
HAL Id: hal-02317678
https://hal.science/hal-02317678

Submitted on 8 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From cusps to cores: a stochastic model
Amr El-Zant, Jonathan Freundlich, Françoise Combes

To cite this version:
Amr El-Zant, Jonathan Freundlich, Françoise Combes. From cusps to cores: a stochastic model.
Monthly Notices of the Royal Astronomical Society, 2016, 461 (2), pp.1745-1759. �10.1093/mn-
ras/stw1398�. �hal-02317678�

https://hal.science/hal-02317678
https://hal.archives-ouvertes.fr


MNRAS 461, 1745–1759 (2016) doi:10.1093/mnras/stw1398
Advance Access publication 2016 June 10

From cusps to cores: a stochastic model

Amr A. El-Zant,1‹ Jonathan Freundlich2,3 and Françoise Combes2,3

1Centre for Theoretical Physics, The British University in Egypt, Sherouk City 11837, Cairo, Egypt
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ABSTRACT
The cold dark matter model of structure formation faces apparent problems on galactic scales.
Several threads point to excessive halo concentration, including central densities that rise
too steeply with decreasing radius. Yet, random fluctuations in the gaseous component can
‘heat’ the centres of haloes, decreasing their densities. We present a theoretical model deriving
this effect from first principles: stochastic variations in the gas density are converted into
potential fluctuations that act on the dark matter; the associated force correlation function is
calculated and the corresponding stochastic equation solved. Assuming a power-law spectrum
of fluctuations with maximal and minimal cutoff scales, we derive the velocity dispersion
imparted to the halo particles and the relevant relaxation time. We further perform numerical
simulations, with fluctuations realized as a Gaussian random field, which confirm the formation
of a core within a time-scale comparable to that derived analytically. Non-radial collective
modes enhance the energy transport process that erases the cusp, though the parametrizations
of the analytical model persist. In our model, the dominant contribution to the dynamical
coupling driving the cusp-core transformation comes from the largest scale fluctuations. Yet,
the efficiency of the transformation is independent of the value of the largest scale and depends
weakly (linearly) on the power-law exponent; it effectively depends on two parameters: the
gas mass fraction and the normalization of the power spectrum. This suggests that cusp-
core transformations observed in hydrodynamic simulations of galaxy formation may be
understood and parametrized in simple terms, the physical and numerical complexities of the
various implementations notwithstanding.
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1 IN T RO D U C T I O N

Shortly after it was shown that simulated haloes within the cold dark
matter (CDM) structure formation scenario display a singular cen-
tral density profile up to the resolution radius (Dubinski & Carlberg
1991; Warren et al. 1992), it was suggested that these might be in
tension with observations of dark matter dominated galaxies (Flores
& Primack 1994; Moore 1994). In most cases, finite density ‘cores’
are favoured over singular ‘cusps’; and there is, in general, simply
too much mass in the central regions of simulated CDM haloes for
these to simultaneously fit the inner and outer rotation curves of
dark matter dominated galaxies (e.g. Weinberg et al. 2013). This
‘cusp/core’ conundrum seems particularly severe in dwarf galaxies
(e.g. Adams et al. 2014; Oh et al. 2015). It is also probed in low
surface brightness galaxies (e.g. McGaugh & de Blok 1998; Kuzio
de Naray & Spekkens 2011), and may even be present in Milky Way
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satellites (Goerdt et al. 2006; Walker & Peñarrubia 2011) and the
central galaxies of clusters (Newman, Ellis & Treu 2015). More-
over, the high pattern speed of galactic bars in disc galaxies such as
the Milky Way could also suggest the presence of a core rather than
a cusp (Debattista & Sellwood 1998).

In this context, the following questions arose: what precisely
were the simulations predicting in terms of central slope of the den-
sity profile and mass contained in the central region of dark matter
haloes? Were the profiles inferred from cosmological simulations a
necessary theoretical prediction of CDM cosmology? And, finally,
if actual discrepancies with observations do exist, how are these to
be accounted for? Those questions have been addressed in numer-
ous studies. Cosmological haloes were found to have an essentially
universal density profile approximately characterized by the NFW
formula (Navarro, Frenk & White 1996, 1997). The inner loga-
rithmic slope is about −1, though it may flatten somewhat in the
innermost regions (Stadel et al. 2009; Navarro et al. 2010); the mass
contained within the central region is determined by a concentra-
tion parameter, which correlates with the virial mass (Bullock et al.
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2001; Macciò et al. 2007; Klypin, Trujillo-Gomez & Primack 2011;
Diemer & Kravtsov 2015). The combination of the form of the in-
ner density profile and the mass–concentration relation makes it
difficult to fit the mass distribution inferred from observations. The
second question pertains to theoretically understanding the origin
of the profiles and the correlation between their parameters; despite
much effort there is as yet no general theoretical model achieving
this from first principles (see Frenk & White 2012, for a brief re-
view). Nevertheless, central cups do appear to be a generic product
of cold collapse (Huss, Jain & Steinmetz 1999; Moore et al. 1999;
Shapiro et al. 2004; El Zant 2013) and these cusps appear to be ro-
bust in the sense of being invariant under merging (Boylan-Kolchin
& Ma 2004; Kazantzidis, Zentner & Kravtsov 2006; El-Zant 2008).
The third question above may be related to other problems that col-
lectively threaten the CDM paradigm; such as the ‘too big to fail’
phenomenon (Boylan-Kolchin, Bullock & Kaplinghat 2011) which
involves the excessive rotation speeds of galactic subhaloes and may
be alleviated if those subhaloes are cored or with a shallow cusp
(Ogiya & Burkert 2015). Proposed solutions can be broadly cate-
gorized into those considering fundamental changes in the physics
of the model and those concerned with the baryonic processes at
stake during galaxy formation and evolution. The first category
comprises alternatives to cold, collisionless dark matter such as
warm dark matter (e.g. Colı́n, Avila-Reese & Valenzuela 2000;
Bode, Ostriker & Turok 2001; Macciò et al. 2012a; Schneider et al.
2012; Shao et al. 2013; Lovell et al. 2014; El-Zant, Khalil & Sil
2015), self-interacting dark matter (e.g. Burkert 2000; Kochanek &
White 2000; Spergel & Steinhardt 2000; Miralda-Escudé 2002;
Peter et al. 2013; Zavala, Vogelsberger & Walker 2013; Elbert
et al. 2015), and models that radically change the gravitational law
(e.g. Milgrom 1983; Gentile, Famaey & de Blok 2011; Famaey &
McGaugh 2012). Quantum effects are also sometimes invoked (e.g.
Goodman 2000; Hu, Barkana & Gruzinov 2000; Destri, De Vega &
Sanchez 2013; Marsh & Silk 2014; Schive et al. 2014; Chavanis,
Lemou & Méhats 2015).

Given that the CDM paradigm only begins to face significant
problems at precisely such scales when complex baryonic physics
begins to play an important role, it is natural to inquire whether it is
the central culprit behind erroneous theoretical predictions. It was
for example realized early on that energy from supernovae may be
sufficient for driving gas out of the potential wells of dwarf galax-
ies, the associated mass deficit resulting in the expansion of the
central halo region and the flattening of the density profile. More
generally, many hydrodynamical simulations implementing stellar
and active galactic nuclei (AGN) baryonic feedback processes in a
cosmological context are able to reproduce cores (e.g. Governato
et al. 2010, 2012; Macciò et al. 2012b; Martizzi et al. 2012; Di
Cintio et al. 2014; Chan et al. 2015). However, the complexity of
such simulations obscures the physical mechanisms through which
these processes affect the dark matter distribution. These mecha-
nisms normally invoke ‘heating’ of the cold central density cusp
through an irreversible process, such as dynamical friction from
infalling clumps (El-Zant, Shlosman & Hoffman 2001; El-Zant
et al. 2004; Tonini, Lapi & Salucci 2006; Romano-Dı́az et al. 2008;
Goerdt et al. 2010; Cole, Dehnen & Wilkinson 2011; Del Popolo
et al. 2014; Nipoti & Binney 2015). Alternatively, repeated gravi-
tational potential fluctuations induced by stellar winds, supernova
explosions and AGN could also dynamically heat the central halo
(Read & Gilmore 2005; Mashchenko, Couchman & Wadsley 2006;
Mashchenko, Wadsley & Couchman 2008; Peirani, Kay & Silk
2008; Governato et al. 2012; Pontzen & Governato 2012, 2014;
Zolotov et al. 2012; Martizzi, Teyssier & Moore 2013; Teyssier

et al. 2013; Madau, Shen & Governato 2014; Ogiya & Mori 2014).
Although the last mechanism may seem most closely related to the
supernovae driven wind outflows discussed above, it is in princi-
ple more closely connected to the dynamical friction proposal, in
the sense that it involves irreversible stochastic dynamics: one may
envisage the potential fluctuations leading to cusp-core transforma-
tion as originating from stochastic density variations; the relevant
‘clumps’ would be associated with fluctuation scales, as opposed to
physically distinct objects dissipating orbital energy via dynamical
friction; nevertheless, the basic physical mechanism through which
the energy is transferred to the dark matter is similar. For, as is
the case in general with processes involving fluctuation and dissi-
pation, fluctuations in a gravitational system can be approximated
as stochastic processes described by power spectra and correlation
functions, and they can be accompanied by dissipation in the form
of dynamical friction (Chandrasekhar 1943; Nelson & Tremaine
1999).

