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HARMONIC ANALYSIS ASSOCIATED WITH THE HECKMAN-OPDAM-JACOBI OPERATOR ON R d+1
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In this paper we consider the Heckman-Opdam-Jacobi operator ∆ HJ on R d+1 . We define the Heckman-Opdam-Jacobi intertwining operator V HJ which turn out to be the transmutation operator between ∆ HJ and the Laplacian ∆ d+1 . Next we construct t V HJ the dual of this intertwining operator. We exploit these operators to develop a new harmonic analysis corresponding to ∆ HJ .

Introduction

Recently, Mejjaoli and Trimèche in [START_REF] Mejjaoli | Harmonic Analysis associated with the DunklBessel Laplace operator and a mean value property[END_REF], have considered and studied the Dunkl-Bessel-Laplace operator on R d × R + defined by

∆ k,β = ∆ k,x + L β,x d+1 , x = (x , x d+1 ) ∈ R d × R + ,
where ∆ k is the Dunkl Laplacian on R d and L β is the Bessel operator on R + given by

L β = d 2 dx 2 d+1 + 2β + 1 x d+1 d dx d+1 , β > - 1 2 ,
and have developed an harmonic analysis associated with it. Based on this paper, several works have been elaborated. We can cite, for example, the work of Hassini and Trimèche in [START_REF] Hassini | Wavelets and generalized windowed transforms associated with the Dunkl-Bessel-Laplace operator on R d × R +[END_REF]. They have studied the generalized wavelets and generalized windowed transforms associated to the Dunkl-Bessel operator.

The Jacobi and the Cherednik Heckman-Opdam operators are differential and differentialdifference operators defined respectively on R and R d , they are well studied in [START_REF] Achour | La g-fonction de Littlewood-Paley associée à un opérateur différentiel singulier sur (0, ∞)[END_REF][START_REF] Anker | An Introduction to Dunkl Theory and Its Analytic Aspects[END_REF][START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF][START_REF] Bloom | Fourier transforms of Schwartz functions on Chébli-Trimèche hypergroups[END_REF][START_REF] Heckman | Dunkl operators[END_REF][START_REF] Koornwinder | A new proof of a Paley Wiener type theorem for the Jacobi transform[END_REF][START_REF] Schapira | Contribution to the hypergeometric function theory of Heckman and Opdam: sharp estimates, Schwartz spaces, heat kernel[END_REF] and references there. These operators play a prominent role in the new harmonic analysis theory associated to a new class of differential-difference operators that we attempt to consider in this paper. This class of operators is given by

∆ HJ = ∆ k,x + (∆ a,b + ξ 2 ) x d+1 , x = (x , x d+1 ) ∈ R d × R,
where ∆ k is the Heckman-Opdam Laplacian on R d (see [START_REF] Anker | An Introduction to Dunkl Theory and Its Analytic Aspects[END_REF][START_REF] Schapira | Contribution to the hypergeometric function theory of Heckman and Opdam: sharp estimates, Schwartz spaces, heat kernel[END_REF]) and ∆ a,b is the Jacobi operator on R (see [START_REF] Achour | La g-fonction de Littlewood-Paley associée à un opérateur différentiel singulier sur (0, ∞)[END_REF][START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF][START_REF] Bloom | Fourier transforms of Schwartz functions on Chébli-Trimèche hypergroups[END_REF]). Throughout this article, we have overcome several difficulties in proving some tools of harmonic analysis associated with the differential-difference operator ∆ HJ on R d+1 such that the Plancherel formula which is not verified but at the end we came up with an analog of it. The importance of this new class of operators is derived from those of the two operators ∆ k and ∆ a,b .

The outline of this paper is as follows. The second and third sections are devoted to some basic results of harmonic analysis associated respectively with the Jacobi operator on R and the Cherednik operator on R d . In the last section, we study the harmonic analysis associated to ∆ HJ . In a more specific way, we give some properties of the eigenfunction Λ of this operator equal to 1 at zero. We introduce the generalized intertwining operator and its dual, we define the generalized Fourier transform and we prove for this transform the Paley-Wiener theorem and the inversion formulas. We finish by the generalized translation operators and convolution product that give us the Plancherel type formula. In a latest paper and as an application, we have solved the generalized heat equation associated to ∆ HJ and we have shown that the heat semigroup has a positive kernel.

Harmonic analysis associated to the Jacobi operator on R

In this section we recall some basics results that constitute the harmonic analysis for the Jacobi operator on R. For more details we refer to [START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF][START_REF] Bloom | Harmonic analysis of probability measures on hypergroups[END_REF][START_REF] Bloom | Fourier transforms of Schwartz functions on Chébli-Trimèche hypergroups[END_REF][START_REF] Bloom | Local Hardy spaces on Chébli-Trimèche hypergroups[END_REF][START_REF] Chébli | Opérateur de translation généralisée et semi-groupes de convolution[END_REF][START_REF] Trimèche | Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur (0, ∞)[END_REF]. is defined by

ϕ λ (x) = ϕ (a,b) λ (x) = 2 F 1 ξ + iλ 2 ; ξ -iλ 2 ; a + 1; -(sinh x) 2 ,
where 2 F 1 is the Gauss hypergeometric function and

ξ = a + b + 1. (1) 
The function x -→ ϕ λ (x) is the unique solution on R of the differential equation

∆ a,b u(x) = -(λ 2 + ξ 2 )u(x), u(0) = 1 , u (0) = 0,
where ∆ a,b is the Jacobi differential operator

∆ a,b = d 2 dx 2 + [(2a + 1) coth x + (2b + 1) tanh x] d dx = 1 A a,b (x) d dx A a,b (x) d dx , (2) 
with

