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Soil Particles and Phenanthrene
Interact in Defining the Metabolic
Profile of Pseudomonas putida G7:
A Vibrational Spectroscopy
Approach
Andrea Fanesi, Asfaw Zegeye, Christian Mustin and Aurélie Cébron*

Laboratoire Interdisciplinaire des Environnements Continentaux, CNRS, Université de Lorraine, Nancy, France

In soil, organic matter and mineral particles (soil particles; SPs) strongly influence the
bio-available fraction of organic pollutants, such as polycyclic aromatic hydrocarbons
(PAHs), and the metabolic activity of bacteria. However, the effect of SPs as well as
comparative approaches to discriminate the metabolic responses to PAHs from those to
simple carbon sources are seldom considered in mineralization experiments, limiting our
knowledge concerning the dynamics of contaminants in soil. In this study, the metabolic
profile of a model PAH-degrading bacterium, Pseudomonas putida G7, grown in the
absence and presence of different SPs (i.e., sand, clays and humic acids), using either
phenanthrene or glucose as the sole carbon and energy source, was characterized
using vibrational spectroscopy (i.e., FT-Raman and FT-IR spectroscopy) and multivariate
classification analysis (i.e., PLS-DA). The different type of SPs specifically altered
the metabolic profile of P. putida, especially in combination with phenanthrene. In
comparison to the cells grown in the absence of SPs, sand induced no remarkable
change in the metabolic profile of the cells, whereas clays and humic acids affected it
the most, as revealed by the higher discriminative accuracy (R2, RMSEP and sensitivity)
of the PLS-DA for those conditions. With respect to the carbon-source (phenanthrene
vs. glucose), no effect on the metabolic profile was evident in the absence of SPs
or in the presence of sand. On the other hand, with clays and humic acids, more
pronounced spectral clusters between cells grown on glucose or on phenanthrene
were evident, suggesting that these SPs modify the way cells access and metabolize
PAHs. The macromolecular changes regarded mainly protein secondary structures (a
shift from α-helices to β-sheets), amino acid levels, nucleic acid conformation and cell
wall carbohydrates. Our results provide new interesting evidences that SPs specifically
interact with PAHs in defining bacteria metabolic profiles and further emphasize the
importance of studying the interaction of bacteria with their surrounding matrix to deeply
understand PAHs degradation in soils.

Keywords: bacteria, FTIR spectroscopy, FT-Raman spectroscopy, metabolic profile, multivariate classification
analysis, phenanthrene, soil particles
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INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) are persistent organic
pollutants commonly found in industrially contaminated soils
(Haritash and Kaushik, 2009). Differently from natural carbon
(C) sources, the high hydrophobicity and low solubility in water
of PAHs result in their adsorption to soil particles (SPs; here
considered as mineral and organic components constituting the
soil matrix), which is believed to limit the amount of C readily
available for microbial growth (Weissenfels et al., 1992; Wilcke
et al., 1996). Bacteria strategies to tackle low accessibility and
availability of PAHs range from the direct contact with crystals or
SPs, to the excretion of surfactants and to the expression of high
affinity uptake systems (Miyata et al., 2004). This in turn allows
the cells to maintain growth and cell viability even when PAHs
are the sole C/energy source present.

The efficiency of bacteria in metabolizing PAHs is generally
tested via mineralization assays. Although in the literature plenty
of studies report such results, only a few have investigated
how SPs alter bacteria ability to metabolize PAHs and how this
affects the cell physiology (i.e., metabolic activity and metabolic
profile). Limited experimental results suggested that rather than
limiting cell activity, some SPs can enhance mineralization
efficiencies by favoring bacterial contact with the adsorbed PAHs
molecules (Ortega-Calvo and Saiz-Jimenez, 1998; Amellal et al.,
2001) or by acting as surfactants. From a metabolic point of
view, PAHs activate specific cellular pathways aimed at their
metabolization and/or at the detoxification of resulting secondary
metabolites. For instance, proteomic studies reported an up-
regulation of cell components involved in PAHs metabolism
(e.g., mono and di-oxygenases), in oxidative stress, cell energetics
and C-metabolism (Seo et al., 2009 and references therein).
Considering that specific SPs stimulate cells to express at
their surface or excrete macromolecules involved in substrate
attachment and in biofilm formation (Ojeda et al., 2008; Wu
et al., 2014a,b,c), the interaction of PAHs and SPs may result
in a complex reorganization of bacteria metabolic profile (i.e.,
cell macromolecular composition). Indeed, a global modification
of bacterial transcriptome in the presence of particles and/or
pollutant, was previously observed (Moreno-Forero and Van Der
Meer, 2015; Lima-Morales et al., 2016).

The energy required for macromolecule synthesis in a given
environmental niche is a fundamental limit for microorganism
growth and colonization (VanBriesen, 2001; McCarty, 2007;
LaRowe and Amend, 2016). Therefore, understanding how
cells adjust their metabolic profile as a function of different
SPs is critical to better understand spatial distributions of
degraders and PAHs mineralization in situ, which could help
identifying hotspots (i.e., location of high microbial activity)
in soil (Kuzyakov and Blagodatskaya, 2015). An experimental
approach accounting for SPs would therefore allow a more
realistic understanding, with respect to the use of simple mineral
media, of how bacteria cells metabolically react to the presence
of PAHs in nature (Keum et al., 2008). Nevertheless, the complex
interaction of bacteria with SPs has seldom been considered in
experimental approaches regarding PAHs effect on cell metabolic
profiles. In this study we therefore aimed at investigating how

SPs influence the metabolic profile of bacteria during PAHs
degradation.

