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Abstract—With the new data acquisition capabilities of 

latest MBES, the need of an automation data processing is 

more and more essential. The aim of this article is to present 

what kind of data processing we want to improve, what 

techniques were used in the past and how machine learning 

could help us now and in the future for a better bathymetric 

data processing. 
Keywords— Outlier detection; Data processing; Multibeam 

echo sounder data; Machine learning 

I. INTRODUCTION  

For hydrographic offices, outlier detection is a critical and 

time-consuming task. This is inherent to their mission to map 

the ocean floor and ensure safety of navigation. High level of 

confidence is hence required throughout all the data 

acquisition and processing steps. For this reason, bathymetric 

data processing for nautical chart production has often been 

carried out manually. Such an approach is performed by 

trained operators visualizing one by one all the soundings of 

a survey, pointing out erroneous soundings from local 

validations of the bathymetry. Given the huge amount of data 

collected by the new generation of data acquisition systems 

(Multibeam Echosounder (MBES), bathymetric LIDAR, the 

autonomous surface/underwater vehicle (ASV / AUV), and 

crowdsourcing bathymetry), such a task is inevitably 

repetitive, fastidious and subjective. Moreover, with the use 

of fully automatic machines, the need to process data in near 

real time will become a challenge. Therefore, the use of 

automated algorithms for outlier detection is getting critical, 

to significantly reduce processing time, ensure objectivity, 

guarantee the cleaning procedure traceability and make sure 

that the desired data quality is achieved. 

 

As an illustration of the previous paragraph, the French 

Hydrographic and Oceanographic Service (Shom) has 

recently renewed all the MBES equipping its fleet between 

2011 and 2017. With an increase from 256 beams per ping 

to 800 beams, the volume of acquired data has increased by 

a factor of ten over this 6-year period as illustrated in Fig. 1.  

Even if the new MBES are showing to be more accurate, 

producing weaker erroneous sounding rates, the validation 

post processing step is still needed to ensure navigation 

safety. 

We have chosen the term outlier to define the false 

information collected during a hydrographic survey (as in 

Hodge & Austin [1]). Although diverging definitions 

involving coherency and temporal stability have been 

discussed in Edgeworth’s study [2], we have retained the 

following definition build on Grubbs' work [3] and quoted 

in Barnett & Lewis [4]: 

 

“An outlying observation, or outlier, is one that appears to 

deviate markedly from other members of the sample in 

which it occurs.” 

 

In the hydrography field, it must be taken into account that 

what emerge from the seabed data may also be natural or 

human obstructions. And by nature these obstructions are 

difficult to discern. With respect to critical applications such 

as navigation safety, it is necessary to select the best 

detection algorithms used to find the real outlier 

observation. 

 

In this paper we will first see the definition of the errors 

found in the hydrographic field. Then we will look at the 

classic errors detection method. Finally, we will study the 

methods linked to the machine learning to find these outliers 

 

II. .HYDROGRAPHIC ERROR TYPOLOGY 

In the field of hydrography one can define three types of 
errors: systematic errors, abnormal soundings and noise 
measure (random uncertainty) as explained by Debese in [5] 
and represented on the figure below.  

 

 

A. Systematic errors 

Systematic errors mainly come from poor control of the 
measurement environment such as improper calibration of 
devices composing the hydrographic system, the results of 
issues related to tide levelling or sound velocity 
measurements in the water column. For example, In the Fig. 
2, the systematic error in the bathymetric data is most likely 

 

Fig. 1: Volume of bathymetric data post- processed at Shom between 2011 and 2016 

 

 

 

Fig. 2: Soundings within a slicing box colored by survey lines 

 

 

 



due to a roll bias not adequately taken into account during 
the acquisition process.  

Most of the time the systematic errors are resolved as part of 
the calibration procedure (e.g. the patch test for boresight 
angle), which is why outlier detection algorithms often make 
the assumption that the systematic errors are solved. In that 
case, remaining errors in bathymetric data are abnormal 
soundings. 

B.  Abnormal soundings 

Remaining outliers are abnormal soundings which are not 
representative of the true seabed bathymetry. These can be 
the result of punctual malfunctions of the sounders, human 
errors at the time of acquisition or environmental phenomena 
such as an acoustic contrast linked for example to the 
presence of a school of fishes or a hydrothermal vent. As 
their origin can be multiple and poorly anticipated, these 
outliers are difficult to identify. Finding the perfect algorithm 
that could remove all types of abnormal soundings is a real 
challenge. 