The purpose of this paper is to present and test a model for the case
when the fluctuations are driven by stellar winds, supernova explo-
sions or AGN. The aim is to theoretically estimate the effect of such
perturbations on the halo structure, given the shape of the density
fluctuation power spectrum and its normalization. This should help
in understanding the basic physics and dynamics of the process; to
estimate the effect of potential fluctuations analytically or through
simple simulations; and to interpret, from first principles, complex
hydrodynamical cosmological simulations, which differ in physical
input and numerical implementation, and often on the inferred con-
clusion concerning the effectiveness of the process. At some level,
the model incorporates scenarios whereby cusp-core transforma-
tion takes place due to potential variations arising from repeated
outflows and inflows in the central region as the inferred mass vari-
ations, associated with the density fluctuations, can be quite large
in regions smaller than the largest fluctuation scales. In addition,
it takes into account clumping and turbulent cascades that result
in continuous mass and density fluctuation spectra. In Section 2
we outline the analytical model, solve it for power-law spectra with
cutoffs and derive an associated relaxation time, determining the
time-scale on which such fluctuations act to modify halo particle
trajectories (details of the calculations are reproduced in the appen-
dices). In Section 3 we test our model by evaluating the effect of
the fluctuating field, with given power spectrum and normalization,
on a live dark matter halo of the NFW form. Our conclusions are
presented in Section 4.

2 DY NA M I C A L R E L A X AT I O N S P U R R E D
BY STOCHASTI C DENSI TY FI ELDS

2.1 Outline

2.1.1 Basic theoretical setup

We envisage a two-component system; a collisionless self-
gravitating system (primarily a dark matter halo) with smooth den-
sity distribution, which hosts a gaseous medium with density field
exhibiting significant stochastic spatio-temporal variations in den-
sity. These can originate from stellar or AGN feedback; they lead
to potential and force perturbations, which influence the motion of
halo particles. These then deviate from their paths in the smooth
potential within a relaxation time. This is the time for the potential
fluctuations to significantly affect particle trajectories; it is analo-
gous to the relaxation time in a stellar system, where the fluctuations
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due to point particle interactions can roughly be represented as white
noise. The relaxation time is evaluated as follows.

The density fluctuations are characterized by power spectra and
associated correlation functions. Once the power spectrum of den-
sity fluctuations is defined, the induced gravitational potential vari-
ations can be derived in a manner analogous to what is done in
calculations concerned with cosmological large scale structure. The
force correlation function can then be evaluated from the potential
fluctuations power spectrum, and from this the velocity variance
imposed on halo particle trajectories by the force born of the den-
sity fluctuations. As in the standard calculation of stellar dynamics,
the velocity variance is then divided by the square of the average
particle speed and equated to unity to obtain the relaxation time,
which is the characteristic time associated with the effect of poten-
tial fluctuations on the collisionless component.

2.1.2 Simplifying assumptions

In order to render the model more tractable, and isolate the basic
mechanism at work, we invoke some simplifying assumptions.

We assume that the process we are interested in occurs while
the galaxy in question is gas rich. The collisionless component
will therefore solely consist of a halo, assumed to initially be in
NFW form. Any stellar component present, being collisionless,
would couple to the gas fluctuations as the dominant dark matter,
through its initial distribution need not follow the halo of course.
We therefore implicitly assume that this component’s contribution
to the mass distribution is small, especially as compared to the halo.
This assumption will be especially justified if the star formation
efficiency is small, which is notably the case in low surface bright-
ness and dwarf irregular galaxies (e.g. Van der Hulst et al. 1993;
Schombert, McGaugh & Eder 2001; Boissier et al. 2008; Wyder
et al. 2009; Kennicutt & Evans 2012). Such is also implied if hy-
drodynamical simulations invoking feedback are to simultaneously
produce a halo core and match the stellar mass in dwarf galaxies
(Teyssier et al. 2013). This assumption would seem even more jus-
tified if the energy input stems from AGN feedback. The gas mass
fraction is taken to be independent of time; again, an implicit as-
sumption here is that star formation is not efficient enough to induce
a significant change in the gas mass fraction throughout the process.

In this initial study, we confine ourselves to the case where the gas
is homogeneous on scales significantly larger than the largest fluctu-
ation scales. Stellar and AGN feedback driven gaseous fluctuations
are expected to be important in the central regions, and their dynam-
ical effects, leading to core formation, significant within radii ∼rs.
We therefore assume that fluctuations are important only within a
sphere of diameter d around the centre. Within this region, which
is much larger than that bounded by rs, we assume a gas fraction
f = Mgas/MDM. The gas mass fraction is a function of distance l
from the centre, thus in general f = f(l). Since the gas is assumed
to be homogeneous (barring fluctuations) and the dark matter is
centrally concentrated, the gas mass fraction rapidly decreases with
decreasing radius. This means that if we assume, as we will, a gas
mass fraction of the order of the universal baryon fraction within
d/2, we may be actually underestimating the gas fraction in the
central regions (even though we do allow for gas condensation in
the halo, as the region bounded by radius d/2 is assumed to be
much smaller than the virial radius). However, the results presented
are easily rescaled, as it will turn out that the gas mass fraction
and the normalization of the density fluctuation power spectrum
enter multiplicatively in such a way that exactly the same results

can be obtained by increasing the gas mass fraction and proportion-
ally decreasing the assumed rms density fluctuations. Physically,
a lower average central gas density accompanied by large fluctua-
tions may mimic repeated starburst/AGN driven outflows, leading
to prolonged periods of small central gas mass fraction preceded by
gaseous condensations and much larger than average densities.

It is assumed that the affected collisionless matter distribution in
the inner region of the halo remains near dynamical equilibrium.
This naturally excludes haloes undergoing major mergers. How-
ever, cusps can reform during the merging process, and long-lived
cores seem to emerge only after the epoch of rapid mass buildup is
complete (Chan et al. 2015). Moreover, as the gas mass is about an
order of magnitude smaller than the dark matter mass, the process of
cusp-core transformation via baryonic feedback should take place
while the central halo remains in quasi-equilibrium. Indeed, it will
turn out that the core-cusp transformation takes place over many
dynamical times for realistic choice of parameters.

In a system composed of dissipative gas that is repetitively driven
by stellar winds, supernovae or AGN energy input with stationary
statistical properties, there should be a continuous power spectrum
characterizing the fluctuations in the density field representing the
transient gas clumps of different sizes. The general procedure out-
lined below is valid for any such power spectrum associated with a
well-defined correlation function, as long as it decreases sufficiently
fast so that its integral converges. Nevertheless, we assume that the
power spectrum is a power law with maximum and minimum cutoff.
This is motivated by theoretical considerations and observations of
astrophysical fluids.

Fully turbulent media are expected to display power-law velocity
spectra as fluctuations initiated at large scales would cascade into
smaller scales down to the dissipation scale. If one associates the
power-law spectrum with standard turbulence, the maximal scale
is the energy driving scale, the standard (Kolmogorov) power-law
index is 5/3. In compressible media the power spectrum of density
fluctuations can approximately mimic that of their velocity coun-
terparts, as seems to be the case in the cores of galaxy clusters (e.g.
Gaspari & Churazov 2013; Gaspari et al. 2014; Zhuravleva et al.
2015). It is also well established now that the interstellar medium
(ISM) is highly inhomogeneous, and characterized by supersonic
velocities. The structure of the ISM can be compared to a frac-
tal structure, with a hierarchy of clumps with masses varying with
the scale as a power law (e.g. Larson 1981; Falgarone, Puget &
Perault 1992; Elmegreen 2002). The slope of the power law (or the
fractal dimension) is between 1.5 and 2.0 (Chappell & Scalo 2001;
Sánchez, Alfaro & Pérez 2005). The origin of the fractal could
be self-gravity (Pfenniger & Combes 1994; De Vega, Sánchez &
Combes 1996), with the minimum and maximum scales being 10 au
and ∼100 pc, but turbulence and magnetic fields have also been in-
voked (e.g. Vázquez-Semadeni, Ballesteros-Paredes & Rodrı́guez
1997; Elmegreen 1999; Padoan et al. 2004). Besides small-scale
structures of the ISM, which might be bound by self-gravity, there
must exist kpc-scale structures, due to large-scale instabilities, like
spiral arms, or large kpc-scale clumps at high redshift (e.g. Noguchi
1998; Bournaud, Elmegreen & Elmegreen 2007; Elmegreen et al.
2009). In addition, the thermal and kinetic feedback due to starbursts
and AGN can create some transient kpc-size structures (Stinson et al.
2006; Dalla Vecchia & Schaye 2008; Oppenheimer & Davé 2008).