In soil, the different SPs, such as sand, clays and humic
acids, are responsible for binding different amounts of PAHs
(Ortega-Calvo and Saiz-Jimenez, 1998; Uyttebroek et al., 2006),
and to specifically modify the physico-chemical characteristics
of the micro-environment in their immediate surroundings
(Chenu, 1993; Vandevivere and Kirchman, 1993) leading to
a highly heterogeneous environment. For instance, clays and
humic acids have been reported to adsorb the highest fraction
of PAHs, but to increase bacteria mineralization rates (Ortega-
Calvo and Saiz-Jimenez, 1998; Uyttebroek et al., 2006). On
the other hand, as presenting the lowest specific surface area
cation exchange capacity and strength of binding sites, sand
particles retain PAHs molecules the least and support low
mineralization rates (Wilcke et al., 1996; Amellal et al., 2001;
Müller et al., 2007; Uyttebroek et al., 2006). We hypothesized
that for a specific bacteria species growing in the presence of
different SPs, there is a specific metabolic profile related to each
type of SPs, which reflects the distinctive micro-environmental
conditions the cells are subjected to. In laboratory cultures
where cells are grown in a liquid medium and SPs are suspended
in it, this may hold true irrespective of whether the cells are
attached to soil components or conducting a planktonic lifestyle.
In order to test our hypothesis, the strain G7 of the common
soil dweller Pseudomonas putida, with the ability to metabolize
PAHs (Cébron et al., 2008), was grown in the presence and
absence of different SPs (i.e., quartz sand, clays and humic
acids) using phenanthrene or glucose as the sole C and energy
source. A comparison between PAHs and a common C/energy
source could serve indeed to identify specific molecular markers
indicative of PAHs metabolism (Wick et al., 2003; Keum et al.,
2008). Phenanthrene was used as a model PAH compound
because it is relatively easy to be degraded and is ubiquitous in
contaminated soils. Glucose, a simple carbohydrate that is less
adsorbed on SPs (Wu et al., 2014c), was used to discriminate
the C-source effect from the SPs one. The characterization
of cell metabolic profiles in the presence of different SPs was
carried out by using a combination of vibrational spectroscopy
techniques such as Fourier Transform Raman and Infrared
spectroscopy (FT-Raman and FTIR spectroscopy, respectively)
and the spectra processed by chemometric analysis, such as
multivariate classification analysis. Vibrational spectroscopy was
preferred over other -omics techniques such as proteomics and
transcriptomics because it requires minimal sample preparation,
allow high spatial resolution measurements and it provides
quantitative and qualitative (i.e., structural) information
concerning the whole cell metabolic profile (Naumann, 2001;
Huang et al., 2007; Wagner et al., 2010, 2014; Teng et al., 2016;
Fanesi et al., 2017). Proteomics and transcritomics look indeed
at only one cellular pool at time and they may not provide
information concerning the final metabolic phenotype of a cell
as a consequence of post-translational modifications (Wagner,
2009). The present work is a pilot study allowing to prove the
concept that vibrational spectroscopy techniques may bring
interesting and contrasting information complementary to
other approaches in soil studies. Furthermore, in view of future
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applications, vibrational spectroscopy coupled to stable isotope
probing (i.e., 13C-labeled phenanthrene) would allow the in situ
identification of specific bacterial functions.

MATERIALS AND METHODS

Culture Conditions and Experimental
Setup
Pseudomonas putida PpG7 (ATCC R©17485TM; provided by Dr. G.
J. Zylstra) was selected as experimental organism for this study
because already screened for phenanthrene metabolism (Cébron
et al., 2008) and because able in the presence of phenanthrene
to sustain enough biomass production required to perform the
measurements. Stock cultures were maintained in the dark at
24◦C in Bushnell Haas (BH, Sigma-Aldrich; Bushnell and Haas,
1941) agar plates containing glucose (4 g·L−1). Before streaking
the cells, the agar plates were sprayed with 500 µL of a solution of
phenanthrene (Sigma-Aldrich) in acetone (10 mg·mL−1) and the
solvent was let evaporate in a laminar flow hood (Thomas et al.,
2016).

Experiments were performed on liquid batch cultures growing
in 250 mL Erlenmeyer flasks filled with 100 mL of BH mineral
medium using either phenanthrene or glucose at a final dosage of
1 mg·mL−1.

Coarse quartz sand (3–5 mm diameter), Na-montmorillonite
(Wyoming) SWy-2 (Source Clay Minerals repository, Chantilly,
VA, United States), Na-nontronite NAu-1 (Source Clay Minerals
repository, Purdue, IN, United States) and humic acids (53680,
Sigma-Aldrich) were selected as representative soil particles for
the experiments. The soil particles were used at a concentration
of 300, 10, and 0.1 g·L−1 for sand, clays (montmorillonite and
nontronite) and humic acids, respectively. Sand and clays were
deposited at the bottom of the flasks in dried forms, whereas
humic acids were supplied dissolved in 0.1M NaOH. The flasks
were then autoclaved, and the phenanthrene-acetone solution
was spread over the whole surface occupied by the particles. In
the presence of humic acids, phenanthrene was first deposited at
the bottom of the flask, let the acetone evaporate and then the
humic acid solution was added. After the complete evaporation
of the solvent (previously tested), BH mineral medium was
added and the flasks were allowed to equilibrate for at least
4 h [a time pre-established to lead to a complete adsorption of
PAHs to mineral particles; (Müller et al., 2007)] on a rotatory
shaker (90 rpm) in the dark at 24◦C. At this point, an inoculum
from an overnight grown agar culture was prepared to obtain a
final colony forming unit (CFU) number of 1–2.103 CFU·mL−1

(determined by plate counting on BH medium supplemented
with glucose).

Growth Rates (µ) and C-dynamics
Growth curves were determined over a period of ∼100 h, on
cultures grown under the same conditions described above. Cells
of P. putida were plate counted after vigorously vortexing the
samples for 5–10 min to allow cells that eventually adhered to
the SPs to detach. Growth rates (µ) were estimated as the slope
of a linear least square regression of the natural logarithm of

CFU increase against time. Control cultures inoculated without
C-source or without cells were also run to exclude possible
contamination and artifacts. Each day, samples (1–2 mL of
culture) were harvested at different time of the day to perform
Raman and FTIR measurements (see below).

On a different set of cultures grown under the same
experimental conditions described above, the mineralization
efficiency of the cells (measured as CO2 production over a time
period of ∼100 h) was determined in sealed bottles (150 mL)
filled with 10 mL of cell culture. The measurements were
performed as described elsewhere (Cébron et al., 2013). Briefly,
3 mL of the bottle atmosphere was sampled with a plastic syringe
through a rubber stopper and CO2 quantified by and infrared gas
analyzer (Binos 1004; Rosemount). After the measurements, the
bottles were opened and brought to equilibrium with the external
atmosphere in a laminar flow hood. Mineralization curves
(CO2 emission vs. time) were fitted using the “grofit” package
(Kahm et al., 2010) present in the R software (R Development
Core Team, 2010) to determine quantitative parameters of CO2
production such as the maximum mineralization (max value at
plateau) and mineralization rate (the initial slope of the CO2
evolution vs. time curve).

To better understand the dynamics of the C-source in
the presence of the different SPs, the soluble fractions of
phenanthrene and glucose (i.e., concentration in solution) were
quantified at the beginning (before cell inoculation) and at the
end of the experiments (after∼100 h). Due to the low amount of
phenanthrene in solution the whole volume of growth medium in
a flask must be utilized for its quantification. Therefore, another
set of experiments was run to determine the soluble fraction
of phenanthrene and glucose. For phenanthrene quantification,
three cultures for each time point were prepared and inoculated.
For each time point, the whole cultures were centrifuged at
16,000 × g for 5 min to completely remove SPs and cells
in suspension. Soluble phenanthrene was then extracted twice
in dichloromethane (DCM), in 8 and 5 ml respectively. The
DCM containing phenanthrene was then evaporated in dark
glass tubes under a N2 flux and substituted with acetonitrile
for phenanthrene quantification using HPLC (see Thomas et al.,
2016). For glucose quantification, 1mL of culture was centrifuged
(as above) and filtered (0.22 µm pore size). Glucose was finally
quantified using the GOD-PAP kit (Bioloabo, Maizy, France) and
a Safas MP96 spectrophotometer (Safas, Monaco).