In this paper all the methods used for outlier detection in 
MBES data aim to detect this type of error. 

C. Noise measure 

Noise measurement error is linked to each of the individual 
sensor’s inherent physical limitations. Hence, this noise 
measure error is accentuated as a result of the convolution 
related to the integration of all the instruments composing the 
bathymetric acquisition sensors.  

This noise gives us pertinent information about the 
sensibility of the sensor’s system. Therefore, we want to 

preserve this information and we can’t suppress any 
sounding that would be in this noise (classically known as 
the the “soundings masttress”).  

In the context of navigation safety, the final bathymetric 
data production must respond to an international standard: 
the IHO standards for hydrographic surveys, special 
publication n°44, see [6]. 

 

III. OUTLIER DETECTION APPROACHES IN  THE 

HYDROGRAPHIC FRAMEWORK 

Fig. 3 presents a non-exhaustive classification of outlier 

detection that can be found in the hydrographic literature. 

We clearly see an unbalanced class of outlier detection with 

only one algorithm using supervised approach and all others 

using unsupervised classification/filtering. In this article we 

will focus on this unsupervised perspective. The second 

level of this diagram shows us that we can separate the 

algorithms according to the type of segmentation used. We 

will here use this typology to describe various algorithms, 

starting by describing these types of segmentation. 

These different algorithms are just a sample of outlier 

detection techniques applied to hydrography. This chapter is 

not exhaustive but it gives us a good idea of what has been 

done in the field. 

A. Data segmentation 

In hydrography data can be handled with a dual 

representation: either in time series, in the referential frame 

of the acquisition system, known as a ping/beam view 

 

Fig. 3: Outlier detection apply to hydrography classification 

 

 



(sequential view); or in an absolute georeferenced data 

frame (spatial representation) 

1) Sequential representation 
In the sequential representation, data are stored in a 

matrix, with the beam number along the line axis and ping 
number along the column axis (Fig. 4). This approach is 
based on the ping/beam point of view. It is studing data 
swath by swath, it can’t be used when we search the data 
overlaying but the density is fixed and very similar to a 
matrix. 

 

 

2) Spatial representation 
This bathymetric data represents each sounding as a triplet 
where x and y are the geographical coordinates (Fig.  5). This 
classical representation is particularly useful to control the 
consistency of the soundings on superimposed parts of 
adjacent swathes. The major issue with this data 
representation is that, due to sensors’ geometry and data 
acquisition conditions the density of this representation is 
variable. 

 

 

B. patial segmentation based outlier detection methods 

In the context of outlier detection, it is common practice to 

consider one or the other representation for outlier detection. 

We will present some algorithms based on these different 

types of representation. 

We will first examine the spatial representation. 

 

1) CUBE (2002) 

The Combined Uncertainty and Bathymetry Estimator 

(CUBE see [7]) algorithm was developed by Brian Calder at 

CCOM-UNH. This method is an error-model based on the 

computation of a  digital bathymetric model (DBM) which 

estimates the depth associated with a confidence interval 

directly on each of the node points of a bathymetric grid 

(see Fig.  6).The algorithm works in 3 steps. The first one is 

making the data selection for each grid node, which will be 

used for the hypothesis computation; it is based on the total 

propagated uncertainty (TPU). The second one is building 

the hypothesis for each grid node. The third one is the 

disambiguation of the previous hypothesis. For each node, 

the algorithm proposes to the hydrographer alternative 

seabed hypotheses if the sounding’s dispersion (with regard 

to the parameter setting used) is too important.  

 

 

 

 

Today this algorithm is widely used, at the National 

Oceanographic and Atmospheric Administation (NOAA) 

and at the the Canadian Hydrographic Service (CHS). There 

are still some issues with this algorithm: In the case of 

chaotic seafloor (rocky area or obstructions), the number of 

hypotheses significantly increases requiring the intervention 

of the hydrographer. It is strongly recommended to perform 

a quick manual pre-filtering on the data. An improved 

version of CUBE is proposed with CHRT (CUBE with 

Hierarchical Resolution Techniques) including the multi-

resolution, multi-processing and taking into account the 

quality factor developed by Ifremer (Institut français de 

recherche pour l'exploitation de la mer) which could resolve 

the issues explained above. 

