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Abstract: Let X = {X(t) : t ∈ RN} be an isotropic Gaussian random field with real values. In a
first part we study the mean number of critical points of X with index k using random matrices
tools. We obtain an exact expression for the probability density of the eigenvalue of rank k of a
N -GOE matrix. We deduce some exact expressions for the mean number of critical points with
a given index. In a second part we study attraction or repulsion between these critical points.
A measure is the correlation function. We prove attraction between critical points when N > 2,
neutrality for N = 2 and repulsion for N = 1. The attraction between critical points that occurs
when the dimension is greater than two is due to critical points with adjacent indexes. A strong
repulsion between maxima and minima is observed. The correlation function between maxima (or
minima) depends on the dimension of the ambient space.

Keywords and phrases: Critical points, Isotropic Gaussian fields, GOE matrices, Kac-Rice for-
mula, Point processes, Random matrices.

1. Introduction

Critical points of random field play an important role in small or large dimension. In large dimension data
they appear in the study of algorithms of maximisation of the likelihood [14, 31]. In smaller dimension they
play a role in many applications from various areas: detection of peaks in a random field [18, 33, 34, 35],
optimisation of a response modelled by a random field [21], modelling of random sea waves [26, 7, 30].
Critical points and their indexes are an important element of the geometry of random fields. They appear
in the computation of the Euler characteristic [2, 20]. They are a subject of study on their own as in
[29, 3, 11, 19].
Let X = {X(t) : t ∈ RN} be an isotropic Gaussian random field with real values. If we look at the
repartition of the critical points of X as a function of their index in dimension two, considerations of
symmetry and of Euler characteristic imply that if N c, N c

min, N c
max, N c

saddle are respectively the number
of critical, minimum, maximum and saddle points on a given set:

E(N c
min) = E(N c

max) =
1

2
E(N c

saddle) =
1

4
E(N c).

In higher dimensions simulations suggest that such a simple result does not hold true (see Figure 1). The
purpose of Section 3 is to compute these expectations using random matrices tools. With this objective in
mind, we obtain an exact expression for the probability density of the eigenvalue of rank k of a N -GOE
matrix (see Theorem 3.5 and (18)–(24)). We deduce exact expressions for the mean number of critical
points with a given index (Propositions 3.3–3.8). In particular, if we note N c

1 and N c
2 the number of

critical points respectively with index 1 and 2 (see Section 2.3 for the definition), we obtain, for N = 3
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(see Proposition 3.6):

E(N c
min) = E(N c

max) =
29− 6

√
6

116
E(N c)

E(N c
1 ) = E(N c

2 ) =
29 + 6

√
6

116
E(N c).

Proposition 3.7 gives these expectations for N = 4. Proposition 3.8 gives the mean numbers of critical
points with index k above a level for N = 2 and λ4 − 3λ2

2 = 0.
On the other hand we can consider how the critical points are spread in the space. In a pioneering work,
Belyaev, Cammarota and Wigman [11] study the attraction or repulsion (see Section 2 for a precise
definition) of the point process of critical points of a particular random wave model in dimension 2. In
the case of random processes (N = 1), it was generally admitted that repulsion between crossings or
critical points occurs. In fact this result has never been written explicitly so it is the object of Section
4 with Propositions 4.1 and 4.3. With respect to this behaviour the result of [11] is unexpected since
no repulsion occurs between critical points. The object of Section 5 is to explore the phenomenon of
attraction or repulsion for a large class of random fields, in all dimensions and for each type of indexes.
Our hypotheses as well as a precise definition of attraction and repulsion are given in Section 2. Theorem
5.2 proves attraction between critical points when N > 2, neutrality for N = 2 and repulsion for N = 1.
Theorem 5.3 shows that the attraction between critical points that occurs when the dimension is greater
than 2 is due to attraction between critical points with adjacent indexes. In Theorem 5.4 we prove a
strong repulsion, growing with N , between maxima and minima. Finally Theorem 5.5 gives an upper
bound to the correlation function between maxima (or equivalently minima) proving repulsion for N < 5
and suggesting neutrality for N = 5 and attraction for N > 5. All these results generalise the results of
[11].
In Appendix A we present some results on GOE matrices. Appendix B is devoted to the calculation of the
conditional joint distribution of the Hessian matrices of X(t) and X(0) given the nullity of the gradients
of X(t) and X(0) and to the proof of Lemma 5.1 giving some of its asymptotic equivalents when t→ 0.

2. The point process of critical points

2.1. Assumptions (Ak) , k = 2, 3, 4 and basic notations

In all the sequel X = {X(t) : t ∈ RN} is stationary and isotropic Gaussian field with real values. We
assume, without loss of generality, that it is centred with variance 1. We set

E(X(s)X(t)) = r(||s− t||2).

We assume that r is of class Ck. This is equivalent to the existence of a finite 2kth spectral moment λ2k.
It implies that X is k times differentiable in quadratic mean.
We denote by ∇X(t) = (X ′1(t), . . . , X ′N (t)) the gradient of X(t), and by
∇2X(t) = (X ′′ij(t), i ≤ j = 1, . . . , N) its Hessian. We have for every i = 1, . . . , N

1 = Var(X(t)) = r(0) λ2 := Var(X ′i(t)) = −2r′(0)

λ4 := Var(X ′′ii(t)) = 12r′′(0) λ6 := Var(X
′′′

iii(t)) = −120r′′′(0) if k = 3, 4

λ8 := Var(X
(4)
iiii(t)) = 1680r(4)(0), if k = 4.

that are all finite because of our hypotheses. X(4)
iiii(0) is, for example, the fourth derivative in the ith

direction.
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We assume that the joint distribution of X(0), X ′1(0), . . . , X
(k)
1 (0) is non-degenerated where X

(k)
1 (0)

denotes here the kth derivative of X in the first direction. Note that the choice of the first direction, that
is arbitrary, plays no role. A direct algebra shows that this non-degeneracy condition is equivalent to

λ2 > 0, λ4 > λ2
2,

λ2λ6 > λ2
4, if k > 2

λ4λ8 > λ2
6, if k = 4.

Finally p∇X(t),∇X(s)(x, y) denotes the density probability of (∇X(t),∇X(s)) at (x, y) when it exists;
ϕ(·) and Φ(·) denotes respectively the probability density and the cumulative distribution function of a
standard Gaussian variable and Φ̄(·) = 1−Φ(·). Let S be a compact subset of RN , we denote by |S| the
Lebesgue measure of S. If X is a random vector, Var(V ) will denote the variance-covariance matrix. We
keep the notation Cov for the matrix

Cov(X,Y ) := E
((
X − E(X)

)(
Y − E(Y )

)>)
.

2.2. Correlation function, two points function

The correlation function of a point process P is defined by [15]

A(s, t) := lim
ε→0

1

V 2(ε)
E (P(B(s, ε))P(B(t, ε))) ,

where B(s, ε) is the ball with center s and radius ε and V (ε) its volume. Since the process is stationary
and isotropic, this function depends only on the norm ρ := ‖s− t‖ and by a small abuse of notation we
will denote it by A(ρ).
Suppose now that the point process P is the process of critical points of X and let us define for S ∈ RN
compact

N c(S) = #{t ∈ S : ∇X(t) = 0}.

Under our conditions, the derivatives of X satisfies the Kac-Rice formula of order two. In particular if
S and T are disjoints (as B(s, ε) and B(t, ε) for s 6= t and ε sufficiently small), the Kac-Rice formula of
order two yields

E[N c(S)N c(T )] =

∫
S×T

E
(
|det(∇2X(s)) det(∇2X(t))|/∇X(s) = ∇X(t) = 0

)
p∇X(s),∇X(t)(0, 0)dsdt;

(1)
proving that

A(ρ) = E
(
|det(∇2X(0)) det(∇2X(t))|/∇X(0) = ∇X(t) = 0

)
p∇X(0),∇X(t)(0, 0), (2)

with, for example, t = ρe1 with e1 := (1, 0, . . . , 0).
Some papers, as [11] consider the behaviour as ρ→ 0 of

T (ρ) := E(N c(Bρ)(N c(Bρ)− 1)), Bρ is any ball with radius ρ.

It is elementary to see that if A(ρ) ' Cρd then T (ρ) ' CV 2
Nρ

d+2N , where ' means, as in the rest of the
paper, equivalence as ρ→ 0 and VN is the volume of the unit ball.
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2.3. Attraction, neutrality, repulsion

• The reference of neutral point process is the Poisson process for which the correlation function A(ρ)
is constant and T (ρ) behaves as ρ2N .

• The repulsion is defined by the fact that the correlation function A(ρ) tends to zero as ρ → 0.
Equivalently T (ρ) = o(ρ2N ). Determinental processes [25] is a way of constructing repulsive point
processes.

• The attraction is just the contrary: as ρ→ 0, A(ρ)→ +∞,
T (ρ)

ρ2N
→ +∞.

In many situation, assuming that the function is Morse, i.e. there is no critical point with a degenerated
Hessian, one considers the index i of the critical point defined as the number of negative eigenvalues of
the Hessian. We define

N c
k (S) := #{t ∈ S : ∇X(t) = 0; i(∇2X(t)) = k}. (3)

All the quantities above have direct generalization when, instead of considering all the critical points, one
considers the relation bewteen the number of critical points with indexes i1 and i2. As in (1) and (2) the
Kac-Rice formula of order two yields

Ai1,i2(ρ) =

E
(
|det(∇2X(0))1i(∇2X(0))=i1 det(∇2X(t))1i(∇2X(t))=i2 |/∇X(0) = ∇X(t) = 0

)
p∇X(0),∇X(t)(0, 0), (4)

with again t = ρe1. In the same way, we can consider attraction neutrality or repulsion between critical
points with indexes i1 and i2.

3. Mean number of critical points with a given index

3.1. The particular case of random processes (N=1)

Suppose that the random process X satisfies Assumption (A2), and letM1(S) andM2(S) be respectively
the total number of maxima and minima of X on S then by direct application of the Kac-Rice formula :

E (M1(S)) = E (M2(S)) =
|S|
2π

√
λ4

λ2
.

More interesting is the case when we consider the numbersM1(u, S) (respectivelyM2(u, S)) of maxima
(respectively minima) of X above a certain level u on S a compact subset of R. We can write the Kac-Rice
formula of order one:

E (M1(u, S)) =

∫
S

∫ 0

−∞

∫ +∞

u

|x′′|pX′′(t),X′(t),X(t)(x
′′, 0, x)dxdx′′dt,

where pX′′(t),X′(t),X(t)(x
′′, 0, x) denotes the density probability of (X ′′(t), X ′(t), X(t)) at (x′′, 0, x). We

deduce immediately the following proposition.