FT-Raman Micro-Spectroscopy and
Diffuse Reflectance FTIR-Spectroscopy:
Sample Preparation and Spectra
Acquisition
The metabolic profile of P. putida was characterized by a
combination of vibrational spectroscopy techniques. Samples
were harvested each day (multiple times during the day, typically
every 2 h; for a total of 4–5 samples per day) over the whole
growth period (see above) to exclude compositional differences
related to the growth phase. Cells (1–2 ml of culture) were
harvested by centrifugation at 10,000 × g for 4 min and washed
twice in sterile MilliQ water to remove residual salts and cell
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debris. The cell pellet was then resuspended in 5–10 µL of
MilliQ water and 0.5 µl of cell suspension was deposited on a
gold coated microscopy slide and let dry at room temperature.
Afterward, the cell deposit was resuspended in 0.7 µL of 0.9%
(w/v) NaCl and dried again. In the presence of SPs, cells
were separated from the particles by vigorously vortexing the
samples for 5–10 min and by further sonicating them in an
ultrasonic bath for few seconds. In the presence of clay, cells
were further separated from the mineral particles (which were
found to produce a strong fluorescence background in the
Raman spectra) by density gradient using Nycodenz solution
(1.3 g·mL−1; ProteoGenix, Axis-Shield). Macro-aggregates were
removed by a short spin centrifugation step. The remaining
suspension (1 mL) was vortexed and sonicated as described above
and Nycodenz (0.8 mL) was carefully added at the bottom of the
eppendorf. The samples were centrifuged at 3,000× g for 20 min
and the cell layer interposed between the aqueous phase and the
Nycodenz removed and washed in MilliQ water at least 5 times to
eliminate any trace of Nycodenz that could have interfered with
cell signals.

In this study the use of a Fourier Transform (FT-) Raman
spectrometer operating in the near infrared was preferred to
a dispersive Raman device using visible lasers to avoid signal
distortions due to native fluorescence of PAHs and of soil
components (i.e., the SPs). Raman scattering was acquired using
a FT-Raman MultiRam spectrophotometer (Bruker, Ettlingen,
Germany), equipped with an excitation line at 1064 nm (Nd:YAG
laser) and a liquid nitrogen cooled high sensitivity Ge detector.
The spectrometer was coupled to an epifluorescence right
microscope (BX51 Olympus) equipped with a 50X magnification
IR objective (LCPLN50XIR; WD 4-5mm, NA 0.65, Olympus,
Japan), specific for optimal transmission in the near infrared
field between 700 and 1300 nm (Transmittance up to 75% in the
range 0–2000 cm−1). Spectra were acquired in reflection mode
in the spectral range 4000–0 cm−1 with a resolution of 6 cm−1

by recording 1000–2000 scans at 2.2 kHz of slew rate in order
to get good signal to noise ratios. Spectra were processed using
Blackman-Harris apodization function and 2 levels of zerofilling.
The laser power used for the measurements was 500–600 mW
corresponding to approximately 200 mW at the sample. Samples
were scanned at least at 2 different positions, thanks to an x, y,
z motorized stage, to account for sample heterogeneity. Spectra
acquisition was controlled with the OPUS 7.5 software (Bruker,
Ettlingen, Germany). The resolution of the instrument (∼10–
20 µm) does not allow single cell analysis, therefore the spectra
reported in this study refer to bulk analysis including both cells
that were adhered to the SPs and the planktonic ones.

The same set of samples prepared for the FT-Raman
measurements were also scanned by means of FTIR-spectroscopy
to obtain complementary information about the metabolic
profiles of P. putida populations. Diffuse reflectance spectra
(DRIFTS) acquisition was carried out with a Bruker Vector 22
(Bruker, Ettlingen, Germany) equipped with a diffuse reflection
collection system (Praying Mantis; Harrik, Pleasantville, NY,
United States). Spectra were recorded with 64 scans co-added and
averaged in the spectral range 4000–400 cm−1 with a resolution
of 4 cm−1. Background spectra were recorded at the edges

of the cell deposit with the same instrumental settings. The
spectrometer was controlled with the OPUS software version 4.5
(Bruker, Ettlingen, Germany).

Band assignment for the Raman and IR spectra was based
on literature references (Naumann, 2001; Movasaghi et al., 2007,
2008; Huang et al., 2010) and on reference spectra of pure
macromolecules.

Spectra Pre-processing and Multivariate
Modeling
All spectra were exported from the OPUS software for further
pre-processing and multivariate modeling steps computed in
the R environment (version 3.4.3; R Development Core Team,
2010). A first visual screening, aimed at eliminating the
spectra with a low signal to noise ratio, resulted in a total
of 346 for the FT-Raman dataset and 465 for the FTIR
one. Base line corrections of Raman spectra were performed
with the package “baseline” (Liland et al., 2015) using a
2nd derivative constrained weighted regression, cut in the
spectral ranges 3019-2819 and 1780-400 cm−1 and normalized
(in order to compare peak intensities and remove problems
related to different sample thickness) using the standard
normal variate function (SNV, Barnes et al., 1989). FTIR-
spectra were converted to 2nd derivatives by the Savitzky-
Golay algorithm (Savitzky and Golay, 1964) using a quadratic
polynomial function with nine smoothing points. Prior to
calculations, spectra were cut in the spectral ranges 3019–
2819 and 1780–1200 cm−1 because of the strong clay
bands overlapping to the cellular components in the lower
frequency range of the IR spectrum. However, other two bands
corresponding to the spectral ranges, 1091–1076 and 973–
958 cm−1 were further selected because not overlapping with
clay signals. Finally, the spectra were normalized using the SNV
function.

The Partial Least Square (Wold et al., 2001) Discriminant
Analysis (PLS-DA; Barker and Rayens, 2003) was used to
unravel consistent patterns in the spectral datasets and to
extract information regarding the macromolecules involved
in the classification. The PLS-DA is a chemometric analysis
particularly useful when it comes to handle metabolic datasets
with highly collinear variables (Fonville et al., 2010). The PLS-
DA was implemented in the R software using the ‘pls’ package
developed by Mevik et al. (2016). To test our hypothesis, two
models for each spectral dataset were developed. The first
discriminated each experimental treatment (control and the
4 SPs and the 2 respective C/energy source; 10 classes) and
the second discriminated the C/energy sources (i.e., glucose
and phenanthrene; 2 classes). The models were calibrated by
matching each set of predictors (X-variables; i.e., FT-Raman
and FTIR spectra) with the corresponding discriminating classes
(Y-variables). The matrices (i.e., Y variables) were created
assigning integer values of 0 and +1 (dummy variables) to
the experimental treatments (SPs + C/energy source) and
C/energy source (glucose and phenanthrene). In turn, to each
class is assigned the values +1 and to all the others 0. In
this way, a calibration can be built around each classification
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matrix. To quantify the accuracy of the classification models,
the sensitivity (the ability of identifying true positives) and
the specificity (the ability of identifying true negatives) were
estimated as described in Sackett et al. (2013), using the
“caret” package (Kuhn, 2017) present in the R software. Spectra
with predicted Y-values ≤ 0.5 were classified as 0, whereas
predicted Y-values ≥ 0.5 were classified as 1. The algorithm
used for the PLS-DA was the canonical powered partial least
square (Indahl et al., 2009). The prediction abilities of the
models were inferred from the root mean squared error of
calibration and prediction (RMSEC and RMSEP, respectively),
the latter calculated from the leave-one-out cross-validation
(LOOCV), and the coefficient of determination (R2). The R2