A a,b (x) = 2 2ξ (sinh |x|) 2a+1 (cosh x) 2b+1 . (3) 
For twice differentiable compactly supported function f on R and twice differentiable function g on R, we have

R (∆ a,b + ξ 2 )f (y)g(y)A a,b (y)dy = R f (y)(∆ a,b + ξ 2 )g(y)A a,b (y)dy. (4) 
Proposition 2.1. The Jacobi function satisfies the following properties:

(1) For each λ in C, the function x → ϕ λ (x) is an even infinitely differentiable function on R and for each x in R, the function λ → ϕ λ (x) is analytic on C. (2) For each λ ∈ C, ϕ λ has the following integral representation (see [START_REF] Koornwinder | A new proof of a Paley Wiener type theorem for the Jacobi transform[END_REF])

∀x ∈ R, ϕ λ (x) = |x| -|x| K a,b (x, y)e iλy dy,
where K a,b is a nonnegative kernel given by

K a,b (x, y) = 2 (-a+ 1 2 ) Γ(a + 1) √ πΓ(a + 1 2 )(sinh x) 2a (cosh x) 2b (cosh 2x -cosh 2y) a-1
(4) For all n ∈ N, there exists a positive constant M n such that

d n dx n ϕ λ (x) ≤ M n (1 + |x|)(1 + |λ|) n e (| (λ)|-ξ)|x| , ∀λ ∈ C , ∀x ∈ R. (6) 
(5) There exists a positive constant M such that for all λ ∈ C, x ∈ R and n ∈ N,

d n dλ n ϕ λ (x) ≤ M (1 + |x|) n+1 e (| (λ)|-ξ)|x| . (7) 
2.2. The Mehler transforms χ a,b and t χ a,b . Notations We denote by • E * (R) the space of even infinitely differentiable functions on R.

• D * (R) the subspace of E * (R) consisting of compactly supported functions.

• S * (R) the space of even infinitely differentiable functions on R rapidly decreasing with all its derivatives equipped with the usual topology.

• S 2, * (R) the subspace of E * (R) consisting of functions f such that for all n, m ∈ N, N n,m (f ) = sup x∈R (1 + |x|) n (ϕ 0 (x)) -1 f (m) (x) < +∞.
Its topology is defined by the semi-norms (N l,m ) n,m∈N .

• P W * ,r (C), r > 0, the space of even entire rapidly decreasing functions ψ of exponential type r, that is, for all m ∈ N,

Q m (ψ) = sup λ∈C (1 + |λ| 2 ) m e -r| (λ)| |ψ(λ)| < +∞.
The space P W * (C) = r>0 P W * ,r (C) is equipped with inductive limit topology. Remark 2.1. We notice that

∀x ∈ R, ∀λ ∈ C, χ a,b (e i λ,. )(x) = ϕ λ (x). ( 8 
) Theorem 2.1. χ (a,b) is a topological isomorphism from E * (R) onto itself such that χ a,b d 2 dx 2 = (∆ a,b + ξ 2 )χ a,b , and χ a,b f (0) = f (0), ∀f ∈ E * (R). (9) 
Definition 2.2.

(1) The dual t χ a,b of χ a,b is defined by the following relation

R g(x) t χ a,b (f )(x)dx = R χ a,b (g)(y)f (y)A a,b (y)dy, ∀f ∈ S 2, * (R), ∀g ∈ E * (R). (10) 
(2) For f ∈ D * (R) (resp S 2, * (R)), this operator is given by the following integral

∀x ∈ R, t χ a,b (f )(x) = |y|≥|x| K a,b (x, y)f (y)A a,b (y)dy, (11) 
where K a,b is given by the relation (5).

Theorem 2.2. The operator t χ a,b is a linear topological isomorphism from (1) D * (R) onto itself,

(2) S 2, * (R) onto S(R), satisfying t χ a,b (∆ a,b + ξ 2 )f = d 2 dx 2 t χ a,b f. (12) 
2.3. The generalized Fourier transform associated to the Jacobi operator.

Definition 2.3. The generalized Fourier transform associated to the Jacobi operator F a,b is defined on

D * (R) (resp S 2, * (R)) by ∀λ ∈ C, F a,b (f )(λ) = R f (x)ϕ λ (x)A a,b (x)dx. ( 13 
)
Remark 2.2. Using the relation (4) for all f in D * (R) (resp S 2, * (R)), we obtain

∀λ ∈ C, F a,b ((∆ a,b + ξ 2 )f )(λ) = -λ 2 F a,b (f )(λ). ( 14 
)
Theorem 2.3.

(1) The generalized Fourier transform F a,b is a topological isomorphism from

• D * (R) onto P W * (C), • S 2, * (R) onto S * (R). (2) (Inversion formula) For f in S * (R), the inverse F -1 a,b (f ) is given by ∀x ∈ R, F -1 a,b (f )(x) = R f (λ)ϕ λ (x)dσ(λ) , (15) 
where

dσ(λ) = |c a,b (λ)| -2 dλ, (16) 
with |c a,b (λ)| -2 is an even continuous function on R satisfying the estimate: There exist positive constants k, k 1 and k 2 such that, for a > -1/2,

∀λ > k, k 1 λ 2 ≤ |c a,b (λ)| -2 ≤ k 2 λ 2 .
3. Harmonic analysis associated to the Heckman-Opdam Laplacian on R d