Proposition 3.1. With notations above, under Assumption (A2):

E (M1(u, S)) =
|S|
2π

√
λ4

λ2
Φ̄

(
u

√
λ4

λ4 − λ2
2

)
+
|S|
√
λ2√

2π
ϕ(u)Φ

(
uλ2√
λ4 − λ2

2

)
,

E (M2(u, S)) =
|S|
2π

√
λ4

λ2
Φ̄

(
u

√
λ4

λ4 − λ2
2

)
− |S|

√
λ2√

2π
ϕ(u)Φ̄

(
uλ2√
λ4 − λ2

2

)
.
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Let us set α := λ4/λ
2
2. Under Assumption (A2), α > 1 and

E (M1(u, S))

E (M1(u, S) +M2(u, S))
=

√
αΦ̄
(
u
√

α
α−1

)
+
√

2πϕ(u)Φ
(

u√
α−1

)
2
(√

αΦ̄
(
u
√

α
α−1

)
+
√

2πϕ(u)Φ
(

u√
α−1

))
−
√

2πϕ(u)
,

depends only on α.

3.2. A first class of expressions

3.2.1. Mean number of critical points

N c(S) and N c
k (S) are respectively the number of critical points and the number of critical points with

index k that belong to S. To compute their mean number we use the Kac-Rice formula of order one.

E (N c(S)) =

∫
S

E
(
|det(∇2X(t))|/∇X(t) = 0

)
p∇X(t)(0)dt =

|S|
(2πλ2)N/2

E
(
|det(∇2X(t))|

)
, (5)

E (N c
k (S)) =

|S|
(2πλ2)N/2

E
(
|det(∇2X(t))|1i(∇2X(t))=k

)
. (6)

Let Gn be a size n GOE matrix. We recall that Gn is said to have the GOE (Gaussian Orthogonal
Ensemble) distribution if it is symmetric and all its elements are independent centred Gaussian variables
satisfying E(G2

ii) = 1 and E(G2
ij) = 1

2 .
The relation between GOE matrices and the study of critical points of stationary isotropic Gaussian fields
is due to the following lemma derived from [24] and Lemma 8.5 of [8].

Lemma 3.2. ∇2X(t) is equal in distribution to√
2λ4

3

(
GN − ΛIdN

)
,

where GN is a size N GOE matrix and Λ follows a N(0, 1/2) independent of GN .

Proof. The proof is a direct consequence of the following identity that can be found, for example, in
Lemma 8.5 of [8]:

E (X ′′ik(t)X ′′i′k′(t)) =
λ4

3
[δii′δkk′ + δi′kδik′ + δikδi′k′ ] , (7)

where δ is the Kronecker symbol.

We recall that the joint density fN of the eigenvalues (µ1, . . . , µN ) of a N -GOE matrix (see Theorem
3.3.1 of [27]) is given by:

fN (µ1, . . . , µN ) = kN exp

(
−
∑N
i=1 µ

2
i

2

) ∏
1≤i<k≤N

|µk − µi| , (8)

where:

kN := (2π)−N/2 (Γ(3/2))
N

(
N∏
i=1

Γ(1 + i/2)

)−1

. (9)

Using Lemma 3.2, (5), (6) and (8) we get directly the following proposition.
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Proposition 3.3. With notations above, under Assumption (A2):

E (N c
k (S)) =

|S|
π(N+1)/2

(
λ4

3λ2

)N/2
kN
kN+1

1

N + 1
E

(
exp

(
−
L2
k+1

2

))
, (10)

E (N c(S)) =
|S|

π(N+1)/2

(
λ4

3λ2

)N/2
kN
kN+1

E

(
exp

(
−L

2

2

))
, (11)

where L is an eigenvalue “at random” and Lp is the eigenvalue of rank p of a (N + 1)-GOE matrix.

Proof of Proposition 3.3. We give the proof of the first equality only. Using Lemma 3.2 and (8)

E
(
|det∇2X(t)|1i(∇2X(t))=k

)
=

(
2λ4

3

)N/2
kNN !

∫
µ1<µ2<···<µk<λ<µk+1<···<µN

∏
1≤i<k≤N

|µk − µi|
∏

1≤i≤N

|λ− µi|

exp

(
−
∑N
i=1 µ

2
i

2

)
π−1/2 exp(−λ2/2) exp(−λ2/2)dµ1 . . . dµNdλ

=

(
2λ4

3

)N/2
π−1/2 kN

kN+1

N !

(N + 1)!
E

(
exp

(
−
L2
k+1

2

))
.

The rest is plain.

Remarks:

• The expected number of critical points depends on the spectral moments of the random field whereas

the ratio
E (N c

k (S))

E (N c(S))
is universal.

• Such a result was first obtained by [4] for the p-spin spherical spin glass model defined on the
euclidean sphere of radius

√
N of RN . This result can also be found in [19] (Proposition 3.9). In this

paper we go further: In Theorem 3.5 we obtain an exact expression for the probability density of
the eigenvalue of rank k of a N -GOE matrix, denoted qkN (l) (see (17)–(24)). We can deduce exact
expressions for (10) and (11) as in Propositions 3.6 and 3.7.

• The density probability of L, denoted
R1(l)

N + 1
, can be found in [27] chapter 7 formulas 7.2.30 and

7.2.32.

• For N = 2 it is known, using symmetry and mean Euler characteristic considerations, that

E (N c
0 (S)) = E (N c

2 (S)) =
1

2
E (N c

1 (S)) =
1

4
E (N c(S)) .

In that particular case, the ratio
E (N c

k (S))

E (N c(S))
is equal to the binomial coefficient

N !

2Nk!(N − k)!
. In

higher dimension, by simulations, we can affirm that this equality is no longer true as shown in
Figure 1 for N = 10.
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Figure 1. N = 10. In white : Estimation of E
(
N c

k (S)
)
/E (N c(S)) as a function of the index k (mean over 1000 samples;

each sample is the mean of 10000 simulations). Confidence intervals in black at the top. In black : Binomial coefficients
N !

2Nk!(N−k)!
.

3.2.2. Mean number of critical points above a level

We consider the mean number of critical points above a level u ∈ R. We define

N c(u, S) = #{t ∈ S : ∇X(t) = 0, X(t) > u}
N c
k (u, S) = #{t ∈ S : ∇X(t) = 0, i(∇2X(t)) = k, X(t) > u}.

The Kac-Rice formula implies that

E(N c
k (u, S)) =

|S|
λ
N/2
2 (2π)(N+1)/2

∫ +∞

u

exp

(
−x

2

2

)
E
(
|det(∇2X(t))1i(∇2X(t))=k|

/
X(t) = x

)
dx.

To simplify the presentation we limit our attention to the case λ4 ≥ 3λ2
2. As remarked in [10] this condition

is met if the covariance function r is a “Shoenberg covariance”: it is a valid covariance function in every
dimension. Note that more general cases have been studied by [19]. Following [24] and Lemma 8.5 of [8],
by regression formulas we have that under the condition X(t) = x, ∇2X(t) can be written in distribution
as the independent sum:

∇2X(t) =

[
N
(
−λ2x,

(
λ4

3
− λ2

2

))]
IdN +

√
2λ4

3
GN ,

where GN is a N -GOE matrix. Then using (8), by direct calculations we get:
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Proposition 3.4. With notations above, under Assumption (A2), when λ4 − 3λ2
2 > 0,

E(N c
k (u, S))

=
|S|

π(N+1)/2

(
λ4

3λ2

)N/2
kN
kN+1

1

N + 1
E

{
exp

(
−
L2
k+1

2

)
Φ̄

[√
λ4

λ4 − 3λ2
2

(
u− Lk+1

√
6λ2√
λ4

)]}
. (12)

When λ4 − 3λ2
2 = 0

E(N c
k (u, S)) =

|S|
π(N+1)/2

kN
kN+1

λ
N/2
2

N + 1
E

(
exp

(
−
L2
k+1

2

)
1Lk+1>u/

√
2

)
, (13)

where Lp is the eigenvalue of rank p of a (N + 1)-GOE matrix.

3.3. Explicit expressions

3.3.1. Probability density of the eigenvalue of rank k of a N -GOE matrix

The aim of this section is to give an exact expression for the probability density of the eigenvalue of rank
k of a N -GOE matrix and to deduce exact expressions for E(N c

k (S)) and E(N c
k (u, S)).

For simplicity it is conducted using the simplest family of polynomials: xi, i = 0, 1, 2, . . . in equations
(15), (16) and (17). In fact it is valid using any family Pi(x) of monic polynomials: Pi has degree i and
its highest coefficient is one.

We must introduce some further notations.
We recall that the Pfaffian of an n×n skew matrix A (aij = −aji, aii = 0), for n even n = 2m, is defined
by:

Pf (A) =
1

2mm!

n∑
j1=1

· · ·
n∑

jn=1

σ(j1, . . . , jn)aj1j2aj3j4 · · · aj2m−1j2m (14)

with σ(j1, . . . , jn) the signature of the permutation j1, . . . , jn with σ(j1, . . . , jn) = 0 if two of the j’s are
equal.
Let J = {m1 < · · · < mn} a set of integers and K a subset of {1, . . . , n}. The n × n (n even) or
(n+ 1)× (n+ 1) (n odd) skew matrix BKJ (l) that depends on the real l is defined by its entries bij .
When n is even

bij =

∫
DKi (l)

dx

∫
DKj (l)

dy s(y − x)xmi−1ymj−1 exp

(
−x

2 + y2

2

)
, (i, j = 1, . . . , n), (15)

where s(.) is the sign function, DKi (l) = (−∞, l) when i ∈ K, DKi (l) = (l,+∞) when i /∈ K.
When n is odd, we use also (15) and we add the extra terms

bi,n+1(l) = −bn+1,i(l) =

∫
DKi (l)

xmi−1e−
x2

2 dx, (i = 1, . . . , n); bn+1,n+1(l) = 0. (16)

We are now able to state the following theorem that gives an exact expression for qkN (l): the probability
density of the eigenvalue of rank k of a N -GOE matrix.
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Theorem 3.5. Let qkN (l) be the probability density of the eigenvalue of rank k of a N -GOE matrix. Using
notations above, for l ∈ R we have:

qkN (l) = kNN ! exp

(
− l

2

2

) N∑
i=1

(−1)k+i li−1
∑

K∈Fk−1(N−1)

Pf
(
BKĪ (l)

)
(17)

where Ī = {1, . . . , N}\{i}, kN is given in (9), Fk−1(N−1) is the set of parts of size k−1 of {1, . . . , N−1}
and BK

Ī
(l) is the matrix BKJ (l) defined in (15) and (16) with n = N − 1 and J = Ī.