Finally, in this section, we do not take into account the collective
self-gravitating response of the halo to the gas fluctuations. It is also
assumed, as in two-body relaxation calculations, that the velocity
perturbations that result from the fluctuating force can be added to
the unperturbed orbital motion of the halo particles. This excludes
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Table 1. Parameters describing the halo initial conditions
for our fiducial run.

Dark matter halo mass Mvir 2.261011 M�
NFW cutoff radius Rvir 30 kpc
NFW characteristic radius rs 0.9 kpc
Gas fraction f(d/2) 0.17

effects such as resonant coupling between the fluctuating force and
the orbital motion of halo particles. These effects are taken into
account in Section 3.

2.1.3 Specific illustration

Our general theoretical setup applies to any two-component system
as described above; and the calculations of the following sections
to any such system under the assumptions laid out in Section 2.1.2.
The analytical formulas can be rescaled to evaluate the effect of
gaseous fluctuations on the dark matter halo (and stellar) profile for
different collisionless matter distributions and gas mass fractions.
Nevertheless, for the sake of specific illustration, we will be focusing
on the case of a small gas-rich galaxy, assumed to be in early stages
of evolution. The relevant parameters are given in Table 1. We
assume a gas mass fraction of 0.17 within the region where the
fluctuations are considered important. However, we note that as the
gas mass fraction and fluctuation levels enter multiplicatively in our
calculations, these can be varied accordingly to get the same effect.

2.2 The force correlation function

Let ρ0 denote the average density of a fluid, representing galactic
or cluster gas that is driven by an energy source, causing large-scale
fluctuations within the fluid over a volume V = d3, the dimen-
sion d being significantly larger than the largest fluctuation scale.
The potential � and density contrast δ = ρ(r)

ρ0
− 1 can be Fourier

decomposed such that

�(r) = V

(2π)3

∫
φke−ik.rdk, (1)

and

δ(r) = V

(2π)3

∫
δke−ik.r dk. (2)

In this convention, physical and k-space potential and density con-
trast have the same dimensions. If we assume the fluctuations define
a stationary process so that ensemble averages are time independent,
the density fluctuation power spectrum is given by

P(k) = V 〈|δk|2〉 (3)

while the components φk and δk are related, via the Poisson equation
∇2� = 4πGρ0δ, through

φk = −4πGρ0δkk
−2. (4)

For a gaseous configuration that is isotropic on large scales, the
force power spectrum is related to the potential fluctuations by

PF (k) = V k2〈|φk|2〉, (5)

where k = |k|. For a system that is furthermore homogeneous on
large scales, the force correlation function, which is the Fourier
transform of the force power spectrum, is given by

〈F(0).F(r)〉 = V

(2π)3

∫
k2〈|φk|2〉 sin(kr)

kr
4πk2 dk. (6)

We assume that the gaseous component is embedded in a dark
matter halo and that the fluctuations are present within some distance
of about d/2 the centre of the halo mass distribution. This is the
characteristic length scale within which the processes ‘stirring’ the
gas are significant and lead to fluctuations that display stationary
statistical properties. One can then write

〈F(0).F(r)〉 = d3

2π2r

∫
k3〈|φk|2〉 sin(kr)dk. (7)

For power-law density fluctuations

〈|δk|2〉 = Ck−n, (8)

the corresponding potential fluctuations are characterized by

〈|φk|2〉 = (−4πGρ0)2Ck−4−n. (9)

Consequently,

〈F(0).F(r)〉 = D

r

∫ kx

km

sin(kr)

kn+1
dk, (10)

where

D = 8(Gρ0)2Cd3, (11)

and where km corresponds to the minimal fluctuation scale and kx

to the maximal one. Assuming kx � km, and n > 0 the integral is
evaluated in terms of incomplete Gamma functions to give

〈F(0).F(r)〉 = −ik−n D

2r
(−ikmr)n�(−n,−ikmr) + C.C., (12)

where C.C. refers to the complex conjugate. Note that for large kmr
� 1, that is for correlation between points separated by distances
much larger than the largest fluctuation scale λmax/2π = 1/km,

�(−n,−ikmr) ∼ (−ikmr)−n−1eikr ; (13)

so that, in the diffusion limit we will be interested in below,

〈F(0).F(r)〉 ∼ D

r2

1

kn+1
m

cos(kmr). (14)

2.3 The velocity variance

We are interested in the effect of the force fluctuations, born of
the density variations in the gaseous field, on the motions of the
particles composing the surrounding halo. The velocity variance
resulting from such effects can be evaluated as follows.

Starting from the Newtonian equation dv/dt = F, and assuming
that F is a random function with stationary statistical properties,
one can multiply this equation by itself, take the ensemble average
and change the time variables to obtain (e.g. Osterbrock 1952, and
Appendix B1)

〈(	v)2〉 = 2
∫ T

0
(T − t)〈F(0).F(t)〉dt . (15)

Up to now, the correlation function was calculated in terms of spa-
tial separation between two points. This is interpreted in terms of an
ensemble average over realizations of a fluctuating force field with
stationary statistical properties. The above equation on the other
hand refers to the time correlation function along a halo particle tra-
jectory. This temporal variation can be estimated by considering the
motion of a test halo particle with respect to the fluctuating gaseous
field. The main contributions to its relative velocity will come from
a mean flow (e.g. arising from its own orbital motion or fountain
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transporting the gas) as well as large-scale random motions in the
gas field.

The way the spatial statistical properties of the field are trans-
ported (or ‘swept’) into the temporal domain due to such motions
has been extensively studied in the case of turbulent geophysical and
atmospheric flows. If the spatial field properties are simply trans-
ported ‘frozen in’ via a bulk flow with average velocity 〈v〉 that is
significantly larger than the velocities of the turbulent eddies, the
situation is similar to that invoked in the context of the classic Tay-
lor (1938) hypothesis. In this case, one has 〈F(0)F(t)〉 = 〈F(0)F(r
= 〈v〉t)〉. Since the velocities of large-scale fluctuations in a fully
turbulent medium are larger than those of the small-scale eddies, the
gaseous field can also be considered to be ‘randomly swept’ with
velocity 〈u2〉1/2. This corresponds to the random Taylor (or random
sweeping) hypothesis (Kraichnan 1964; Tennekes 1975). Theoreti-
cal, numerical and experimental studies, in the case of standard fully
developed turbulence, suggest that in general the spatial statistical
properties of the fluctuating field in the temporal domain can be
related to those in the spatial one via a velocity vr =

√
〈v〉2 + 〈u2〉,

such that the statistical properties in time at some given point are
simply the spatial properties of the fluid transported with veloc-
ity vr through that point (e.g. L’vov, Pomyalov & Procaccia 1999;
He & Zhang 2006; Zhao & He 2009; He & Tong 2011; Wilczek
& Narita 2012; Wilczek, Xu & Narita 2014). If this is the case
then 〈F(0)F(t)〉 = 〈F(0)F(r = vrt)〉, where r = vrt is the distance
a test halo particle travels with respect to the fluctuating gas field
during time t, both dues to its orbital motion and that of the field.
Equation (15) can then be rewritten as

〈(	v)2〉 = 2

v2
r

∫ R=vr T

0
(R − r)〈F(0).F(r)〉dr, (16)

which yields, when kx � km (see Appendix B2),

〈(	v)2〉 = Dk−n
m R

v2
r

(
2

n
Si (kmR) + T1(kmR) + T2(kmR)

)
, (17)

where Si refers to the sine integral and the transient terms are given
by

T1(kmR) =
(

1

n
− 1

n + 1

)
i(ikmR)n�(−n, ikmR) + C.C. (18)

and

T2(kmR) = 2

n + 1

1

kmR
(cos (kmR) − 1) . (19)

For kmR � 1, these transient terms are much smaller than the first
term inside the parenthesis, which converges to π/n. Thus for large
enough R = vrt,

〈(	v)2〉 = πD

nvr

T

kn
m

. (20)

This is the formula we will use in estimating the effect of fluctua-
tions in the gaseous medium on the trajectories of halo particles. It
assumes that the particle moves a large enough distance R � k−1

m

with respect to the fluctuating field, i.e. much larger than the maxi-
mum fluctuation scale λmax/2π, either due to its own orbital motion
or as a result of temporal variations in the field. Such a regime
corresponds to the diffusion limit, in which the halo particle is
not ballistically displaced by steady forces but instead undergoes a
random walk initiated by the persistent density fluctuations.