In this section we give a brief reminder about the theory of the Cherednik operators (see [START_REF] Said | Huygens' principle for the wave equation associated with the trigonometric Dunkl-Cherednik operators[END_REF][START_REF] Hassini | Generalized wavelets and generalized wavelet transform associated to the Heckman-Opdam theory[END_REF][START_REF] Opdam | Harmonic analysis for certain representations of graded Hecke algebras[END_REF][START_REF] Schapira | Contribution to the hypergeometric function theory of Heckman and Opdam: sharp estimates, Schwartz spaces, heat kernel[END_REF]). More precisely, we introduce the Fourier transform and the intertwining operators associated with these operators by referring mainly to [START_REF] Anker | An Introduction to Dunkl Theory and Its Analytic Aspects[END_REF]. Notations We denote by

• E(R d ) the space of infinitely differentiable functions on R d . • D(R d ) the subspace of E(R d ) consisting of compactly supported functions. • S(R d ) the classical Schwartz space. • S 2 (R d ) the subspace of E(R d ) consisting of functions f such that for all l, n ∈ N, p l,n (f ) = sup |ν|≤n, x∈R d (1 + x ) l (F 0 (x)) -1 |D ν f (x)| < +∞, where ν = (ν 1 , ..., ν d ) ∈ N d , |ν| = d i=1 ν i , D ν = ∂ |ν| ∂x ν 1 1 ....∂x ν d d and F 0 is the Heckman-Opdam hypergeometric function defined by F 0 (x) = 1 |W | w∈W G 0 (wx)
with G 0 is the Opdam hypergeometric kernel given later. Its topology is defined by the semi-norms p l,n for l, n ∈ N.

• P W a (C d ), a > 0, the space of entire functions g on C d satisfying, for m ∈ N,

q m (g) = sup λ∈C d (1 + λ ) m e -a (λ) |g(λ)| < +∞. The space P W (C d ) = a>0 P W a (C d
) is called the Paley-Wiener space. It is equipped with inductive limit topology.

3.1. Root system, multiplicity function and the Cherednik operators. We consider R d with the Euclidean scalar product ., .

and x = x, x . For α ∈ R d \{0}, let σ α (x) = x -2 x, α α 2 α be the reflection in the hyperplane H α ⊂ R d orthogonal to α. A finite set R ⊂ R d \{0} is called a root system, if R ∩ R d .α = {α, -α} and σ α (R) = R for all α ∈ R. For a given root system R, the reflections σ α , α ∈ R, generate a finite group W ⊂ O(d) called the reflection group associated with R. For a given β ∈ R d \ α∈R H α , we fix the positive subsystem R + = {α ∈ R, α, β > 0}. Then, for each α ∈ R, either α ∈ R + or -α ∈ R + . A root α is called non-multipliable if 2α is not a root. A function k : R d -→ [0, +∞[ on the root system R is called a multiplicity function if it is invariant under the action of the reflection group W. Moreover, let A k denotes the weight function ∀x ∈ R d , A k (x) = α∈R + 2 sinh α 2 , x 2k(α) , (17) 
which is W -invariant. For any suitable function f on R d and for x ∈ R d \ α∈R H α , the Cherednik operators T j , j = 1, 2, ...., d, associated with the reflection group W and the multiplicity function k, are defined by

T j f (x) = ∂ j f (x) + α∈R + k(α) α j f (x) -f (σ α (x)) 1 -e -α,x -ρ j f (x),
where

ρ j = 1 2 α∈R + k(α)α j , α j = α, e j . (18) 
In the case k(α) = 0, for all α ∈ R + , the operators T j , j = 1, 2, ..., d, reduce to the corresponding partial derivatives. We suppose in the following that k > 0. The Cherednik operators form a commutative system of differential-difference operators. The Heckman-Opdam Laplacian is defined, for a regular function f on R d and for

x ∈ R d \ α∈R H α , by ∆ k f (x) = d j=1 T 2 j f (x) = ∆f (x) + α∈R + k(α) coth α, x 2 ∇f (x), α + ρ 2 f (x) - α∈R + k(α) |α| 2 4 sinh 2 <α,x> 2 {f (x) -f (σ α (x))}
where ∆ = Theorem 3.1. For every twice differentiable compactly supported function f and twice differentiable function g on R d , we have for all j = 1, 2, ..., d,

R d T j f (x)g(-x)A k (x)dx = R d f (x)T j g(-x)A k (x)dx. (19) R d ∆ k f (x)g(-x)A k (x)dx = R d f (x)∆ k g(-x)A k (x)dx. (20) 
3.2. The Opdam hypergeometric kernel. The Opdam hypergeometric kernel G λ , λ ∈ C d , is the unique analytic function on R d which satisfies the differential-difference system

T j G λ = λ j G λ , j = 1, ..., d, G λ (0) = 1. ( 21 
)
Proposition 3.1. (see [START_REF] Hassini | Generalized wavelets and generalized wavelet transform associated to the Heckman-Opdam theory[END_REF]) The function G λ possesses the following properties:

(1) For all λ ∈ C d , the function x -→ G λ (x) is infinitely differentiable on R d . (2) For all x ∈ R d , the function λ -→ G λ (x) is entire on C d .
(3) For all x ∈ R d and λ ∈ C d , we have (see [START_REF] Opdam | Harmonic analysis for certain representations of graded Hecke algebras[END_REF])

G λ (x) = G -λ (x) , |G λ (x)| ≤ |W | 1/2 e max w∈W (<wλ,x>) . ( 22 
)
In particular, for all x ∈ R d and λ ∈ R d , we have

|G iλ (x)| ≤ |W | 1/2 . ( 4 
) Let p and q be polynomials of degree m and n respectively. Then, there exists a positive constant M such that, for all x ∈ R d and λ ∈ C d , we have

p ∂ ∂λ q ∂ ∂x G λ (x) ≤ M (1 + x ) m (1 + λ ) n F 0 (x)e max w∈W <wλ,x> . (23) 
(5) Let a + be the closure of the positive Weyl chamber a + defined by

a + = {x ∈ R d ; ∀α ∈ R + , α, x > 0}, (24) 
and R 0 + be the set of positive non-multipliable roots. Then for every x in a + , the function G 0 (x) satisfies the following estimate

G 0 (x) α∈R 0 + (1+ < α, x >)e -<ρ,x> , (25) 
where ρ = (ρ 1 , ..., ρ d ) ∈ R d with ρ j is given by the relation (18).