Note that in the particular case where k = N another exact expression for the cumulative distribution
function of the largest eigenvalue of a N -GOE matrix has been obtained by [22].

Proof of Theorem 3.5. Let GN be a N -GOE matrix with eigenvalues denoted µ1, . . . , µN . It is easy to
check that the probability density of the eigenvalue of rank k + 1 of a (N + 1) GOE matrix is given by:

qk+1
N+1(l) =

kN+1

kN
(N + 1)

∫
RN

(−1)k det(GN − lIdN )fN (µ1, . . . , µN ) exp

(
− l

2

2

)
1{i(GN−lIdN )=k}dµ1 . . . dµN

=
kN+1

kN
(N + 1)(−1)kγkN,1(l) exp

(
− l

2

2

)
,

where fN is given in (8) and γkN,1(l) := E
(
det (GN − lIdN )1{i(GN−lIdN )=k}

)
. We prove in Appendix A,

Lemma A.2, equation (56), that:

γkN,1(l) = kNN !

N+1∑
i=1

(−1)i+1li−1 ×
∑

K∈Fk(N)

Pf
(
BKĪ (l)

)
,

where Ī = {1, . . . , N + 1} \ {i}; BK
Ī

(l) is the matrix BKJ (l) defined in (15) and (16) with n = N and
J = Ī. That concludes the proof.

The major drawback of the result above is its complicated form. However, for small values of N , we man-
age to get an explicit expression for qkN (l) and consequently (using (10), (12) and (13)) for E (N c

k (S)) and
E (N c

k (u, S)). We give some examples below and we derive Propositions 3.6 and 3.7 which are new results.

Examples: We denote µ(k), k = 1, . . . , N , the ordered eigenvalues of a N -GOE matrix. After tedious
calculations we obtain:

1. For N = 2: q1
2(l) = q2

2(−l) and

q2
2(l) =

exp
(
− l

2

2

)
2
√
π

[
exp

(
− l

2

2

)
+
√

2πlΦ(l)

]
. (18)

E(µ(2)) = −E(µ(1)) =

√
π

2
and Var(µ(2)) = Var(µ(1)) =

3

2
− π

4
.

2. For N = 3: q1
3(l) = q3

3(−l), q2
3(l) =

exp
(
−l2
)

√
π

and

q3
3(l) =

exp
(
− l

2

2

)
π
√

2

[√
π(2l2 − 1)Φ

(
l
√

2
)

+
√

2π exp

(
− l

2

2

)
Φ(l) + l exp

(
−l2
)]
. (19)
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E(µ(3)) = −E(µ(1)) =
9

2
√

3π
and Var(µ(3)) = Var(µ(1)) =

33π − 81

12π
.

3. For N = 4: q1
4(l) = q4

4(−l), q2
4(l) = q3

4(−l) and

q3
4(l) =

exp
(
− l

2

2

)
2π

[
3l

2
exp

(
−3l2

2

)
+
√

2π

(
1− l2

2

)
Φ̄(l) exp

(
−l2
)
− π(2l3 − 3l)√

2
Φ
(
l
√

2
)

Φ̄(l)

+
3
√
π(1 + 2l2)

2
Φ
(
l
√

2
)

exp

(
− l

2

2

)]
. (20)

q4
4(l) =

exp
(
− l

2

2

)
2π

[
3l

2
exp

(
−3l2

2

)
−
√

2π

(
1− l2

2

)
Φ(l) exp

(
−l2
)

+
π(2l3 − 3l)√

2
Φ
(
l
√

2
)

Φ(l)

+
3
√
π(1 + 2l2)

2
Φ
(
l
√

2
)

exp

(
− l

2

2

)]
. (21)

4. For N = 5: q1
5(l) = q5

5(−l), q2
5(l) = q4

5(−l) and

q3
5(l) = q4

5(l)− 2q5
5(l) +

√
2 exp

(
− l

2

2

)
3π3/2

[
π
(
4l4 − 12l2 + 3

)
Φ
(
l
√

2
)

+
√
π

(
3l3 − 13l

2

)
exp

(
−l2
)

+
√

2π

(
l4 + 3l2 +

3

4

)
exp

(
− l

2

2

)
Φ(l)

]
. (22)

q4
5(l) =

√
2 exp

(
− l

2

2

)
3π3/2

[√
2π exp

(
−3l2

2

)(
l3

2
+

5l

4

)
+
√

2πΦ
(
l
√

2
)

exp

(
− l

2

2

)(
l4 + 3l2 +

3

4

)]
. (23)

q5
5(l) =

√
2 exp

(
− l

2

2

)
3π3/2

[(
2l4 − 6l2 +

3

2

)
πΦ2

(
l
√

2
)

+

(
l4 + 3l2 +

3

4

)√
2πΦ

(
l
√

2
)

Φ(l) exp

(
− l

2

2

)
+
√

2π

(
l3

2
+

5l

4

)
Φ(l) exp

(
−3l2

2

)
+

(
3l3 − 13l

2

)√
πΦ
(
l
√

2
)

exp
(
−l2
)

+
(
l2 − 2

)
exp

(
−2l2

)]
. (24)

These probability densities are plotted in Figure 2. They all seem very close to a Gaussian density. But
only one, q2

3(l), is exactly Gaussian.

3.3.2. Mean number of critical points

For N = 2, using (19) and (10), after some calculations, we check that the mean number of maxima is
given by

E (N c
2 (S)) = E (N c

0 (S)) =
1

4
E (N c(S)) =

1

2
E (N c

1 (S)) =
|S|

2
√

3π

(
λ4

3λ2

)
,

which coincides with Proposition 1.1 of [11].

In Proposition 3.6 we give the exact expression of E (N c
k (S)) when N = 3 for k = 0, 1, 2, 3. This propo-

sition is a new result.
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Figure 2. Probability densities qkN (l), k = 1, . . . , N , of the ordered eigenvalues of a N GOE matrix for N = 2, 3, 4, 5.

Proposition 3.6. Under Assumption (A2) when N = 3:

E (N c
0 (S)) = E (N c

3 (S)) =
|S|
π2
√

2

(
λ4

3λ2

)3/2
(

29− 6
√

6

12
√

6

)

E (N c
1 (S)) = E (N c

2 (S)) =
|S|
π2
√

2

(
λ4

3λ2

)3/2
(

29 + 6
√

6

12
√

6

)
.

Consequently:

E (N c
0 (S))

E (N c(S))
=

E (N c
3 (S))

E (N c(S))
=

29− 6
√

6

116
' 0.1233 and

E (N c
1 (S))

E (N c(S))
=

E (N c
2 (S))

E (N c(S))
=

29 + 6
√

6

116
' 0.3767.

In the same way for N = 4, we obtain the expressions given in Proposition 3.7.

Proposition 3.7. We denote I := E
(
Φ(X)Φ(

√
2X)

)
where X is a Gaussian centred variable with
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variance 1/3. Under Assumption (A2) when N = 4:

E (N c
1 (S)) = E (N c

3 (S)) =
|S|
π2

(
λ4

3λ2

)2(
25

24
√

3

)
, E (N c

2 (S)) =
|S|
π2

(
λ4

3λ2

)2(
50π(1− 2I) + 57

24
√

3π

)
E (N c

0 (S)) = E (N c
4 (S)) =

|S|
π2

(
λ4

3λ2

)2(I × 100π − 57

48
√

3π

)
.

Consequently:

E (N c
1 (S))

E (N c(S))
=

E (N c
3 (S))

E (N c(S))
=

1

4
,

E (N c
0 (S))

E (N c(S))
=

E (N c
4 (S))

E (N c(S))
=
I × 100π − 57

200π
' 0.060,

E (N c
2 (S))

E (N c(S))
=

50π(1− 2I) + 57

100π
' 0.380.

3.3.3. Mean number of critical points above a level

We can also deduce exact expressions for the mean number of critical points above a level. For example
using (13) and (19) we obtain Proposition 3.8.

Proposition 3.8. Under Assumption (A2), for u ∈ R, when N = 2 and λ4 − 3λ2
2 = 0,

E(N c
1 (u, S)) =

|S|λ2

π

1√
3

Φ̄

(√
3

2
u

)

E(N c
2 (u, S)) =

|S|λ2

π

(
ue−u

2/2Φ(u)

2
√

2π
+
e−u

2

4π
+

∫ +∞

u√
2

e−3l2/2

√
2π

Φ(l)dl

)

E(N c
0 (u, S)) =

|S|λ2

π

(
ue−u

2/2Φ̄(u)

2
√

2π
− e−u

2

4π
+

∫ +∞

u√
2

e−3l2/2

√
2π

Φ̄(l)dl

)

E(N c(u, S)) =
|S|λ2

π

(
ue−u

2/2

2
√

2π
+

2√
3

Φ̄

(√
3

2
u

))
.

Note that, in the same way, it is possible to obtain exact expressions for N = 3 and N = 4 using (20),
(21) and (22), (23), (24) and for λ4 − 3λ2

2 > 0 using (12).

4. Repulsion for random processes (N=1)

In this section we start by considering crossings of a level and then interpret critical points as crossings
of zero of the derivative.

4.1. Crossings

The process Y = {Y (t) : t ∈ R} that we consider in this subsection will be, in a second step, the derivative
of X . For this reason we can, in this subsection only, weaken our assumption by assuming only that λ6 is
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finite. In addition we cannot assume that the variance λ0 is equal to 1. We define respectively the number
of crossings N0 and the number of up-crossings U0 of Y on [0, T ]:

N0 = #{t ∈ [0, T ] : Y (t) = 0}
U0 = #{t ∈ [0, T ] : Y (t) = 0;Y ′(t) > 0}.

We note A(ρ) the correlation function of crossings and Au(ρ) the correlation function of up-crossings (or
down-crossings equivalently). By the Kac-Rice formula we have:

A(ρ) = E (|Y ′(0)Y ′(ρ)|/Y (0) = Y (ρ) = 0) pY (0),Y (ρ)(0, 0),

Au(ρ) = E
(
Y ′(0)+Y ′(ρ)+/Y (0) = Y (ρ) = 0

)
pY (0),Y (ρ)(0, 0).