 

Fig. 5: Spatial representation, the crosses’ color depends on 

the data swath. 

 

 

 

 

 

 

 

Fig. 6: Superimposition of CUBE hypothesis (in green: CUBE selected 

hypothesis   in red: CUBE alternative hypothesis) to soundings within a slicing 

box (2D display from CARIS/HIPS software) 

 

 

 

 

 

 

Fig. 4: Sequential representation, the red crosses represent 

soundings in sequential perspective 

 

 

 

 

 

 

 

 

 



  

 

2) RMQMP(2018) method  

The Robust Multi-quadric Method and Median Parameter 

Model (RMQMP) is described in [8] and in Fig .7. At first a 

fitting trend surface model is built, a median parameter 

method is used to obtain a first value of residual error which 

is applied as an initial value within an iterative process to 

weaken soundings’ weights (considered as outliers) in the 

DBM generation.  

 

 

 

 

This method is really sensitive to the initial value of robust 

estimation (contamination of this value by outliers). This 

initial value is computed through the median parameter 

method using a fix constant (used in the weight function) so 

we can question the performance of the method on a very 

wide seabed with large depth amplitude. 

 

C. Sequential segmentation based outliers detection 

methods 

Following the spatially based outlier detection methods, we 

will now introduce outliers detection methods based on the 

sequential representation of the hydrographic data. 

 

1) Du (1996) algorithm 

This method is based on a data clustering approach (namely 

Dixon test). Data are bundled in modes [9]; these 

aggregations are formed on data with same characteristics 

(distance characteristics in this case). After applying a depth 

data thresholding, we only keep data in between a minimal 

and maximal depth. The depth histogram is computed (see 

Fig. 8), and analysed to find the main mode and the 

secondary modes. When a secondary mode is detected at a 

vertical difference which is considered too far from the the 

main mode, then the secondary mode is flagged as an 

outlier. This algorithm is a recursive method, so the working 

window of the algorithm changes with the processing (it 

decreases in size). It starts from a large number of pings and 

becomes smaller and smaller (10 pings in the first 

implementation). 

 

 

 

2) Hou (2001) algorithm 

For this algorithm [10] all the data are stacked over 60 

pings. The outliers’ detection successively applies three 

filters, from a global perspective to single bad ping 

detection. The first filter tests the data heterogeneity by 

computing a global and local variance. The second filter 

tests the sounding depth contribution to the local standard 

deviation, with the concept that a more distinctive outlier 

will have a major impact on the local standard deviation. If 

this impact is over a predefined value, the sounding will be 

rejected. The third filter operates ping by ping. Erroneous 

beams are detected: if the beam values are too different from 

the neighborhood mean depth, the neighborhood used in the 

second filter is re-arranged in three sub-neighborhoods in 

order to compute their respective standard deviation and see 

if a beam is altering too much the standard deviation. 

Note that this algorithm will be used as the support for the 

generation of sequential features in our Machine Learning 

workflow (see section IV of this paper). 

 

D. Hybrid segmentation based outliers detection methods 

In this section we will focus on the methods that work with 

both the spatial and sequential data representation.  

 

1) CHARM algorithm Debese (2012)  

This algorithm [11] performs a Cleaning of a MBES dataset 

through a Hierarchic Adaptive Robust Modeling approach. 

The seafloor is constructed as an assemblage of surface 

elements with the help of a robust statistical approach. The 

local parameters model is a priori chosen, its scale is driven 

through a quadtree descending approach using subdivision 

rules based on both statistical and spatio-temporal 

inferences. This multi resolution approach provides, with 

 

Fig. 7: Bathymetry Outlier Detection Procedure of RMQMP method from [8] 

 

 

 

 

 

 

 

 

Fig. 8: Taken from [9], clustering by mode seeking. 

 

 

 

 

 

 

 



the algorithm outputs, a classification map that notes areas 

of concern. 

 

 

2) Herlihy (1992) algorithm 

This algorithm will scan soundings one by one, for each 

sounding three criteria will be tested to classify if the 

sounding is an outlier or not as presented in [12]. The first 

step works on a spatial perspective, it measures the distance 

between the longitudinal axis and the sounding position. 

This helps finding far outliers. The second criterion is a 

similarity measure between the sounding depth observed 

and a weighted mean computed with soundings in close 

neighborhood in a sequential perspective (the neighborhood 

is computed on a swath perspective). The last criterion 

checks the validity of near-neighborhood used during the 

second step of the algorithm. 