3.3. The Cherednik transform.

Definition 3.1. The Cherednik transform H k of a function f in D(R d ) (resp S 2 (R d )) is defined by ∀λ ∈ R d , H k (f )(λ) = R d f (x)G iλ (-x)A k (x)dx,
where A k is given by the relation [START_REF] Trimèche | Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur (0, ∞)[END_REF].

Proposition 3.2. For every λ ∈ R d and f ∈ D(R d ), we have

H k (T j f )(λ) = iλ j H k (f )(λ), ∀j = 1, ..., d , H k (∆ k f )(λ) = -λ 2 H k (f )(λ). (26) 
Proof. It follows immediately from the system (21) and the relations ( 19) and (20).

Theorem 3.2. (see [START_REF] Anker | An Introduction to Dunkl Theory and Its Analytic Aspects[END_REF]) (1) The Cherednik transform H k is a topological isomorphism from

• D(R d ) onto P W (C d ), • S 2 (R d ) onto S(R d ). (2) (Inversion formula) For every f ∈ S 2 (R d ), we have f (x) = R d H k (f )(λ)G iλ (x)C k (λ)dλ, ∀x ∈ R d , (27) 
where

C k (λ) = c 0 α∈R + Γ i λ, 2 α α + 1 2 k( α 2 ) + k(α) Γ i λ, 2 α α + 1 2 k( α 2 ) × Γ -i λ, 2 α α + 1 2 k( α 2 ) + k(α) + 1 Γ -i λ, 2 α α + 1 2 k( α 2 ) + 1 , ( 28 
)
and c 0 is a positive constant.

3.4.

The transmutation operators associated to the Cherednik operators.

Definition 3.2. The dual Cherednik transmutation operator t V k is defined on S 2 (R d ) by the following relation

t V k = F -1 • H k , ( 29 
)
where F is the classical Fourier transform on R d given by

∀x ∈ R d , Ff (x) = R d
f (y)e -i<x,y> dy.

Theorem 3.3. The operator t V k is a linear topological isomorphism from

• D(R d ) onto itself, • S 2 (R d ) onto S(R d ).
Proof. It is deduced immediately from Theorem 3.2 and the relation (29).

Proposition 3.3. (see [START_REF] Anker | An Introduction to Dunkl Theory and Its Analytic Aspects[END_REF]) For all function f in S 2 (R d ), we have

∀j = 1, ..., d , t V k (T j f ) = ∂ j ( t V k f ) . t V k ∆ k f = ∆ t V k f . (30) 
Definition 3.3. We define the Cherednik transmutation operator V k on E(R d ) by the following duality relation

R d V k (g)(x)f (x)A k (x)dx = R d g(x) t V k (f )(x)dx, (31) 
for all f ∈ D(R d ) (resp S 2 (R d )) and g ∈ E(R d ).
Proposition 3.4. (see [START_REF] Anker | An Introduction to Dunkl Theory and Its Analytic Aspects[END_REF]) For all g ∈ E(R d ), we have

∀ j = 1, ..., d , T j V k (g) = V k (∂ j g) , ∆ k V k (g) = V k (∆ g). ( 32 
) Corollary 3.1. For x ∈ R d and λ ∈ C d , G λ (x) = V k (e λ,. )(x). (33) 
4. HARMONIC ANALYSIS ASSOCIATED TO THE HECKMAN-OPDAM-JACOBI OPERATOR ON R d+1

Notations We denote by

• R d+1 = R d × R , x = (x 1 , ..., x d , x d+1 ) = (x , x d+1 ) ∈ R d × R. • C 2 * (R d+1
) the space of twice continuously differentiable functions on R d+1 even with respect to the last variable.

• E * (R d+1 ) the space of infinitely differentiable functions on R d+1 even with respect to the last variable. • D * (R d+1 ) the subspace of E * (R d+1 ) consisting of compactly supported functions.

• S * (R d+1 ) the subspace of the classical Schwartz space S(R d+1 ) consisting of functions which are even with respect to the last variable.

• S 2, * (R d+1 ) the subspace of E * (R d+1 ) such that for all m, n ∈ N, τ m,n (f ) = sup |ν|≤n, x∈R d+1 (1 + x ) m (ϕ 0 (x d+1 )) -1 (F 0 (x )) -1 |D ν f (x)| < +∞, with ν = (ν 1 , ..., ν d+1 ) ∈ N d+1 , |ν| = d+1 i=1 ν i and D ν = ∂ |ν| ∂x ν 1 1 ....∂x ν d+1 d+1
.

Its topology is defined by the semi-norms τ m,n for m, n ∈ N.