The result below appears in a hidden way in Proposition 4.5 or Section 5.2 of [8] or in [5].

Proposition 4.1. Under Assumption (A3), as ρ→ 0

A(ρ) ' (λ4λ0 − λ2
2)

8π
√
λ2λ3

0

ρ,

Au(ρ) ' (λ6λ2 − λ2
4)3/2

1296π2(λ2
2)(λ4λ0 − λ2

2)1/2
ρ4.

Proof of Proposition 4.1. We give only a sketch of the proof since most of the ingredients can be found
in the cited literature and since a proof will be given for higher dimension in Theorem 5.2 .
Define

v := Var (Y ′(0)/Y (0) = Y (ρ) = 0) = Var (Y ′(ρ)/Y (0) = Y (ρ) = 0) ,

w := Cov (Y ′(0), Y ′(ρ)/Y (0) = Y (ρ) = 0) ,

D := v2 − w2.

We have for example from the expression of conditional density

Var (Y ′(0)/Y (0) = Y (ρ) = 0) =
det (Var (Y (0), Y (ρ), Y ′(0))))

det (Var (Y (0), Y (ρ)))
.

Recall that Var denotes the variance-covariance matrix. And we use the following method (see [13]):
because a determinant is invariant by adding to some row (resp. column) a linear combination of other
rows (resp. columns) as ρ→ 0,

det(Var(Y (0), Y (ρ), Y ′(0))) = det(Var(Y (0), Y ′(0), Y (ρ)− Y (0)− ρY ′(0)))

' ρ4

4
det (Var (Y (0), Y ′(0), Y ′′(0))) .

In the same fashion
det (Var (Y (0), Y (ρ))) ' ρ2 det (Var (Y (0), Y ′(0)))

yielding

v ' ρ2 1

4

det (Var(Y (0), Y ′(0), Y ′′(0)))

det (Var(Y (0), Y ′(0)))
' ρ2λ0λ4 − λ2

2

4λ0
.

By similar calculations

D ' ρ6 1

144

det Var(Y (0), Y ′(0), Y ′′(0), Y ′′′(0))

det Var(Y (0), Y ′(0))
' ρ6 (λ6λ2 − λ2

4)(λ4λ0 − λ2
2)

144λ0λ2
,
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pY (ρ),Y (0)(0, 0) ' ρ−1
(

2π
√

det [Var(Y (ρ), Y ′(ρ))]
)−1

' ρ−1
(

2π
√
λ2λ0

)−1

.

By direct calculations we have w ' −v. Using lemma 4.2 hereafter

E
(
Y ′(0)+Y ′(ρ)+/Y (0) = Y (ρ) = 0

)
' D3/2

6πv2

and

E (|Y ′(0)Y ′(ρ)|/Y (0) = Y (ρ) = 0) =

2

∫ +∞

0

∫ +∞

0

y′1y
′
2p(y

′
1, y
′
2)dy′1dy

′
2 − 2

∫ 0

−∞

∫ +∞

0

y′1y
′
2p(y

′
1, y
′
2)dy′1dy

′
2 ' v,

where p is the density of the centred Gaussian vector with variance
(

v w
w v

)
. This achieves the

proof.

Lemma 4.2. Let X,Y be two jointly Gaussian variables with common variance σ2 and correlation c.
Let r a positive real. Then as c→ −1

E
(
(X+Y +)r

)
' Krσ

2r(1− c2)(2r+1)/2 = Krσ
−2(1+r)

(
det(Var(X,Y ))

)(2r+1)/2
,

where

Kr =
1

2π

∫ +∞

0

∫ +∞

0

xryr exp
(
− (x+ y)2

2

)
dxdy < +∞ , K1 = 1/6π.

Proof of Lemma 4.2. By homogeneity we can assume that σ2 = 1. Then

E
(
(X+Y +)r

)
=

∫ +∞

0

∫ +∞

0

xryr
1

2π
√

1− c2
exp

(
− x2 − 2cxy + y2

2(1− c2)

)
dxdy

' 1

2π
(1− c2)(2r+1)/2

∫ +∞

0

∫ +∞

0

xryr exp
(
− (x+ y)2

2

)
dxdy,

where we have made the change of variables x = x′(1− c2)1/2, y = y′(1− c2)1/2 and the passage to the
limit is justified because the integrand is a monotone function of c. It is easy to check the convergence of
the integral.

4.2. Critical points

By applying Proposition 4.1 to the derivatives of X we get directly the following proposition

Proposition 4.3. Let Ac(ρ) be the correlation function between critical points and Ae(ρ) the correlation
function between maxima (or minima equivalently). Under Assumption (A4) and as ρ→ 0

Ac(ρ) ' (λ2λ6 − λ2
4)

8π
√
λ4λ3

2

ρ, (25)

Ae(ρ) ' (λ8λ4 − λ2
6)3/2

1296π2(λ2
4)(λ6λ2 − λ2

4)1/2
ρ4. (26)

The interpretation of the proposition is that we have always repulsion between critical points and a very
strong repulsion between extrema. As we will see, the surprising result is that does not remain true in
higher dimension.
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5. Correlation function between critical points for random fields

5.1. All the critical points

Consider X = {X(t) : t ∈ RN} a stationary and isotropic Gaussian field with real values as defined in
Section 2. Let us consider two points s, t ∈ RN . Because of stationarity and isotropy we can limit our
attention to s = 0, t = ρe1, where e1 is the first vector of the basis. Let ξ(0), ξ(t) a representation of
the distribution of ∇2X(0),∇2X(t) conditional to ∇X(t) = ∇X(s) = 0. Before giving our theorem we
present in Lemma 5.1 the result that we need on the distribution of (ξij(t), ξkl(s), i, j, k, l = 1 · · · , N).
The proof of this lemma is detailed in the appendix.

Lemma 5.1. Under Assumption (A3), for j 6= k and j, k 6= 1, as ρ = ‖t‖ → 0:

det (Var (∇X(0),∇X(t))) ' ρ2N λ
N
2 λ

N
4

3N−1
, (27)

Var (ξ11(t)) ' ρ2

4

(λ6λ2 − λ2
4)

λ2
, Var (ξ1j(t)) '

ρ2

4

(9λ6λ2 − 5λ2
4)

45λ2
, Var (ξjj(t)) '

8λ4

9
, Var (ξjk(t)) ' λ4

3
,

(28)

Cov (ξ11(t), ξjj(t)) ' ρ2 11λ2λ6 − 15λ2
4

180λ2
, Cov (ξjj(t), ξkk(t)) ' 2λ4

9
, (29)

All the other covariances Cov(ξil(t), ξmn(t)) are zero, ∀i, l,m, n ∈ {1, . . . , N}. (30)

We have of course the same relations for ξ(0).

Moreover we have ∀j, k ∈ {2, . . . , N} and ∀i ∈ {1, . . . , N}; as ρ→ 0,

Cov (ξjk(0), ξjk(t)) ' Var (ξjk(t)) , Cov (ξ1i(0), ξ1i(t)) ' −Var (ξ1i(t)) , (31)

Cov (ξ11(0), ξjj(t)) ' ρ2 15λ2
4 − λ2λ6

180λ2
, Cov (ξjj(0), ξkk(t)) ' 2λ4

9
for j 6= k, (32)

All the other covariances Cov(ξil(0), ξmn(t)) are zero, ∀i, l,m, n ∈ {1, . . . , N} (33)

Theorem 5.2 below, gives the asymptotic expression (as ρ→ 0) of the correlation function between critical
points of any isotropic Gaussian field. It generalizes the result of [11] to general fields and any dimension.

Theorem 5.2. Let Ac(ρ) be the correlation function between critical points. Under Assumption (A3)
and as ρ→ 0,

Ac(ρ) ' ρ2−N γN−1

233(N−1)/2πN

(√
λ4

λ2

)N
(λ2λ6 − λ2

4)

λ2λ4
, (34)

where γN−1 is defined by

γN−1 := E
(
det2 (GN−1 − ΛIdN−1)

)
= E (γN−1,2(Λ)) ,

with GN−1 a (N − 1)-GOE matrix, Λ an independent Gaussian random variable with variance 1/3 and
γN−1,2 is defined in (54). Expressions for γN−1,2 are given in Appendix A, Lemma A.1.
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Remarks:

• Of course when N = 1, we retrieve (25).

• In the particular case of the random plane wave (N = 2), our result coincides with the result of
[11], formula (4) and [12], Theorem 1.2.

• Theorem 5.2 means that, for N = 2, there is a neutrality between critical points and for N > 2
there is even attraction! This is quite different from the case N = 1. The next theorem will give an
interpretation of this phenomenon.

• A first important consequence is finiteness of the second moment of the number of critical points.
Indeed if S is a compact set of RN we can write the Kac-Rice formulas of order 1 and 2, (5), (1),
(2). If N c(S) is the number of critical points that belong to S then

E(N c(S)) = |S|E
(
|det∇2X(t)|

)
p∇X(t)(0)

and
E
(
(N c(S))(N c(S)− 1)

)
=

∫
S2

Ac(|s− t|)ds dt. (35)

Since λ4 is assumed to be finite, the expectation is always finite. As for the second factorial moment,
its finiteness is in general not systematic. In our case (34) implies the convergence of the integral
in (35) on the diagonal implying in turn the finiteness of the second moment. Nevertheless our
conditions are less general than [23] or [6].

Proof of Theorem 5.2. For the simplicity of the exposition we admit in a first step all passage-to-the-
limits. They will be justified at the end of the proof.
By (2)

Ac(ρ) = E (|det(ξ(0)) det(ξ(t))|) p∇X(0),∇X(t)(0, 0), (36)

with t = ρe1. We recall that ξ(0) and ξ(t) are a representation of the conditional distribution of the
Hessian at 0 and t. Because of (27),

p∇X(0),∇X(t)(0, 0) ' ρ−N3(N−1)/2λ
−N/2
2 λ

−N/2
4 (2π)−N . (37)

It remains to study the expectation in (36). We denote by ξ−1(t) the (N−1)×(N−1) matrix corresponding
to the Hessian matrix ξ(t) without its first row and column.
Let us develop det (ξ(t)) with respect to the first row, for example. The first term is ξ11(t) det (ξ−1(t)).
Consider another term and develop it now with respect to the first column. Each of the N − 1 terms that
appear are products that include a factor ξ1jξj′1 with j, j′ 6= 1 so because of (28) they are Op(ρ2). As a
consequence we have proved that

det (ξ(t)) = ξ11(t) det (ξ−1(t)) +Op(ρ
2).

