ,u
(see, e.g., Müller (2017) and Kratz

and Vadlamani (2018)) guarantees it is non degenerate for all u ∈ R.

Numerical illustrations In the following we provide an illustration of the finite sample performance
of the proposed estimator ŝu,T for several values of u (see Figure 9 in Appendix B). We consider here
M = 100 sample simulations of Gaussian random fields as in Assumption (A0) with µ = 12, σ2 = 4 and
covariance r(x) = e−κ

2‖x‖2 , for κ = 100/210 in domains of size 210 × 210 pixels.

As expected from Proposition 2.1, the quality of the consistency can be evaluated in the displayed
boxplots. Furthermore the associated asymptotic empirical variance is analysed and compared with the
theoretical one in the case of u 7→ σ2

su in (13) (see right panel in Figure 9 in Appendix B). Furthermore
a bias in the estimation of su can be observed for values of level u far form µ (see Remark 2). Similar
results have been obtained for the estimator of âu,T but they are omitted here for the sake of brevity.

3 Subwindow empirical variance estimation

3.1 Consistent variance estimator

Definition of the subwindow estimators We introduce a technique to estimate the asymptotic
variances appearing in Propositions 2.1 and 2.2. Inspired by the cutting of T (N) introduced in Pantle et al.
(2010) (see also Bulinski et al. (2012), Section 5) we consider a classical empirical variance estimator. To
establish its consistency, we decompose this estimator on domains that are infinitely distant, mimicking
the classical context of independent and identically distributed random variables.

Consider the following cutting of T (N): set MN ∈ N such that MN → ∞ as N → ∞ and consider the
grid pattern of T (N) defined by (V (N,(i,j)))1≤i,j≤MN

- such that ∪1≤i,j≤MN
V (N,(i,j)) = T (N), for (i, j) 6=

(i′, j′), V (N,(j,j)) ∩ V (N,(i′,j′)) = ∅ and |V (N,(i,j))| := rN , ∀ 1 ≤ i, j ≤ MN where rN → ∞ as N → ∞.
Observe that, whenever max{|i − i′|, |j − j′|} ≥ 2 then dist(V (N,(i,j)), V (N,(i′,j′))) → ∞ as N → ∞.

Then, by Propositions A.1 and A.2 the estimators Ĉ
/V (N,(i,j))

` (X,u), for ` ∈ {0, 2}, are consistent and
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(2i, 2j) (2i, 2j + 1) (2i, 2j + 2) (2i, 2j + 3)

(2i+ 1, 2j) (2i+ 1, 2j + 1) (2i+ 1, 2j + 2) (2i+ 1, 2j + 3)

(2i+ 2, 2j) (2i+ 2, 2j + 1) (2i+ 2, 2j + 2) (2i+ 2, 2j + 3)

S1,1

S1,1 S1,1

S1,1S1,2 S1,2

S1,2 S1,2

S1,3 S1,3S1,4 S1,4

Figure 1: Decomposition of the sum S1 in (15) in four sums.

asymptotically independent. Therefore, we estimate the asymptotic variances appearing in Propositions
A.1 and A.2 by

Σ̂2
C∗` ,(u,v) =

1

M2
N − 1

MN∑
i,j=1

ξ̂
(i,j)
N (u)ξ̂

(i,j)
N (v)−

( 1

M2
N − 1

MN∑
i,j=1

ξ̂
(i,j)
N (u)

)( 1

M2
N − 1

MN∑
i,j=1

ξ̂
(i,j)
N (v)

)
, (14)

where we define ξ̂
(i,j)
N (u) := Ĉ

/V (N,(i,j))

` (X,u), for all u ∈ R, ` ∈ {0, 2}, 1 ≤ i, j ≤ MN . The key point
is that these estimators are identically distributed, as the field X is stationary, and are asymptotically
independent whenever max{|i − i′|, |j − j′|} ≥ 2 in view of Propositions A.1 and A.2 and the fact that
dist(V (N,(i,j)), V (N,(i′,j′)))→∞, as N →∞.

Case of the area (` = 2 in Equation (14)) To the knowledge of the authors, the only result
establishing the consistency of (14), is Theorem 6 of Bulinski et al. (2012) in the case of the area (` = 2).
However, this results imposes a condition (39) on the fourth-order cumulent that is difficult to check and
for which the example provided is “a random field X with finite dependence range”, which means that
ρ = ρ1D for some finite domain D. In the following Theorem 3.1 we prove consistency of the estimator
Σ̂2
C∗2 ,(u,v) defined in (14) under Assumption (A1).

Theorem 3.1. Let X a Gaussian random field satisfying Assumptions (A0) and (A1). Let Σ̂2
C∗2 ,(uq ,uk)

as in (14) with q, k ∈ {1, . . . ,m}. Then, it holds that Σ̂2
C∗2 ,(uq ,uk)

P−→
N→∞

Σ2
C∗2 ,(uq ,uk).

Proof of Theorem 3.1. We show the consistency of estimators Σ̂2
C∗2 ,(uq ,uk) in (14), for all q, k ∈ {1, . . . ,m}.

First, note that Σ̂2
C∗2 ,(uq ,uk) is given by the difference of two terms, write

Σ̂2
C∗2 ,(uq ,uk) := S1(u, v)− S2(u)S2(v). (15)

By Proposition 2.1 and the additivity of T 7→ C
/T
2 (X,u), we get that for all u, S2(u)

P−−−−→
N→∞

C∗2 (X,u).

The remaining of the proof consists is noticing that the sum S1 can be rewritten as four sums each
composed of identically distributed terms that are asymptotically independent. Decompose S1 as follows

9



(see Figure 1) and without loss of generality assume that MN is even, then

S1 =
1

M2
N − 1

MN∑
i,j=1

ξ̂
(2i,2j)
N (uq)ξ̂

(2i,2j)
N (uk) +

1

M2
N − 1

MN∑
i,j=1

ξ̂
(2i,2j+1)
N (uq)ξ̂

(2i,2j+1)
N (uk)

+
1

M2
N − 1

MN∑
i,j=1

ξ̂
(2i+1,2j)
N (uq)ξ̂

(2i+1,2j)
N (uk) +

1

M2
N − 1

MN∑
i,j=1

ξ̂
(2i+1,2j+1)
N (uq)ξ̂

(2i+1,2j+1)
N (uk)

: = S1,1 + S1,2 + S1,3 + S1,4.

To show that S1,p − 1
4 E[ξ̂

(1,1)
N (u)ξ̂

(1,1)
N (v)]

P−−−−→
N→∞

0, 1 ≤ p ≤ 4, we show that the convergence holds in

L2. We perform computations for S1,1, other sums are treated similarly. It holds, using the stationarity
of the field, that

V(S1,1) =
1

(M2
N − 1)2

MN∑
i,i′,j,j′=1

Cov
(
ξ̂

(2i,2j)
N (uq)ξ̂

(2i,2j)
N (uk), ξ̂

(2i′,2j′)
N (uq)ξ̂

(2i′,2j′)
N (uk)

)
=

1

(M2
N − 1)2

MN∑
(i,j)6=(i′,j′)=1

Cov
(
ξ̂

(2i,2j)
N (uq)ξ̂

(2i,2j)
N (uk), ξ̂

(2i′,2j′)
N (uq)ξ̂

(2i′,2j′)
N (uk)

)
(16)

+
1

(M2
N − 1)2

MN∑
i,j=1

Cov
(
ξ̂

(2i,2j)
N (uq)ξ̂

(2i,2j)
N (uk), ξ̂

(2i,2j)
N (uq)ξ̂

(2i,2j)
N (uk)

)
. (17)

For all (i, j) ∈ {1, . . . ,MN}2, if we set G = (X − µ)/σ it holds that

ξ̂
(i,j)
N (u) = Ĉ

/V (N,(i,j))

2 (X,u) = Ĉ
/V (N,(i,j))

2 (G, su) =
L2(G, su, V

(N,(i,j)))

|V (N,(i,j))|
.

The remaining of the proof is a direct consequence of the following result.

Proposition 3.1. Let X be a Gaussian random field satisfying Assumptions (A0) and (A1) and set
G = (X − µ)/σ. Let u1, u2, u3, u4 four fixed levels in R and associated effective levels sui = (ui − µ)/σ,
for i ∈ {1, 2, 3, 4}. Let T and T ′ be such that |T | = |T ′| and dist(T, T ′)→∞. Then, it holds that,

E[L2(G, su1 , T )L2(G, su2 , T )L2(G, su3 , T
′)L2(G, su4 , T

′)] = ψ(su1)ψ(su2)ψ(su3)ψ(su4)|T |4 + o(|T |3).

Proof of Proposition 3.1 is postponed to Section A.3. Proposition 3.1 ensures that (16) goes to 0. Let
(i, j) 6= (i′, j′) ∈ {1, . . . ,MN}4 and T = V (N,(i,j)) and T ′ = V (N,(i′,j′)), for which for N large enough it
holds dist(V (N,(i,j)), V (N,(i′,j′))) > 1 and |V (N,(i,j))| = |V (N,(i′,j′))| → ∞ as N →∞, then we derive

lim
n→∞

Cov
(
ξ̂

(2i,2j)
N (uq)ξ̂

(2i,2j)
N (uk), ξ̂

(2i′,2j′)
N (uq)ξ̂

(2i′,2j′)
N (uk)

)
= 0.

This implies that (16) goes to 0 as N → ∞ using Cesàro Lemma. Moreover, Equation (17) vanishes
using that |ξ̂N | ≤ 1 alsmost surely, implying (17) is bounded by M2

N/(M
2
N − 1)2 → 0, as N →∞. This

implies that V(S1,1) → 0 as N → ∞ using Cesàro Lemma. The same behaviour holds true for V(S1,p)
for all p ∈ {1, 2, 3, 4}, implying the desired result in Theorem 3.1.
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Discussion Theorem 3.1 establishes consistency of this subwindow variance estimator in the case of
the area under Assumption (A1). This assumption seems weak as it is the same assumption as the one
imposed to get the asymptotic normality of Ĉ2(X,u) (see Theorem 4 of Bulinski et al. (2012)).

Establishing Theorem 3.1 is more difficult than it may seem; since the quantities (ξ̂
(i,j)
N )i,j depend on

the asymptotic N , we cannot apply ergodic theorems. Moreover, no inequality permits to upper bound

the covariance between the (ξ̂
(i,j)
N )i,j by a function the covariance function ρ of the field, which would

lead to more direct arguments.

A key element in the proof of Theorem 3.1 is Proposition 3.1 which is similar to the constraint (39) of
Bulinski et al. (2012). More precisely, in Proposition 3.1 we control covariances terms between distant
domains. Proof of Proposition 3.1 relies on two ingredients: i. the Itô-Wiener chaos decomposition of
L2(X,u, T ) and ii. the diagram formula (see Taqqu (1977), Lemma 3.2) applied up to the dimension
4. This diagram formula in dimensions 3 and 4 yields to technical and lengthly computations where the
constraint dist(V (N,(i,j)), V (N,(i′,j′)))→∞ as N →∞, and the cutting of T (N), plays a crucial part.

In the result below, we provide a direct consequence of Theorem 3.1: the consistency of the estimator
for Σ2

s,(ui,uj)
, introduced in Proposition 2.1.

Corollary 3.1. Let X a Gaussian random field satisfying Assumptions (A0) and (A1). Define, the
estimator of Σ2

s,(ui,uk), where (i, k) ∈ {1, . . . ,m}2, by

Σ̂2
s,(ui,uk) = 2π exp

{1

2
(ŝ2
ui + ŝ2

uk
)
}

Σ̂2
C∗2 ,(ui,uk), (18)

with ŝu := ŝu,T (N) as in Proposition 2.1. Then, it holds that, for (i, k) ∈ {1, . . . ,m}2,

Σ̂2
s,(ui,uk)

P−→
N→∞

Σ2
s,(ui,uk).

Case of the Euler characteristic (` = 0 in Equation (14)) In the case of the Euler characteristic
(` = 0), the same proof should generalize under the following additional assumption.

(A3) Suppose that Assumption (A2) holds true with |Mr(t)| ≤ CM/(1 + ‖t‖)γ where CM is a positive
constant and γ > 2.

Indeed there is a Itô-Wiener chaos decomposition of L0(X,u, T ) (see Section A.4) with similar properties
on the coefficients. However, computing the fourth moment with this chaos decomposition would imply
to use the diagram formula in dimensions 18 and 24, which become extremely technical and burdensome.
Therefore, we give in Appendix A.4 some ingredients to establish the following Conjecture 3.1 which is an
equivalent of Proposition 3.1 in the case of the Euler characteristic having for all (i, j) ∈ {1, . . . ,MN}2,

ξ̂
(i,j)
N (u) = Ĉ

/V (N,(i,j))

0 (X,u) =
L0(X,u, V (N,(i,j)))

|V (N,(i,j))|
.