and the RMSEP obtained from the cross validation were used
to determine the number of principal components to use
for each model (Wold et al., 2001). Class similarities and
dissimilarities were individualized by plotting the model’s scores.
Important changes in macromolecules and functional groups
in response to SPs and C/energy source were identified by
extracting and analyzing the loadings of each model. The loadings
indicate the variables, i.e., the spectral features (corresponding
to specific compounds or functional groups), mainly driving the
discriminant model.

Statistical Analysis
All data are reported as mean and standard deviations of
three independent biological replicates. Statistically significant
differences between mean values of the measured variables were
assessed by a two-way analysis of variance (ANOVA), considering
the SPs and the C-source as factors, followed by the Bonferroni
post hoc test. The level of significance was always set to α = 0.05.

RESULTS

Growth Rate (µ)
Growth rate of P. putida was affected both by the C-source and
by SPs. In general, cells presented lower µ when growing on
phenanthrene in comparison to glucose (Table 1). With glucose,
all SPs but montmorillonite sustained higher µ respect to the
cultures grown in the absence of SPs. The same trend was
observed when the cells were consuming phenanthrene, however,
in the presence of montmorillonite the cells exhibited comparable
µ with respect to the cells grown in the absence of SPs.

C-source Soluble Fraction and
Mineralization
In all conditions, the soluble phenanthrene fraction was
approximately 0.1–0.2% compared to that of glucose
(Figures 1A,C). Montmorillonite, nontronite and humic
acids increased the amount of phenanthrene in solution (likely
as colloids), with respect to the cultures grown in the absence
of SPs, or in the presence of sand (Figure 1A). Interestingly,
the soluble fraction of phenanthrene was comparable in the
absence of SPs and in the presence of sand, whereas with
montmorillonite it was the highest (5 times higher than in the

absence of SPs), followed by nontronite and humic acids that
supported a similar concentration of phenanthrene in solution
(3 times higher than in the absence of SPs) (Figure 1A). On the
other hand, glucose was dissolved completely at all conditions
but in the presence of nontronite the soluble fraction was 18%
lower (Figure 1C).

At the end of the experiment, only 1–10% of the initial glucose
was left available for the cells in all the conditions and no effect of
the SPs on the total consumption of glucose could be detected
(which ranged between 90 and 99% of the initial amount)
(Table 1). While montmorillonite increased the concentration of
soluble phenanthrene at the beginning of the experiment, the
concentration of soluble phenanthrene was the lowest in this
condition at the end of the experiment, and no difference between
all the other conditions was evident (Table 1).

The mineralization efficiency of P. putida was assessed
by means of CO2 assays (i.e., CO2 evolution over time).
The maximal CO2 production and the initial slope of the
mineralization curves were 3–4 times lower when the cells were
grown on phenanthrene, with respect to glucose (Figures 1B,D
and Table 1). Regardless of the C-source, SPs induced only
minor changes of the maximal mineralization attained by
the cells (Table 1). Nontronite and humic acids sustained
the lowest maximal mineralization level, whereas at all other
conditions the cells presented comparable values (Table 1).
When growing on phenanthrene, the cells did not show any
change of the mineralization rate induced by the presence of
the SPs (Figure 1B). On the other hand, the mineralization rate
was strongly affected by SPs when glucose was the C-source
(Figure 1D). Montmorillonite particles sustained the fastest
mineralization, whereas the mineralization rate decreased with
nontronite and sand particles (Figure 1D). In the absence of SPs

TABLE 1 | Growth rate (µ), maximal mineralization and final C-source
concentrations in the cultures of P. putida grown in the absence and in the
presence of SPs (sand, clays, and humic acids) and using glucose or
phenanthrene as the sole source of C and energy.

µ (h−1) Maximal
mineralization (µg

C-CO2·ml−1)

C-sourcefinal

(µg·ml−1)

Glucose

No SPs 0.46a (0.00) 280a (1.8) 52.43a (12.97)

Sand 0.58b (0.05) 268.7a (2.1) 14.98a (6.48)

Montmorillonite 0.18c (0.03) 270.5a (9.9) 18.72a (17.16)

Nontronite 0.65d (0.00) 219b (14.5) 48.68a (84.33)

Humic acids 0.63e (0.03) 228.5c (24.5) 89.88a (47.67)

Phenanthrene

No SPs 0.31a (0.00) 106.5a (13.6) 0.12a (0.03)

Sand 0.43b (0.01) 99.5a (9.3) 0.10a (0.01)

Montmorillonite 0.31a (0.01) 112.3a (12.1) 0.41a (0.20)

Nontronite 0.59c (0.00) 51.7b (1.3) 1.18b (0.28)

Humic acids 0.45d (0.00) 39.4c (6.6) 0.95c (0.58)

Results are reported as mean and standard deviations (in brackets), n = 3. Different
letters represent statistically significant means (two-way ANOVA, p < 0.05) of the
parameters in the presence of the SPs, with respect to those measured in the
absence of SPs (i.e., No SPs).
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FIGURE 1 | Soluble fractions of the C-sources and mineralization rate of P. putida grown in the absence (No SPs) and presence of SPs and metabolizing glucose or
phenanthrene as the sole C and energy source. (A,B) Depict the soluble carbon and the mineralization rate, in the cultures grown in the presence of phenanthrene.
(C,D) Depict the soluble carbon and the mineralization rate, in the cells grown in the presence of glucose. Vertical bars represent standard deviations (n = 3),
statistically significant differences with respect to the cultures containing no SPs (black bars) are also reported (ns, non significant, ∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001).

and in the presence of humic acids, the cells exhibited instead the
lowest mineralization rates.