By Lemma 5.1 and (28) we have:

ξ−1(t) '
√

2λ4

3
(GN−1 + ΛIdN−1) , (38)

where Λ is a N (0, 1/3) random variable and GN−1 is a size (N − 1) GOE matrix defined previously. So:

det (ξ−1(t)) '
(

2λ4

3

)(N−1)/2

det (GN−1 − ΛIdN−1) . (39)
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The order of magnitude of the first term in the development of the determinant is then ρ.
In conclusion we have proved that

det (ξ(t)) = Op(ρ) = ξ11(t) det (ξ−1(t)) +Op(ρ
2) (40)

det (ξ(0)) det (ξ(t)) = Op(ρ
2) = ξ11(0)ξ11(t) det (ξ−1(0)) det (ξ−1(t)) +Op(ρ

3).

By Lemma 5.1 and (31), (29), (30):

Corr(ξ11(0), ξ11(t))→ −1, Corr(ξjk(t), ξjk(0))→ 1, ∀j, k ∈ 2, . . . , N,

Cov(ξ11(t), ξjj(t)) = O(ρ2), Cov(ξ11(t), ξjk(t)) = 0 ∀j 6= k ∈ 1, . . . , N.

Then:
det (ξ(0)) det (ξ(t)) ' −ξ11(t)2det2 (ξ−1(t)) (41)

E (|det (ξ(0)) det (ξ(t)) |) ' Var(ξ11(t)) E
(
det2 (ξ−1(t))

)
,

Equations (28), (39) and (54) give (34).

Passage-to-the-limit: Since we are in the Gaussian space generated by the random field X all the variables
considered above are jointly Gaussian. So their absolute values are bounded by the maximum in absolute
value of a complicated bounded random field. General results about the maximum of random fields, for
example the Borell-Sudakov-Tsirelson theorem ([8] Section 2.4) implies that the maximum of its absolute
value has moments of every order, giving all the dominations needed.

5.2. Correlation function between critical points with a given index

Theorem 5.3. Let Ak,k+1(ρ) be the correlation function between critical points with index k and critical
points with index k + 1, k = 0, . . . , N − 1. Under Assumption (A3), as ρ→ 0,

Ak,k+1(ρ) ' ρ2−N γkN−1

243(N−1)/2πN

(√
λ4

λ2

)N
(λ2λ6 − λ2

4)

λ2λ4
, (42)

where γkN−1 is defined by

γkN−1 := E
(
det2 (GN−1 − ΛIdN−1)1{i(GN−1−ΛIdN−1)=k}

)
= E

(
γkN−1,2(Λ)

)
,

with GN−1 a (N − 1)-GOE matrix, Λ an independent Gaussian random variable with variance 1/3 and
γkN−1,2 is defined in (55). Expressions for γkN−1,2 are given in Appendix A, Lemma A.2, equation (57).

This theorem gives an interpretation to Theorem 5.2: the attraction for N ≥ 3 is in fact due to attraction
between critical points with adjacent indexes.
Again, in the particular case of the random plane wave (N = 2), our result coincides with the result of
[11], formula (9).

Proof of Theorem 5.3. We can adapt the application of the Kac-Rice formula that leads to (2) to get
that

Ak,k+1(ρ) = p∇X(0),∇X(t)(0, 0) E
(
|det ξ(0)|1{i(ξ(0))=k}|det ξ(t)|1{i(ξ(t))=k+1}

)
= −p∇X(0),∇X(t)(0, 0) E

(
det (ξ(0))1{i(ξ(0))=k} det ξ(t)1{i(ξ(t))=k+1}

)
.
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We can modify the computation of the determinant of ξ(0) in (40) to compute in place
det
(
ξ(0)− λIdN

)
:

det (ξ(0)− λIdN ) =
(
ξ11(0)− λ

)
det (ξ−1(0)− λIdN−1) +Op(ρ

2). (43)

Note that as ρ→ 0, ξ(0) converges in L2 (or a.s. if we use a Skorohod imbedding argument) to
0 0 . . . 0
0
... ξ−1(0)
0

 .

Its eigenvectors converge to those of this last matrix. These eigenvectors are associated to different
eigenvalues so we can define properly the eigenvalue µ1 that tends to zero. Because of (43) with λ = µ1:

(ξ11(0)− µ1) det (ξ−1(0)− µ1IdN−1) = Op(ρ
2),

implying in turn that
µ1 = ξ11(0) +Op(ρ

2).

On the other hand, the others eigenvalues, say µ2, . . . , µN , converge in distribution to that given by the
right-hand side of (38). This implies in turn that

1{i(ξ(0))=k} ' 1{ξ11(0)<0;i(ξ−1(0))=k−1} + 1{ξ11(0)>0;i(ξ−1(0))=k}.

As a consequence, when computing E
(
det (ξ(0))1{i(ξ(0))=k} det ξ(t)1{i(ξ(t))=k+1}

)
, we have four cases to

consider depending on the signs of ξ11(0), ξ11(t). First we consider the case ξ11(0) > 0, ξ11(t) < 0. We
have the equivalent of (41)

det (ξ(0)) det (ξ(t))1{ξ11(0)>0,ξ11(t)<0}1{i(ξ−1(t))=i(ξ−1(0))=k}

= −ξ11(t)21{ξ11(t)<0}det2 (ξ−1(t))1{i(ξ−1(t))=k} +Op(ρ
3),

giving

E
(
|det (ξ(0)) det (ξ(t)) |1{ξ11(0)>0,ξ11(t)<0}1{i(ξ−1(t))=i(ξ−1(0))=k}

)
= 1/2 Var(ξ11(t)) E

(
det2 (ξ−1(t))1{i(ξ−1(t))=k}

)
+O(ρ3).

This gives (42) as soon as we have checked that the three other cases give smaller contributions which is
direct.

We give now some bound for the case of extremes indexes: maxima and minima. We believe that, in fact,
this bound is sharp but we were unable to find a simple proof of that.

• Assumption (B1): The distribution of (X1(0), X111(0), X221(0), X331(0), . . . , XNN1(0)) is non de-
generated. This condition is equivalent to (see (50)):

B1 := 3(N + 4)λ2λ6 − 5(N + 2)λ2
4 > 0.
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• Assumption (B2): The distribution of (X1111(0), X11(0), X22(0), . . . , XNN (0)) is non degenerated.
This condition is equivalent to (see (53)):

B2 := 25(N + 2)λ4λ8 − 3(9N + 16)λ2
6 > 0.

Theorem 5.4. Let A0,N (ρ) be the correlation function between minima and maxima. Under Assumptions
(A4) and (B1), as ρ→ 0,

A0,N (ρ) ≤ K1(N)× ρ2N−1, (44)

where K1(N) is a constant depending on N .

Upper bound (44) proves strong repulsion between maxima and minima.

Theorem 5.5. Let AN,N (ρ) (or A0,0(ρ)) be the correlation function between maxima (or minima). Under
Assumption (A4) and (B2), as ρ→ 0,

A0,0(ρ) = AN,N (ρ) ≤ K2(N)× ρ5−N , (45)

where K2(N) is a constant depending on N .

Upper bound (45) proves repulsion between maxima (or minima) for N < 5 and suggests neutrality for
N = 5 and attraction for N > 5.

Note that, for N = 1, (44) and (45) retrieve the behavior in ρ and ρ4 obtained in (25) and (26).
In the particular case of the random plane wave (N = 2), the bound (44) is weaker than [11], formula
(8), while (45) is sharper than [11], formula (5) or [12], Theorem 1.5.

Before giving the proofs of Theorems 5.4 and 5.5 we give the following lemma which is obtained by
derivation as in Lemma 3.2

Lemma 5.6. Under Assumption (A4)

Var (X2, . . . , XN , X12, X13, . . . , X1N , X22, X33, . . . , XNN , X11, X1111, X1, X122, X133, . . . , X1NN , X111)

= diag
(
λ2IdN−1,

λ4

3
IdN−1,M(N+1), M̃(N+1)

)
,

where

M(N+1) = Var(X22, X33, . . . , XNN , X11, X1111) =


(

2λ4

3
IdN +

λ4

3
JN,N

) −λ6/5
...

−λ6/5
−λ6

−λ6/5 . . . −λ6/5 −λ6 λ8


and

M̃(N+1) = Var(X1, X122, X133, . . . , X1NN , X111) =


λ2 −λ4/3 . . . −λ4/3 −λ4

−λ4/3
...

−λ4/3

(
2λ6

15
IdN +

λ6

15
JN,N

) λ6/5
...

λ6/5
−λ4 λ6/5 . . . λ6/5 λ6

 .
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Proof. The result is obtained by derivation as for establishing (7).

Proof of Theorem 5.4. We use the classical result of linear algebra. If M is a positive semidefinite matrix
of size N :

det(M) ≤M11 × · · · ×MNN .

As a consequence for any symmetric matrix M ′:

det(M ′)1{i(M ′)=0} ≤ (M11)+ × · · · × (MNN )+ . (46)

By Kac-Rice formula (4):

A0,N (ρ) = p∇X(0),∇X(t)(0, 0) E
(
|det ξ(0)|1{i(∇2ξ(0))=0}|det ξ(t)|1{i(∇2ξ(t))=N}

)
.

We have:

A0,N (ρ) ≤ (−1)Np∇X(0),∇X(t)(0, 0) E
(
ξ+
11(0)ξ+

22(0) . . . ξ+
NN (0)ξ−11(t)ξ−22(t) . . . ξ−NN (t)

)
.

By Cauchy-Schwarz inequality and symmetry of the role of 0 and t we obtain:

A0,N (ρ) ≤ (−1)N−1p∇X(0),∇X(t)(0, 0) E
(
ξ+
11(0)2ξ+

22(0) . . . ξ+
NN (0)ξ−22(t) . . . ξ−NN (t)

)
.

By (37) we have p∇X(0),∇X(t)(0, 0) = O(ρ−N ). Let us now prove that

Iρ := E
(
ξ+
11(0)2ξ+

22(0) . . . ξ+
NN (0)ξ−22(t) . . . ξ−NN (t)

)
= O(ρ3N−1). (47)

We set ξ̃ := (ξ11(0), ξ22(0), ξ22(t), ξ33(0), ξ33(t), . . . , ξNN (0), ξNN (t)), ξ̃i the ith coordinate of ξ̃ for i =
1, . . . , 2N − 1, ξ̃−i (resp. ξ̃−(i,j)) the vector ξ̃ without its ith (resp. ith and jth) coordinate(s). We set
Σρ := Var(ξ̃).