For an unperturbed halo particle orbit of characteristic spatial
extent l the condition R � k−1

m will be satisfied on the dynamical
time associated with the orbit provided that l � λmax. Since, for

some orbits l will be smaller than the largest fluctuation scales,
this condition will not hold in general. However, as we assume that
there are no gaseous inflows or outflows into or out of the region
within radius d/2, within which the fluctuations are significant, the
largest scale gaseous motions will have typical scale d/2 � λmax.
These gaseous motions are also expected to be more effective in
driving the approach to the diffusion limit, as they are inherently
random and non-periodic. In the rest of this section we will thus
assume that decorrelation occurs primarily due to the ‘sweeping’
of the fluctuating gas field by the largest scale gaseous motion. The
condition that there are no inflows or outflows from d/2 suggests
that the largest scale gaseous motion will be in energy equilibrium
with the gravitational field. The relevant velocity should therefore
be vr ∼ d/2

tD(d/2) , where tD(d/2) is the dynamical time at d/2.
Finally we note that, in the in the context of the sweeping hy-

potheses employed above, vr is assumed to be constant, independent
of k. If vr is k-dependent, an analogous calculation would require
that the transformation r = vrt be already introduced in equation (6),
the correlation function will then depend on the form of vr(k). We
do not pursue such cases here. Nevertheless, we will examine an
example based on the Larson (1981) relation between the velocity
dispersion of a gaseous structure to its size in Section 3. There, the
orbital motion of halo particles is also explicitly taken into account
when simulating the motion of relative motion of the halo particles
with respect to the fluctuating gaseous field.

2.4 The relaxation time

From equation (20), the ratio of the variance in velocity of the test
particle produced by the fluctuating field to the square of the average
orbital velocity of that particle is given by

〈(	v)2〉
〈v〉2

= πD

nvr 〈v〉2

T

kn
m

. (21)

As in the standard calculation of the two-body relaxation in stellar
dynamics, we define the relaxation time as the time it takes for the
left-hand side of the above equation to become unity; that is for
the effect of fluctuations on the velocities to become numerically of
the same order of the velocities in the smoothed out gravitational
potential. This gives

trelax = nvr 〈v〉2kn
m

πD
. (22)

Using equation (11) for D and noting that the constant determining
the normalization of the power spectrum can be expressed in terms
of the level of fluctuations at the maximum scale, such that C =
kn

m〈δ2
km

〉, one gets

trelax = nvr 〈v〉2

8π(Gρ0)2P(km)
, (23)

where P(km) = 〈δ2
km

〉d3.
Both velocities vr and 〈v〉 are determined by the gravitational

field, which we assume to be dark matter dominated. Hence,
for some characteristic orbital scale l, 〈v〉 ∼ l/tD(l) with tD(l) ∼
1/

√
Gρ(< l), where ρ( < l) is the average density inside radius l.

Assuming that the main contribution to the motion of the particle ve-
locity relative to the fluctuating gaseous field comes from large-scale
motions with scale d/2 in that field leads to vr ∼ d

√
Gρ(< d/2)/2.

Thus

trelax ≈ n

16π〈δ2
km

〉f (l)−2

(
l

d

)2
ρ(< d/2)

ρ(< l)
tD(d/2) (24)
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1750 A. A. El-Zant, J. Freundlich and F. Combes

where f(l) = ρ0/ρ(< l) is the total gas fraction within radius l.
Assuming a constant unperturbed gas density ρ0, the relaxation time
is a constant function of radius for a singular isothermal sphere of
density ρ(l) ∝ l−2; for shallower power-law density cusps, it is an
increasing function of radius. At d/2 it is generally given by

trelax(d/2) ≈ n

64π〈δ2
km

〉f (d/2)−2tD(d/2). (25)

The expressions (24) and (25) for the relaxation time are analo-
gous to those obtained for two-body relaxation in N-body systems,
for example in the case of stars or dark matter particles deflected
by their successive interactions with one another (e.g. Binney &
Tremaine 1987; Huang, Dubinski & Carlberg 1993; El-Zant 2006).
Two-body relaxation is modelled as a diffusion process due to ran-
dom encounters between particles. The associated relaxation time
in the case of a system constituted by N identical stars or dark matter
particles can be expressed as

trelax ∼ 0.1
N

ln�
tD, (26)

where � = bmax/bmin is the ratio between the maximum and min-
imum impact parameters while tD is the dynamical time (Binney
& Tremaine 1987). On the other hand, a random distribution of
particles leads to white noise (n = 0 in the power spectrum). We do
not deal with this special case in detail here; though we note that,
in such a system, the mass variance is expected to be proportional
to N. Thus the variance associated with the relative density contrast
〈δ2〉 ∝ 1/N, and an expression analogous to (26) can be deduced by
using this result and imposing a maximum and minimum cutoff on
a white noise power spectrum.

If we assume the gas mass fraction inside radius d/2 is of order
0.17, it can be seen from equation (25) that one needs 〈δ2

km
〉 ∼ 0.005

in order to have a significant effect within a hundred dynamical
times or so within the region where fluctuations are assumed to
be present (for 2 � n � 3). As 〈δ2

km
〉 represents the contribution to

the variance in density fluctuations from the maximal fluctuation
scale per k-space volume (2π/d)3, it depends explicitly on the scale
of the region where the fluctuations are assumed to occur. In the
following, we will evaluate the radial dependence of the relaxation
time and relate its normalization to descriptors of density fluctua-
tions that do not bear this dependence, namely the power spectrum
(which is a measure of the contribution to the variance per unit
k-space volume) and associated dimensionless spectrum and mass
variance.

3 FL U C T UAT I O N L E V E L S
A N D T H E I R DY NA M I C A L E F F E C T S

3.1 Fluctuation levels leading to relaxation
on realistic time-scale

In Fig. 1, we plot the relaxation time deduced from equation (24)
for a galaxy with a dark matter halo of the NFW form. The halo
is assumed to have a scalelength rs = 0.9 kpc and a total mass
of 2.23 × 1011 M� inside Rvir = 30 kpc. The gas mass fraction f
inside d/2 is 0.17. The power spectrum at maximum fluctuation
scale is P(km) = 4.6 kpc3 (this corresponds to 〈δ2

km
〉 = 0.0046 if

d = 10 kpc) and the spectral index is taken as n = 2.4. These
are the same parameters that we will use below in connection to
what will be referred to as our fiducial simulation. The relaxation
time is expressed in terms of the dynamical time within d/2 =
5 kpc. Accordingly, our calculations suggest that, for the parameters

Figure 1. Evolution of the relaxation time as calculated from equation (24)
in the case of a fiducial NFW halo submitted to persistent density pertur-
bations. The relaxation time is expressed in terms of the dynamical time
tD(d/2) within d/2 = 5 kpc and in corresponding physical units

Figure 2. Dimensionless rms fluctuations 	(k) of the density contrast
for a power-law power spectrum as in equation (8), with cutoff scales
λmin = 2π/kx = 10 pc, λmax = 2π/km = 1 kpc andP(km) = 4.6 kpc3. The
exponent n increases from top to bottom.

chosen here, one should expect halo particles to be affected by
potential fluctuations in the gas at all radii r � rs within a time-
scale of the order of a hundred dynamical times.

One would like to quantify the density fluctuation levels that are
required in the gas in order to produce potential fluctuations leading
to relaxation on that time-scale. As the power spectrum has dimen-
sions of volume it is not ideal for this purpose. Instead, we estimate
the expected rms fluctuations associated with the dimensionless
power spectrum

	2(k) = k3

2π2
P(k), (27)

which is a measure of the variance in density contrast δ per unit
ln k, which measures the contribution to the variance of in density
fluctuations from logarithmic bins around wavenumber k. In Fig. 2
we plot 	(k), for a power-law power spectrum with fiducial cutoff
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scales, P(km) = 4.63 kpc3 and different values of the exponent n.
The variance over all k in density fluctuation contrast is given by

〈δ2〉 = 1

(2π)3)

∫ kx

km

P(k)4πk2 dk =
∫ kx

km

	2(k)d ln k, (28)

hence

〈δ2〉 ≈ 1

2π2
kn

mP(km)
k3−n

x

3 − n
(29)

for power-law spectra with cutoff scales kx � km and n < 3. As
can be seen by plugging in typical values for P(km), km, kx and n
(say for maximum fluctuation scale λmax = 2π/km between of order
1 kpc, minimal scale 0.01 to 0.1 kpc and n = 1.5 − 2.5) the inferred
fluctuation levels are large. However, as we will see below, they
appear compatible with those found in hydrodynamical simulations
where the effects discussed in this paper appear.