The missing step in the proof to have the result is the computation of the diagram formula in dimensions
18 and 24.

Conjecture 3.1. Let X a Gaussian random field satisfying Assumptions (A0) and (A3). Let T and T ′

be such that |T | = |T ′| and dist(T, T ′)→∞. Let u1, u2, u3, u4 four fixed levels in R. Then it holds that

E[L0(X,u1, T )L0(X,u2, T )L0(X,u3, T
′)L0(X,u4, T

′)]

=
a4

(2π)6
exp{−1

2
(s2
u1

+ s2
u2

+ s2
u3

+ s2
u4

)}su1su2su3su4 |T |4 + o(|T |4),

where a denotes the effective spectral moment of X in Definition 1.2.
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Mimicking the proof of Theorem 3.1, we derive that a consequence of Conjecture 3.1 is that

Σ̂2
C∗0 ,(uq ,uk)

P−→
N→∞

Σ2
C∗0 ,(uq ,uk). (Conjecture)

Then, using (Conjecture), one can conjecture the consistency of the estimator for Σ2
a,(ui,uj)

, introduced

in Proposition 2.2.

Conjecture 3.2. Let X a Gaussian random field satisfying Assumptions (A0), (A1) and (A3). Define
the estimator of Σ2

a,(ui,uk), where (i, k) ∈ {1, . . . ,m}2,

Σ̂2
a,(ui,uk) =

(2π)3
(

Σ̂2
C∗0 ,(ui,uk) + Σ̂2

s,(ui,uk)(ŝ
2
ui − 1)(ŝ2

uk
− 1)Ĉ0,T (N)(X,ui)Ĉ0,T (N)(X,uk)

)
ŝ2
ui ŝ

2
uk

exp
{
−
( ŝ2ui

2 +
ŝ2uk
2

)} ,

with ŝu := ŝu,T (N) as in Proposition 2.1, Σ̂2
s,(ui,uk) as in (18) and Ĉ0,T (N)(X,uk) as in (10). Then,

Σ̂2
a,(ui,uk)

P−→
N→∞

Σ2
a,(ui,uk).

3.2 Statistical implications and numerical illustrations

In this section we consider several useful applications of theoretical results provided in Sections 2 and
3.1. Indeed, the asymptotically Gaussian estimators of the unknown location and scale parameters and
the subwindow empirical variance estimators are used in the following to build a test of Gaussianity
using LK densities (see Section 3.2.1). An asymptotic interval for the unknown location µ is given in
Section 3.2.2.

3.2.1 A Gaussianity test for non standard fields

Here we generalize the test of Biermé et al. (2019) in cases where the field is not supposed to be centered
and with unit variance. We test the assumption

H0 : X is Gaussian field with unknown mean and unknown variance,

where X is a Gaussian field satisfying Assumptions (A0) and (A2). Consider the quantities

R(u1, u2) :=
C∗0 (X,u2)

C∗0 (X,u1)

under H0=
su2

su1

exp{−1

2
(s2
u2
− s2

u1
)} := RH0(u1, u2).

This ratio is empirically accessible provided the field is observed at two distinct levels u1 and u2,

R̂T (u1, u2) :=
Ĉ0,T (X,u2)

Ĉ0,T (X,u1)
. (19)

We establish below a central limit theorem for R̂T (u1, u2). Notice that one can readily establish a CLT

for
√
|T |
(
R̂T (u1, u2)−RH0(u1, u2)

)
using, for instance, Proposition A.1, but as RH0(u1, u2) is unknown,

this CLT does not allow to determine a rejection level. Define

R̂H0
T (u1, u2) :=

ŝu2

ŝu1

exp
{
− 1

2

(
ŝ2
u2
− ŝ2

u1

)}
. (20)

For technical reasons, we estimate R̂T1(u1, u2) and R̂H0
T2

(u2, u1) on rectangles T1 and T2 that are asymp-
totically infinitely distant so that both excursion sets are asymptotically independent and lead to inde-
pendent estimators.
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Proposition 3.2. Assume that X is a Gaussian field satisfying Assumptions (A0), (A1) and (A2).
Let u1, u2 6= µ being fixed. Let T1 and T2 be two rectangles in R2 such that dist(T1, T2) > 0 and

|T1| = |T2| > 0. For any positive integer N , we define T
(N)
i = {Nt : t ∈ Ti}, for i = 1, 2. Then, under

H0 it holds that √
|T (N)

1 |
(
R̂
T

(N)
1

(u1, u2)− R̂H0

T
(N)
2

(u1, u2)
) d−−−−→
N→∞

N (0, σ2
Ru1,u2

),

where σ2
Ru1,u2

<∞ and R̂T1(u1, u2) (resp. R̂H0
2 (u1, u2)) is defined as in (19) (resp. in (20)) built on the

observation T
(N)
1 ∩ EX(u1) and T

(N)
1 ∩ EX(u2) (resp. T

(N)
2 ∩ EX(u1) and T

(N)
2 ∩ EX(u2)).

Proof of Proposition 3.2 is postponed to Section A.2.

Subwindow empirical estimation of variance σ2
Ru1,u2

We provide a normalized version of Propo-

sition 3.2, we built a consistent estimator for σ2
Ru1,u2

, i.e.,

σ̂2
Ru1,u2

= σ̂2
g(C∗0 ),(u1,u2) + σ̂2

h(s),(u1,u2) := V̂(R̂
T

(N)
1

(u1, u2)) |T (N)
1 |+ V̂(R̂H0

T
(N)
2

(u1, u2)) |T (N)
2 |. (21)

Consistent estimators for V(R̂T (N)(u1, u2)) and V(R̂H0

T (N)(u1, u2)) are obtained using the subwindows

technique of Section 3.1. Define σ̂2
h(s),(u1,u2) in (21) by

σ̂2
h(s),(u1,u2) = e−(ŝ2u2

−ŝ2u1
)
[
σ̂2
su2

(
1−ŝ2u2
ŝu1

)2
+ 2 Σ̂2

s,(u1,u2)

(
1−ŝ2u2
ŝu1

)(
ŝu2 −

ŝu2
ŝ2u1

)
+ σ̂2

su1

(
ŝu2 −

ŝu2
ŝu1

2)2]
,

with ŝui := ŝ2

ui,T
(N)
2

defined in (11) , Σ̂2
s,(u1,u2) and σ̂2

sui
as in Corollary 3.1. From Proposition 2.1 and

Corollary 3.1, it holds that σ̂2
h(s),(u1,u2)

P−→
N→∞

σ2
h(s),(u1,u2). Similarly, define σ̂2

g(C∗0 ),(u1,u2)

σ̂2
g(C∗

0 ),(u1,u2)
=

σ̂2
C∗

0 ,u2

Ĉ
0,T

(N)
1

(X,u1)2
− 2

Ĉ
0,T

(N)
1

(X,u2)

Ĉ
0,T

(N)
1

(X,u1)3
Σ̂2

C∗
0 ,(u1,u2)

+
Ĉ

0,T
(N)
1

(X,u2)2

Ĉ
0,T

(N)
1

(X,u1)4
σ̂2
C∗

0 ,u1
,

with Ĉ
0,T

(N)
1

(X,ui) as in (10) and Σ̂2
C∗0 ,(u1,u2) as in (Conjecture).

Take a confidence level α ∈ (0, 1) and set q1−α
2

such that P(|N(0, 1)| ≤ q1−α
2
) = 1 − α

2 . We define the
symmetric test φT (N) with asymptotic level α as

φ
T

(N)
1 ,T

(N)
2

= 1
√√√√ |T (N)

1 |
σ̂2
Ru1,u2

∣∣∣R̂
T

(N)
1

(u1,u2)−R̂H0

T
(N)
2

(u1,u2)

∣∣∣≥q1−α2

,

where σ̂2
Ru1,u2

is the consistent variance estimator built before.

Comments The test statistics is well define for all level u 6= µ, similarly to Biermé et al. (2019)
where we could not use the level u = 0. Here µ is unknown and choosing u1 close to µ will make
the ratio R̂T (u1, u2) unstable. A solution is to modify the test statistics and consider the difference
R̃T (u1, u2) = Ĉ0,T (X,u2)− Ĉ0,T (X,u1) instead. The test could be modified accordingly at the expense
of more tedious calculations, in particular due to the fact that the unknown quantity a := λ

σ2 will appear

in the test statistics R̃T (u1, u2) under H0.
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Furthermore, under H0 we do not impose any constraint on the shape of the covariance function nor
on the spectral moment other than Assumptions (A1) and (A2). In particular, the spectral moments of
X under H0 and the alternative hypothesis can be different. However, contrary to the case where the
field is centered with unit variance (see Biermé et al. (2019)), the test statistic under H0 depends on
unknown quantities (µ, σ2).

3.2.2 Asymptotic interval for µ

We propose the following construction for an interval containing the unknown location µ of the field
based on the observations T ∩ EX(u1), for J fixed levels u1 < . . . < uJ .

Procedure to build interval for the unknown location of the field

Input :

Let J ∈ N be fixed, the field X is observed at levels u1 < . . . < uJ .

Estimation :

Let σ̂2
suj

:= Σ̂2
s,(ui,ui)

, with j ∈ {1, . . . , J} and Σ̂2
s,(ui,ui)

as in (18).

Define ĵ = argmin
j∈{1,...,J}

σ̂2
suj

and

ĵ±1 =

ĵ + 1 if σ̂2
su
ĵ+1
≤ σ̂2

su
ĵ−1

ĵ − 1 if σ̂2
su
ĵ−1
≤ σ̂2

su
ĵ+1

,

Final output :

The following interval contains µ with large probability: Iµ :=
[

min{uĵ , uĵ±1},max{uĵ , uĵ±1}
]

with convention that if ĵ = 0, Iµ := [−u1, u0] and if ĵ = J , Iµ := [uJ ,−uJ−1].

Proposition 3.3. It holds that P
(
µ ∈

[
min{uĵ , uĵ±1},max{uĵ , uĵ±1}

])
−→
T↗R2

1.

Proof of Proposition 3.3 is postponed to Section A.2.

4 Test to compare two images of excursion sets

Let Y and Z be two stationary Gaussian fields satisfying Assumptions (A0) and (A1) with possibly
different mean, variance, spectral moment or correlation function. Suppose one has two images of the
excursion sets of these fields observed at the respective levels uY and uZ and wants to know if it is
possible to compare the Lipshitz-Killing curvatures of theses two images, i.e. one want to test whether
the effective level of Y (denoted by suY (Y )) is equal to the effective level of Z (denoted by suZ (Z)):

H0 : suY (Y ) = suZ (Z) H1 : suY (Y ) 6= suZ (Z).

Introduce the quantity S(Y,Z) := suY −suZ and ŜT (N)(Y,Z) := ŝuY ,T (N)− ŝuZ ,T (N) its empirical counter-
part. Notice that S(Y, Z) = 0 under the null hypothesis. We can now state the auto-normalised central
limit theorem for the test statistics ŜT (N)(Y, Z).
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Corollary 4.1. Let X be a Gaussian random field satisfying Assumptions (A0) and (A1). It holds that√
1

Σ̂Y,Z

ŜT (N)(Y,Z)
d,H0−−−−→
N→∞

N (0, 1), where Σ̂Y,Z = σ̂2
s,uY

+ σ̂2
s,uZ

,

with σ̂2
s,uY

:= Σ̂2
s,(uY ,uY ) ( resp. σ̂2

s,uZ
:= Σ̂2

s,(uZ ,uZ)), the consistent estimator of the variance in (18).

Corollary 4.1 is proved by using Proposition 2.1, Corollary 3.1 and Theorem 3.1. Notice that due to the
independence of the two consider images, we get a simplified expression for the asymptotic variance.

Let q1−α
2

such that P(|N(0, 1)| ≤ q1−α
2
) = 1 − α

2 . Finally, we introduce the symmetric test φT (N) with
asymptotic level α:

φT (N) = 1{√
1

Σ̂Y,Z

∣∣∣Ŝ
T (N) (Y,Z)

∣∣∣≥ q1−α2 }. (22)

In the following, we evaluate the performances of the proposed test φT (N) in (22) on simulated mam-
mograms (from a digital texture model, see Section 4.1) and on real mammograms (from mini-MIAS
database, see Section 4.2). In particular, we aim to test whether the effective level of an image is equal
to the effective level of another one.