Metabolic Profiling by FT-Raman
Spectroscopy and PLS-DA
The average FT-Raman spectra for each experimental condition
are reported as Supplementary information (Supplementary
Figure S1). Differences all over the spectral ranges could
be detected among all conditions, however, for a precise
identification of patterns, the use of chemometric analysis was
necessary. The first PLS-DA model was calibrated using the
first eight principal components (PLS-PC) for the classification
of each of the growing conditions (i.e., the different type
of SPs and C-source) on the base of P. putida FT-Raman
spectra. From a visual inspection of the scores plot (where
each sample is represented in a bi-dimensional space), it
emerged that differences in the metabolic profiles of P. putida
could be used to discriminate among the different growth
conditions, with the SPs being the main factor influencing the
discriminant analysis (Figure 2A). The first eight components
explained 37% of the overall variance present in the spectral

dataset (i.e., the X matrix) (Supplementary Table S1). The best
discrimination, and therefore the greatest differences in the
metabolic profiles of the cells, occurred for the cells grown in
the presence of montmorillonite, nontronite and humic acids
(Table 2 and Figure 2A). The combination of these SPs with
phenanthrene, as a C/energy source, resulted in the highest
variance explained (77, 65, and 71%, respectively) (Table 2). The
higher degree of macromolecular changes was also confirmed by
the higher sensitivity (i.e., the ability of the model to discriminate
those classes of cells from the rest of the treatments) for
montmorillonite, nontronite and humic acids in the presence
of phenanthrene being 69, 43, and 69% respectively (Table 2).
For these classes, the model also presented the higher R2

C
(0.77, 0.64, and 0.70, respectively) and the lower RMSEP
(0.17, 0.15, and 0.17, respectively), indicating good predictive
abilities.

The spectra corresponding to cell grown on montmorillonite,
nontronite and humic acids grouped at positive scores along
the PLS-principal component one (PLS-PC1; 10.6%), whereas
the cells grown in the absence of SPs and in the presence
of sand clustered at negative ones (Figure 2A). On the
other hand, along the PLS-PC2 (6.4%) a discrimination
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FIGURE 2 | Partial Least Square Discriminant analysis (PLS-DA). The PLS-DA was calibrated for the discrimination of each experimental treatment [i.e., ±SPs and
glucose (Glc) or phenanthrene (Phe)] based on FT-Raman and FTIR-spectra of P. putida. The panels (A,C) report the scores of the FT-Raman and FTIR model,
respectively. The panel (B,D) represent the loadings of the FT-Raman and FTIR model, respectively. For the FT-Raman model, a positive loading corresponds to a
higher signal intensity (for a compound) in all the samples presenting positive scores. For the FTIR model, since the spectra were converted to 2nd derivatives a
positive loading corresponds to a lower signal intensity (for a compound) in all the samples presenting positive scores. Dots are spectra of P. putida samples (i.e.,
including planktonic and adhered cells) acquired at each condition over the whole growth curve. Dashed ellipses in the score plots represent the 95% confidence
ellipses for each class. Horizontal bold lines in the loading plots represent the macromolecular assignment of the peaks. The sign (+ and –) of the bold lines reflect
that of the corresponding loading of the PLS-PC1.

of the different SPs could be observed (Figure 2A).
Spectra corresponding to cells grown in the presence of
montmorillonite were present at positive scores and the cells
grown on nontronite and humic acids had negative ones
(Figure 2A).

The loadings, together with the patterns observed in the
scores plot, indicate which spectral bands (i.e., metabolic
components) are responsible for the observed clustering patterns.
The complete band assignment is reported in Supplementary
Table S2. For the PLS-PC1, a set of important loadings
corresponding to carbohydrates spectral window (C-O and
C-C stretching; 1200–1000 cm−1) and carboxylic residual
groups (symmetric vibrations of carboxylate groups COO−
near 1419 cm−1) had negative sign, indicating that the cells
growing in the absence of SPs or in the presence of sand
(also found at negative scores) exhibited higher peak intensities
for this macromolecular pool and residual group, compared
to cells grown in the presence of clays and humic acids

(Supplementary Table S2 and Figure 2B). Positive loadings
corresponded to the C = O stretch of the Amide I, present at
1675 cm−1, the Amide III (1265 cm−1), and the CH2 bending
of proteins (1452 cm−1). Characteristic vibration frequencies
of amino acids such as phenylalanine (1600, 1174/1162, 1006,
and 626 cm−1) tyrosine and tryptophan (1600, 1558, 1174/1162,
891 cm−1), ring breathing modes of purine bases (Adenine and
Guanine rings at 1581, 788, and 707 cm−1) and the symmetric
PO2 stretching of DNA (1076 cm−1) presented positive sign.
They were therefore more important in the cells grown in
the presence of clays and humic acids (found at positive
scores).

For the PLS-PC2, negative loadings corresponding to proteins
(1662, 1278 cm−1), amino acids (1602, 1000, 889, and 802 cm−1)
and nucleic acids (1591, 1560, and 1016, 639, 619 cm−1)
indicated more intense bands for these components in the cells
growing in the presence of nontronite and humic acids. With
montmorillonite instead, the cells presented positive loadings
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TABLE 2 | Diagnostic parameters of the PLS-DA models based on FT-Raman and FTIR spectroscopy.

Glc Phe S + Glc S + Phe M + Glc M + Phe N + Glc N + Phe HA + Glc HA + Phe

FT-Raman

Sensitivity 0.01 0 0 0.02 0.29 0.69 0 0.43 0 0.69

Specificity 0.99 0.99 1 0.99 0.97 0.99 0.99 0.99 0.99 0.98

R2
C 0.25 0.18 0.17 0.27 0.55 0.77 0.43 0.64 0.37 0.70

RMSC 0.31 0.33 0.25 0.29 0.19 0.14 0.19 0.12 0.18 0.14

R2
P 0.14 0.07 0.04 0.11 0.20 0.68 0.16 0.43 0.009 0.56

RMSEP 0.34 0.36 0.27 0.32 0.25 0.17 0.23 0.15 0.22 0.17

% variance 25.86 18.47 17.19 27.98 55.19 77.03 43.27 64.89 37.65 70.58

FTIR

Sensitivity 0.70 0.01 0.17 0.34 0.80 0.75 0.29 0.76 0 0

Specificity 0.98 0.99 1 0.98 0.97 1 1 1 1 1

R2 0.51 0.28 0.37 0.36 0.59 0.67 0.45 0.65 0.21 0.32

RMSC 0.25 0.28 0.23 0.28 0.22 0.13 0.19 0.13 0.19 0.19

R2
P 0.46 0.21 0.24 0.26 0.44 0.55 0.28 0.43 0.10 0.25

RMSEP 0.25 0.29 0.24 0.29 0.23 0.14 0.20 0.14 0.20 0.20

% variance 51.08 28.84 37.48 36.83 59.64 67.66 45.80 65.82 21.71 32.22

The models were calibrated to discriminate for each experimental condition (± SPs and glucose or phenanthrene), for a total of 10 classes (Glc, glucose; Phe,
phenanthrene; S, sand; M, Montmorillonite; N, Nontronite; HA, humic acids). The number of principal components was 8 for both models. RMSC, root mean squared
error of calibration; RMSEP, root mean squared error of prediction; R2

C, coefficient of determination for the calibration; R2
P, coefficient of determination for predicted

values; Sensitivity, ability to discriminate true positives; Specificity, ability to discriminate true negatives; % variance, variance in Y explained by the model.