It is to be noted that although the variance in density contrast
depends on km and kx, for power indexes considered here the force
fluctuations are dominated by the largest scales, so that fluctua-
tions at kx are relatively unimportant; in addition, as we will see in
Section 4.4.3, in the diffusion limit, the dynamics is also indepen-
dent of km. The crucial parameter therefore is the normalization
P(km). This is in line with what can be inferred from equation (24).

3.2 Mass fluctuations and power spectrum normalization

If one wishes to estimate the strength of density fluctuations in a
realistic hydrodynamical simulation (or eventually possibly from
observations), a natural measure is the variance of the average den-
sity on a particular scale R. If the random process giving rise to the
density fluctuations is stationary the procedure involves measuring
the standard deviation of the mass over a sufficiently long timespan;
or, for sufficiently small cells, the volume average of the mass and
its square in a given snapshot (as in studies of large-scale structure
up to the limits imposed by cosmic variance).

Theoretically, the variance can be evaluated, given a power spec-
trum, by filtering over different scales. Thus the variance over a
filtering scale R is given by (e.g. Martı́nez & Saar 2002; Mo, van
den Bosch & White 2010)

σ 2
R = 1

2π2

∫ ∞

0
W 2(k, R)P(k)k2dk, (30)

where W is the Fourier transform of the window filtering function.
If the mechanism of core formation is indeed well modelled by the
effects of random Gaussian fluctuations in the density field with a
power-law spectrum, then σ R derived from simulations where cores
are produced through potential fluctuations should be well fit by
plugging in a power law P(k) into equation (30); this constrains the
normalization P(km) and index n.

As an example we show in Fig. 3 the RMS fluctuations as a func-
tion of radius enclosed using a Gaussian filter, W (k, R) = e−k2R2/2,
for different values of the maximum fluctuation scale λmax. These
can be compared with RMS fluctuations in mass enclosed within
radius ∼R in hydrodynamical simulations. For example, Teyssier
et al. (2013) plot the variation in mass enclosed within different radii
of an isolated dwarf galaxy simulated via the RAMSES code (Teyssier
2002), with gas fluctuations driven by star formation. The general
level of fluctuations suggested by Fig. 3 seems compatible with
what can be inferred by eye from their Fig. 7. More quantitative,
detailed comparison between our model and full hydrodynamical
simulations are left to a forthcoming study. Below, we will test our
model in the more controlled context of a self-gravitating halo with

Figure 3. Relative rms mass fluctuations averaged at different radii from
equation (30) for a power-law power spectrum. In this plot, we fix P(km) =
4.6 kpc3, n = 2.4 and λmin = 10 pc, but the curves are in fact largely
independent of the power-law exponent n and of the minimum scale of the
perturbations λmin.

particles subjected to forces arising from the fluctuating density
field.

We note that, as the mass fluctuations in the central regions can
be of the order of one or larger, the assumed stochastic density
fluctuations incorporate the effect of repeated rapid outflows (and
subsequent inflows) that can be invoked as sources of non-adiabatic
dynamics leading to core formation (Pontzen & Governato 2012).
The fluctuations are rapid in our case, in the sense that their velocity
vr is larger than the local orbital velocities in the central regions.

4 N U M E R I C A L E X P E R I M E N T S

In this section, the fluctuations imposed on NFW halo particles
are realized as Gaussian random processes. The effect on the dark
matter cusp is inferred. From the theoretical model described above
we were able to estimate the time-scale on which the fluctuating
force is expected to affect halo particle trajectories. This effect
can be intuitively expected to drive the particles to higher energy
levels and thus lead to decrease in central density and cusp-core
transformation. We here show that this is indeed the case.

As opposed to the analytical calculations, the effect of the pertur-
bations is not assumed to add to the motion in the smooth potential;
instead, the equations of motion are solved with both contributions
(smooth potential plus fluctuating field) simultaneously included in
the force term. Any non-trivial (e.g. resonant) coupling between the
imposed fluctuating force and the orbital motion in the smoothed out
potential is thus implicitly included. The self-gravity of the system
of halo particles, and hence its collective response to the potential
fluctuations, is also taken into account. The diffusion limit is not
assumed a priori.

4.1 Code and initial conditions

To evolve the dark matter distribution we use the self-consistent
field code of Hernquist & Ostriker (1992), which evaluates the
density and potential via functional expansion suited for nearly
spherical systems. The setup is particularly powerful in capturing
the interaction between stochastic processes and large scale modes
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1752 A. A. El-Zant, J. Freundlich and F. Combes

induced by self-gravity (e.g. Weinberg et al. 2013); which turns out
to be quite significant.

For the sake of specific illustration, we focus on the case of a small
galaxy with an initial NFW halo with concentration parameter c ≈
30, scalelength rs = 0.9 kpc and mass Mvir = 2.26 × 1011 M� within
radius Rvir = crs. Given that the fluctuations in the gas are expected
to be important primarily in the central region, where feedback is
most effective, and that the dynamical effects of the fluctuations are
expected to be significant mainly within radius l ∼ rs  d/2, we
only apply the fluctuating force to particles within l < d/2 = 5 kpc.
The gas mass fraction within this region is f(d/2) = 0.17, in line
with the large gas mass fractions observed in high-redshift galaxies
(e.g. Daddi et al. 2010; Tacconi et al. 2010, 2013; Förster Schreiber
et al. 2011). Table 1 summarizes the parameters describing the halo
initial conditions for our fiducial run.

4.2 Realization of the power spectrum
in terms of Gaussian random field

In this realization, the density fluctuations are felt on the particle
via a stochastic force. In line with the general setup presented in
Section 2, the contribution of a density perturbation δk to the
stochastic force felt by a halo particle should be

Fk = −ik�k = 4πiGρ0kk−2δk, (31)

where ρ0 corresponds to the homogeneous gas density that is as-
sumed. As the force depends on the direction of k, we consider a
random direction (θ k, φk) for each value of k, with θ k ∈ [0, π ] and
φk ∈ [0, 2π], so that

k = k
[
sin(θk)

(
cos(φk)ux + sin(φk)uy

) + cos(θk)uz

]
, (32)

and we introduce a random phase ψk and the pulsation frequency
associated with the density fluctuations ω(k). The force correspond-
ing to mode k felt by a halo particle situated at point r at time t is
consequently such that

Fk(r, t) ∝ kk−n/2−2 sin (ω(k)t − k.r + ψk) . (33)

The force is rescaled a posteriori to match the assumed power
spectrum normalization, fixed through the choice ofP(km), as equa-
tion (4) and hence (33) only fix the relative values of φk while the
absolute value depend on V. This is done using equation (12), which
yields the variance of the force resulting from the density fluctua-
tions at all scales:

〈F (0)2〉 = 8 (Gρ0)2 P(km)

n − 1
km

(
1 −

(
km

kx

)n−1
)

. (34)

Again, we expect feedback processes and their associated dynamical
effects on the halo to affect mostly the inner region, hence the
fluctuating force Fk is only applied when computing trajectories
inside region of radius d/2. Table 2 summarizes the basic parameters
used in deriving the perturbation force due to gaseous fluctuations
for our fiducial run.

Finally, we need to choose the frequency of perturbation ω.
For this purpose, we adopt two different approaches, each with
its own set of simulations. The first set of simulations adopts the
random sweeping approximation introduced in Section 2.3; the
gas is assumed to be a fully turbulent medium with the smaller
scales ‘swept’ by the larger ones, which determines a common
characteristic velocity independent of k. The characteristic time-
scale is tD(d/2) = 1/

√
Gρ(< d/2). The velocity associated with

the Fourier component then is vr = d/tD(d/2) as in Section 2.4 and

Table 2. Parameters describing the perturbations and their
values for our fiducial run. The power spectrum normaliza-
tion corresponds to dimensionless power spectra and mass
variance shown on Figs 2 and 3. When the parameters of
Table 1 are used, this normalization results in the relaxation
time shown in Fig. 1

Minimum scale λmin = 2π/kx 0.01 kpc
Maximum scale λmax = 2π/km 1 kpc
Cutoff radius rcut = d/2 5 kpc
Power-law exponent n 2.4
Power spectrum at km P(km) 4.6 kpc3

the frequency is given by ω(k) = vrk. Given our parameters and d/2
= rcut = 5 kpc, we have vr = 134 km s−1 for our fiducial simulation.
This value lies in the velocity range observed for molecular outflows
in nearby galaxies. Indeed, Cicone et al. (2014) report average out-
flow velocities ranging from 50 to 800 km s−1 in local ULIRGs and
quasar-hosts with a median of about 200 km s−1. While outflow
velocities can sometimes reach values close and above 1000 km s−1

(Fischer et al. 2010; Sturm et al. 2011; Dasyra & Combes 2012),
values of a few hundreds of km s−1 seem to be common (Sakamoto
et al. 2009; Combes et al. 2013).