4.1. The Heckman-Opdam-Jacobi operator. Let denote by

ρ = (ρ 1 , ..., ρ d , ρ d+1 ) = (ρ , ρ d+1 ) ∈ R d × R,
where ρ j , 1 ≤ j ≤ d, is defined by the relation (18) and ρ d+1 is given by the relation [START_REF] Achour | La g-fonction de Littlewood-Paley associée à un opérateur différentiel singulier sur (0, ∞)[END_REF]. For all f ∈ C 2 * (R d+1 ), we define the Heckman-Opdam-Jacobi operator ∆ HJ as follows

∀x ∈ R d+1 , ∆ HJ f (x) = (∆ a,b + ρ 2 d+1 ) x d+1 f (x) + ∆ k,x f (x).
In the limit case k = 0 and a = b = -1 2 , ∆ HJ reduces to the usual Laplacian. For every x ∈ R d+1 and λ ∈ R d+1 , the Heckman-Opdam-Jacobi kernel Λ given by

Λ(x, λ) = G iλ (x )ϕ λ d+1 (x d+1 ) , is a solution of the system    ∆ HJ u(x, λ) = -λ 2 u(x, λ), u(0, λ) = 1 , ∂u ∂x d+1 ((x , 0), λ) = 0.
Remark 4.1. Let d = 1 and consider the root system R = {-2α, -α, α, 2α} with α = 2 . Here R + = {α, 2α} and W = Z 2 . We consider a positive multiplicity function k on W and we put

k 1 = k(α) + k(2α), k 2 = k(2α) so ρ = k(α) + 2k(2α) = k 1 + k 2 .
The Cherednik operator and the Heckman-Opdam Laplacian are given by

T 1 f (x) = f (x) + 2k(α) 1 -e -2x + 4k(2α) 1 -e -4x [f (x) -f (-x)] -ρf (x) = f (x) + (k 1 coth x + k 2 tanh x) [f (x) -f (-x)] -ρf (-x), ∆ k f (x) = ∆ a,b f (x) + (k 1 -k 2 ) tanh 2 x + (k 2 -2k 1 ) [f (x) -f (-x)] + ρ 2 f (x). where c = k 1 - 1 2 and e = k 2 - 1 2 .
So, the operator ∆ HJ can be written as follow

∆ HJ f (x, y) = ∆ a,b + ρ 2 2 y f (x, y) + (∆ c,e + ρ 2 1 ) x f (x, y) + (k 1 -k 2 ) tanh 2 x + (k 2 -2k 1 ) (f (x, y) -f (-x, y))
and the function Λ becomes

Λ((x, y), (λ 1 , λ 2 )) = ϕ a,b λ 2 (y) ϕ c,e λ 1 (x) + 1 iλ 1 -ρ 1 d dx ϕ c,e λ 1 (x) .
Furthermore, if we take λ = λ 1 = λ 2 and (a, b) = (c, e), we obtain Λ((x, y), (λ, λ)) = ϕ c,e λ (x)ϕ c,e λ (y) + 1 iλ -ρ 1 ϕ c,e λ (y)

d dx ϕ c,e λ (x) = τ y ϕ c,e λ (x) + 1 iλ -ρ 1 ϕ c,e λ (y) d dx ϕ c,e λ (x),
where τ x is the generalized translation associated to the Jacobi operator defined by

∀f ∈ S 2, * (R), ∀y ∈ R, F a,b (τ x f )(y) = ϕ a,b λ (x)F a,b f (y)
, and F a,b is given by the relation [START_REF] Koornwinder | A new proof of a Paley Wiener type theorem for the Jacobi transform[END_REF].

Proposition 4.1. The function Λ satisfies the following properties:

(1) For λ ∈ R d+1 , the function x -→ Λ(x, λ) is infinitely differentiable on R d+1 and for • For all µ = (µ 1 , ..., µ d+1 ) ∈ N d+1 , there exists a positive constant M such that for all λ ∈ R d+1 and x ∈ R d+1 ,

x ∈ R d+1 , the function λ -→ Λ(x, λ) is infinitely differentiable on R d+1 . (2) • For all ν = (ν 1 , ..., ν d , ν d+1 ) ∈ N d+1 , there exists a positive constant M such that for all λ ∈ R d+1 and x ∈ R d+1 , |D ν x Λ(x, λ)| ≤ M (1 + λ ) |ν | (1 + |λ d+1 |) ν d+1 (1 + |x d+1 |)F 0 (x )e -ρ d+1
|D µ λ Λ(x, λ)| ≤ M (1 + x ) |µ | (1 + |x d+1 |) µ d+1 +1 F 0 (x )e -ρ d+1 |x d+1 |
where |µ | = (3) For x ∈ R d+1 and λ ∈ R d+1 , we have

|Λ(x, λ)| ≤ |W | 1 2 . ( 34 
)
(4) For x = (x , x d+1 ) in a + × R + , there exist two positive constants c 1 and c 2 such that c 1 e -<ρ,x>

α∈R 0 + (1 + α, x ) ≤ Λ(x, 0) ≤ c 2 (1 + x d+1 )e -<ρ,x> α∈R 0 + (1 + α, x ),
where a + is the closure of the positive Weyl chamber given by the relation (24), R 0 + is the set of positive indivisible roots. Proof.

(1) It is deduced from the properties of ϕ λ (x) given in Proposition 2.1 and the properties of G λ (x) given in Proposition 3.1.

(2) By using the inequalities ( 6), ( 7) and ( 23), we obtain the estimations below.

(3) We deduce the result by combining the property (3) in Proposition 2.1 with the inequality ( 22). ( 4) Using the inequalities in the property (3) and the estimate (25), we obtain the result. 

* (R d+1 ) by ∀x ∈ R d+1 , V HJ f (x) =      |x d+1 | -|x d+1 | K a,b (x d+1 , y) V k,x f (x , y)dy if x d+1 = 0, V k f (x , 0) if x d+1 = 0, (35) 
where K a,b is given by the relation [START_REF] Bloom | Fourier transforms of Schwartz functions on Chébli-Trimèche hypergroups[END_REF].