4.1 Comparing images of excursion sets: a synthetic mammograms study

The data-set In this section we consider images from a recent solid breast texture model inspired by
the morphology of medium and small scale fibro-glandular and adipose tissue observed in clinical breast
computed tomography (bCT) images (UC Davis database). Each adipose compartment is modeled as a
union of overlapping ellipsoids and the underlying dynamic is dictated by a spatial marked point pro-
cess. The contour of each ellipsoid is blurred to render the model more realistic (for details see Li et al.
(2016), Section 2.2 and Figure 1). Finally, the synthetic mammograms images were simulated by x-ray
projection. Evaluation provided in Li et al. (2016) has shown that simulated mammograms and digital
breast tomosynthesis images are visually similar, according to medical experts.

We consider 15 simulated 2D images generated by this texture model. The images were kindly provided
by GE Healthcare France, department Mammography. From a clinical point of view, radiologists use the
Breast Imaging Reporting and Data System (or BI-RADS) to classify breast density into four categories.
They go from almost all fatty tissue to extremely dense tissue with very little fat. In this latter category,
it can be hard to see small tumors in or around the dense tissue. The images we studied belong to three
morphologic situation groups :

(F) Almost entirely adipose breasts;

(FG) Scattered fibro-glandular dense breasts;

(D) Heterogeneously dense breasts.

The first image from each group is reported in Figure 2. As observed in Section 3 in Li et al. (2016), these
simulated digital mammograms from groups (F), (FG) and (D) show a high visual realism compared to
real images in these 3 different clinical situations (see also Figure 5).
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Figure 2: Synthetic digital mammograms study. Image 1.F from group (F) (left), 1.FG from group (FG)
(center) and 1.D from group (D) (right). Image size: 251× 251.

Importance of the effective level In Figure 3 (left) we estimate the effective levels ŝu for different
values of u. One can appreciate that the estimated effective levels are different for each group of
mammograms. Moreover, it seems there exists an order between the three groups of mammograms in
terms of effective levels. This means that if one want to compare images from different groups, one
cannot use the same value of u to perform the comparison. Indeed, in Figure 3 (right-up) we display
the excursion sets of the first image of each groups (denoted image 1.F, 1.FG and 1.D in Figure 2) for
the same fixed level u = 2200. The resulting excursion sets look completely different from one group
to the other. However this difference is not necessarily the result of a intrinsic difference between the
images, but a problem in the calibration of the level u used for the comparison. On this example, as
we observed in Figure 3 (left) a difference between the groups of effective levels, we calibrate a level
u for each group such that they all have an effective level close to 0, i.e., adaptive levels ũ, such that
|ŝũ| < ε, for ε = 10−2. Notice that this choice guarantees a minimal variance for the estimated effectively
level (see Corollary 2.1). Figure 3 (right-down) is obtained by considering ũ1.F = 2133, ũ1.FG = 2291,
ũ1.D = 2518.
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Image 1.FG
50 150 250

50

100

150

200

250

Image 1.D
50 150 250

50

100

150

200

250

Figure 3: Synthetic digital mammograms study. Left: Estimated ŝu for several values of u for each
image: group (F) in blue curves, (FG) in green curves and (D) in red ones. Right: Excursion sets for
a fixed level u = 2200 (first row) and for the three adaptive levels ũ, such that for each ũ it holds that
|ŝũ| < ε, for ε = 10−2 (second row).
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We observe now that the excursion sets in Figure 3 (right-down) look visually similar. Moreover, at
these levels ũ, we theoretically expect to get estimated Euler characteristic values close to zero (see
Equation (7)). This behavior is illustrated in the boxplots gathered in Figure 10 in Appendix B. Then,
any geometric estimated quantity (as for instance the Lipshitz-Killing curvatures) on these excursion
sets cannot be compared at the same levels but at the same effective levels.

Testing two images of excursion sets We now test for the 1.F, 1.FG, 1.D images in Figure 2:

H0 : sũY (Y ) = sũZ (Z) versus H1 : sũY (Y ) 6= sũZ (Z), (23)

for Y,Z ∈ {1.F,1.FG, 1.D}, where ũY and ũZ are the adaptive levels previously defined and such that
|ŝũ| < 10−2, i.e., the associated Ĉ0,T (ũ) is zero (see right panel of Figure 3 and boxplots in Figure 10).

Indeed, for these levels ũ1.F , ũ1.FG, ũ1.D, the p−values of the test (23), gathered in Table 1 below, lead
to accept the H0 hypothesis. This preliminary adjustment of the image level is necessary to properly
compare the excursion sets. In case only two excursion sets are available and not the whole images, this
test (23) can be a preliminary prerequisite to determine whether or not it is legitimate to perform a
comparison between these images.

1.F versus 1.FG 1.F versus 1.D 1.FG versus 1.D

0.9858 0.9511 0.9642

Table 1: Synthetic digital mammograms study. p−values associated to the test H0 : sũY (Y ) = sũZ (Z)
for excursion sets in Figure 3 (right, second row) with ũ1.F = 2133, ũ1.FG = 2291, ũ1.D = 2518.

We now consider 1000 different values of u and for each u we perform the following test

H0 : su(Y ) = su(Z) versus H1 : su(Y ) 6= su(Z), (24)

for Y, Z images of this synthetic mammograms data-set. Notice that, contrary to the test (23), we did
not previously choose adaptive levels. Then the test (24) is performed for possible different effective
levels su. In Table 2 we display the number of p−values associated to the 1000 values of u that are
smaller than the significant level α = 0.2. In particular we perform an intra-class analysis (left panel in
Table 2 in Appendix B) and an inter-classes analysis (right panel in Table 2 in Appendix B).

In the intra-class analysis only tests involving the image 5.F lead to a number of p−values slightly larger
than α×1000 = 200, for which H0 is rejected1. In all the other cases, the test accepts the H0 hypothesis
(see left-side Table 2). Conversely in the inter-classes analysis all the obtained numbers of p−values are
much higher than 200 (right-side table). This means that, to properly compare excursion set of a given
level u for images belonging to different classes, a previous effective level scaling is necessary.

Finally, we provide a graphical illustration of the test in (24) for three couple of images (2.F and 3.F,
first panel; 1.F versus 5.D, second panel; 1.F and 3.FG, third panel). In bold marked points we represent
the cases when the test (24) rejects H0 for at level α = 0.2. These points are drawn on the estimates
ŝu, for 1000 values of u. Coherently, the test accepts H0 (see Table 2) in the first panel of Figure 4
(intra-classes analysis) excepted for some extreme values of level u. Conversely, the test (24) rejects the
H0 hypothesis for the values of u in the consider grid in the last two panels of Figure 4 (inter-classes
analysis).

1The same atypical behavior for figure 5.F has been previously observed in Biermé et al. (2019), where the same data-set
is studied.

17



Levels u
1900 2000 2100 2200 2300 2400 2500

ŝ
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Figure 4: Synthetic digital mammograms study. Estimation of ŝu for 1000 different values of u and
couples of images: 2.F and 3.F (first panel); 1.F versus 5.D (second panel); 1.F and 3.FG (third panel).
In bold marked points we represent the cases where the test (24) rejects H0 for a significant level α = 0.2.
Group (F) is displayed using blue curves, (FG) green curves and (D) red ones.

4.2 Comparing images of excursion sets: a real digital mammograms study

The data-set The Mammographic Image Analysis Society (MIAS) is an organisation of UK research
groups interested in the understanding of mammograms and has produced a database of real digital
mammograms. The range of intensity in all images is represented from 0 to 255 and we consider images
size of 250 × 250 pixels. We study 211 mammograms classified in terms of the character of background
tissue: fatty tissue group (F) (66 images), fatty-glandular (FG) (67 images), and dense (D) (77 images).
Mammographic images are available online: http://peipa.essex.ac.uk/info/mias.html (see also
Suckling et al. (1994)). One image of each group is displayed in Figure 5.
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Figure 5: Real digital mammograms study. Image from group fatty background tissue (F) (left), from
group fatty-glandular (FG) (center) and from group dense (D) (right). Image size: 251× 251.

Inference and testing for effective level For this real mammograms data-set, similarly to Figure
4, we perform test in (24) and we display in bold marked points the cases when the test rejects H0 for
a significant level α = 0.2 (see Figure 6 below). These points are drawn on the estimates ŝu, for the
considered values of u. For the sake of brevity we only display here the inter-classes analysis. Notice
that in the first panel of Figure 6 we choose the difficult comparison between the two closest images
between groups F and FG.

Remark that the H0 hypothesis is accepted for almost all the level u in the considered grid in the first
and the last panels of Figure 6, due to the visible proximity of the effective levels ŝu. In the second, third
and fourth panel, the H0 hypothesis is rejected for all u and the associated excursion sets can not be
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Figure 6: Real digital mammograms study. Estimation of ŝu for several levels u an a couple of images.
From left to right: 1.F versus 1.FG, 1.F versus 1.D, 1.FG versus 1.D, 27.F versus 19.FG, 27.F versus
20.D, 19.FG versus 20.D. In bold marked points we represent the relative u values such that the test
(24) rejects H0 for a significant level α = 0.2. Group (F) is displayed using blue curves, (FG) green
curves and (D) red ones.

compared without a preliminary image processing. The fifth panel in Figure 6 represents an interesting
hybrid situation. Almost everywhere H0 is rejected except for a small interval of u’s values where H0 is
accepted. In this small range of u, the relative excursion sets can be considered visually similar.

Analogously to Table 2 in Appendix B, we now perform the test (24) to compare all possible combinations
of excursion sets of images in this data-set in a grid of 200 values of level u ∈ [100, 240]. In boxplots
of Figure 7 we gathered of number of p−values that are smaller than the significant level α = 0.2. The
reference value is represented by the horizontal line at level α× 200 = 40, above which H0 is rejected.
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Figure 7: Real digital mammograms study. Intra and inter-classes analysis for the test to comparing
images from the consider 3 groups. We display the boxplots of number of p−values associated to the
200 different values of u ∈ [100, 240] that are smaller than the significant level α = 0.2. In horizontal
line we display the reference threshold α× 200 = 40, above which H0 is rejected.

As one can expect, in Figure 7 we observe differences in terms of the medians and of the variances: the
intra-classes boxplots (first three boxplots) have smaller median and variance values with respect to the
inter-classes ones (last three boxplots). As in Section 4.1, this study suggests that the effective level
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scaling procedure seems to be necessary especially in the comparison of two images of excursion sets
belonging to two different background tissue groups.

5 Conclusions and discussion

In this paper, we have presented new statistics based on the average LK curvatures of the excursion set
of a stationary non-standard isotropic Gaussian field X on R2, in particular on the Euler characteristic,
the half perimeter and the area. These tools allow to built consistent inference procedures based only
on a sparse observation of the Gaussian 2D random field with unknown location and scale parameters.
A byproduct is the construction of a test to determine if two images of excursion sets can be compared.
Here we discuss some potential improvements of the results proposed in this work.

Firstly, notice that in Sections 3.2 and 4, our testing procedure results relied mostly on the area and not
on the Euler characteristic devise. The reason being that for the Euler characteristic we did not fully es-
tablish the consistency of its asymptotic variance estimator, therefore limiting the possibility to properly
calibrate statistical procedures. If Conjecture 3.1 was proved, this would enlarge the options for testing

and inference. Besides, if a joint auto-normalized central limit theorem for
(
C
/T
0 (X,u), C

/T
2 (X,u)

)
was

available, this would imply results on the joint behavior of (ŝu,T , âu,T ) in Definition 2.1 and the possibility
to build consolidated tests using both quantities.

Secondly, inspired by the analysis of Sections 4.1 and 4.2, the effective level could be useful to build a
“classification criterion” between the three groups (F), (FG) and (D). Indeed, the estimated ŝu seems
globally able to distinguish images coming from different groups relying exclusively on the sparse infor-
mation of the excursion set with a same level u.
To explore this idea, in Figure 8 we represent for the real digital data-set the adaptive level u (y axis)
for all considered 211 images such that the estimated effective level ŝu is approximated equal to δ, for
several values of δ and where the different groups are distinguished in notation.
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Figure 8: Real digital mammograms study. Adaptive level u (i.e., level u such that su is close to a given
value δ, y axis) for all images (x axis), such that |ŝu− δ| < ε, for ε = 10−2 and δ = 0 (first panel) δ = 0.5
(second panel), δ = 1 (third panel) and δ = 3 (fourth panel). Images from group fatty (F) are displayed
by blue starts, fatty-glandular group (FG) by green crosses and dense group (D) by red points.