• Equivalent of det(Σρ) as ρ→ 0

det Σρ = det Var(ξ11(0), ξ22(0), ξ22(t), ξ33(0), ξ33(t), . . . , ξNN (0), ξNN (t))

=
det Var(X11(0), X22(0), X22(t), . . . , XNN (0), XNN (t), X1(0), . . . , XN (0), X1(t), . . . , XN (t))

det Var(X1(0), . . . , XN (0), X1(t), . . . , XN (t))
.

For short we set Xi := Xi(0) and Xij := Xij(0). By analogous techniques as those used in the proof of
Lemma 5.1 we obtain:

det Σρ '
ρ2N

4

det Var(X1, . . . , XN , X11, X22, . . . , XNN , X21, . . . , XN1, X111, X221, . . . , XNN1)

det Var(X1, . . . , XN , X11, . . . , XN1)

=
ρ2N

4

det Var(X2, . . . , XN , X21, . . . , XN1, X11, . . . , XNN )× det Var(X221, . . . , XNN1, X1, X111)

det Var(X1, . . . , XN , X11, . . . , XN1)
.

By Lemma 5.6 we have:

det Var(X1, . . . , XN , X11, . . . , XN1) = λN2 λ4

(
λ4

3

)N−1

det Var(X2, . . . , XN , X21, . . . , XN1, X11, . . . , XNN ) = (λ2)
N−1

(
λ4

3

)N−1

× det Var(X11, . . . , XNN ).
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Let JN be the (N ×N)-matrix with all elements equal to 1. By Lemma 5.6 we have:

Var(X11, X22, . . . , XNN ) =
2λ4

3
IdN +

λ4

3
JN .

For x, y ∈ R it is well known that:

det(xIdN + yJN ) = xN−1(x+Ny). (48)

So we have:

det Var(X11, X22, . . . , XNN ) =

(
2λ4

3

)N−1(
2λ4

3
+N

λ4

3

)
.

By Lemma 5.6 we have:

det Var(X1, X111, X221, . . . , XNN1) = det

[
Ã11 Ã12

Ã21 Ã22

]

with Ã11 =

[
λ2 −λ4

−λ4 λ6

]
, Ã12 =

[
−λ4/3 · · · −λ4/3
λ6/5 · · · λ6/5

]
, Ã21 = Ã>12 and Ã22 =

2λ6

15
IdN−1+

λ6

15
JN−1.

Then using the fact that for a partitioned matrix A =

[
A11 A12

A21 A22

]
we have (see [32] p.46):

detA = detA11 × det(A22 −A21A
−1
11 A12) (49)

we obtain

det Var(X1, X111, X221, . . . , XNN1) = (λ2λ6 − λ2
4)× det

(
2λ6

15
IdN−1 + JN−1

(
6λ2λ

2
6 − 10λ6λ

2
4

225(λ2λ6 − λ2
4)

))
and finally using (48)

det Var(X1, X111, X221, . . . , XNN1) =

(
2λ6

15

)N−2
6(N + 4)λ2λ

2
6 − 10(N + 2)λ6λ

2
4

225
. (50)

Therefore:

det Σρ ' ρ2N (N + 2)22N−4

9N5N
λN−1

6 λN−1
4

λ2

(
3(N + 4)λ2λ6 − 5(N + 2)λ2

4

)
=: ρ2Ng.

Note that, under Assumption (B1), g > 0.

• Equivalent of Σ−1
ρ as ρ→ 0

Using the classical expression of conditional variance and covariance

(
Σ−1
ρ

)
ii

=
1

Var(ξ̃i/ξ̃−i)
=

det Var(ξ̃−i)

det Var(ξ̃)(
Σ−1
ρ

)
ij

=
−Cov(ξ̃i, ξ̃j/ξ̃−(i,j))

det Var(ξ̃i, ξ̃j/ξ̃−(i,j))
=

Var(ξ̃i/ξ̃−(i,j)) + Var(ξ̃j/ξ̃−(i,j))−Var(ξ̃i + ξ̃j/ξ̃−(i,j))

2 det Var(ξ̃i, ξ̃j/ξ̃−(i,j))

=
det Var(ξ̃−j) + det Var(ξ̃−i)− det Var(ξ̃i + ξ̃j , ξ̃−(i,j))

2 det Var(ξ̃)
.
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We set X̃ := (X11(0), X22(0), X22(t), X33(0), X33(t), . . . , XNN (0), XNN (t)). We obtain:

(
Σ−1
ρ

)
ii

=
det Var(X̃−i/∇X(0),∇X(t))

det Var(X̃/∇X(0),∇X(t))

=
det Var(X̃−i,∇X(0),∇X(t))

det Var(X,∇X(0),∇X(t))
.

Since X̃ is independent of X2(0), . . . , XN (0), X2(t), . . . , XN (t) (see Section B.1.3) we get:

(
Σ−1
ρ

)
ii

=
det Var(X̃−i, X1(0), X1(t))

det Var(X̃,X1(0), X1(t))

and:

(
Σ−1
ρ

)
ij

=
det Var(X̃−j , X1(0), X1(t)) + det Var(X̃−i, X1(0), X1(t))− det Var(X̃i + X̃j , X̃−(i,j), X1(0), X1(t))

2 det Var(X̃,X1(0), X1(t))
.

By analogous techniques as those used in the proof of Lemma 5.1 we obtain for j = 2, . . . , N ; as ρ→ 0:

(
Σ−1
ρ

)
11
' 1

ρ2

4 det Var(X1, X221, . . . , XNN1)

det Var(X1, X111, X221, . . . , XNN1)
=:

1

ρ2
a

(
Σ−1
ρ

)
jj
' 1

ρ2

det Var(X1, X331, . . . , XNN1, X111)

det Var(X1, X111, X221, . . . , XNN1)
=:

1

ρ2
b.

Note that a and b are positive because of the non-degeneracy hypothesis (B1). For the covariances:

(
Σ−1
ρ

)
23
' − 1

ρ2
b

(
Σ−1
ρ

)
12
' 2

ρ2

(
a+ b

4
− det Var(X1, X331, . . . , XNN1, X221 +X111/2)

det Var(X1, X221, . . . , XNN1, X111)

)
=:

1

ρ2
d

(
Σ−1
ρ

)
13
' 2

ρ2

(
a+ b

4
− det Var(X1, X331, . . . , XNN1, X221 −X111/2)

det Var(X1, X221, . . . , XNN1, X111)

)
=:

1

ρ2
c

(
Σ−1
ρ

)
24
' 1

ρ2

(
b− 1

2

det Var(X1, X441, . . . , XNN1, X111, X221 +X331)

det Var(X1, X221, . . . , XNN1, X111)

)
=:

1

ρ2
e

(
Σ−1
ρ

)
25
' 1

ρ2

(
b− 1

2

det Var(X1, X441, . . . , XNN1, X111, X221 −X331)

det Var(X1, X221, . . . , XNN1, X111)

)
=:

1

ρ2
f

Moreover it is easy to verify that for i = 1, . . . , N − 1:(
Σ−1
ρ

)
2i,2i+1

=
(
Σ−1
ρ

)
23
,

for i = 2, . . . , N : (
Σ−1
ρ

)
1,2i−2

=
(
Σ−1
ρ

)
12
,
(
Σ−1
ρ

)
1,2i−1

=
(
Σ−1
ρ

)
13
,

for i = 1, . . . , N − 2:(
Σ−1
ρ

)
2i,2i+2

=
(
Σ−1
ρ

)
24
,
(
Σ−1
ρ

)
2i,2i+3

=
(
Σ−1
ρ

)
25
,
(
Σ−1
ρ

)
2i+1,2i+2

=
(
Σ−1
ρ

)
2i,2i+3

,
(
Σ−1
ρ

)
2i+1,2i+3

=
(
Σ−1
ρ

)
2i,2i+2

.
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Now, we compute a, b, c, d, e, f . For a, we have:

det Var(X1, X221, . . . , XNN1) = det

[
A11 A12

A>12 A22

]

with A11 = λ2, A12 =
[
−λ4/3 , · · · , −λ4/3

]
and A22 =

2λ6

15
IdN +

λ6

15
JN . Using (48) and (49) we

obtain:

det Var(X1, X221, . . . , XNN1) =

(
2λ6

15

)N−2
3(N + 1)λ2λ6 − 5(N − 1)λ2

4

45
.

Using (50) we deduce:

a =
10
(
3(N + 1)λ2λ6 − 5(N − 1)λ2

4

)
λ6 (3(N + 4)λ2λ6 − 5(N + 2)λ2

4)
.

Following the same lines we obtain:

b =
15
(
3(N + 3)λ2λ6 − 5(N + 1)λ2

4

)
2λ6 (3(N + 4)λ2λ6 − 5(N + 2)λ2

4)
,

and:

c = −d = −2e = 2f =
15
(
3λ2λ6 − 5λ2

4

)
λ6 (3(N + 4)λ2λ6 − 5(N + 2)λ2

4)
.

Because of our hypotheses a, b > 0, the sign of c is not determined. Therefore:

Σ−1
ρ '

1

ρ2
Σ̃−1

where:

Σ̃−1 =



a −c c −c c . . . . . . −c c
−c b −b −c/2 c/2 . . . . . . −c/2 c/2
c −b b c/2 −c/2 . . . . . . c/2 −c/2
−c −c/2 c/2 b −b −c/2 c/2
c c/2 −c/2 −b b c/2 −c/2

. . .
−c −c/2 c/2 . . . . . . . . . . . . b −b
c c/2 −c/2 . . . . . . . . . . . . −b b


• Formal passage to the limit

We denote by pξ̃(z) the probability density of ξ̃ at z. We have

pξ̃(z) =
1

(
√

2π)2N−1
√

det Σρ
exp

(
−1

2
zΣ−1

ρ z>
)

and by equation (47), for k = 1, . . . , N − 1:

Iρ =

∫
z1>0,z2k>0,z2k+1<0

z2
1z2|z3| . . . |z2N−1| pξ̃(z)dz.
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We make the change of variables z = ρz̃ to get that Iρ = ρ3N−1Ĩρ with:

Ĩρ =

∫
z̃1>0,z̃2k>0,z̃2k+1<0

z̃2
1 z̃2 . . . z̃2N−1

(
√

2π)2N−1

√(
det(Σρ)
ρ2N

) exp

(
−1

2
z̃(ρ2Σ−1

ρ )z̃>
)
dz̃.