The process proposed here is really simple to implement and 

the criteria sequencing is very interesting. This type of 

technique struggles to deal with very dense groups of 

outliers that will be considered as pertinent soundings. 

 

3) Bonjiovani (2000) algorithm  

This algorithm works with a ping stack that will pass 

through 5 filters. The first four filters work on the sequential 

approach and the final one on the spatial approach, see [13]. 

The first pass filters out all the data not included in a 

predefined depth range. The second filter is based on the 

covariance value applied on paired ping. The third filter 

computes the stacked ping roughness of the seabed from the 

variance and a gradient computed locally; it gives us a 2D 

histogram (of variance and gradient). From these 2 

histograms, the filter defines the bounds of a confidence 

interval in which all the data will be accepted. The fourth 

filter continues this validation from local criteria of the 

previous filters. The final filter is constructed on a regular 

spatial grid; the status’ sounding depends on the depth data 

standard deviation in the cell. 

In this algorithm there are also different steps proposed in 

the workflow. This iterative procedure seems very efficient 

when multiple scenari of outliers are presented (isolated, 

dense, very distant…). 

 

All algorithms proposed above are always working with 

fixed heuristics. Hence, their use might not be consistant all 

over the same dataset, where waterdepth, density and 

rugosity of the seafloor might be varying.   Hence it would 

be preferable to have methods that will use information 

already contained in the data to generate filtering 

parameters.  

 

 

IV. MACHINE LEARNING (ML) METHODS 

The previous section explain us that classical outlier 
detection methods are based on a static heuristic method 
which is often fast to compute (for simple filtering 

algorithm) but might not be valid for all the dataset or all the 
types of data. In light of these findings, the goal of the 
following sub-sections is to introduce and test some 
conventional machine learning techniques and look at the 
advantages and drawbacks when applied to hydrographic 
data. 

A. Data selection and description 

The way bathymetric data is selected and represented is 
essential in our ML algorithm. This choice will affect the 
process data neighbourhood (density and spacing). 

 

1) Data selection 

a) Spatial segmentation 

This is the most common way to select the data in the 
hydrographic point of view. It is very often used in the 
digital elevation model (DBM) computation, which is a 2.5D 
representation of the bathymetric information. The data will 
be selected depending on their affiliation cell, as illustrated 
on Fig. 9. 

 

 

 

This is the easiest implementation for data selection. It only 
needs one parameter which is the cell’s resolution, which 
needs to be carefully selected with respect to the density of 
soundings and the variability of the seafloor. 

b) Moving window 

This type of selection is data focused; it is always centered 
on the data studied. Because the window is always changing 
position and centred on one sounding, this method can be 
time consuming but the local neighbourhood is more 
representative than the previous data selection. It also needs 
only one parameter which is the search radius around the 
data.  

 

 

Fig. 9: each color represents a different neighborhood for the 

data 



 

Fig. 10 shows an example of a moving window data pattern, 
with the red cross being the centre of the moving window 
and the yellow plus sign being points selected.  

 

 

c) Quadtree structure 

The quadtree is a structure used for partitioning horizontal 
two-dimensional space by recursively subdividing an initial 
square it into four quadrants. Each subdivision generates a 
relationship with the initial square such as in a tree. The 
terminating condition is often a condition set on the density 
of the data. This means that the resolution of each patch is 
adapted to the data. For each quadrant, we test a criterion. If 
the test is successful, we stop the quadtree. Else we divide 
the quadrant and try again in the four smaller quadrants. In 

Fig. 11 we can see an example of quadtree data selection. 

 

 

This type of data partitioning is often used in bathymetry (as 
in [11] and [14]), this method gives an adapted resolution at 

any place. The choice of different criteria and thresholds give 
us a very flexible segmentation (depending on the 
application). It can easily be used in a 3D perspective with 
the Octree data structure. 

In our first tests we have used the regular gridded 
structure because it was the simplest implementation for 
bathymetric data selection. 

 

2) Data description and classification 

As seen in III.A.a, we are given different ways to represent 

bathymetric data. Depending on the features we want to 

generate, we will use the spatial or the sequential 

representation. A feature is a particular description of the 

data. It can be obtained by measure or computed from data 

characteristics. All the ML algorithms are based on these 

features for data discrimination. 