Visually, it appears that for small values of δ (i.e., for intermediate values of u) the groups might be
classified from their effective level. Obviously, for large values of δ (i.e., for extreme values of u) the
quality of the separation of groups is less good, as one can expect (see last panel of Figure 8). Moreover,
one can expect that for large values of the level u, the obtained classes will be more distant also due to
the large variance of the effective level estimator (see Corollary 2.1). However globally, this tool seems
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adequate to recognize the underlying background breast tissue. However an investigation on a rigorous
classification procedure based on effective levels remains an open point and is left for future works.

Finally, in the present paper, the empirical estimator of the variance is obtained from the cutting
of the domain T (N), as described in Section 3.1 and illustrated in Figure 1. While the theoretical
constraints of the cutting procedure are clear, its practical and numerical implementation has to be
treated carefully. Indeed we need simultaneously that MN → ∞ (i.e., a large number of subwindow
domains) and that dist(V (N,(i,j)), V (N,(i′,j′)))→∞ (i.e., the size of each subwindow domain is large).
As previously described in Bulinski et al. (2012), this is the crucial and well known compromise between
variance and bias. Indeed, Bulinski et al. (2012) provide a numerical study in the very specific case of
a spherical covariance model to find the best subwindow size in order to minimize the mean error for
the variance estimator for three intermediate levels u. The appropriate size and the form (e.g., square,
rectangular, . . . ) of the subwindow is a crucial issue in applications (see Section 4). Furthermore, the
cutting of T (N) has to guarantee that in each subwindow one can find observations of the excursion set
at the chosen level u ∈ R. Then, the subwindow procedure is also implicitly related to the choice of the
(intermediate, large or extremes) value of observation level u.
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Azäıs, J. M. and Wschebor, M. (2009). Level sets and extrema of random processes and fields. John
Wiley & Sons.

Berzin, C. (2018). Estimation of Local Anisotropy Based on Level Sets. ArXiv e-prints:1801.03760.
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A Proofs

A.1 Preliminary results

In the following we prove two auxiliary consistency results for Ĉ0,T (N)(X,u) and Ĉ2,T (N)(X,u).

Proposition A.1. Let X be a Gaussian random field satisfying Assumptions (A0) and (A2).
(i) Let T1, . . . , Tm be m cubes in Rd such that |T1| = . . . = |Tm| and dist(Ti, Tj) > 0 for all i 6= j ∈
{1, . . . ,m}2. Let u1, . . . , um be m levels in R, for any integer N > 0 and Ĉ

0,T
(N)
i

(X,ui) as in (10), let

Q
(N)
i :=

√
|T (N)
i | (Ĉ

0,T
(N)
i

(X,ui)− C∗0 (X,ui)), for i ∈ {1, . . . ,m}.

As N → +∞,
(
Q

(N)
i , . . . , Q

(N)
m

)
converges in distribution to a centered Gaussian vector with covariance

matrix diag(σ2
C∗0 ,u1

, . . . , σ2
C∗0 ,um

) where σ2
C∗0 ,ui

< +∞, ∀i ∈ {1, . . . ,m}.

(ii) Let T be a cube in Rd, u1, . . . , um be m levels in R. For any integer N > 0 and Ĉ0,T (N)(X,ui) as in
(10), let

S
(N)
i :=

√
|T (N)| (Ĉ0,T (N)(X,ui)− C∗0 (X,ui)), for i ∈ {1, . . . ,m}.

As N → +∞,
(
S

(N)
1 , . . . , S

(N)
m

)
converges in distribution to a centered Gaussian vector with covariance

matrix
(
Σ2
C∗0 ,(ui,uj)

)
1≤i,j≤m with Σ2

C∗0 ,(ui,uj)
< +∞, for i, j ∈ {1, . . . ,m}.

Proof. Let i ∈ {1, . . . ,m}. The ith coordinate of the considered multivariate central limit theorem can
be written using the following decomposition

Q
(N)
i =

√
|T (N)
i |(Ĉ

0,T
(N)
i

(X,ui)− C∗0 (X,ui)) =

√
|T (N)
i |

(
C
/T

(N)
i

0 (X,ui)− E[C
/T

(N)
i

0 (X,ui)]
)

− 1

π

√
|T |
(
C
/T

(N)
i

1 (X,ui)− E[C
/T

(N)
i

1 (X,ui)]
) |∂T (N)

i |1
|T (N)
i |

+

√
|T (N)
i |

(
C
/T

(N)
i

2 (X,ui)− E[C
/T

(N)
i

2 (X,ui)]
)( 1

2π

|∂T (N)
i |21

|T (N)
i |2

− 1

|T (N)
i |

)
:= I0(T

(N)
i ) + I1(T

(N)
i ) + I2(T

(N)
i ).

For a Gaussian random field satisfying Assumptions (A0) and (A2), Theorem 1.1 in Kratz and Vadlamani

(2018) and Theorem 2.1 in Müller (2017) give

√
|T (N)
i |

(
C
/T

(N)
i

1 (X,ui) − E[C
/T

(N)
i

1 (X,ui)]
)

admits a

Gaussian centered limit distribution and therefore I1(T
(N)
i )

P−−−−→
T↗R2

0. The same discussion holds for

I2(T
(N)
i ). Let

Z
(N)
i =

√
|T (N)
i |(C/T

(N)
i

0 (X,ui)− E[C
/T

(N)
i

0 (X,ui)]) for i ∈ {1, . . . ,m}.

One can adapt the proof of the CLT in Proposition 5 (a) in Di Bernardino et al. (2017) to prove that for X

satisfying Assumptions (A0) and (A2), X(0) ∼ N (µ, σ2) and as N → +∞, (Z
(N)
1 , . . . , Z

(N)
m ) converges in

distribution to a centered Gaussian vector with diagonal covariance matrix and finite elements. Finally,
applying the multivariate Slutsky’s theorem we get the item (i). The proof of (ii) comes down in a
similar way using item (b) of Theorem 2.5 in Estrade and León (2016).
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Proposition A.2 (Asymptotic normality of (Ĉ2,T (N)(X,u1), . . . , Ĉ2,T (N)(X,um))). Let X be a Gaussian

random field satisfying Assumptions (A0) and (A1). For a positive integer N , consider T (N) = {Nt :
t ∈ T} and Ĉ2,T (N)(X,u) the estimator defined in (8) built on the observation T (N) ∩ EX(ui), where
u1, . . . , um are fixed. Then,√

|T (N)|(Ĉ2,T (N)(X,u1)− C∗2 (X,u1), . . . , Ĉ2,T (N)(X,um)− C∗2 (X,um))

converges in distribution to a centered Gaussian vector with m×m covariance matrix (Σ2
C∗2 ,(ui,uj)

)1≤i,j≤m

given by Σ2
C∗2 ,(ui,uj)

= 1
2π

∫
R2

∫ ρ(t)
0 g(ui,uj)(r)dr dt ∈ (0,+∞) where

g(ui,uj)(r) =
1√

1− r2
exp

{
−(ui − µ)2 − 2r(ui − µ)(uj − µ) + (uj − µ)2

2σ2(1− r2)

}
.

The proof of Proposition A.2 comes down from Theorem 4 in Bulinski et al. (2012), together with
Shashkin (2002) ensuring Gaussian fields are quasi-associated.

A.2 Proofs of the obtained results

Proof of Proposition 1.1

The Gaussian kinematic formula provides the mean LK curvatures of excursion sets of X within a
rectangle T (see, e.g., Theorem 15.9.5 in Adler and Taylor (2007) or Theorem 4.8.1, 4.3.1 in Adler and
Taylor (2011)), for u ∈ R and i = 0, 1, 2,

E [Li(X,T, u)] =
2−i∑
l=0

[
i+ l
l

]
(2π)−l/2

(
λ

σ2

)l/2
Ml(X,u)Li+l(T )

where Lj(T ), j = 0, 1, 2 are defined in (5),

[
i+ l
l

]
=

(
i+ l

l

)
ωl+i
ωlωi

with ωk the Lebesgue measure of

the k-dimensional unit ball (w0 = 1, w1 = 2 and w2 = π), and, following Formula (3.5.2) in Adler and
Taylor (2011), the coefficients Ml(X,u), l = 0, 1, 2 are obtained having an expansion in θ at order 2 of

P
(
G(0) ≥ u− µ

σ
− θ
)

= ψ

(
u− µ
σ

)
− θψ′

(
u− µ
σ

)
+

1

2
θ2ψ′′

(
u− µ
σ

)
+O(θ3)

= M0(X,u) + θM1(X,u) +
1

2
θ2M2(X,u) +O(θ3),

where G(0) is a Gaussian random variable with zero mean and unit variance and ψ its tail distribution.
This concludes the proof. �

Proof of Proposition 2.2

Set h : s 7→ s exp{−s2/2})/(2π)3/2 and note that |T (N)
1 | = |T (N)

2 |. The ith coordinate |T (N)
1 |1/2(âui,T (N)−

a) can be decomposed as follows

√
|T (N)

1 |

[
h(sui)

h(ŝu,2)

(
Ĉ

0,T
(N)
1

(X,ui)

h(sui)
− C∗0 (X,ui)

h(sui)

)
+ C∗0 (X,ui)

(
1

h(ŝu,2)
− 1

h(sui)

)]
,
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where ŝu,2 := ŝ
u,T

(N)
2

. Since h is continuous, using Proposition 2.1 we get h(sui)/h(ŝ
ui,T

(N)
2

)
P−→

N→∞
1,

for all 1 ≤ i ≤ m. Then, by using Propositions 2.1 and A.1, the multivariate delta method and that

dist(T
(N)
1 , T

(N)
2 ) → ∞ as N → ∞, we obtain that

√
|T (N)

1 |
(
âu1,T (N) − a, . . . , âum,T (N) − a

)
converges in

distribution to a centered Gaussian vector with covariance matrix given by AΣ2
C∗0
At +BΣ2

1
h

Bt, where .t

denotes the matrix transposition, A and B are the diagonal matrices

A = diag

(
1

h(su1)
, . . . ,

1

h(sum)

)
, B = diag

(
C∗0 (X,u1), . . . , C∗0 (X,um)

)
,

Σ2
C∗0

=
(
Σ2
C∗0 ,(ui,uj)

)
1≤i,j≤m is defined in Proposition A.1, Σ2

1
h

= J 1
h
Σ2
sJ

t
1
h

with Σ2
s =

(
Σ2
s,(ui,uj)

)
1≤i,j≤m

defined in Proposition 2.1 and J 1
h

the m×m Jacobian matrix

J 1
h

= (2π)
3
2 diag

(
(s2
u1
− 1)

s2
u1

exp

{
s2
u1

2

}
, . . . ,

(s2
um − 1)

s2
um

exp

{
s2
um

2

})
.

After computations we get AΣ2
C∗0
At =

( Σ2
C∗0 ,(ui,uj)

h(sui )h(suj )

)
1≤i,j≤m

and

BΣ2
1
h

Bt =

(
(2π)3C∗0 (X,ui)C

∗
0 (X,uj)

(s2
ui − 1)(s2

uj − 1)

s2
uis

2
uj

exp

{
1

2
(s2
ui + s2

uj )

}
Σ2
s,(ui,uj)

)
1≤i,j≤m

.

Adding these expressions provide the desired formula. �

Proof of Proposition 3.2

First, write√
|T (N)

1 |
(
R̂
T

(N)
1

(u1, u2)− R̂H0

T
(N)
2

(u1, u2)
)

=

√
|T (N)

1 |
(
R̂
T

(N)
1

(u1, u2)−RH0(u1, u2)
)

(25)

+

√
|T (N)

2 |
(
RH0(u1, u2)− R̂H0

T
(N)
2

(u1, u2)
)
.

For the first term in (25) we use Proposition A.1 (ii) and the delta method with the function g : (x, y) 7→
x
y . We get after computations, using that R̂T1(u1, u2) = g

(
Ĉ0,T1(X,u2), Ĉ0,T1(X,u1)

)
,√

|T (N)
1 |

(
g
(
Ĉ

0,T
(N)
1

(X,u2), Ĉ
0,T

(N)
1

(X,u1)
)
− g
(
C∗0 (X,u2), C∗0 (X,u1)

)) d, H0−−−−→
N→∞

N
(

0, σ2
g(C∗0 ),(u1,u2)

)
where

σ2
g(C∗0 ),(u1,u2) =

σ2
C∗0 ,u2

C∗0 (X,u1)2
− 2

C∗0 (X,u2)

C∗0 (X,u1)3
Σ2
C∗0 ,(u1,u2) +

C∗0 (X,u2)2

C∗0 (X,u1)4
σ2
C∗0 ,u1

.