Remark 4.2. The operator V HJ can also be written in the form V HJ = χ a,b ⊗ V k and satisfies the following property: ∀x, λ ∈ R d+1 , V HJ (e i λ,. )(x) = Λ(x, λ).

(36) Indeed, by using the relations (8) and (33), we obtain

V HJ (e i λ,. )(x) = χ a,b,x d+1 ⊗ V k,x e i (λ ,λ d+1 ),. (x , x d+1 ) = χ a,b,x d+1 ⊗ V k,x e iλ d+1 .x d+1 e i λ , x = χ a,b,x d+1 (e iλ d+1 .x d+1 ).V k,x (e i λ ,x ) = ϕ λ d+1 (x d+1 )G iλ (x ) = Λ(x, λ). Theorem 4.1. For every function f ∈ E * (R d+1 ), V HJ f belongs to E * (R d+1 ) and ∆ HJ V HJ f = V HJ ∆ d+1 f, where ∆ d+1 = d+1 i=1 ∂ 2 i is the classical Laplacian on R d+1 . Proof. Let f ∈ E * (R d+1
). From the relation (35) and the properties of V k and K a,b , we deduce that V HJ f belongs to E * (R d+1 ). By using the relations ( 9) and (32) and for every x ∈ R d+1 , we obtain that

∆ HJ V HJ f (x) = ∆ HJ χ a,b,x d+1 ⊗ V k,x f (x) = (∆ a,b + ρ 2 d+1 ) x d+1 χ a,b,x d+1 ⊗ V k,x f (x) + ∆ k,x χ a,b,x d+1 ⊗ V k,x f (x) = (∆ a,b + ρ 2 d+1 ) x d+1 χ a,b,x d+1 ⊗ V k,x f (x) + χ a,b,x d+1 ⊗ ∆ k,x V k,x f (x) = χ a,b,x d+1 ⊗ V k,x ∂ 2 ∂x 2 d+1 f (x) + χ a,b,x d+1 ⊗ V k,x ∆ d f (x) = V HJ ∆ d+1 f (x).
Definition 4.2. The generalized dual transmutation operator t V HJ is defined by

t V HJ f (y) = |y d+1 |≤|t| K a,b (y d+1 , t) t V k,y f (y , t)A a,b (t)dt, ∀f ∈ D * (R d+1 ), ∀y ∈ R d+1 .
Remark 4.3. We can write t V HJ in the form t V HJ = t χ a,b ⊗ t V k , where t χ a,b is given by the relation (11) and t V k is defined by the relation (29).

Theorem 4.2. The operator t V HJ is a topological isomorphism from

• D * (R d+1 ) onto itself, • S 2, * (R d+1 ) onto S * (R d+1 ), satisfying t V HJ ∆ HJ f = ∆ d+1 t V HJ f. Proof. As t V k is a topological isomorphism from D(R d ) (resp S 2 (R d )) onto itself (resp S(R d )) and t χ a,b is a topological isomorphism from D * (R) (resp S 2, * (R)) onto itself (resp S(R)), we deduce that t V HJ is a topological isomorphism from D * (R d+1 ) (resp S 2, * (R d+1 )) onto itself (resp S * (R d+1 ))
(See [START_REF] Grothendieck | Produits tensoriels topologiques et espaces nucléaires[END_REF] page 40 corollary 1). Let y ∈ R d+1 . Using the relations ( 12) and (30), we obtain

t V HJ (∆ HJ f )(y) = t χ a,b ⊗ t V k (∆ HJ f )(y) = t χ a,b,y d+1 ⊗ t V k,y (∆ a,b + ρ 2 d+1 ) y d+1 + ∆ k,y f (y) = t χ a,b,y d+1 (∆ a,b + ρ 2 d+1 ) y d+1 ⊗ t V k,y f (y) + t χ a,b,y d+1 ⊗ t V k,y ∆ k,y f (y) = ∂ 2 ∂y 2 d+1 t χ a,b,y d+1 ⊗ t V k,y f (y) + ∆ d t χ a,b,y d+1 ⊗ t V k,y f (y) = ∆ d+1 t V HJ f (y).
Proposition 4.2. The integral transforms V HJ and t V HJ are transposate, i.e., for all f ∈ D * (R d+1 ) and g ∈ E * (R d+1 ), we have the following duality relation:

R d+1 t V HJ f (y)g(y)dy = R d+1 f (y)V HJ g(y)A HJ (y)dy, (37) 
where

A HJ (y) = A k (y )A a,b (y d+1 ), (38) 
with A a,b and A k are given respectively by the relations (3) and (17).

Proof. Let f ∈ D * (R d+1 ) and g ∈ E * (R d+1 ). By using the duality relations [START_REF] Hassini | Wavelets and generalized windowed transforms associated with the Dunkl-Bessel-Laplace operator on R d × R +[END_REF] and (31), we obtain (1 + λ ) m e -r (λ) |g(λ)| < +∞.

R d+1 t V HJ f (y)g(y)dy = R d R t V HJ f (y , y d+1 )g(y , y d+1 )dy d+1 dy = R d R |y d+1 |≥|t| K a,b (y d+1 , t) t V k,y f (y , t)A a,b (t)dtg(y , y d+1 )dy d+1 dy = R |y d+1 |≥|t| K a,b (y d+1 , t) R d t V k,y f (y , t)g(y , y d+1 )dy A a,b (t)dt dy d+1 = R |y d+1 |≥|t| K a,b (y d+1 , t) R d f (y , t)V k,y g(y , y d+1 )A k (y )dy
The space P W * (C d+1 ) = r>0 P W r, * (C d+1 ) is called the Paley-Wiener space. It is equipped with inductive limit topology. • L p HJ, * (R d+1 ), 1 ≤ p ≤ +∞, the space of measurable functions on R d+1 even with respect to the last variable satisfying

         f HJ,p = R d+1 |f (x)| p A HJ (x)dx 1/p < +∞ for 1 ≤ p < +∞, f HJ,∞ = ess sup x∈R d+1 |f (x)| < +∞ for p = +∞,
where A HJ is given by the relation (38).