In order to run a ML algorithm, we need bathymetric data 

but also an accurate description of this data to train the 

algorithm classification task.  

In the perspective of outlier detection, we will compute 

three different types of features:  

 raw soundings features,  

 spatial features  

 sequential features, 

 as listed in Table 1. 

TABLE I.  TYPES OF FEATURES 

 
Raw soundings features Spatial features Sequential features 

 Emission Angle Across 

 Emission Angle Along 

 TPU 
 Backscatter 

 Median Absolute 
deviation (MAD) 

 Local Outlier Factor 

 Global variance 

estimation 
 Local variance 

estimation 
 Bad Ping 

Detection 
 

 

Raw soundings features are based on bathymetric raw data 

such as the emission angle of acoustic ray tracing, the TPU 

which is computed both for the vertical and horizontal axis 

as detailed in [15] and the backscatter which is a measure of 

the intensity of the acoustic return. All this information is 

gathered directly from the raw datagrams. 

Spatial features rely on spatial statistical dispersion of the 

 

Fig. 10: Moving window selection 

 

 

 

 

 

 

 

Fig. 12: Data sample on CM6985 @Shom 

 

Fig. 11: Quadtree partitioning 

 

 

 

 

 

 

 

 



bathymetric data. To compute these features, we used 

methods given by [16] for MAD and [17] for Local Outlier 

Facto. 

The sequential features depend on the beam and ping 

representation (see A.2.b), these features are all based on the 

article [18]. 

 

All these features are just a set of the various features used 

in our ML workflow. 

 

B. ML workflow 

For the initial tests using ML algorithms applied to 

bathymetric data, we have chosen to test the supervised 

classification perspective. Our labelled datasets at Shom are 

massive and made with our empirical outlook. Evaluating 

this work is a great opportunity permitted by ML algorithm.  

The data used was acquired with an EM2040p from 

Kongsberg in New Caledonia; the depth amplitude goes 

from 9.93m to 99.25m depths. Fig. 12 shows the location of 

the survey in the Koumac pass. 

1) Data analysis 

A data analysis of the different features built was carried out 

before starting our different ML algorithms. The evaluation 

of the backscatter features (a raw soundings feature) has 

been carried out to compare the status: accepted, rejected at 

the conversion, and rejected by the hydrographer (see the 

Fig. 13). Results clearly show that this feature is currently 

used by manufacturers to reject data (during the detection 

process). On the data sample the mean backscatter level of 

data rejected by the hydrographer is lower than the accepted 

one. This feature seems discriminant for the soundings 

rejected by the manufacturer. 

 

 

 

 

Regarding the MAD (Median Absolute Deviation) feature (a 

spatial feature) we observe that the MAD distance is greater 

for the rejected data than for the accepted one (fig. 14). This 

behaviour was expected because the MAD computes the 

dispersion of the data, and the outliers are information 

widely scattered around the median. This feature is 

discriminant for our problem. 

 

 

 

 

As for the bad ping detection feature (a sequential feature, 

see [18] for computation), we observe that the bad ping 

detection feature is greater for the rejected data than for the 

accepted one (fig. 15). This behaviour is also logical since 

this feature is actually used as a part of a classical outlier 

detection algorithm (see [18]). This feature is clearly 

discriminant for our problem. 

 

 

 

2) ML models 

After this data analysis, we have selected the more 

discriminating features for our detection problem, as 

working hypotheses in classical ML algorithms. We also 

gave training data from hydrographer editing as seen in the 

Fig. 16. We chose three different techniques, often used in 

machine learning literature, as potential classifiers: 

 

 Logistic regression; 

 Random forest ; 

 Gradient boosting (XGBoost). 

 

 

Fig. 13: The mean basckatter level depending to the status 

 

 

 

 

 

 

 

 

 

Fig. 14: The MAD distance depending to the status 

 

 

 

 

 

 

 

 

 

Fig. 15: The bad ping detetection feature depending to the status 

 

 

 

 

 

 

 

 



 

 

 

The logistic regression aims to predict a binary target by 

estimating the parameters of a logistic model which will be 

a linear combination of our features [19]. This method is 

simple to implement, efficient with small or big data, but the 

risk of underfitting is important.  

The random forest is an ensemble learning method used for 

classification; it works by computing combinations on 

decision trees [20]. Although it is harder to implement than 

regression logistic model, while needing much more data, 

the algorithm is still explainable because it is based on 

decision trees.. It needs a proper balancing between the data 

accepted and the rejected ones [21]. Yet in bathymetric 

MBES data we have clearly much more accepted data than 

rejected. 