For the second term in (25) we use Proposition 2.1 and apply the delta method with the function h :
(x, y) 7→ x

y exp{−1
2(x2−y2)}. We get after computations, using that R̂H0

T
(N)
2

(u1, u2) = h(ŝ
u2,T

(N)
2

, ŝ
u1,T

(N)
2

),√
|T (N)

2 |
(
h(su2 , su1)− h(ŝ

u2,T
(N)
2

, ŝ
u1,T

(N)
2

)
)

d, H0−−−−→
N→∞

N
(

0, σ2
h(s),(u1,u2)

)
where σ2

h(s),(u1,u2) = ∇h(su2 , su1)′Σ2
s,(u1,u2)∇h(su2 , su1), Σ2

s,(u1,u2) is defined as in Proposition 2.1,

σ2
h(s),(u1,u2) = e−(s2u2

−s2u1
)
[
σ2
su2

(1− s2u2

su1

)2
+ 2Σ2

s,(u1,u2)

(1− s2u2

su1

)(
− su2

s2u1

+ su2

)
+ σ2

su1

(
− su2

s2u1

+ su2

)2]
.

Using dist(T
(N)
1 , T

(N)
2 )→∞ as N →∞ and σ2

Ru1,u2
= σ2

g(C∗0 ),(u1,u2) + σ2
h(s),(u1,u2) we get the result. �
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Proof of Proposition 3.3

Since J is a finite set and using Corollary 3.1, it immediately holds that(
σ̂2
su1
, . . . , σ̂2

suJ

)
P−−−−→

T↗R2

(
σ2
su1
, . . . , σ2

suJ

)
.

Denote by j∗ = argminj∈{1,...,J}σ
2
suj

, it follows

P(ĵ 6= j∗) = P
( ⋃
j 6=j∗
{σ̂2

suj
≤ σ̂2

suj∗
}
)
≤
∑
j 6=j∗

P(σ̂2
suj
− σ2

suj
+ (σ2

suj
− σ2

suj∗
) ≤ σ̂2

suj∗
− σ2

suj∗
)

≤
∑
j 6=j∗

P(|σ2
suj
− σ2

suj∗
| ≤ |σ̂2

suj∗
− σ2

suj∗
|+ |σ̂2

suj
− σ2

suj
|)

≤
∑
j 6=j∗

(
P(1

2 |σ
2
suj
− σ2

suj∗
| ≤ |σ̂2

suj∗
− σ2

suj∗
|) + P(1

2 |σ
2
suj
− σ2

suj∗
| ≤ |σ̂2

suj
− σ2

suj
|)
)
−−−−→
T↗R2

0,

where we used that J is finite, ∀j 6= j∗, |σ2
suj
− σ2

suj∗
| > 0 and Corollary 3.1. Finally, we derive that

ĵ
P−→ j∗, for T ↗ R2, together with the definition of j∗ and the fact that u 7→ σ2

su is decreasing on
(−∞, µ) and increasing on (µ,∞), the result follows. �

A.3 Proof of Proposition 3.1

Preliminaries on the Itô-Wiener chaos decomposition for L2 Let G := (X − µ)/σ be the
centered and unit variance Gaussian random field associated to X, for all fixed level u. Recall that
su = (u − µ)/σ, then L2,T (X,u) = L2,T (G, su), which is a square-integrable functional of the Gaussian
field G. It admits an orthogonal decomposition into Itô-Wiener chaos in the L2 sense (see, e.g., Marinucci
and Rossi (2015), Nourdin and Peccati (2012)):

L2(G, su, T ) =

+∞∑
q=0

βq(su)

q!

∫
T
Hq(G(t)) dt,

where Hq is the q-th Hermite polynomial, i.e., for z ∈ R, H0(z) = 1 and

Hq(z) = (−1)q exp{z2/2} dq

dzq
exp{−z2/2}, if q ≥ 1.

The above series converges in L2(P) and for Z ∼ N (0, 1), βq(su) := E
[
1{Z≥su}Hq(Z)

]
. The chaotic

coefficients (βq(su))q≥0 for L2(G, su, T ) are given by: β0(su) = ψ(su) and

βq(su) =

∫ +∞

su

ϕ(z)
(−1)q

ϕ(z)

dq

dzq
ϕ(z)dz = (−1)q−1 dq−1

dzq−1
ϕ(su) = ϕ(su)Hq−1(su),

for q ≥ 1, where ϕ is the probability density function of Z. Denoting Hφ
q the “physicist Hermite

polynomials” we have Hφ
q (x) = 2q/2Hq(

√
2x) and it holds ∀x, |(2qq!

√
π)−1/2Hφ

q (x)e−x
2/2| ≤ C∞/(q +

1)1/12 (see Szegő (1959) for the the value of the constant C∞). As, it holds ∀x ∈ R

Hφ
q (x)e−x

2/2 = 2q/2Hq(
√

2x)e−x
2/2 = ex

2/22q/2Hq(
√

2x)e−(
√

2x)2/2,
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it follows ∀x ∈ R

|βq+1(
√

2x)| = |Hq(
√

2x)e−(
√

2x)2/2| ≤ e−x2/2
√
q!
√
πC∞/(q + 1)

1
12 ≤ C∞π

1
4

√
q!

(q + 1)
1
12

.

We derive the following inequality, frequently used in the sequel

‖β0‖∞ ≤ 1 and ‖βq‖∞ ≤ cβ

√
(q − 1)!

q
1
12

, q ≥ 1. (26)

The mean of L2(G, su, T ) is its projection onto the 0-th Itô-Wiener chaos E [L2(G, su, T )] = ψ(su)|T |.
The remaining of the proof consist in controlling the order of the fourth moment of L2(G, s., T ), computed
using the chaos decomposition as follows

E[L2(G, su1 , T )L2(G, su2 , T )L2(G, su3 , T
′)L2(G, su4 , T

′)]

=
+∞∑

k1,k2,k3,k4=0

βk1(su1)βk2(su2)βk3(su3)βk4(su4)

k1!k2!k3!k4!

×
∫
T

∫
T

∫
T ′

∫
T ′

E[Hk1(G(t1))Hk2(G(t2))Hk3(G(t3))Hk4(G(t4))] dt1 dt2 dt3 dt4.

Control of a fourth moment of L2(G, s., T ) We sometimes denote T1 = T2 := T and T3 = T4 := T ′

and use that |T | = |T ′|. We write,

E[L2(G, su1 , T )L2(G, su2 , T )L2(G, su3 , T
′)L2(G, su4 , T

′)] = V0 + V1 + V2 + V3 + V4, (27)

where

V0 : = |T |4β0(su1)β0(su2)β0(su3)β0(su4)

V1 : = |T |3
4∑
j=1

β0(su1)β0(su2)β0(su3)β0(su4)

β0(suj )

+∞∑
kj=1

βkj (suj )

kj !

∫
Tj

E[Hkj (G(tj))] dtj

V2 : = |T |2
∑

j1 6=j2∈{1,...,4}

+∞∑
ki1

,ki2
=1

i1,i2 6=j1,j2

βki1 (sui1 )βki2 (sui2 )β0(suj1 )β0(suj2 )

ki1 !ki2 !

∫
Ti1

∫
Ti2

E[Hki1
(G(ti1))Hki2

(G(ti2))] dti1 dti2

V3 : = |T |
4∑
j=1

β0(suj )

+∞∑
ki1

,ki2
,ki3

=1

i1 6=j,i2 6=j,i3 6=j

βki1 (sui1 )βki2 (sui2 )βki3 (sui3 )

ki1 !ki2 !ki3 !

×
∫
Ti1

∫
Ti2

∫
Ti3

E[Hki1
(G(ti1))Hki2

(G(ti2))Hki3
(G(ti3))] dti1 dti2 dti3

V4 : =
+∞∑

k1,k2,k3,k4=1

βk1(su1)βk2(su2)βk3(su3)βk4(su4)

k1!k2!k3!k4!

×
∫
T

∫
T

∫
T ′

∫
T ′

E[Hk1(G(t1))Hk2(G(t2))Hk3(G(t3))Hk4(G(t4))] dt1 dt2 dt3 dt4.
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It holds V0 = ψ(su1)ψ(su2)ψ(su3)ψ(su4)|T |4 and by orthogonality of Hk1 with H0 = 1, ∀ k1 ≥ 1, we get
V1 = 0. It remains to control the terms V2, V3 and V4.

Control of V2. Using the fact that E[Hk(G(t))Hl(G(s))] = δk,lk!ρ(t − s)k (see e.g. Equation (2.1) in
Breuer and Major (1983)), we get

V2 = |T |2
∑

j1 6=j2∈{1,...,4}

β0(suj1 )β0(suj2 )
+∞∑
k=1

i1,i2 6=j1,j2

βk(sui1 )βk(sui2 )

k!

∫
Ti1

∫
Ti2

ρ(ti1 − ti2)k dti1 dti2

= |T |2
( ∑
j1 6=j2∈I2,1

+
∑

j1 6=j2∈I2,2

)
β0(suj1 )β0(suj2 )

+∞∑
k=1

i1,i2 6=j1,j2

βk(sui1 )βk(sui2 )

k!

∫
Ti1

∫
Ti2

ρ(ti1 − ti2)k dti1 dti2

=: V2,1 + V2,2,

where I2,1 := {(1, 3), (1, 4), (2, 3), (2, 4)} and I2,2 := {(1, 2), (3, 4)}. Using (26) and that the correlation
function ρ is decreasing together with the fact that on I2,1 the integration is made on distinct rectangles
T and T ′, we get

|V2,1| ≤ 4c2
β|T |2

+∞∑
k=1

(k − 1)!

k!k1/6

∫
T

∫
T ′

|ρ(t− t′)|k dt dt′ ≤ 4c2
β|T |2

+∞∑
k=1

1

k1+1/6

∫
T

∫
T ′

1

(1 + ‖t− t′‖)γk
dt dt′

≤ 4c2
β|T |2

+∞∑
k=1

1

k1+1/6

1

dist(T, T ′)γk−2

∫
T

∫
T ′

1

(1 + ‖t− t′‖)2
dt dt′

≤ 4c2
β|T |2

+∞∑
k=1

1

dist(T, T ′)γk−2

∫
R2

1

(1 + ‖t− t′‖)2
dt dt′ ≤ C2,1

|T |2

dist(T, T ′)γ−2
,

where we used Assumption (A1) and dist(T, T ′) > 2, then C2,1 is given by 8c2
β

∫
R2(1 + ‖t− t′‖)−2dt dt′.

For V2,2, using (26) and Assumption (A1), we have

|V2,2| ≤ |T |2
(
|β0(su1)β0(su2)|

∞∑
k=1

|βk(su3)βk(su4)|
k!

∫
T ′

∫
T ′
|ρ(t− s)|kdt ds

+ |β0(su3)β0(su4)|
∞∑
k=1

|βk(su1)βk(su2)|
k!

∫
T

∫
T
|ρ(t− s)|kdt ds

)
≤ 2c2

β|T |2
∞∑
k=1

1

k1+1/6

∫
T

∫
T

dt ds

(1 + ‖t− s‖)γ
≤ C2,2|T |2,

where C2,2 = 2c2
β

∫
R2(1 + ‖t − t′‖)−2dtdt′

∑
k≥1 k

−1− 1
6 is a constant independent of T . It follows that

V2 = O(|T |2).
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Control of V3. To control this term we rely on the diagram formula and the following decomposition

V3 = |T |
4∑
j=1

β0(suj )
+∞∑

ki1
,ki2

,ki3
=1

i1 6=j,i2 6=j,i3 6=j

βki1 (sui1 )βki2 (sui2 )βki3 (sui3 )

ki1 !ki2 !ki3 !

×
∫
Ti1

∫
Ti2

∫
Ti3

E[Hki1
(G(ti1))Hki2

(G(ti2))Hki3
(G(ti3))] dti1 dti2 dti3

= |T |
4∑
j=1

β0(suj )

(
+∞∑

ki1
,ki2

,ki3
=1

i1 6=j,i2 6=j,i3 6=j
ki1

+ki2
+ki3

≤2NT,T ′

+

+∞∑
ki1

,ki2
,ki3

=1

i1 6=j,i2 6=j,i3 6=j
ki1

+ki2
+ki3

>2NT,T ′

)
βki1 (sui1 )βki2 (sui2 )βki3 (sui3 )

ki1 !ki2 !ki3 !