FIGURE 3 | Partial Least Square Discriminant analysis (PLS-DA). Scores plot
of the model calibrated to discriminate the C-source [phenanthrene (Phe) and
glucose (Glc)] based on FT-Raman spectra. Density distributions along the
axes were drawn to help patterns visualization. The summary statistics
(sensitivity, specificity, RMSEP, and R2

C) of the discriminant model is also
reported.

for most of the carbohydrates bands (1000–1200 cm−1) and
carboxylic residual groups (COO− at 1419 cm−1).

The second model was calibrated (using four PLS-
PC) to discriminate for the C/energy source (glucose and

phenanthrene). Even in this case, patterns in the two classes
of cells could be discriminated based on their metabolic
profiles (Figure 3). The first four components explained 38%
of the total spectral variance, whereas the explained variance
for the C/energy source was 50% and the RMSEP was 0.41
(Supplementary Table S3). Furthermore, the sensitivity and
specificity were high (82 and 74% respectively), meaning that
the differences in macromolecule composition were strong
enough to allow for accurate classification (Supplementary
Table S3). Analyzing the scores plot, an interesting pattern in
the metabolic profiles could be observed. When P. putida was
grown in the absence of SPs, or in the presence of sand, the
cells presented comparable metabolic profiles (i.e., overlapping
scores) regardless of the C-source metabolized (i.e., glucose
or phenanthrene) (Figure 3). On the other hand, when
montmorillonite, nontronite, and humic acids were present in
the medium, a greater discrimination among the cells grown in
the presence of glucose or phenanthrene was evident (Figure 3).
For instance, along the PLS-PC1 (16% of total variance) the
cells grown on glucose and in the presence of SPs were present
at negative scores and the cells grown on phenanthrene and
SPs had positive ones. In between these two groups clustered
the cells grown in the absence of SPs or in the presence of
sand (Figure 3). The PLS-PC1 positive loadings revealed that
when using phenanthrene, the cells presented greater signals for
components such as proteins (1675, 1282 cm−1), and nucleic
acids (794 and 707 cm−1) (Supplementary Figure S2). On
the other hand, when growing on glucose the cells had higher
intensities for carbohydrates (1200–1000 cm−1) (Supplementary
Figure S2). The variance along the PLS-PC2 (15%) was mainly
due to phenylalanine (1589 cm−1), the Amide III (1286 cm−1),
which presented strong negative loadings, and carbohydrates
(582 cm−1) with positive one (Supplementary Figure S2).
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Metabolic Profiling by FTIR
Spectroscopy and PLS-DA
The average FTIR spectra for each experimental condition
are reported as Supplementary Figure S3. Even in this case,
the first model was calibrated to discriminate the different
growth conditions (i.e., SPs and C/energy source). Similarly
to the respective FT-Raman model, the first eight components
explained 38% of the total spectral variance present in the dataset
(Supplementary Table S1). The highest variance explained
by the spectra was reached with glucose and in the absence
of SPs, in the presence of montmorillonite combined with
phenanthrene or glucose and nontronite with phenanthrene,
explaining 51, 68, 60, and 66% of the variance respectively
(Table 2). For these set of conditions, the model presented
also the highest sensitivity, specificity and the best predictive
abilities (Table 2), reflecting the greatest changes in the
macromolecular composition of the cells. In the scores plot,
the most prominent discrimination between the conditions
occurred along the PLS-PC1 (9%). The cells grown in the
absence of SPs and in the presence of sand presented
comparable metabolic profiles and were grouped at negative
scores (Figure 2C). Moving to positive scores, the cells grown
with montmorillonite, nontronite, and humic acids in the
medium could be found. No clear separation in the presence
of these last SPs could be detected and the spectra presented
overlapping scores (Figure 2C). No clear trend along the PLS-
PC2 was evident.

Since the FTIR-spectra were transformed to 2nd derivatives,
positive loadings correspond to a decrease in intensity of the
specific compounds/residual groups for all the spectra presenting
positive scores. The opposite holds true for samples with negative
scores. The loadings corresponding to C-H bonds vibrations
(3000–2820 cm−1) presented only minor contribution to the
discriminant model (Figure 2C). Important positive loadings
showed that the cells growing in the absence of SPs or in the
presence of sand presented higher signals for the C = O stretching
of the carbonyl groups contained in lipids (1743 cm−1) and
in nucleic acids (1712 cm−1). Protein signals corresponding to
Amide I α-helix (C = O stretching; 1656 cm−1) and Amide II
(N-H bending; 1544 cm−1) together with backbone features of
nucleic acids (C-C stretching; 968 cm−1) and the asymmetric
PO2

− stretching (1245 cm−1) also presented positive loadings
(Figure 2D). Negative loadings for the model corresponded to
ß-sheets protein secondary structures (1675 and 1629 cm−1),
and to the symmetric stretching of PO2

− groups present in
phosphorylated molecules (1230 and 1093 cm−1) (Figure 2D).

The second model was calibrated to discriminate for the
C-source. The first eight components captured 87% of the total
spectral variance (Supplementary Table S3). The REMSP was
0.28, the R2

C was 0.71 and sensitivity and specificity were 92 and
94%, respectively. Although the PLS-PC1 and PLS-PC2 already
explained 50% of the total variance in the spectral dataset, no
clear distinction between the cells grown on glucose and on
phenanthrene could be observed (Supplementary Figure S4).
The only separation, but rather weak, was evident along the
PC2 (14% of variance) between the cells grown in the absence

of SPs or in the presence of sand and the one grown on
clays and humic acids. However, no separation occurred on
the basis of the C-source, as shown by the overlapping scores
(Supplementary Figure S4). The clustering pattern in the scores
plot was mainly driven by changes in the secondary structures of
proteins (1658 and 1637 cm−1) and carbonyl groups of nucleic
acids (1708 cm−1), as suggested by the loadings of the PLS-PC1
and PLS-PC2 (Supplementary Figure S5).

DISCUSSION

Soil is a complex matrix represented by a highly heterogeneous
association of mineral and organic components. These
constituents not only influence the physico-chemical conditions
that microorganisms are subjected to, but they also affect the
availability and the spatial distribution of organic pollutants, such
as PAHs. Understanding how bacteria metabolically react to the
presence of different soil components during the mineralization
of PAHs is therefore of paramount importance to understand
pollutants degradation in nature and to improve remediation
strategies of polluted sites. Up to date, little information in
this regard is available (Ortega-Calvo and Saiz-Jimenez, 1998;
Uyttebroek et al., 2006; Lerch et al., 2017). In this study, for the
first time we aimed at studying how different type of soil particles
(SPs) influence the metabolic profile of bacteria grown in the
presence of phenanthrene.