To examine the effect of k dependence on vr, in the second set of
simulations, we define ω(k) from Larson’s relation, which relates
the velocity dispersion of a gaseous structure to its size (Larson
1981; Solomon et al. 1987). We can indeed expect the velocity
associated with a density perturbation mode of size λ to scale as its
velocity dispersion σ (λ). This latter quantity can be derived from
Larson’s relation (Solomon et al. 1987),(

σ

km s−1

)
� 1.0

(
λ

pc

)0.5

. (35)

Assuming that vr = dω/dk equals σ , this empirical relation yields
approximately ω(k) � 2

√
k, with ω in (10 Myr)−1 and k in kpc−1,

which also corresponds approximately to a characteristic time-scale
τ = 2π/ω of 10 Myr for a kpc-sized structure. This time-scale
corresponds to the dynamical time within the gaseous structures
and is comparable to the lifetimes of large star-forming molecular
clouds, which are evaluated at a few tens of Myr (Blitz & Shu
1980; Larson 1981; Elmegreen 1991). It is also of the same order
of magnitude as the time needed for massive molecular outflows
to expel the cold gas reservoir from a galaxy, as notably evaluated
for Mrk 231 from IRAM Plateau-de-Bure CO(1-0) observations by
Feruglio et al. (2010) or for a set of different galaxies by Sturm et al.
(2011).

4.3 Cusp flattening due to stochastic
fluctuations: strictly spherical case

At each time step during the Self Consistent Field simulations, the
density and the gravitational potential are approximated by a series
of basis functions deriving from spherical harmonics which sepa-
rate the radial and angular components. The expansion is truncated
beyond radial and orbital ‘quantum’ numbers nmax and lmax, whose
choice is crucial to capture the radial and angular structure of the
halo without being dominated by the particle noise (e.g. Weinberg
1996; Meiron et al. 2014).

A cutoff lmax = 0, on the other hand, corresponds to forcing
strict spherical symmetry on the self-consistent density and potential
fields at each time step: density fluctuations are effectively smoothed
out over the angular variables θ and φ and non-radial modes washed
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From cusps to cores: a stochastic model 1753

Figure 4. Evolution over 5 Gyr of the dark matter density profile with strict
spherically symmetry imposed on the halo density and potential at each
time step (lmax = 0), from an initially cuspy NFW profile to a flatter one.
The halo is submitted to a fluctuating gravitational potential stemming from
power-law density fluctuations as described in Section 2; the parameters are
those of Tables 1 and 2. The radius r is indicated in kpc, while the density ρ

is in units of 2.26109 M� kpc−3. The pulsation frequency associated with
each Fourier component was chosen as ω(k) = vrk, with a constant velocity
vr = 134 km s−1. The rate of cusp-core transformation is in agreement with
the analytical calculations (Fig. 1). It is significantly slower however than
the case when azimuthal modes are taken into account. For comparison, the
black dashed line shows the averaged profile after 500 Myr for 10 random
realizations of a simulation including non-radial collective modes (as in
Fig. 5).

out. This eliminates the effect of non-radial global modes, but facil-
itates comparison with the analytical results in which the effect of
collective self-gravitating response of the system is not taken into
account at all. For, as in the case of standard two-body relaxation,
the relaxation time is an estimate of the time-scale over which in-
dividual trajectories are expected to perturbed due to the imposed
fluctuating force, it does not take into account how energy may
be transported and redistributed via global self-gravitating modes,
which may affect the rate of evolution of the self-consistent mass
distribution. To isolate the effect of non-radial collective modes,
we start by considering the case where strict spherical symmetry is
maintained by the self-consistent potential and density distribution.
The imposed fluctuating force, however, is fully three-dimensional
as in the simulations with lmax �= 0 discussed in the following sub-
sections.

The results are shown in Fig. 4, for our fiducial parameters and
constant vr. As can be seen the fluctuations imposed on the system
of self-gravitating halo particles does indeed produce a core from
the initial cusp on the time-scale predicted by the analytical calcula-
tions. This suggests that resonant coupling between the fluctuating
force and the halo orbits is unimportant to the core formation pro-
cess, and so are radial collective modes. As we will see below, on
the other hand, azimuthal modes seem to significantly boost the
core formation process.

4.4 Cusp flattening due to stochastic fluctuations: general case

In this section we evaluate the effect of cusp flattening in the general
case, without imposing strict spherical symmetry. After some trials,
through which convergence of the results was verified, we carry out
simulations with nmax = 10 and lmax = 4. The results of Vasiliev

Figure 5. Evolution of the dark matter density profile with parameters
given in Tables 1 and 2 and no strict spherical symmetry imposed. The solid
lines correspond to the case when the pulsation frequency associated with
each Fourier component was chosen as ω(k) = vrk, with a constant velocity
vr = 134 km s−1. The shaded area highlights the scatter at t = 500 Myr
between 10 random realizations of the simulation. Alternatively, the dashed
line displays the dark matter density profile after 500 Myr when the pulsation
frequency is defined from Larson’s relation as ω(k) = 2

√
k: both approaches

yield similar results.

(2013) suggest that this combination should be optimal, given the
number of particles (N = 240 000). In this context, we repeat the
simulation of the previous subsection. We also examine the effect
of k-dependent speed vr of the gaseous field relative to dark matter
particles, and the dependence of the process on maximal and min-
imal fluctuation scales and the power-law exponent, as well as on
the time resolution of the simulations.

4.4.1 Accelerated cusp-core transformation

In Fig. 5, we show the evolution of initial cusped profile under
the influence of a stochastic force born of density fluctuations as
described in the previous subsection. This is done for a constant
speed vr of the halo particles with respect to the fluctuating field (as
in the theoretical calculations of Section 2), as well of k-dependent
speed derived from Larson’s relation. The parameters are those of
the fiducial simulation (as summarized in Tables 1 and 2). As can be
seen, by the end of the simulation (500 Myr), there is a significant
effect at all radii within the initial NFW scalelength rs = 0.9 kpc,
and this effect is to erase the central cusp, transforming it into a
nearly constant density core. At larger radii, particle trajectories are
also affected by the stochastic force, but the effect is similar at all
radii (as the relaxation time flattens); the overall effect is suppressed
and the shape of density at these radii remains largely unaltered.

Evidently, the core-cusp transformation is significantly faster here
than in the case when strict spherical symmetry was imposed. This
phenomenon suggests that the azimuthal smoothing suppresses the
energy redistribution within the halo and slows its collective re-
sponse. As the perturbation imposed on the halo particle trajectories
is the same as in the case when spherical symmetry is enforced, the
difference must stem from how the imparted energy is transported
and redistributed within the halo, a process which can involve col-
lective modes activated by self-gravity. That stochastic noise can
excite global ‘sloshing’ modes, enhancing its overall effect, has
been previously realized by Weinberg (1998). Thus, while direct
resonances between the imposed force and the dark matter orbits

MNRAS 461, 1745–1759 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/461/2/1745/2608503 by C
N

R
S - ISTO

 user on 08 August 2022



1754 A. A. El-Zant, J. Freundlich and F. Combes

Figure 6. Evolution of the dark matter density profile after 500 Myr for
different values of P(km) in the case of density fluctuations with constant
speed of the turbulent flow with respect to the dark matter. The power
spectrum normalization grows by a factor of 4 between two successive
curves. Each profile has been averaged over 10 random realizations of the
simulation; the shaded areas correspond to the span of these 10 realizations.
The dotted line corresponds to the initial profile; the units are as in the
previous figures.

seem unimportant in our case, secondary resonances with such
modes may act as to speed up the process of velocity dispersion
equalization in the cusp, and hence of its transformation into a core.
Pontzen et al. (2015) also note that a triaxial halo submitted to time-
dependent potential fluctuations flattens into a core within 1 Gyr,
while a similar spherical halo remains cuspy on such a time-scale:
asphericity seems to be a key ingredient for an efficient cusp-core
transition.

4.4.2 Power spectrum normalization and gas mass fraction

As may be expected, the normalization the density fluctuation
power spectrum, and hence of the imposed force (as defined by
equation 34), plays an important part in the magnitude of the ensu-
ing effect. This is illustrated in Fig. 6, where we show the effect of
varying the values of the power spectrum normalization P(km). To
factor out the variations due to different random initial conditions,
we average the results over 10 runs for each value and show the
contours associated with these values.

We note that since the gas mass fraction and the fluctuation levels
enter multiplicatively in our formulation, we could have changed
the gas mass fraction instead of the power spectrum normalization
to obtain analogous results. Fig. 7 shows the gas mass fraction
variation with power spectrum normalization that keep the force
normalization at the same level as that assumed in the fiducial
simulation. As already mentioned (Section 2.1), by assuming a
universal baryon fraction within a sphere of diameter d, we may
be underestimating the gas mass fraction in the central regions.
However the results are easily rescaled, as exactly the same effect
can be obtained for larger gas mass fraction by assuming smaller
fluctuation levels.