Definition 4.3. For f ∈ D * (R d+1 ) (resp S 2, * (R d+1 )), the generalized Fourier transform is defined by

∀λ ∈ R d+1 , F HJ f (λ) = R d+1 f (x)Λ(-x, λ)A HJ (x)dx.
Proposition 4.3. The generalized Fourier transform satisfies the following properties:

(1) For all function f in L 1 HJ, * (R d+1 ), we have

F HJ (f ) HJ,∞ ≤ |W | 1 2
f HJ,1 .

(2) For all function f in D * (R d+1 ) (resp S 2, * (R d+1 )), we have

∀λ ∈ R d+1 , F HJ (f )(λ) = F -1 0 • t V HJ ( f )(λ), (39) 
where f (x) = f (-x) and F 0 the classical Fourier transform on R d+1 defined by

F 0 (f )(λ) = R d+1
f (x)e -i x,λ dx.

(3) For all function f in D * (R d+1 ) (resp S 2, * (R d+1 )), we have

∀λ ∈ R d+1 , F HJ (∆ HJ f )(λ) = -λ 2 F HJ f (λ). (40) 
Proof.

(1) Let f ∈ L 1 HJ, * (R d+1 ). We conclude the result by using the relation (34) and the following inequality:

∀λ ∈ R d+1 , |F HJ f (λ)| = R d+1 f (x)Λ(-x, λ)A HJ (x)dx ≤ |W | 1 2 R d+1 |f (x)| A HJ (x)dx = |W | 1 2 f HJ,1 .
(2) Let f ∈ D * (R d+1 ) (resp S 2, * (R d+1 )) and λ ∈ R d+1 . By using the relations (36) and (37), we obtain

F HJ (f )(λ) = R d+1 f (x)Λ(-x, λ)A HJ (x)dx = R d+1 f (x)V HJ (e i λ,. )(-x)A HJ (x)dx = R d+1 f (x)V HJ (e i λ,. )(x)A HJ (x)dx = R d+1 t V HJ ( f )(x)e i λ,x dx = F -1 0 • t V HJ ( f )(λ).
(

) Let f ∈ D * (R d+1 ) (resp S 2, * (R d+1 3 
)) and λ ∈ R d+1 . Using the relations ( 14) and (26), we obtain

F HJ (∆ HJ f )(λ) = R d+1 ∆ HJ f (x)Λ(-x, λ)A HJ (x)dx = R d R (∆ a,b + ρ 2 d+1 ) x d+1 f (x , x d+1 )Λ(-(x , x d+1 ), (λ , λ d+1 )) ×A a,b (x d+1 )dx d+1 A k (x )dx + R R d ∆ k,x f (x , x d+1 )Λ(-(x , x d+1 ), (λ , λ d+1 ))A k (x )dx A a,b (x d+1 )dx d+1 = -λ 2 d+1 R d R f (x , x d+1 )ϕ λ d+1 (x d+1 )A a,b (x d+1 )dx d+1 G iλ (-x )A k (x )dx -λ 2 R R d f (x , x d+1 )G iλ (-x )A k (x )dx ϕ λ d+1 (x d+1 )A a,b (x d+1 )dx d+1 = -λ 2 R d+1 f (x)Λ(-x, λ)A HJ (x)dx = -λ 2 F HJ f (λ).
Remark 4.4. We notice that for every f in D * (R d+1 ) (resp S 2 , * (R d+1 )), we have

∀λ = (λ , λ d+1 ) ∈ R d+1 , F HJ f (λ) = (H k ) λ ⊗ (F a,b ) λ d+1 f (λ). (41) 
Theorem 4.3. The Fourier transform F HJ is a topological isomorphism from 

(1) D * (R d+1 ) onto P W * (C d+1 ), (2) 
(x) = R d+1 F HJ (f )(λ)Λ(x, λ)dµ k (λ), ∀x ∈ R d+1 , (42) 
where dµ k (λ) = dσ(λ d+1 ) C k (λ ) dλ for λ ∈ R d+1 with dσ and C k are given respectively by the relations ( 16) and (28).

Proof. We deduce the result by combining the relations ( 15), ( 27) and (41). 

f ∈ S 2, * (R d+1 ) and x ∈ R d+1 , by ∀λ ∈ R d+1 , F HJ (T x HJ f )(λ) = Λ(x, λ)F HJ f (λ). (43) 
Proposition 4.5. For every x in R d+1 , the generalized translation operator T x HJ satisfies the following properties:

(1) For all f ∈ S 2, * (R d+1 ) and y ∈ R d+1 , we have

T x HJ f (y) = R d+1 Λ(x, λ)Λ(y, λ)F HJ (f )(λ)dµ k (λ). (44) 
(2) For all f ∈ S 2, * (R d+1 ) and y ∈ R d+1 , we have

T x HJ f (y) = T y HJ f (x), T x HJ f (0) = f (x)
and T x HJ T y HJ f = T y HJ T x HJ f. (3) For all f ∈ S 2, * (R d+1 ), we have ∆ HJ (T x HJ f ) = T x HJ (∆ HJ f ). Proof.

(1) We obtain the result by combining the relations (42) and (43). (2) It is deduced from the relations (43) and (44).