Soil Particles Differently Affect the
C-source in Solution and Cell
Mineralization Efficiencies According to
the Nature of the C-source
(Phenanthrene vs. Glucose)
Our results show that in the presence of glucose, the SPs
modified the mineralization efficiencies of the cells, though
no relevant difference in the soluble fraction of the C-source
could be detected (Figure 1 and Table 1). The higher
metabolic performance (i.e., CO2 production) in the presence
of montmorillonite is consistent with the results of Wu
et al. (2014c), who ascribed the changes in metabolic activity
(measured by microcalorimetry) to the SPs presence itself, rather
than to changes in C solubility. In the presence of phenanthrene,
the SPs specifically altered the amount of phenanthrene in
solution. Sand, which presents the lowest specific surface area
among the SPs tested (Wilcke et al., 1996; Amellal et al., 2001;
Uyttebroek et al., 2006; Müller et al., 2007), did not alter the
phenanthrene concentration in solution (Louvel et al., 2011).
On the other hand, montmorillonite, nontronite and humic
acids increased the amount of readily available phenanthrene
in solution, maybe as colloids. Although in contrast with the
finding reported by Ortega-Calvo and Saiz-Jimenez (1998), we
have to point out that the presence of colloidal fractions of
SPs might have acted as surfactants and increased the apparent
solubility of phenanthrene in the aqueous phase of the cultures as
described by Kanti Sen and Khilar (2006). Besides the amount
of phenanthrene that each SP is able to adsorb, other physical
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parameters, such as the contact surface area of a particle and the
aqueous phase, may also affect the phenanthrene flux from the
surface of the particle into the surrounding medium as a function
of the substrate uptake by the cells (Wick et al., 2001; Tecon
et al., 2006). Despite of this, the mineralization parameters (e.g.,
maximum mineralization and mineralization rate) were similar
in all treatments, meaning that the soluble fraction was only
one of the exploitable phenanthrene-pools present in the cultures
(Ortega-Calvo and Saiz-Jimenez, 1998; Amellal et al., 2001), and
that the cells presented efficient mechanisms to increase their
accessibility to phenanthrene to efficiently biodegrade it.

From these results, it is evident that SPs have opposite effects
on C accessibility and cell metabolic activity as a function of the
C-source present in the growth environment: with glucose, SPs
had an action on cell metabolic activity, whereas in the presence
of phenanthrene they appeared to modify more the access to
the C-source. Although this finding is an evident consequence
of the contrasting physico-chemical properties of glucose and
phenanthrene, less obvious are the metabolic adjustments of the
cells facing these two opposite scenarios.

Soil Particles Specifically Alter the
Metabolic Profile of P. putida
The metabolic profile of P. putida was characterized by
vibrational spectroscopy. FT-Raman and FTIR-spectra
carry complementary information concerning bacteria
macromolecular composition. When run in parallel, these
techniques can draw a precise picture of cellular biochemical
changes, which can be extracted by advanced statistical analysis
(i.e., chemometrics). The first PLS-DA model was calibrated
considering each single treatment (SPs+ C-source) as a different
class.

Although FT-Raman-spectra, with respect to FTIR-spectra,
present a lower degree of overlapping bands and more detailed
spectral information about amino acids, nucleic acids bases and
aromatic compounds (Neugebauer et al., 2007), overall, the
models classifying for each condition (SPs + C-source) were
quite similar (Figure 2). The PLS-DA revealed that most of
the macromolecular changes are related to cells grown in the
presence of montmorillonite, nontronite and humic acids with
no significant effect due to the presence of sand (Figures 2A,C).
Interestingly, from the scores plot it also emerged that the cells
could be well discriminated in the presence of different SPs
(Figures 2A,C), confirming our hypothesis that SPs specifically
alter cell metabolic profiles. Furthermore, as indicated by the
diagnostic tools of the PLS-DA model (such as sensitivity, R2

and RMSEP; Sackett et al., 2013), the strongest macromolecular
changes were induced when montmorillonite was present in
the culture medium, regardless of the C-source, or when clays
and humic acids were added to the cultures grown with
phenanthrene (Table 2), suggesting an interaction of SPs and
C-source in defining the metabolic profile (see below) with
different underlying mechanisms as explained below.

To understand which cellular compounds (or functional
groups) drove the compositional patterns at the different
conditions, we analyzed the loadings of the discriminant models

(Wold et al., 2001; Sackett et al., 2013). The biochemical
differences distinguishing the cells grown in the absence of SPs
or in the presence of sand, from the ones grown on clays
and humic acids, concerned mainly changes of the protein,
nucleic acid and carbohydrate pools, with the latter one being
negatively correlated to the others (Figures 2B,D). The identified
spectral ranges (and therefore the corresponding compounds),
especially the one indicated by FT-Raman spectroscopy, have
already been described to differentiate between planktonic and
biofilm bacteria phenotypes (Andrews et al., 2010), suggesting
a possible preference for a sessile lifestyle in the presence of
clays and humic acids. However, since in our experimental
design the planktonic and attached fraction of bacteria were not
separated but considered as a whole, we are not able at the
moment to disentangle the direct (adhesion) from indirect effect
(C-availability) of the presence of SPs on cell metabolic profile.

The presence of clays and humic acids induced a shift toward
β-sheet secondary structures as indicated by the FT-Raman-based
loading at 1675 cm−1 (Figure 2B) (Rygula et al., 2013). Similar
qualitative changes were also detected by FTIR spectroscopy.
In the absence of SPs and in the presence of glucose, cells
exhibited a prominent Amide I peak at 1656 cm−1 in the
2nd derivative spectra (Supplementary Figure S3), indicative
of proteins dominated by α-helic secondary structures. In all
other conditions, the loadings indicated a shift toward proteins
with more β-sheets secondary structures (e.g., 1630 cm−1,
parallel β-sheets) (Figure 2D) (Barth, 2007). Previous studies
demonstrated that the adhesion of bacteria to mineral surfaces
can be mediated by protein bridging favored by the presence
of α-helic structures (Parikh and Chorover, 2006; Wu et al.,
2014a,b). Therefore, in this case the opposite trend suggests that
proteins pool modifications were not related to particle adhesion.
On the other hand, a higher fraction of β-sheet secondary
structure is in line with a reorganization toward a more functional
protein pool, indeed β-sheet secondary structures are mostly
characteristic of membrane bound enzymes and transporters
(Rygula et al., 2013). Such a shift could have been aimed at
optimizing the access and acquisition to the C-source, especially
in the presence of phenanthrene.

The nucleic acid pool was also affected by the presence of
clays and humic acids and the changes were detected both by
FT-Raman and FTIR spectroscopy. The loadings of the FT-
Raman model indicated a positive correlation between nucleic
acids and proteins (Figure 2B). This correlation reflects the
biological link between the synthesis of new proteins (see
above) and DNA translation that can be easily monitored by
means of vibrational spectroscopy (Neugebauer et al., 2007).
Whereas the Raman spectrum of nucleic acids contains mainly
information about nucleobases, FTIR spectra are informative
for backbone vibrations of DNA and RNA. The loadings of the
FTIR-based model pointed at five interesting bands (1712, 1245,
1230, 1093, and 968 cm−1) (Figure 2D). The pattern of these
bands suggests possible changes of DNA molecules conformation
(Whelan et al., 2011, 2014) when clays or humic acids were
present in the cultures. Whelan et al. (2011, 2014) described in
detail the diagnostic bands indicative of DNA conformational
shift and how they can be detected by FTIR-spectroscopy. In
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prokaryotes, DNA conformational changes are responsible for a
greater stability upon UV, chemicals and desiccation exposition
or as a normal consequence of biological processes such as
gene transcription and DNA-protein interactions (Mohr et al.,
1991; Whelan et al., 2011, 2014). This conformational changes
occurred independently from the C/energy source and they
were therefore likely triggered by the presence of SPs (see
Supplementary Figure S3).