4.4.3 Independence of the flattening on the
maximum and minimum fluctuation scales

The normalization of the fluctuating force (equation 34) only weakly
depends on the minimum fluctuation scale kx as kx  km, but does

Figure 7. Values of the gas mass fraction f (d/2) and of the power spectrum
normalization P(km) that keep the force normalization as that assumed in
the fiducial simulation, from equation (34). The minimum and maximum
cutoff scales and the power-law exponent are left unchanged.

depend on the maximum fluctuation scale determined by km. Nev-
ertheless, in the diffusion limit, the actual effect on particle tra-
jectories, as determined by 〈(	v)2〉, is not expected to depend on
km if the velocity of the perturbations relative to the halo particles
vr is independent of k. This can be explained using the follow-
ing heuristic argument. In a diffusion process, particle trajectories
are affected by small successive kicks, each of them associated
with a velocity change 	v ∼ F	t, where 	t is the characteris-
tic duration of the kick. If we assume a pulsation frequency ω =
vrk, 	t varies as 1/k. The square of the kicks adds up linearly;
such that, after a given time interval in which a test halo particle
is subjected to N kicks, the resulting velocity variance is 〈(	v)2〉
∼ N(	v)2. However, since 	t ∝ 1/k, the number of kicks during
this time interval is proportional to k. Consequently, 〈(	v)2〉 ∝
NF2	t2 ∝ F2/k. As 〈F(0)2〉 ∝ km from equation (33) in the limit kx

 km, the resulting velocity variance should be independent of km

even though this wavenumber determines the dominant scale of the
perturbations.

Fig. 8 shows that the effect of the fluctuations is indeed largely
independent of the maximal and minimal fluctuation scales. This
is also expected from the analytical formula for the relaxation time
(equation 24).

4.4.4 Comparison with a Kolmogorov exponent

Fig. 9 compares the fiducial evolution of the dark matter den-
sity profile with that obtained with a Kolmogorov exponent n =
5/3. The small power-law exponent leads to an increased flatten-
ing of the density profile within 500 Myr, which is consistent with
equation (24): the relaxation time is proportional to n so smaller
values of the exponent result in an increased efficiency of the en-
ergy transfer to the dark matter particles. A smaller exponent also
corresponds to a flatter power spectrum, i.e. to higher amplitudes
at wave numbers larger than km. Nevertheless, the increased effi-
ciency of the process remains limited due to the linear dependence
of the relaxation time on the power-law index n, which is likely
constrained to a rather limited range of values (cf. Section 2). In
our model, the power spectrum tilt is therefore expected to have a
relatively mild influence on the final density profile.
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Figure 8. Dark matter density profiles after 500 Myr of perturbations for
different values of the minimum (up) and maximum (down) scales of the
perturbations. The parameters of the simulations correspond to the fiducial
ones, with a constant speed of turbulent flow vr. The maximum scale of
perturbations is λmax = 1 kpc when varying λmin (upper panel), and λmin =
10 pc when varying λmax (lower panel). The dotted line corresponds to the
initial profile; the units are as in the previous figures.

Figure 9. Dark matter density profiles after 500 Myr of perturbations for
the fiducial set of parameters and for a Kolmogorov exponent n = 5/3.
Each profile has been averaged over 10 random realizations. The dotted line
corresponds to the initial profile; the units are as in the previous figures.

Figure 10. Dark matter density profiles after 500 Myr for different values
of the time step δt, in the case of density fluctuations with constant speed
of turbulent flow vr. Time steps δt > 3 Myr undersample all perturbation
modes while those with 0.03 Myr < δt < 3Myr properly sample the largest
fluctuation scales close to km but theoretically undersample the smallest
ones. The former artificially enhance the flattening while the latter lead to
density profiles similar to when δt = 0.01 Myr. The dotted line corresponds
to the initial profile; the units are as in the previous figures.

4.4.5 The effect of the time step

To each perturbation mode between km and kx corresponds a time-
scale, which depends on the definition of the pulsation frequency.
When it is defined as ω(k) = vrk, the extremal time-scales associated
with the fiducial parameters are T (km) = 2π/ω(km) = 7.5 Myr and
T(kx) = 0.075 Myr. When it is instead defined from Larson’s relation
as ω(k) = 2

√
k, T(km) = 12.53 Myr and T(kx) = 1.25 Myr. As the

smallest time-scale for the fiducial simulations is 0.075 Myr, the
Nyquist–Shannon sampling theorem a priori requires selecting a
time step inferior to 0.03 Myr. However, as shown Fig. 10, the
simulations already converge for time steps of about 1 Myr, i.e.
for time steps which only resolve the highest perturbation scales:
because the amplitude of the density power spectrum decreases
from km to kx and because the small-scale perturbations are swept
out by the larger ones, the fluctuations are dominated by those near
km. As simulations with δt = 0.01 Myr and δt = 0.1 Myr yield
similar results, we carried out most of our simulations with the less
time-consuming time step δt = 0.1 Myr.

5 C O N C L U S I O N

We have presented a theoretical model that attempts to describe,
from first principles, halo core formation due to coupling with fluc-
tuations in a hosted gaseous component. Gravitational potential
fluctuations leading to core formation in dark matter haloes arise
from density variations in the gas distribution hosted by the halo
during its early evolution. It is then possible to understand the dy-
namics of core formation in terms of the statistical properties of
the fluctuations in the gaseous density field, assumed here to be
stationary in time. In particular, it is possible to derive a correlation
function for the force born of the density fluctuations, and which
affects the trajectories of the dark matter halo. In the diffusion limit,
when particles undergo random walks initiated by the persistent
density fluctuations, a relaxation time, analogous to the two-body
relaxation time in N-body systems, can be derived.
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The framework thus described is general, and valid for any form
of the density fluctuation power spectrum (provided the time inte-
grals of the associated force correlation functions converge). How-
ever, in this initial study, we have confined ourselves to pure power-
law power density fluctuation spectra, described by an exponent n
and maximal and minimal cutoff scales. The relaxation time does
not depend on these, and depends only weakly (linearly) on n. We
also assume that the gas is homogeneous on large scales, and its
distribution thus determined by the gas mass fraction. For a given
dark matter configuration, the important parameters determining
the relaxation rate are the gas mass fraction and the normalization
of the power spectrum of the density fluctuations.

For numerical parameters associated with a small gas-rich galaxy
halo (Tables 1 and 2), our calculations suggest that the stochastic
processes discussed here can indeed lead to significant effects on the
dark matter particle dynamics within a fraction of the Hubble time
for a gas mass fraction comparable to the universal gas baryon frac-
tion in the region where fluctuations are significant. The magnitude
of the rms density fluctuations associated with dimensionless power
spectrum need to be of the order of 1–10 at the maximal fluctua-
tion length scale, which is the dominant scale driving the cusp-core
transformation in our model. The mass fluctuations within radius
0.1 kpc (∼0.1rs) also need to be of the same order. These ap-
pear compatible with the mass fluctuations time series presented by
Teyssier et al. (2013), who do produce a core in a dwarf galaxy halo
due to potential fluctuations driven by gaseous feedback and the
mass fluctuations. The fluctuation levels can be reduced if a larger
gas mass fraction, representing a high level of gas condensation, is
assumed.

This may suggest that the fluctuations leading to core formation
in dark matter haloes can be modelled as stochastic processes de-
termined by a power spectrum and the associated dynamical effects
modelled as a diffusion process; and that the relevant power spec-
trum may consist of a power law with maximal and minimal cutoff
scales. As the required mass fluctuations in the central regions are
large, the model can incorporate the effects of repeated outflows
and inflows in the central region. In addition, it takes into account
the effects of fragmentation and turbulent cascades giving rise to
continuous mass and density fluctuation spectra.

Detailed comparison with full hydrodynamic simulations is left
to a future study. However, we tested our model through N-body
simulations in which an additional fluctuating force is imposed on
the halo particles. This is inferred from a Gaussian random real-
izations of the statistical properties of the assumed gaseous field,
as defined by the power spectrum of its density fluctuations. The
simulations include the self-gravity of the dark matter halo and any
non-linear coupling between the unperturbed halo particle trajec-
tories and the imposed force; the diffusion limit is not assumed
a priori. They confirm that the dynamical effects of the processes
studied are independent of the process on the maximum and mini-
mum fluctuation scales and only weakly dependent on the spectral
index of the power-law spectrum. We use the self-consistent field
code of Hernquist & Ostriker (1992), which facilitates the isola-
tion of effects due to collective modes. The results suggest that the
transfer of energy imparted from the fluctuating force on the indi-
vidual particles, and its redistribution through the self-gravitating
configuration, is greatly enhanced by the effects of collective modes
born of self-gravity: the process of core formation is significantly
reduced if non-radial collective modes are removed by imposing
strict spherical symmetry on the configuration. In this latter case,
the observed evolution time-scales are as those inferred from the

theoretical calculation of the relaxation time. In the general case,
on the other hand, the process of core formation is faster, taking
place within a few hundred Myr (the aforementioned scalings and
parameter dependence, however, remain in line with the analyti-
cal calculations). That stochastic fluctuations can couple to global
modes to enhance their overall effect is a phenomenon that has
already been already observed and studied (Weinberg 1998).