ρ2Σ−1
ρ converges to Σ̃−1 and

(
det(Σρ)

ρ2N

)
converges to g, positive, under our hypotheses. So the formal

limit is

J := (const)g−1/2

∫
z̃1>0,z̃2k>0,z̃2k+1<0

z̃2
1 z̃2 . . . z̃2N−1 exp

(
−1

2
z̃Σ̃−1z̃>

)
dz̃.

Performing the change of variable tj = z̃2j − z̃2j+1 and remarking that∫
z>0,z′<0,z−z′=t

z|z′|f(z − z′)dzdz′ =

∫ +∞

0

t3

6
f(t)dt,

we get

J ≤ (const)

∫
z1>0,t1>0,...,tN−1>0

z2
1t

3
1t

3
2 . . . t

3
N−1 exp

(
−1

2
z?Σ?z?>

)
dz1dt1 . . . dtN−1

where z? := (z1, t1, . . . , tN−1) and Σ? :=

(
a −c1>N−1

−c1N−1 M

)
withM = (b+c/2)IdN−1−(c/2)JN−1.

Note that the eigenvalues of M are

• (b+c/2) which is positive because when developping its expression, its numerator and denominator
are proportional to B1 > 0, see Assumption (B1).

• (b+ c/2)− (N − 1)c/2 which is positive because its numerator is equal to 225/2(λ2λ6 − λ2
4) > 0,

proving that M is definite positive.

It is easy to prove that its Shur’s complement
(
a− c21>N−1M

−11N−1

)
is equal to

4λ2

λ2λ6 − λ2
4

> 0, so Σ?

is definite positive. Finally∫
z1>0,t1>0,...,tN−1>0

z2
1t

3
1t

3
2 . . . t

3
N−1 exp

(
−1

2
z?Σ?z?>

)
dz1dt1 . . . dtN−1

≤
∫
RN

z2
1 |t1|3|t2|3 . . . |tN−1|3 exp

(
−1

2
z?Σ?z?>

)
dz1dt1 . . . dtN−1.

This last expression is finite because it is, up to some multiplicative constant, a moment of a Gaussian
variable.

• Domination

Performing the same change of variables but now with the exact expression, we get

Ĩρ = (const)

∫
z1>0,t1>0,...,tN−1>0

z2
1t

3
1t

3
2 . . . t

3
N−1 exp

(
−1

2
z?Σ?ρz

?>
)
dz1dt1 . . . dtN−1, (51)

with Σ?ρ → Σ?.
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As Σ? is definite positive, for ρ small enough, the smallest eigenvalue of Σ?ρ is bounded-below by a positive
quantity, say Q. Then a domination of the integrand in (51) is given by

z2
1t

3
1t

3
2 . . . t

3
N−1 exp−Q||z

?||2

2
,

giving the result.

Proof of Theorem 5.5. We follow the same lines as in the proof of Theorem 5.4. By Kac-Rice formula (4):

A0,0(ρ) = p∇X(0),∇X(t)(0, 0) E
(
|det ξ(0)|1{i(∇2ξ(0))=0}|det ξ(t)|1{i(∇2ξ(t))=0}

)
.

Using (46), Cauchy-Schwarz inequality and symmetry of the role of 0 and t we get:

A0,0(ρ) ≤ p∇X(0),∇X(t)(0, 0) E
(
ξ+
11(0)ξ+

11(t)ξ+
22(0)2 . . . ξ+

NN (0)2
)
.

By (37) we have p∇X(0),∇X(t)(0, 0) = O(ρ−N ). Now let us prove that

Ĭρ := E
(
ξ+
11(0)ξ+

11(t)ξ+
22(0)2 . . . ξ+

NN (0)2
)

= O(ρ5). (52)

We set ξ̆ := (ξ11(0), ξ11(t), ξ22(0), ξ33(0), . . . , ξNN (0)), ξ̆i the ith coordinate of ξ̆ for i = 1, . . . , N + 1. We
set Σ̆ρ := Var(ξ̆).

• Equivalent of det(Σ̆ρ) as ρ→ 0

By the same arguments as those used in the proof of Theorem 5.4 for the calculation of the equiva-
lent of det(Σρ) (see (48) and (49)) we get:

det(Σ̆ρ) '
ρ6

144

det Var(X1, X111) det Var(X11, X22, . . . , XNN , X1111)

det Var(X1, X11)

det(Σ̆ρ) ' ρ6 (λ2λ6 − λ2
4)

λ2λ4

(
2λ4

3

)N−1(
25(N + 2)λ4λ8 − 3(9N + 16)λ2

6

10800

)
:= ρ6ğ. (53)

Note that ğ > 0 under Assumption (B2).

• Equivalent of Σ̆−1
ρ as ρ→ 0

We set Σ̆ρ =

(
Ăρ B̆ρ
B̆>ρ C̆ρ

)
and Σ̆−1

ρ =

(
Aρ Bρ
B>ρ Cρ

)
where Ăρ and Aρ are 2 × 2, B̆ρ and Bρ are

2× (N − 1), C̆ρ and Cρ are (N − 1)× (N − 1). We have:

Σ̆−1
ρ =

[
(Ăρ − B̆ρC̆−1

ρ B̆>ρ )−1 −(Ăρ − B̆ρC̆−1
ρ B̆>ρ )−1B̆ρC̆

−1
ρ

−C̆−1
ρ B̆>ρ (Ăρ − B̆ρC̆−1

ρ B̆>ρ )−1 (C̆ρ − B̆>ρ Ă−1
ρ B̆ρ)

−1

]
.

All the elements of Ăρ, B̆ρ and C̆ρ are given by Lemma B.1. By direct calculations we obtain:

Σ̆−1
ρ '

(
A/ρ4 B/ρ2

B>/ρ2 C

)
,
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where A is the 2× 2 matrix with all elements equal to ă, B is the 2× (N − 1) matrix with all elements
equal to d̆, C is the (N − 1)× (N − 1) matrix C = (b̆− c̆)IdN−1 + c̆JN−1 with:

ă :=
900λ4(N + 2)

25(N + 2)λ4λ8 − 3(9N + 16)λ2
6

b̆ :=
3

2λ4

(
25(N + 1)λ4λ8 − 3(9N + 7)λ2

6

25(N + 2)λ4λ8 − 3(9N + 16)λ2
6

)
c̆ :=

−3

2λ4

(
25λ4λ8 − 27λ2

6

25(N + 2)λ4λ8 − 3(9N + 16)λ2
6

)
d̆ :=

−90λ6

25(N + 2)λ4λ8 − 3(9N + 16)λ2
6

.

• For the passage to the limit we proceed as in the previous theorem:

We perform the change of variable ξ̆1 = ρ2z1, ξ̆2 = ρ2z2, ξ̆k = zk for k = 3, . . . N + 1, to get that:

Ĭρ = ρ5(const)

∫
zk>0,k≥1

z1z2z
2
3 . . . z

2
N+1 exp

(
−1

2
zT Σ̆−1z

)
dz1 . . . dzN+1

where
Σ̆−1 :=

(
A B
B> C

)
.

Performing the change of variables t = z1 + z2 we get:

Ĭρ = ρ5(const)

∫
t>0,z3>0,...,zN+1>0

t3z2
3 . . . z

2
N+1 exp

(
−1

2
z̆?Σ̆?z̆?>

)
dtdz3 . . . dzN+1

where z̆? := (t, z3, . . . , zN+1) and Σ̆? :=

(
ă d̆1>N

d̆1N C

)
.

First we have to check that the matrix C is definite positive. This is equivalent to

• b̆− c̆ > 0
• b̆− c̆+ (N − 1)c̆ > 0,

which are both a consequence of the positivity of B2, see Assumption (B2).
Second it is easy to check that the Shur’s complement

(
ă− d̆21>N−1C

−11N−1

)
is positive. We deduce

that Σ̆? is definite positive. The proof ends as in the previous theorem.

Appendix A: Some results on random matrices

For l ∈ R, p = 1, 2 let us define
γn,p(l) := E (detp (Gn − lIdn)) (54)

and:
γkn,p(l) := E

(
detp (Gn − lIdn)1{i(Gn−lIdn)=k}

)
. (55)

Expressions for the calculation of (54) are given by [28] and [27]. In this section, we recall their results
and generalize them for the calculation of (55).
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Let Hn(x) be the nth "physician" Hermite polynomial: Hn(x) := ex
2

(−d/dx)
n
e−x

2

. Define Rn the
polynomial of degree n such that:

R2n(x) =
H2n(x)

22n

R2n+1(x) =
xH2n(x)−H ′2n(x)

22n
.

Define also

rn := 21−2n(2n)!
√
π

gm :=

∫
Rm(x) exp

(
−x

2

2

)
dx.

Now we state the following lemma due to [28], formulas 2.2.16 and 2.2.17:

Lemma A.1. Using the notations above, for l ∈ R:
1. For p = 1 and n = 2L:

γ2L,1(l) = k2L(2L)!× r0 × . . .× rL−1 ×
H2L(l)

22L
.

Recall that k2L is given by (9).
For p = 1 and n = 2L+ 1,

γ2L+1,1(l) = −k2L+1(2L+ 1)!×
L∑
j=0

(g2jR2j+1(l)− g2j+1R2j(l))×
∏

i∈{0,...,L}\j

ri.

2. For p = 2 and n = 2L:

γ2L,2(l) = k2L(2L)!×
L∑
j=0

(
H2j(l)

2 +H ′2j(l)
2 −H2j(l)H

′′
2j(l)

24j

)
×

∏
i∈{0,...,L}\j

ri.

and for p = 2 and n = 2L+ 1:

γ2L+1,2(l) = k2L+1(2L+ 1)!×
L∑
j=0

 ∏
i∈{0,...,L}\j

ri

 det

 g2j R2j(l) R′2j(l)
g2j+1 R2j+1(l) R′2j+1(l)
g2L+2 R2L+2(l) R′2L+2(l)

 .

Now we generalize Lemma A.1 to obtain an expression for γkn,p(l) for p = 1 and p = 2. For simplicity we
give these expressions, (56) and (57), using the simplest family of polynomials Pi(x) = xi, i = 0, 1, 2, . . ..
Note that equation (58) gives the general expression for γkn,p(l) for p = 1 and p = 2, valid for any family
of monic polynomials Pi(x). We recall that a monic polynomial of degree i is such that the coefficient of
the highest power i is equal to one.