(3) By using the relations (40) and (43), we obtain F HJ (∆ HJ (T x HJ f ))(λ) = -λ 2 F HJ (T x HJ f )(λ) = -λ 2 Λ(x, λ)F HJ f (λ) = Λ(x, λ)F HJ (∆ HJ f )(λ) = F HJ (T x HJ (∆ HJ f ))(λ). Therefore, ∆ HJ (T x HJ f ) = T x HJ (∆ HJ f ). f (y)T x HJ g(-y)A HJ (y)dy.

We obtain the result by taking x = 0 and using the relations ∀x ∈ R d+1 , T 0 HJ g(x) = g(x) and ∀λ ∈ R d+1 , Λ(0, λ) = 1.

Remark 4.5. For all f, g in D * (R d+1 ) (resp S 2, * (R d+1 )), we have

R d+1
T x HJ f (-y)g(y)A HJ (y)dy = R d+1 f (y)T x HJ g(-y)A HJ (y)dy.

In fact, by using the relations (43) and (47), we have f (y)T x HJ g(-y)A HJ (y)dy.

2. 1 .

 1 The Jacobi operator and function. For a ≥ b ≥ -C and x ∈ R, the Jacobi function ϕ (a,b) λ

Definition 2 . 1 .

 21 The dual Mehler transform denoted by χ a,b is defined, for an even continuous and bounded function f on R, by ∀x ∈ R, χ a,b (f )(x) = |x| -|x| K a,b (x, y)f (y)dy, where K a,b is given by the relation (5).

2 j

 2 and ∇ = (∂ 1 , . . . , ∂ d ) are respectively the Laplacian and the gradient on R d .

4. 2 .

 2 The generalized transmutation operator and its dual. Definition 4.1. The generalized transmutation operator is defined on E

4 . 3 .

 43 A a,b (t)dt dy d+1 = R R d |y d+1 |≥|t| K a,b (y d+1 , t)f (y , t)A a,b (t)dt V k,y g(y , y d+1 )A k (y )dy dy d+1 = R R d t χ a,b,y d+1 f (y , y d+1 )V k,y g(y , y d+1 )A k (y )dy dy d+1 = R d R t χ a,b,y d+1 f (y , y d+1 )V k,y g(y , y d+1 )dy d+1 A k (y )dy = R d R f (y , y d+1 )χ a,b,y d+1 V k,y g(y , y d+1 )A a,b (y d+1 )dy d+1 A k (y )dy = R d R f (y , y d+1 )V HJ g(y , y d+1 )A a,b (y d+1 )dy d+1 A k (y )dy = R d+1f (y)V HJ g(y)A HJ (y)dy. The generalized Fourier transform. Notations We denote by• P W r, * (C d+1 ), r > 0, the space of entire functions g on C d+1 even with respect to the last variable and satisfying, for m ∈ N, P m (g) = sup λ∈C d+1

Proposition 4 . 4 .

 44 S 2, * (R d+1 ) onto S * (R d+1 ). Proof. The result follows by combining the relation (39), Theorem 4.2 and the Paley-Wiener theorem for the classical Fourier transform. The inverse formula is given, for a function f in S 2, * (R d+1 ), by f

4. 4 .Definition 4 . 4 .

 444 The generalized translation operators. The generalized translation operator T x HJ , is defined for
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 54546d+1 The generalized convolution product. The generalized convolution product f * (HJ) g of the functions f, g∈ D * (R d+1 ) (resp S 2, * (R d+1 )) is defined by ∀x ∈ R d+1 , f * (HJ) g(x) = R d+1T x HJ f (-y)g(y)A HJ (y)dy.(45) For all f, g ∈ D * (R d+1 ) (resp S 2, * (R d+1 )), the function f * (HJ) g belongs to D * (R d+1 ) (resp S 2, * (R d+1 )) and we have∀λ ∈ R d+1 , F HJ (f * (HJ) g)(λ) = F HJ f (λ) . F HJ g(λ).(46)Proof. Using Fubini's theorem and the relations (42) and (44), we obtainF -1 HJ (F HJ f . F HJ g)(x) = R d+1 HJ f (λ)F HJ g(λ)Λ(x, λ)dµ k (λ) = R HJ f (λ) R d+1 g(y)Λ(-y, λ)A HJ (y)dy Λ(x, λ)dµ k (λ) HJ f (λ)Λ(-y, λ)Λ(x, λ)dµ k (λ) A HJ (y)dy = R d+1T x HJ f (-y)g(y)A HJ (y)dy = f * (HJ) g(x).Consequently, we deduce that f * (HJ) g stays in D * (R d+1 ) (resp S 2, * (R d+1 )) andF HJ (f * (HJ) g)(λ) = F HJ f (λ) . F HJ g(λ), λ ∈ R d+1 . Theorem 4.4. (Plancherel type formula) For all f, g in D * (R d+1 ) (resp S 2, * (R d+1 )), we have R d+1 f (x)g(-x)A HJ (x)dx = R d+1 HJ f (λ)F HJ g(λ)dµ k (λ).(47)Proof. For f, g ∈ S 2, * (R d+1 ), we deduce from the relations (45) and (46) that f * (HJ) g(x) = F -1 HJ (F HJ f.F HJ g)(x) = R d+1 HJ f (λ)F HJ g(λ)Λ(x, λ)dµ k (λ) = R d+1

F - 1 F

 1 f (-y)g(y)A HJ (y)dy =R d+1 HJ (Λ(x, .)F HJ f )(-y)g(y)A HJ (y)dy = R d+1 Λ(x, λ)F HJ f (λ)F HJ g(λ)dµ k (λ) = R d+1 HJ f (λ)F HJ (T x HJ g)(λ)dµ k (λ) = R d+1