Carbohydrates were found to be negatively correlated with
proteins and nucleic acids (see the FT-Raman loadings). An
inspection of the 1200–950 cm−1 region of the FTIR spectra
suggested that the carbohydrates bands were not originating
from storage compounds such as glycogen, but were rather
belonging to cell wall structures (in the case of montmorillonite
and nontronite a subtraction of pure clay spectra was performed;
data not shown) (Jiang et al., 2004). A similar capsular structure
seems to surround both planktonic and biofilm entangled cells of
Pseudomonas putida (Kachlany et al., 2001). In agreement with
our findings a spectroscopic analysis reported a lower amount of
carbohydrates in Pseudomonas sp. NCIMB 2021 for the biofilm
lifestyle (Beech et al., 1999) indicating ongoing modifications of
surface carbohydrates in the presence of clays and humic acids.

Besides the main metabolic differences found to distinguish
the cells grown in the absence of SPs or in the presence of
sand and the one facing clays and humic acids, the PLS-DA
revealed that the metabolic profile of P. putida was specifically
affected by the SPs used in this study. For instance, the PLS-
PC2 discriminated among montmorillnite, nontronite and humic
acids. Wu et al. (2014c) recently demonstrated that the metabolic
activity of P. putida was peculiarly modulated by different soil
colloids and minerals. In accordance to this study, we found that
the effect of SPs is also reflected in a specific reorganization of
their metabolic profile.

The Effect of the C-source
(Phenanthrene vs. Glucose) on P. putida
Metabolic Profile Is Evident Only in the
Presence of Clays and Humic Acids
From the first PLS-DA model statistics, differences in the
metabolic profile of P. putida related to the C-source were
identified. To better resolve these variations, a second set
of models (one based on the FT-Raman and one on the
FTIR-spectra) was calibrated to classify the two C-sources
(phenanthrene or glucose).

In the absence of SPs or in the presence of sand, the
metabolic profile of P. putida was comparable, regardless of the
C-source (Figure 3). A strong effect of phenanthrene on P. putida
metabolic profile was therefore excluded, which could be due
to the fact that in our experiments cells were pre-acclimated
to the use of phenanthrene and the necessary set of enzymes
to metabolize it was already induced (Deveryshetty and Phale,
2009). Moreover, Vandera et al. (2015) found that half of the
identified proteins in Arthrobacter phenanthrenivorans Sphe3 are
shared between phenanthrene and glucose-grown cells and only
a small pool of the whole proteome is up or down-regulated
at the two growth conditions. It is therefore evident that the

metabolic response to phenanthrene is limited to very specific
macromolecular targets and that P. putida possesses a very
effective array of de-toxifying and protective mechanisms against
phenanthrene (Domínguez-Cuevas et al., 2006; Vandera et al.,
2015).

Interestingly, the effect of phenanthrene, relative to glucose,
was unambiguously evident when cells were grown in the
presence of clays or humic acids (Figure 3). The metabolic
changes must have been triggered by a modified accessibility
to the C-source. This finding is further supported by the fact
that clays and humic acids slightly altered the phenanthrene
solubility in our cultures. Furthermore, soil components such
as clays and humic acids, adsorb PAHs (Müller et al., 2007; He
and Wang, 2011) thereby altering the physico-chemical processes
occurring at the exchange surface between bacterial cells and
the surrounding environment. Clays can create favorable micro-
environment where cells are found in close proximity to C
and other nutrient sources (Filip, 1973), and this is particularly
true in the presence of PAHs (Ortega-Calvo and Saiz-Jimenez,
1998). Humic acids work as surfactants that can facilitate the
transport of phenanthrene across cell membranes helping its
acquisition (Xie et al., 2017). Also, it cannot be excluded that basal
macromolecular divergences between planktonic and sessile cells
(Vilain et al., 2004; Ammons et al., 2014; Favre et al., 2017) made
more prominent the effect of the two C-sources (Figure 3). In any
case, by creating micro-niches with different physico-chemical
properties, the SPs induced P. putida to express different final
metabolic profiles as a function of the C-source. This reveals for
the first time the effect of SPs on bacteria metabolic profile during
PAHs biodegradation. We have to point out that since we did not
analyze single cells, we can not confirm that the effect of the SPs
on the metabolic profile of the cells was exclusively related to the
adhesion of the cells to the particles or to other indirect effects
induced by the presence of the particles.

Rather than a strong quantitative reorganization of targeted
C-pools, P. putida underwent a general adjustment of the
overall macromolecular profile (Supplementary Figure S2).
Probably, this reorganization was enacted in the attempt to
improve the binding to mineral particles, to adjust enzyme
expression or the release of surfactants finalized at optimizing
the capture and assimilation of phenanthrene molecules. The
most prominent loadings indicated that the difference between
the glucose and phenanthrene cell metabolic profiles was due
to different levels of proteins, amino acids, nucleic acids and
carbohydrates. Vandera et al. (2015) found that several cell
functions (e.g., specific membrane transporters, PAHs degrading
enzymes and the aromatic amino acids degradation pathways)
were up-regulated, whereas the synthesis of structural features
(i.e., peptidoglycan) was down-regulated when the cells were
consuming phenanthrene with respect to glucose. Xie et al.
(2017) also reported the adjustments of Sphingobium sp. cell
wall properties grown in the presence of humic acids and
phenanthrene. These changes are consistent with the loadings
identified by our model, which suggest a reorganization of
the proteome to optimize phenanthrene acquisition as well as
structural changes at the cell surface (Keum et al., 2008; Seo et al.,
2009).
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Overall, our results reveal that the spatial and compositional
(mineral and organic components) heterogeneity of soil affect,
beside bacterial diversity (Kuzyakov and Blagodatskaya, 2015),
also the variety of metabolic profiles expressed at the single
species level. A direct consequence of this finding is that distinct
cell metabolic profiles induced by the presence of determinate SPs
can reflect cells with different functions, even at the single species
level. This may define new limits to the definition of ecological
functions and roles that we already know, especially for what it
concerns PAHs degradation.

As a first attempt to investigate the effect of different soil
components on the metabolic profile of bacteria, we have to
point out that further research might be necessary to extend and
proof these conclusions to real soil samples where mineral and
organic components are in close contact the one with the others
and are present in mixture with different ratios. Finally, a higher
instrumental spatial resolution would allow to acquire spectra of
single cells and to more precisely resolve the metabolic differences
among planktonic and adhered cells and therefore disentangle
the direct from the indirect effects of SPs on cell metabolic profile.
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