×
∫
Ti1

∫
Ti2

∫
Ti3

E[Hki1
(G(ti1))Hki2

(G(ti2))Hki3
(G(ti3))] dti1 dti2 dti3

= V3,≤NT,T ′ + V3,>NT,T ′ ,

for some positive integer NT,T ′ depending on T and T ′ and such that NT,T ′ → ∞ as dist(T, T ′) → ∞.
First, note that V3,>NT,T ′ = o(|T |2) as dist(T, T ′)→∞: using that L2(G, su, T ) ≤ |T | a.s. and that the

Itô-Wiener chaos decomposition holds in the L2 sense, we write

V3,>NT,T ′ ≤ C|T |
2 max
u∈{u1,u2,u3,u4}

E
[( ∑

q≥NT,T ′

βq(su)

q!

∫
T
Hq(G(t))dt

)2]
,

which tends to 0 as the remainder of a convergent series. To control this term, we take advantage of the
cutting described in Figure 1.
We now focus on V3,≤NT,T ′ , by symmetry we set k4 = 0 and compute Tk1,k2,k3 := E[Hk1(G1)Hk2(G2)Hk3(G3)]
for kj ≥ 1, j ∈ {1, 2, 3} and (G1, G2, G3) a standard Gaussian (see Taqqu (1977) Definition 3.1), i.e. a
centered Gaussian vector with E[G2

i ] = 1 and ρi,j := E[GiGj ] such that |ρi,j | ≤ 1, 1 ≤ i, j ≤ 3. The
diagram formula (see Taqqu (1977), Lemma 3.2) gives

Tk1,k2,k3 =


k1!k2!k3!

2qq!

∑
I(k1,k2,k3)

ρi1,j1 . . . ρiq ,jq if k1 + k2 + k3 = 2q, 1 ≤ k1, k2, k3 ≤ q

0 otherwise

(28)

where the set of indices I(k1, k2, k3) is the set of all indices (i1, j1, . . . , iq, jq) such that

i) (i1, j1, . . . , iq, jq) ∈ {1, 2, 3}2q,

ii) i1 6= j1, . . . , iq 6= jq,

iii) there are k1 indices 1, k2 indices 2 and k3 indices 3.

As ρi,j = ρj,i, after multiplying Tk1,k2,k3 by 2q, I(k1, k2, k3) simplifies in Ĩ(k1, k2, k3) the set of all indices
(i1, j1, . . . , iq, jq) such that

i+ii) ((i1, j1), . . . , (iq, jq)) ∈ {(1, 2), (1, 3), (2, 3)}q,

iii) there are q1 times (1, 2), q2 times (1, 3) and q3 times (2, 3) with q1 = k1 + k2 − q = q − k3,
q2 = k1 + k3 − q = q − k2 and q3 = k2 + k3 − q = q − k1.
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The cardinality of Ĩ(k1, k2, k3) is

(
q

q1, q2, q3

)
= q!

q1!q2!q3! . Set J3(q) = {(k1, k2, k3) ∈ {1, . . . , q}3, k1 +k2 +

k3 = 2q}, the set of indices where Tk1,k2,k3 is nonzero. Using (26), Assumption (A1) and the cardinality

of Ĩ(k1, k2, k3), it follows from (28) that,

|V3,≤NT,T ′ | ≤ 4 |T | max
u∗∈(u1,u2,u3,u4)

|β0(su∗)|4
NT,T ′∑
q=4

∑
(k1,k2,k3)∈J3(q)

|βk1(su∗)βk2(su∗)βk3(su∗)|
q1!q2!q3!

×
∫
T

∫
T

∫
T ′

|ρ(t1 − t2)|q−k3 |ρ(t1 − t3)|q−k2 |ρ(t2 − t3)|q−k1 dt1 dt2 dt3

≤ 4c3
β |T |

NT,T ′∑
q=4

∑
(k1,k2,k3)∈J3(q)

√
(k1 − 1)!(k2 − 1)!(k3 − 1)!

(k1k2k3)
1
12 (q − k3)!(q − k2)!(q − k1)!

×
∫
T

∫
T

∫
T ′

dt1 dt2 dt3

(1 + ‖t1 − t2‖)γ(q−k3)(1 + ‖t1 − t3‖)γ(q−k2)(1 + ‖t2 − t3‖)γ(q−k1)
.

Set

Aq(k1, k2, k3) :=

√
(k1 − 1)!(k2 − 1)!(k3 − 1)!

(k1k2k3)
1
12 (q − k1)!(q − k2)!(q − k3)!

, k1 + k2 + k3 = 2q.

Consider the decomposition,

|V3,≤NT,T ′ | ≤ 4c3
β |T |

NT,T ′∑
q=4

( bq/4c∑
k3=1

+

q∑
k3=bq/4c+1

) ∑
k1,k2∈{1,...,q}
k1+k2+k3=2q

Aq(k1, k2, k3)

×
∫
T

∫
T

∫
T ′

dt1 dt2 dt3

(1 + ‖t1 − t2‖)γ(q−k3)(1 + ‖t1 − t3‖)γ(q−k2)(1 + ‖t2 − t3‖)γ(q−k1)

=: 4c3
β |T |

(
V3,1 + V3,2

)
. (29)

First, we consider V3,1, i.e. the set {1 ≤ k3 ≤ bq/4c}. Straightforward computations and the fact that
k3 = 2q − k1 − k2, lead to

V3,1 ≤ |T |
NT,T ′∑
q=4

bq/4c∑
k3=1

1

(dist(T, T ′))γk3

∑
k1,k2∈{1,...,q}
k1+k2=2q−k3

Aq(k1, k2, k3)

∫
T

∫
T

dt1 dt2

(1 + ‖t1 − t2‖)γ(q−k3)
. (30)

For the integral in (30), after two successive changes of variables we get, for all Q > 1 that∫
T

∫
T

dt1 dt2
(1 + ‖t1 − t2‖)Q

=

∫
R

1t1∈T

∫
R

1u∈T−t1
(1 + ‖u‖)Q

dudt1 =

∫
T

(∫ 2π

0

∫
R+

1reiθ∈T−t1
(1 + r)Q

rdrdθ
)

dt1

≤ 2π|T |
∫ ∞

0

rdr

(1 + r)Q
≤ C|T | 1

Q2
, ∀Q > 1, (31)

where the last inequality follows from an integration by part and C is a positive constant. Next, for all
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k3 ≤ bq/4c, it holds

∑
k1,k2∈{1,...,q}
k1+k2=2q−k3

Aq(k1, k2, k3) =

√
(k3 − 1)!

k
1
12
3 (q − k3)!

∑
k1,k2∈{1,...,q}
k1+k2=2q−k3

√
(k1 − 1)!(k2 − 1)!

(k1k2)
1
12 (q − k1)!(q − k2)!

≤ 2

√
(k3 − 1)!

k
1
12
3 (q − k3)!

q∑
k=q−k3

√
(k − 1)!(2q − k − k3 − 1)!

(k(2q − k − k3))
1
12 (q − k)!(k + k3 − q)!

= 2

√
(k3 − 1)!

k
1
12
3 (q − k3)!

k3∑
`=0

√
(`+ q − k3 − 1)!(q − `− 1)!

((`+ q − k3)(q − `))
1
12 (k3 − `)!`!

≤ 2
(4

3

) 1
12

√
(k3 − 1)!(q − k3 − 1)!(q − 1)!

q
1
6k

1
12
3 (q − k3)!k3!

k3∑
`=0

(
k3

`

)
≤ 2
(4

3

) 7
12 2k3

q1+ 1
6k

7
12
3

√(
q

k3

)
, (32)

where we used that k3 ≤ bq/4c and that ` 7→
√

(`+ q − k3 − 1)!(q − `− 1)! is symmetric and maximal
for ` = 0 (or ` = k3). Injecting (31) and (32) in (30) and using that 1 ≤ k3 ≤ bq/4c, lead –for a positive
constant C whose value may change from line to line– to

V3,1 ≤ C|T |2
NT,T ′∑
q=4

1

q3+ 1
6

bq/4c∑
k3=1

2k3

(dist(T, T ′))γk3

√(
q

k3

)
.

Set ηT,T ′ :=
(
2/(dist(T, T ′))γ

)
and note that uk : k 7→ ηkT,T ′

√(
q
k

)
is decreasing and bounded by

√
q iff

uk+1

uk
= ηT,T ′

√
q + 1

k + 1
− 1 ≤ 1 ⇐⇒ k ≥ q + 1

η2
T,T ′ + 1

η2
T,T ′ − 1

which always holds if q ≤ (ηT,T ′)
−2. Finally, fix NT,T ′ := b(ηT,T ′)−2c, note that we have NT,T ′ → ∞ as

dist(T, T ′)→∞. It follows that

V3,1 ≤ C
|T |2

(dist(T, T ′))γ

NT,T ′∑
q=4

q
√
q

q3+ 1
6

≤ C |T |2

(dist(T, T ′))γ

∞∑
q=4

q−
5
3 = o

(
|T |2

)
. (33)

Second, we study the set {bq/4c+ 1 ≤ k3 ≤ q}, similarly we get

V3,2 ≤ |T |
NT,T ′∑
q=4

q∑
k3=bq/4c+1

∑
k1,k2∈{1,...,q}
k1+k2+k3=2q

Aq(k1, k2, k3)

(dist(T, T ′))γk3

∫
T

∫
T

dt1 dt2

(1 + ‖t1 − t2‖)γ(q−k3)
.

Note that (k1, k2, k3, subject to k1+k2+k3 = 2q) 7→ Aq(k1, k2, k3) is maximal for k1 � k2 � k3 � b2q/3c,
and the Stirling formula gives Aq(b2q/3c, b2q/3c, b2q/3c) = O(q−12q). Moreover, Card

(
(k1, k2, k3), 1 ≤

k1, k2 ≤ q, k3 ≥ bq/4c, k1 + k2 + k3 = 2q
)
≤ q2. It follows that for some positive constant C,

V3,2 ≤ C |T |
∫
R2

dt1 dt2
(1 + ‖t1 − t2‖)γ

NT,T ′∑
q=4

2q

q
q2 1

(dist(T, T ′))γq/4
. (34)
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It follows that for dist(T, T ′) > 24/γ , V3,2 = o(|T |). Observe that the condition for convergence of this
term depends on γ: the larger γ is the weakest the condition on dist(T, T ′) is. Gathering (33) and (34)
in (29), we derive that V3,≤NT,T ′ = o(|T |3), this together with V3,>NT,T ′ = o(|T |) implies that V3 = o(|T |3).

Control of V4. Similarly to V3, we rely on the diagram formula and the following decomposition

V4 =

(NT,T ′∑
q≥4

+
∞∑

q=NT,T ′+1

) ∑
(k1,k2,k3,k4)∈N\{0}

βk1(su1)βk2(su2)βk3(su3)βk4(su4)

k1!k2!k3!k4!

×
∫
T

∫
T

∫
T ′

∫
T ′

E[Hk1(G(t1))Hk2(G(t2))Hk3(G(t3))Hk4(G(t4))] dt1 dt2 dt3 dt4

= V4,≤NT,T ′ + V4,>NT,T ′ ,

for some positive integer NT,T ′ depending on T and T ′ and such that NT,T ′ → ∞ as dist(T, T ′) → ∞.
Using similar arguments as for V3,>NT,T ′ , we derive that V4,>NT,T ′ = O(|T |2) as dist(T, T ′)→∞.
We focus on V4,≤NT,T ′ and compute Tk1,k2,k3,k4 := E[Hk1(G1)Hk2(G2)Hk3(G3)Hk4(G4)] for kj ≥ 1, j ∈
{1, 2, 3, 4} and (G1, G2, G3, G4) a standard Gaussian (see Taqqu (1977) Definition 3.1) with ρi,j :=
E[GiGj ] = ρj,i such that |ρi,j | ≤ 1, for 1 ≤ i, j ≤ 4. The diagram formula –taking into account that
ρi,j = ρj,i, which comes down to multiplying the one given in Taqqu (1977), Lemma 3.2, by 2q (see also
proof of Lemma 10.7 in Azäıs and Wschebor (2009)– gives

Tk1,k2,k3,k4 =


k1!k2!k3!k4!

q!

∑
I(k1,k2,k3,k4)

ρi1,j1 . . . ρiq ,jq if k1 + . . .+ k4 = 2q, 1 ≤ k1, k2, k3, k4 ≤ q,

0 otherwise,

(35)

where the set of indices I(k1, k2, k3, k4) is the set of all indices (i1, j1, . . . , iq, jq) such that

i+ii) ((i1, j1), . . . , (iq, jq)) ∈ {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}q =: Ipairq,

iii) there are k1 indices 1, k2 indices 2, k3 indices 3 and k4 indices 4.