The gradient boosting is a gradient descent (iterative method 

used in optimisation for finding minimum in a mathematical 

function) combined with boosting method (machine learning 

ensemble meta-algorithm). The idea is to iteratively 

combine weak learners into a single strong learner [22]. This 

technique is very fast, powerful but the method provides 

results that cannot be easily interpreted. 

 

3) Metrics and results 

These metrics and results were applied on the same dataset 

with a train/test ratio of 70%/30%. 

The different algorithms were compared using the F1-score 

(as presented in [23]). In the ML workflow the aim is 

minimizing false positives results, because it is most 

important to assure that a sounding accepted by a 

hydrographer will not be rejected by the ML algorithm. 

Typically, we don’t want to filter out any isolated pertinent 

information that could be a wreck or an obstruction. For that 

reason, we want the accepted/rejected prediction (pred) 

score to be the smallest (number in red in table 2, 3 and 4). 

 

The table 2 shows the metrics and results for the logistic 

regression model. It shows that the logistic regression model 

performs poorly and has a high risk of underfitting. This 

model works well when there are very few outliers in the 

data. The accepted/rejected pred score is more than 2% of 

data, this score appears to be too important for safety of 

navigation. A discussion about an acceptable maximum 

score needs to be conducted within this scope of navigation 

safety.  

TABLE II.  LOGISTIC REGRESSION RESULTS 

 
F1-Score = 0.58 Accepted pred Rejected pred 

Accepted 269 162 5 858 

Rejected 17 570 

 

Table 3 shows the metrics and results for the random forest 

model. The results given by this algorithm is much better 

than the logistic regression. The accepted/rejected pred 

score is around 0.001% of data which gives us a greater trust 

in the prediction. The rejected/accepted pred is greater than 

the previous algorithm. 

 

TABLE III.  RANDOM FOREST RESULTS 

 
F1-Score = 0.97 Accepted pred Rejected pred 

Accepted 275 016 4 

Rejected 55 532 

 

 

Table 4 shows the metrics and results for the XGBoost 

model. The results given by this algorithm are very close to 

the random forest algorithm. The accepted/rejected pred 

score is around 0.001% of data. The rejected/accepted pred 

is lower than random forest algorithm. The F1-Score is the 

higher for this algorithm. 

 

TABLE IV.  XGBOOST RESULTS 

 
F1-Score = 0.98 Accepted pred Rejected pred 

Accepted 275 015 5 

Rejected 35 552 

 

In the literature another approach is found in [24], CARIS 

has implemented a deep learning method for soundings 

classification and filtering. This technic needs to be tested 

on a benchmark dataset to measure performance. 

V. CONCLUSIONS 

Throughout this paper we have presented different outlier 

detection algorithms. Many of them used fixed heuristic to 

apply their methods. These kinds of technics are hence 

difficult to generalise on all data, due to the inherent 

variability of the dataset (as of the morphology, density, 

acquisition system…). However, these methods can easily 

generate features that can be used in classical ML 

algorithms. 

 

Fig. 16: Global workflow of our supervised classification 

 

 

 

 

 

 

 

 



This paper also shows initial tries to apply ML algorithms 
on bathymetric data. In the literature one will find other 
approaches as who has implemented deep learning methods 
for soundings features classification and filtering. The 
binary classification (accepted or rejected predication) 
perspective may be too strict. The metrics we are trying to 
minimize seems relevant for our safety of navigation needs. 
A filter to determine the mean depth position of the outlier 
could be built to be tighter for outlier below the seabed. 
Indeed the information below the soundings masttress is not 
critical for safety of navigation, it is why we can be tougher 
in this case. 

Another perspective would be to change the algorithm or the 
parametrisation function to the scene described by the 
metadata or the global morphology of the seabed. The ML 
workflow would be in two steps; first one we will have a 
scene detection algorithm and second one we will used the 
best algorithm and parametrisation depending on the scene 
described.    

ML algorithms associated with outlier filtering algorithms 
applied to bathymetric data have proven to generate 
promising results. This combination of tools will surely 
become parts of the hydrographic data processing tool box. 
Much more work is needed to reach this level. Amongst 
others, we need much more testing on many different data 
sets to ensure robustness and understand the limits of these 
methods.  
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