Our results also suggest that when the time resolution of the
simulations is not sufficient, the fluctuations are random sampled
as white noise (n → 0) and the halo particles feel a flat power
spectrum instead of the proper one arising from the actual physical
processes which are modelled, which leads to significant enhance-
ment of the effect of core formation. Nevertheless, since the force
fluctuations are dominated by the largest scales, the resulting error
is not catastrophic unless even those scales remain unresolved.

The model presented here can be used to understand how the
physics leading to a particular spectrum of fluctuations affects the
dynamics of core formation in realistic simulations; and also how
particular numerical implementations affect the process. Possible
extensions include the introduction of more general power spectra
and gas density distributions. In its present formulation, the model
predicts that the process of core formation primarily depends on
only two parameters – the normalization of the power spectrum and
the gas mass fraction inside the region where the effect of the fluc-
tuations is important (parameters which may in fact be correlated
through the star formation efficiency). It can hence be understood
and parametrized in particularly simple terms.

AC K N OW L E D G E M E N T S

This work benefited from the Franco–Egyptian Partenariat Hu-
bert Curien (PHC) Imhotep and the ERC-Momentum-267399. The
authors acknowledge interesting discussions with Gary Mamon,
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A P P E N D I X A : D E R I VATI O N O F TH E
F O R C E C O R R E L AT I O N F U N C T I O N

A1 Expression as an integral

The Wiener–Khinchin theorem enables to write the force autocor-
relation function as the inverse Fourier transform of the force power
spectrum so that, when assuming isotropy,

〈F(0).F(r)〉 = 1

(2π)3

∫ ∞

0
PF (k)4πk2 sin kr

kr
dk. (A1)

Given equations (4) and (5),

PF (k) = V (4πGρ0)2 k−2〈|δk|2〉 (A2)

so for power-law density fluctuations bounded by km and kx as
defined in Section 2.2,

〈F(0).F(r)〉 = D

r

∫ kx

km

sin kr

kn+1
dk (A3)

with D = 8(Gρ0)2Cd3.

A2 In terms of incomplete gamma functions

The upper incomplete Gamma function is defined as

�(s, x) =
∫ ∞

x

t s−1e−tdt . (A4)

It can be expressed as power series, and as such, developed into a
holomorphic function of complex variables with the same proper-
ties. The force autocorrelation function can be expressed in terms
of incomplete Gamma functions extended for complex variables:

〈F(0).F(r)〉 = D

r

1

2i

∫ kx

km

eikr − e−ikr

kn+1
dk

= D

r

1

2i
(ir)n

∫ ikx r

ikmr

ex − e−x

xn+1
dx

〈F(0).F(r)〉 = D (ir)n−1

2
(�(−n, ikxr) − �(−n, ikmr)) + C.C.

(A5)

A3 Asymptotic behaviour

Given that

�(s, x) ∼
|x|→+∞

xs−1e−x, (A6)

the asymptotic behaviour of the force correlation function when
kxr � kmr � 1 and n + 1 > 0 is

〈F(0).F(r)〉 ∼ − D

2r2

[
k−n−1

x e−ikx r − k−n−1
m e−ikmr

] + C.C.

∼ D

r2

[
k−n−1

m cos(kmr) − k−n−1
x cos(kxr)

]
〈F(0).F(r)〉 ∼ D

r2

1

kn+1
m

cos(kmr).

(A7)

A4 An estimate of the force

The value of 〈F(0)2〉 can be used as an estimate of the square of the
force. Equation (A3) yields

〈F (0)2〉 = D

∫ kx

km

1

kn
dk = D

n − 1

(
k−n+1

m − k−n+1
x

)
(A8)

so that

〈F (0)2〉 = 8 (Gρ0)2 〈δ2
km

〉d3

n − 1
km

(
1 −

(
km

kx

)n−1
)

. (A9)

A P P E N D I X B : V E L O C I T Y VA R I A N C E

B1 Expression from the equation of motion

Considering the effect of the random perturbation force in direction
i during a time T, the equation of motion leads to

dxi

dt
= v0i +

∫ T

0
Fi(τ )dτ, (B1)

where v0i is the initial velocity in direction i. The velocity variance
is obtained by averaging this equation:

〈(	vi)
2〉 = 〈

(
dxi

dt
− v0i

)2

〉 =
∫ T

0

∫ T

0
〈Fi(τ )Fi(τ

′)〉dτdτ ′. (B2)

The integrand is symmetrical in τ , τ ′ and the integration domain
correspond to a square of length T in the corresponding plane. We
can thus replace the integral over the square by twice the integral
over the triangle defined by 0 < τ < T and τ < τ ′ < T so that

〈(	vi)
2〉 = 2

∫ T

0
dτ

∫ T

τ

dτ ′〈Fi(τ )Fi(τ
′)〉, (B3)

which can be rewritten as

〈(	vi)
2〉 = 2

∫ T

0
dt

∫ T −t

0
dτ 〈Fi(τ )Fi(τ + t)〉. (B4)

The perturbations being stationary, 〈Fi(τ )Fi(τ + t)〉 =
〈Fi(0)Fi(t)〉, the expression simplifies to

〈(	vi)
2〉 = 2

∫ T

0
(T − t) 〈Fi(0)Fi(t)〉dt . (B5)

and the total velocity variance is given by

〈(	v)2〉 = 2
∫ T

0
(T − t) 〈F(0).F(t)〉dt . (B6)

As indicated in Section 2.3, this quantity can also be expressed in
terms of the spatial correlation function 〈F(0).F(r)〉 by introducing
a velocity vr corresponding to the movement of the fluctuating
gaseous field (equation 16).
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B2 Explicit expression of the velocity variance

The expression of the force autocorrelation function obtained in
equation (A5) can be separated in two analogous components, one
depending on kx and the other on km. The one depending on kx can
be developed as

〈F(0).F(r)〉kx = D

2
k−n+1

x

(
(ikxr)n−1 �(−n, ikxr) + C.C.

)
(B7)

and results for the velocity variance (as expressed by equation 16)
in a component

〈(	v)2〉kx = D

v2
r

k−n+1
x

(
− iR

kx

I1(kxR)

n
+ 1

k2
x

I2(kxR)

n + 1

)
(B8)

with

I1(kxR)

n
=

∫ ikxR

−ikxR

xn−1�(−n, x)dx (B9)

and

I2(kxR)

n + 1
=

∫ ikxR

0
xn�(−n, x)dx + C.C. (B10)

Given that∫
xb−1�(s, x)dx = 1

b

[
xb�(s, x) − �(s + b, x)

]
, (B11)

integrating by parts yields

I1(kxR) = (ikxR)n �(−n, ikxR) − �(0, ikxR) − C.C. (B12)

and

I2(kxR) = (ikxR)n+1 �(−n, ikxR) − �(1, ikxR) + �(1, 0) + C.C.

(B13)

Further noticing that

�(0, ikxR) − C.C. = 2i Si(kxR), (B14)

where Si(X) ≡
∫ X

0

sin t

t
dt is the sine integral function, and that

�(1, 0) − �(1, ikxR) + C.C. = −2(cos(kxR) − 1), (B15)

we obtain

I1(kxR) = ((ikxR)n �(−n, ikxR) − C.C.) − 2i Si(kxR) (B16)

and

I2(kxR) = ((ikxR)n+1 �(−n, ikxR) + C.C.) − 2(cos(kxR) − 1).

(B17)

Hence,

〈(	v)2〉kx = − DR

v2
r k

n
x

(
2

n
Si (kxR) + T1(kxR) + T2(kxR)

)
(B18)

while the component depending on km similarly yields

〈(	v)2〉km = DR

v2
r k

n
m

(
2

n
Si (kmR) + T1(kmR) + T2(kmR)

)
, (B19)

where the functions T1 and T2 have been defined in equations
(18) and (19). The total velocity variance is simply 〈(	v)2〉 =
〈(	v)2〉kx + 〈(	v)2〉km , which simplifies to its second term when
kx � km.

B3 Asymptotic behaviour

Equation (A6) results in

T1(kxR) ∼
(

1

n
− 1

n + 1

)
2

kxR
cos(kxR) (B20)

when kxR � 1 so all the terms in T1 and T2 go to zero when kxR �
1 and kmR � 1. In this limit and when kx � km, we consequently
have

〈(	v)2〉 ∼ πRD

nv2
r

1

kn
m

. (B21)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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