For q ∈ N, q ≥ 4 define the set of indices J4(q) = {(k1, k2, k3, k4) ∈ {1, . . . , q}4, k1 + k2 + k3 + k4 = 2q}.
formulae (35) and (26) lead to, for a positive constant C whose value may change from line to line,

V4,≤NT,T ′ =

NT,T ′∑
q=4

∑
(k1,k2,k3,k4)∈J4(q)

βk1(su1)βk2(su2)βk3(su3)βk4(su4)

k1!k2!k3!k4!
Tk1,k2,k3,k4

≤ C

NT,T ′∑
q=4

1

q!

∑
(k1,k2,k3,k4)∈J4(q)

√
(k1 − 1)!(k2 − 1)!(k3 − 1)!(k4 − 1)!

(k1k2k3k4)
1
12

×
∑

I(k1,k2,k3,k4)

∫
T

∫
T

∫
T ′

∫
T ′

∏
a∈Ipair

(
1 + ‖ti − tj‖

)−γqa dt1 dt2 dt3 dt4,

where qa for is the number of occurrences of the pair a and I(k1, k2, k3, k4) reduces to the set of indices
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such that 

q(1,2) + q(1,3) + q(1,4) + q(2,3) + q(2,4) + q(3,4) = q,

q(1,2) + q(1,3) + q(1,4) = k1,

q(1,2) + q(2,3) + q(2,4) = k2,

q(1,3) + q(2,3) + q(3,4) = k3,

q(1,4) + q(2,4) + q(3,4) = k4.

(36)

Denote Ipair(q) =
{
qa, a ∈ Ipair,

∑
a∈Ipair qa = q,

∑
(i,j) q(i,j)1{i=l}∪{j=l} = kl

}
, the latter can be

rewritten as

V4,≤NT,T ′ ≤ C

NT,T ′∑
q=4

1

q!

∑
Ipair(q)

√
(k1 − 1)!(k2 − 1)!(k3 − 1)!(k4 − 1)!

(k1k2k3k4)
1
12(

q

q(1,2), q(1,3), q(1,4), q(2,3), q(2,4), q(3,4)

)∫
T

∫
T

∫
T ′

∫
T ′

∏
a∈Ipair

(
1 + ‖ti − tj‖

)−γqa dt1 dt2 dt3 dt4

= C

NT,T ′∑
q=4

∑
Ipair(q)

√
(k1 − 1)!(k2 − 1)!(k3 − 1)!(k4 − 1)!

(k1k2k3k4)
1
12 q(1,2)!q(1,3)!q(1,4)!q(2,3)!q(2,4)!q(3,4)!∫

T

∫
T

∫
T ′

∫
T ′

∏
a∈Ipair

(
1 + ‖ti − tj‖

)−γqa dt1 dt2 dt3 dt4.

Similarly to V3,≤NT,T ′ , we decompose this majorant of V4,≤NT,T ′ in V4,1+V4,2 according to {q(1,2)+q(3,4) ≤
b3q/4c} (which plays the same role as q − k3 in V3,≤NT,T ′ ) and its complementary set.
First, we study the set {q(1,2) + q(3,4) ≤ b3q/4c}, where q(1,3) + q(1,4) + q(2,3) + q(2,4) ≥ q

4 , it follows

V4,1 ≤ C

(∫
T

∫
T

dt1dt2
(1 + ‖t1 − t2‖)γ

)2 NT,T ′∑
q=4

1(
dist(T, T ′)

)γq/4
×

∑
Ipair(q)

q(1,2)+q(3,4)≤b3q/4c

√
(k1 − 1)!(k2 − 1)!(k3 − 1)!(k4 − 1)!

(k1k2k3k4)
1
12 q(1,2)!q(1,3)!q(1,4)!q(2,3)!q(2,4)!q(3,4)!

(37)

≤ C

(∫
T

∫
T

dt1dt2
(1 + ‖t1 − t2‖)γ

)2 NT,T ′∑
q=4

1(
dist(T, T ′)

)γq/4 q5

(
3q
6 − 1

)
!2(

q
6

)
!6

,

where we used that k. ≥ 1, the cardinality of Ipair(q) is bounded by q5 and that the ratio in (37) is
maximal for qa = bq/6c, ∀a ∈ Ipair. Using that

√
2πm

(
m
e

)m ≤ m! ≤ 2
√

2πm
(
m
e

)m
provides the bound(3q

6

)
!2
/( q

6

)
!6 ≤ C3q/q2 and we get for dist(T, T ′) > 34/γ that

V4,1 ≤ C

(∫
R2

dt1dt2
(1 + ‖t1 − t2‖)γ

)2 +∞∑
q=4

q
3q(

dist(T, T ′)
)γq/4 = O(1). (38)
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Second, consider the set {q(1,2) + q(3,4) > b3q/4c},

V4,2 ≤ C

NT,T ′∑
q=4

∑
Ipair(q)

q(1,2)+q(3,4)>b3q/4c

√
(k1 − 1)!(k2 − 1)!(k3 − 1)!(k4 − 1)!

(k1k2k3k4)
1
12 q(1,2)!q(1,3)!q(1,4)!q(2,3)!q(2,4)!q(3,4)!∫

T

∫
T

∫
T ′

∫
T ′

∏
a∈Ipair

(
1 + ‖ti − tj‖

)−γqa dt1 dt2 dt3 dt4.

Note that, if q(1,2) + q(3,4) > b3q/4c, it follows that max{q(1,2), q(3,4)} > b3q/8c, then using (36) we

derive that on this set (k1k2k3k4)−1/12 ≤ Cq−1/6, for some positive constant C. Next, we decompose
V4,2 according to the values of k = q(1,3) + q(1,4) + q(2,3) + q(2,4) ≤ bq/4c and use Assumption (A1), (31)
and (36) to get

V4,2 ≤ C|T |2
NT,T ′∑
q=4

q−1/6

bq/4c∑
k=0

1

(dist(T, T ′))γk

∑
q(1,3)+q(1,4)+q(2,3)+q(2,4)=k

1

q(1,3)!q(1,4)!q(2,3)!q(2,4)!

×
q−k−1∑
q(1,2)=1

√
(q(1,2) + q(1,3) + q(1,4) − 1)!(q(1,2) + q(2,3) + q(2,4) − 1)!

q(1,2)!q
2
(1,2)

×

√
(q(1,3) + q(2,3) + q − k − q(1,2) − 1)!(q(1,4) + q(2,4) + q − k − q(1,2) − 1)!

(q − k − q(1,2))!(q − k − q(1,2))2
,

where the constant C contains
∫
R2(1 + ‖t − s‖)−2dtds. Observe that the function in q(1,2) in the last

summand is symmetric with respect to (q−k)/2 and is maximal for q(1,2) ∈ {1, q−k−1}. It follows that

V4,2 ≤ C|T |2
NT,T ′∑
q=4

q−1/6

bq/4c∑
k=0

1

(dist(T, T ′))γk

∑
q(1,3)+q(1,4)+q(2,3)+q(2,4)=k

1

q(1,3)!q(1,4)!q(2,3)!q(2,4)!

×

√
(q(1,3) + q(1,4))!(q(2,3) + q(2,4))!(q(1,3) + q(2,3) + q − k − 2)!(q(1,4) + q(2,4) + q − k − 2)!

(q − k − 1)!(q − k − 1)
.

Considering the function in
(
q(1,3), q(1,4), q(2,3), q(2,4)

)
under the square root in the last display, it is easy

—considering all possible cases— to derive that it is maximal at (k, 0, 0, 0) (the maximum is not unique).
We obtain

V4,2 ≤ C|T |2
NT,T ′∑
q=4

q−
1
6

bq/4c∑
k=0

1

(dist(T, T ′))γkk!

∑
q(1,3)+q(1,4)+

q(2,3)+q(2,4)=k

k!

q(1,3)!q(1,4)!q(2,3)!q(2,4)!

√
k!(q − 2)!(q − k − 2)!

(q − k − 1)!(q − k − 1)

= C|T |2
NT,T ′∑
q=4

q−
1
6

bq/4c∑
k=0

4k

(dist(T, T ′))γk

√
(q − 2)!

(q − k − 1)2
√
k!(q − k − 2)!

,

where we used the multinomial theorem. Therefore, we derive that

V4,2 ≤ C|T |2
NT,T ′∑
q=4

q−2− 1
6

bq/4c∑
k=0

4k

(dist(T, T ′))γk

√(
q

k

)
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Finally, as for V3,2 if we set ηT,T ′ :=
(
4/(dist(T, T ′))γ

)
the function k 7→ ηkT,T ′

√(
q
k

)
is decreasing if

q ≤ (ηT,T ′)
−2. Fix NT,T ′ := b(ηT,T ′)−2c, note that we have NT,T ′ → ∞ as dist(T, T ′) → ∞. It follows

that

V4,2 ≤ C|T |2
NT,T ′∑
q=4

q

q2+ 1
6

≤ C|T |2. (39)

Gathering (38) and (39) show that V4,≤NT,T4
= O(|T |2) and finally that V4 = O(|T |2).

Gathering the control of four terms, V0 to V4, lead to the announced result in Proposition 3.1. �

A.4 Elements to establish Conjecture 3.1

Following the same structure as for the proof of Proposition 3.1 should lead to the result. Already in
the proof of Proposition 3.1 managing the terms V3 and V4 was lengthly and technical, in the case of
the Euler characteristic the difficulty increases dramatically. We give the elements that could be used
to establish the result in a similar pattern as for the proof of Proposition 3.1, but we do not pursue in
details the study of all the terms involved.

Modified Euler characteristic As we focus on domain T such that T ↗ R2, without loss of generality

we can consider in the sequel the modified Euler characteristic C̃
/T
0 (X,u) as in (4) instead of C

/T
0 (X,u).

Roughly speaking, we neglect boundary terms depending on the behavior of L0(X,u, T ) on ∂T (see
Sections 1.2 and 2.3 in Estrade and León (2016)).
More precisely, we follow the presentation of Adler and Taylor (2007) Section 9.4, inspired by Morse’s
theorem, to give the following decomposition of the Euler characteristic of the excursion set EX(u),

C
/T
0 (X,u) :=

L0(X,u, T )

|T |
=

1

|T |

( ∑
l∈{0,1}

∑
J∈∂lT

L0(X,u, J) + L0(X,u, T̊ )

)

=
∑

l∈{0,1}

∑
J∈∂lT

L0(X,u, J)

|T |
+ C̃

/T
0 (X,u), (40)

where ∂lT denotes the collection of all the l-dimensional faces of T . In particular ∂2T only contains the
interior of T , i.e., T̊ , ∂1T is the union of the interiors of the 1-dimensional faces of T and ∂0T is the
union of the 4 vertices of the rectangle T (see Section 4.6 in Adler and Taylor (2007)). Therefore, the

first term in (40) vanishes as |T | → ∞, in the remaining of the proof we focus on C̃
/T
0 (X,u) for which

there is an Itô-Wiener chaos decomposition.

Itô-Wiener chaos decomposition for C̃
/T
0 (X,u) Let X be a Gaussian random field satisfying

Assumption (A0), denote the gradient of X by ∇X :=

(
X1

X2

)
and the Hessian matrix of X by ∇2(X) :=(

X1,1 X1,2

X1,2 X2,2

)
. We now deal with the 6-dimensional Gaussian vector X defined for any t = (t1, t2) ∈ R2

we write the coordinates of X such that X(t1, t2) := (X1,X2,X3,X4,X5,X6)(t1, t2) with X3 = X1,2,
X4 = X1,1, X5 = X2,2 and X6 = X (see also Estrade and León (2016)).
By using the stationarity and the isotropy of the considered Gaussian field, it is well know that for any
fixed t, X(t) and ∇X(t) are independent, as well as ∇X(t) and ∇2X(t). Moreover, since X is isotropic,
for any fixed t, X1(t) and X2(t) are independent (see Adler and Taylor (2007), Section 5.5). Then, by
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applying Equations (5.5.5), (5.5.6) and (5.5.7) in Adler and Taylor (2007) and using the fact that all the
odd-ordered derivatives of r are identically zero, it is possible to derive all the elements of the covariance
matrix of X in our non-unit variance framework:

ΣX =



λ
σ2
g

0 0 0 0 0

0 λ
σ2
g

0 0 0 0

0 0 µ
3σ2
g

0 0 0

0 0 0 µ
σ2
g

µ
3σ2
g

−λ
σ2
g

0 0 0 µ
3σ2
g

µ
σ2
g

−λ
σ2
g

0 0 0 −λ
σ2
g

−λ
σ2
g

σ2
g


.

The covariance function of ΓX(·) of X takes values in the set of symmetric 6× 6 matrices with elements
equal to r or a derivative of r. Choose Λ a 6 × 6 matrix such that ΛΛt = ΣX, where Λt denotes the
transpose of Λ. We can thus write, for any fixed t ∈ R2, X(t) = ΛY (t) with Y (t) a 6-dimensional centered
Gaussian vector with variance I6 and covariance function ΓY(t) given by ΓY(t) = Λ−1ΓX(t)(Λ−1)t. As
in Estrade and León (2016), one can consider

Λ =

( √
λ
σ2
g
I2 0

0 Λ2

)
where Λ2 =


a 0 0 0
0 b 0 0
0 d c 0
0 A B α

 (41)

where a =
√

µ
3σ2
g
, b =

√
µ
σ2
g
, c =

√
8µ
9σ2
g
, d =

√
µ

9σ2
g
, A = − λ

σg
√
µ , B = − λ

σg
√

2µ
, α =

√
2µ
3
−λ2

σ2
g√

2µ
3

.

Under Assumption (A2), one can write the following Itô-Wiener chaos expansion for C̃
/T
0 (X,u):

C̃
/T
0 (X,u) =

1

|T |

+∞∑
q=0

∑
n∈N6:|n|=q

a(n, u)

∫
T
H̃n(Y (t))dt, (42)

with n = (n1, n2, n3, n4, n5, n6), ni ∈ N, |n| = n1 +n2 +n3 +n4 +n5 +n6 and for y = (y1, y2, y3, y4, y5, y6)
H̃n(y) =

∏
1≤j≤6Hnj (yj) where Hn is the n-th Hermite polynomial (see e.g., Proposition 1.3 in Estrade

and León (2016)).

On the coefficients a(n, u) It holds that

a(0, u) =
σ2
g

2πλ
ϕ(su)

λ2

σ4
g

su. (43)

Indeed, the mean of C̃
/T
0 (X,u) is its projection into the 0-th Itô-Wiener chaos, i.e., E[C̃

/T
0 (X,u)] =

C∗0 (X,u) = a
(2π)3/2 exp{−1

2s
2
u}su (see (7)). Moreover, a(n, u) = 0 as soon as n1 or n2 is odd, or n3 6= 0

or n3 6= 2. Furthermore according to the Mehler’s Formula (see Lemma 10.7 in Azäıs and Wschebor
(2009)),

if |n| 6= |m| then Cov(H̃n(Y (s)), H̃m(Y (t)))= 0.
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Under Assumption (A2) one can get, for |n| = |m| = q,

Cov(H̃n(Y (0)), H̃m(Y (t))) ≤ KM q
r (t) (44)

for some positive constant K, where Mr is defined in Assumption (A2).
Identifying any symmetric matrix of size 2× 2 with the 3−dimensional vector containing the coefficients
on and above the diagonal and write d̃et the associated determinant map. Then, one can get∑

n∈N6:|n|=q

a(n, u)2n! ≤ C q2‖fu · Λ2‖2, (45)

with Λ2 as in (41) and (y, z) ∈ R3 × R 7→ fu(y, z) = d̃et(y)1[u,+∞)(z), see Estrade and León (2016).

How to control the fourth moment of C̃0 Denote T1 = T2 := T and T3 = T4 := T ′ and use that
|T | = |T ′|. Using (42) we get (having C̃

/T
0 (X,u) := C̃0(X,u, T ))

M4,0 : = |T |4 E[C̃0(X,u1, T )C̃0(X,u2, T )C̃0(X,u3, T
′)C̃0(X,u4, T

′)]

=

+∞∑
q1=0

+∞∑
q2=0

+∞∑
q3=0

+∞∑
q4=0

∑
n(1)∈N6:
|n(1)|=q1

∑
n(2)∈N6:
|n(2)|=q2

∑
n(3)∈N6:
|n(3)|=q3

∑
n(4)∈N6:
|n(4)|=q4

a(n(1), u1)a(n(2), u2)a(n(3), u3)a(n(4), u4)

×
∫
T1

∫
T2

∫
T3

∫
T4

E[H̃n(1)(Y (t1))H̃n(2)(Y (t2))H̃n(3)(Y (t3))H̃n(4)(Y (t4))] dt1 dt2 dt3 dt4.

Similarly as for the case of the area, we decompose this fourth moment

M4,0 := V0 + V1 + V2 + V3 + V4

where Vj are as in (27) replacing βn(suj ) with a(n,0, uj), and Hn(G(tj)) with H̃n(Y (tj)). The terms V0,
V1 and V2 can be treated readily with the tools introduced above. The terms that are computationally
technical are V3 and V4 that require to apply the diagram formula in dimensions 18 and 24. Therefore,
in the sequel we only present the result for V0, V1 and V2, whose treatment is similar as for the area. We
conjecture that V3 and V4 are o(|T |3) as for the area.

Control of V0. It holds that V0 = |T |4C∗0 (X,u1)C∗0 (X,u2)C∗0 (X,u3)C∗0 (X,u4) (see Equation (43)).

Control of V1. We compute E[H̃n(Y (tj))], for that we use that Y is a 6-dimensional standard Gaussian
vector, with independent coordinates, to get

E[H̃n(Y (t))] = E[Hn1(Y1(t))Hn2(Y2(t))Hn3(Y3(t))Hn4(Y4(t))Hn5(Y5(t))Hn6(Y6(t))]

= E[Hn1(Y1(t))]E[Hn2(Y2(t))]E[Hn3(Y3(t))]E[Hn4(Y4(t))]E[Hn5(Y5(t))]E[Hn6(Y6(t))] = 0

using that if |n| ≤ 1, ∃j ∈ {1, 2, 3, 4, 5, 6}, nj ≥ 1 and the orthogonality of Hnj with H0 for the Gaussian
measure. It follows that V1 = 0.

Control of V2. A slight generalization of Mehler’s formula (see Lemma 10.7 in Azäıs and Wschebor
(2009)) allows us to write that for any n(i1) and n(i2)

E[H̃n(i1)(Y (ti1))H̃n(i2)(Y (ti2))] = Cov(H̃n(i1)(Y (ti1)), H̃n(i2)(Y (ti2))),
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where if |n(i1)| 6= |n(i2)|, it holds E[H̃n(i1)(Y (ti1))H̃n(i2)(Y (ti2))] = 0 and if |n(i1)| = |n(i2)| = q, we get
(see (44))

Cov(H̃n(i1)(Y (ti1)), H̃n(i2)(Y (ti2))) = Cov(H̃n(i1)(Y (0)), H̃n(i2)(Y (ti2 − ti1))) ≤ KM q
r (ti2 − ti1),

where K is a positive constant. Then, it follows that

V2 ≤ K|T |2
( ∑
j1 6=j2∈I2,1

+
∑

j1 6=j2∈I2,1

)
a(0, uj1)a(0, uj2)

+∞∑
q=1

i1,i2 6=j1,j2

∑
n(i1)∈N6:
|n(i1)|=q

∑
n(i2)∈N6:
|n(i2)|=q

a(n(i1), ui1)a(n(i2), ui2)

×
∫
Ti1

∫
Ti2

Mr(ti1 − ti2)q dti1 dti2 := V2,1 + V2,2,

where I2,1 := {(1, 3), (1, 4), (2, 3), (2, 4)} and I2,2 := {(1, 2), (3, 4)}. Using that on I2,1 the integration is
made on distinct rectangles T and T ′, we get, denoting gs : u 7→ exp{−1

2s
2
u}su,

|V2,1| ≤
a2K

2π3
‖gs‖2∞|T |2

+∞∑
q=1

∑
n(i1)∈N6:
|n(i1)|=q

∑
n(i2)∈N6:
|n(i2)|=q

a(n(i1), ui1)a(n(i2), ui2)

∫
T

∫
T ′

|Mr(t− t′)|q dtdt′

≤ a2K

2π3
‖gs‖2∞|T |2

+∞∑
q=1

max
u∗∈{u1,u2,u3,u4}

( ∑
n∈N6:
|n|=q

a(n, u∗)
)2
∫
T

∫
T ′

|Mr(t− t′)|q dt dt′.

Now we provide a majorant for the term
∑

n∈N6:,|n|=q a(n, u∗). Using (45) and the Cauchy Schwarz
inequality we get

∑
n∈N6:|n|=q

a(n, u∗) ≤

√√√√ ∑
n∈N6:|n|=q

a(n, u∗)2n!
∑

n∈N6:|n|=q

1

n!
≤

√√√√C
∑

n∈N6:|n|=q

1

n!
q‖fu∗ · Λ2‖.

Furthermore, note that ∑
n∈N6:|n|=q

1

n!
= 6!

∑
n∈N6:n1≤...≤n6, |n|=q

1

n!
= 6!

∑
n∈Iq(6)

1

n!

where Iq(6) := {q ≥ n6 ≥ q
6 , n6 ≥ n5 ≥ n4 ≥ n3 ≥ n2 ≥ n1 ≥ 0, n1 + . . . + n6 = q}. Note that

Card(Iq(6)) ≤ q5. Then, we obtain that∑
n∈N6:|n|=q

1

n!
≤ 6!

q5

Γ( q6)
, and

∑
n∈N6:|n|=q

a(n, u∗) ≤ C‖fu∗ · Λ2‖
(
q ∧ q5/2+1√

Γ( q6)

)
, (46)

for some positive constant C. It follows that, using (43), (46), and Assumption (A3),

|V2,1| ≤ C|T |2
+∞∑
q=1

q2

∫
T

∫
T ′

|Mr(t− t′)|q dtdt′

≤ C|T |2
+∞∑
q=1

CqMq
2

dist(T, T ′)γq−2

∫
T

∫
T ′

C2
M

(1 + ‖t− t′‖)2
dtdt′ ≤ C2,1

|T |2

dist(T, T ′)γ−2
.
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It follows that V2,1 = o(|T |2).
Similarly for V2,2, using (46) and Assumption (A3) we get

|V2,2| ≤ |T |2
Ca2Ke6

4π3
‖gs‖2∞‖fu∗ · Λ2‖2

∫
T

∫
T

dt ds

(1 + ‖t− s‖)2

+∞∑
q=1

CqM
q7

Γ
( q

6

) ,
which is O(|T |2) using that the series is convergent: from Stirling we get Γ(q/6)/Γ((q+1)/6) �

(
6e
q

) 1
6 → 0

as q →∞. Gathering all terms, it follows that V2 = O(|T |2).
Terms V3 and V4 should be handled using the diagram formula, we conjecture that V3 = o(|T |4) and
V4 = o(|T |4).

B Additional numerical results

Levels u
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Figure 9: Synthetic digital mammograms study. Boxplot for ŝu,T − su for different values of u (left
panel). Empirical variance σ2

su (red starts) and theoretical u 7→ σ2
su in (13) in blue line (right panel).

These samples have been obtained with Matlab using circulant embedding matrix.
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Figure 10: Synthetic digital mammograms study. Boxplots of the estimates Ĉ0,T (ũ) in (10), for each
group of images (group (F) in left panel, (FG) in center and (D) in right one) with adaptive levels ũ,
such that for each ũ it holds that |ŝũ| < ε, for ε = 10−2.

Groups α = 0.2 Intra-class Analysis

Image 2.F 3.F 4.F 5.F

F

1.F 118 153 153 204

2.F 89 126 226

3.F 117 211

4.F 250

Image 2.FG 3.FG 4.FG 5.FG

FG

1.FG 14 105 2 4

2.FG 74 58 21

3.FG 129 123

4.FG 5

Image 2.D 3.D 4.D 5.D

D

1.D 3 8 168 110

2.D 82 190 188

3.D 70 5

4.D 48

α = 0.2 Inter-classes Analysis

Image 1.FG 2.FG 3.FG 4.FG 5.FG

1.F 1000 1000 1000 1000 1000

2.F 694 1000 1000 712 1000

3.F 686 1000 1000 715 1000

4.F 641 1000 1000 633 818

5.F 1000 1000 1000 1000 1000

Image 1.FG 2.FG 3.FG 4.FG 5.FG

1.D 1000 1000 1000 1000 1000

2.D 1000 774 1000 1000 890

3.D 1000 1000 1000 1000 1000

4.D 1000 1000 1000 1000 1000

5.D 1000 1000 1000 1000 1000

Image 1.D 2.D 3.D 4.D 5.D

1.F 1000 1000 1000 1000 1000

2.F 1000 1000 1000 1000 1000

3.F 1000 1000 1000 1000 1000

4.F 1000 1000 1000 1000 1000

5.F 1000 1000 1000 1000 1000

Table 2: Synthetic digital mammograms study. Number of p−values associated to the 1000 different
values of u that are smaller than the significant level α = 0.2. The numbers larger than α× 1000 = 200
for which H0 is rejected.
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