Lemma A.2. For l ∈ R we have:

γkn,1(l) = knn!

n+1∑
i=1

(−1)i+1li−1 ×
∑

K∈Fk(n)

Pf
(
BKĪ (l)

)
(56)
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where Ī = {1, . . . , n+1}\{i}; BK
Ī

(l) is the matrix BKJ (l) defined in (15) and (16) with J = Ī; Pf
(
BK
Ī

(l)
)

is the Pfaffian of the matrix BK
Ī

(l) defined in (14); Fk(n) is the set of the parts of {1, 2, . . . , n} of size k
and kn is given in (9). Moreover we have:

γkn,2(l) = knn!
∑

I∈F2(n+2)

ε(σI)(i2 − i1)li1+i2−3
∑

K∈Fk(n)

Pf
(
BKĪ (l)

)
(57)

where Ī = {1, . . . , n+2}\I, σI is the permutation of (1, 2, . . . , n+2) such that σI |(1,2) (resp. σI |(3,...,n+2))
is an increasing one-to-one mapping from (1, 2) on I (resp. from (3, . . . , n+2) on Ī), ε(σI) is the signature
of the permutation σI and i1 and i2 are the ordered elements of I.

Proof of Lemma A.2. We set Qk(l) = {(µi, i = 1, . . . , n) ∈ Rn : #{i : µi − l < 0} = k} and Ok(l) =
{(µi, i = 1, . . . , n) ∈ Rn : µ1 ≤ µ2 ≤ . . . ≤ µk ≤ l ≤ µk+1 ≤ . . . ≤ µn}. Using (8) we have for p = 1 or 2:

γkn,p(l) := E
(
detp (Gn − lIdn)1{i(Gn−lIdn)=k}

)
=

∫
Qk(l)

n∏
i=1

(µi − l)pfn(µ1, . . . , µn)dµ1 . . . dµn

= knn!

∫
Ok(l)

n∏
i=1

(µi − l)p
∏

1≤i<j≤n

(µj − µi) exp

(
−
∑n
i=1 µ

2
i

2

)
dµ1 . . . dµn.

We set hm−1(µj) = Pm−1(µj) exp
(
−µ2

j/2
)
with Pm−1(µj) = µm−1

j and P (s)
m−1 denotes the sth derivative of

Pm−1. We construct the (n+p)×(n+p) matrix
[
hm−1(µj);P

(s)
m−1(l)

]
j = 1, . . . , n
s = 0, . . . , p − 1
m = 1, . . . , n + p

by the concatenation

of the (n+ p)× n matrix [hm−1(µj)] j = 1, . . . , n
m = 1, . . . , n + p

and the (n+ p)× p matrix
[
P

(s)
m−1(l)

]
s = 0, . . . , p − 1
m = 1, . . . , n + p

.

Then calculating det
[
hm−1(µj);P

(s)
m−1(l)

]
j = 1, . . . , n
s = 0, . . . , p − 1
m = 1, . . . , n + p

as a Vandermonde determinant we obtain:

γkn,p(l) = knn!

∫
Ok(l)

(−1)np det
[
hm−1(µj);P

(s)
m−1(l)

]
j = 1, . . . , n
s = 0, . . . , p − 1
m = 1, . . . , n + p

dµ1 . . . µn.

The integrand is the same on each orthant up to a change of sign. So:

γkn,p(l) = kn(−1)np
∫
Qk(l)

∏
1≤i<g≤n

s(µg − µi) det
[
hm−1(µj);P

(s)
m−1(l)

]
j = 1, . . . , n
s = 0, . . . , p − 1
m = 1, . . . , n + p

dµ1 . . . µn.

We have for a (n+ p)× (n+ p) matrix D, for any J ∈ Fp(n+ p) fixed:

detD =
∑

I∈Fp(n+p)

ε(σI)ε(σJ) det[D]I,J det[D]Ī,J̄ ,

where ε(σI) is the signature of the permutation σI and σI is the permutation of (1, 2, . . . , n + p) such
that σI |(1,...,p) (resp. σI |(p+1,...,n+p)) is an increasing one-to-one mapping from (1, . . . , p) on I (resp. from
(p+ 1, . . . , n+ p) on Ī).
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So we have for J = {n+ 1, . . . , n+ p} fixed, ε(σJ) = (−1)np and:

γkn,p(l) = kn

∫
Qk(l)

∏
1≤i<g≤n

s(µg − µi)× ∑
I∈Fp(n+p)

ε(σI) det [hm−1(µj)] j ∈ {1, . . . , n}
m ∈ Ī

det
[
P

(s)
m−1(l)

]
s = 0, . . . , p − 1
m ∈ I

 dµ1 . . . µn.

We note m1, . . . ,mn the ordered elements of Ī := {1, . . . , n+ p}\I. Remarking that each term of the n!
terms of det [hm−1(µj)] j ∈ {1, . . . , n}

m ∈ Ī
contributes equally to the integral, we obtain:

γkn,p(l) = knn!

∫
Qk(l)

∏
1≤i<g≤n

s(µg − µi)× ∑
I∈Fp(n+p)

ε(σI)

 n∏
j=1

hmj−1(µj)

 det
[
P

(s)
m−1(l)

]
s = 0, . . . , p − 1
m ∈ I

 dµ1 . . . µn

= knn!
∑

I∈Fp(n+p)

ε(σI) det
[
P

(s)
m−1(l)

]
s = 0, . . . , p − 1
m ∈ I

×

∫
Qk(l)

∏
1≤i<g≤n

s(µg − µi)×

 n∏
j=1

hmj−1(µj)

 dµ1 . . . µn

Now we follow the same lines as [16] section 4. Since for m the integer part of n/2 (see [16]):∏
1≤i<g≤n

s(µg − µi) =
1

2mm!

n∑
j1=1

· · ·
n∑

jn=1

σ(j1, . . . , jn)s(µj2 − µj1)×

s(µj4 − µj3)× · · · × s(µj2m − µj2m−1),

γkn,p(l) =knn!
∑

I∈Fp(n+p)

ε(σI) det
[
P

(s)
m−1(l)

]
s = 0, . . . , p − 1
m ∈ I

×

∫
Qk(l)

1

2mm!

n∑
j1=1

· · ·
n∑

jn=1

σ(j1, . . . , jn)s(µj2 − µj1)× s(µj4 − µj3)× . . .×

s(µj2m − µj2m−1
)× hm1−1(µ1)× . . .× hmn−1(µn)dµ1 . . . µn

=knn!
∑

I∈Fp(n+p)

ε(σI) det
[
P

(s)
m−1(l)

]
s = 0, . . . , p − 1
m ∈ I

×

∑
K∈Fk(n)

∫
1

2mm!

n∑
j1=1

· · ·
n∑

jn=1

σ(j1, . . . , jn)s(µj2 − µj1)× s(µj4 − µj3)× . . .×

s(µj2m − µj2m−1
)× hm1−1(µ1)1{µ1∈DK1 (µ)} × . . .× hmn−1(µn)1{µn∈DKn (µ)}dµ1 . . . µn

Finally, using the same arguments as [16] section 4, we obtain:

γkn,p(l) = knn!
∑

I∈Fp(n+p)

ε(σI)×
∑

K∈Fk(n)

Pf
(
BKĪ (l)

)
× det

[
P

(s)
m−1(l)

]
s = 0, . . . , p − 1
m ∈ I

. (58)



30 Azaïs and Delmas

That concludes the proof.

Appendix B: Computation of the conditional variance-covariance matrix of the Hessian
and proof of Lemma 5.1

We give the steps to the computation of the conditional variance of ∇2X(0), ∇2X(t). Some tedious but
easy calculations are not detailed. (see Lemma 8.5 of [8]). We denote r(ρ2), r′(ρ2), r′′(ρ2), r′′′(ρ2) and
r(4)(ρ2) by r, r′, r′′, r′′′ and r(4) for short. Jn,m is the "all-one" matrix of size n,m : (Jn,m)i,j ≡ 1. The
elements of the gradient ∇X(t) are denoted X ′i, i = 1, . . . , N . Those of the Hessian are denoted X ′′ij ,
i, j = 1, . . . , N .

B.1. Unconditional distribution

B.1.1. Gradient

Var(∇X(t)) = Var(∇X(0)) = −2r′(0)IdN ,

Cov(X ′1(0), X ′1(t)) = −2r′ − 4ρ2r′′ and Cov(X ′i(0), X ′i(t)) = −2r′ for i 6= 1.

Any other covariance is zero.

B.1.2. Hessian

We define X ′′d as (X ′′11, . . . , X
′′
NN ) and X ′′u (as upper) as {X ′′i,j , 1 ≤ i < j ≤ N}. These two vectors are

independent.

Var(X ′′d (0)) = 4r′′(0)(2IdN + JN,N ),

Cov(X ′′d (0), X ′′d (t)) =

(
12r′′ + 48ρ2r′′′ + 16ρ4r(4) (4r′′ + 8ρ2r′′′)J1,(N−1)

(4r′′ + 8ρ2r′′′)J(N−1),1 4r′′(2IdN−1 + J(N−1),(N−1))

)
Var(X ′′u (0)) = 4r′′(0)IdN(N−1)/2,

Cov(X ′′u (0), X ′′u (t)) = diag
(
(4r′′ + 8ρ2r′′′)IdN−1, 4r

′′Id(N−1)(N−2)/2

)
.

B.1.3. Relation between gradient and Hessian

E
(
X ′′11(0)

/
X ′1(0), X ′1(t)

)
=

1

4r′(0)2 − (2r′ + 4ρ2r′′)2
(0, 12ρr′′ + 8ρ3r′′′)

(
−2r′(0) 2r′ + 4ρ2r′′

2r′ + 4ρ2r′′ −2r′(0)

)(
X ′1(0)
X ′1(t)

)
= (12ρr′′ + 8ρ3r′′′)

(2r′ + 4ρ2r′′)X ′1(0)− 2r′(0)X ′1(t)

4r′(0)2 − (2r′ + 4ρ2r′′)2

=: (12ρr′′ + 8ρ3r′′′)K1(t)

For i 6= 1:

E
(
X ′′1i(0)

/
X ′i(0), X ′i(t)

)
=

1

4r′(0)2 − 4(r′)2
(0, 4ρr′′)

(
−2r′(0) 2r′

2r′ −2r′(0)

)(
X ′i(0)
X ′i(t)

)
= 4ρr′′

2r′X ′i(0)− 2r′(0)X ′i(t)

4r′(0)2 − 4(r′)2
=: 4ρr′′Ki(t)

E
(
X ′′ii(0)

/
X ′1(0), X ′1(t)

)
= 4ρr′′K1(t)
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We have equivalent formulas, reversing time, for example:

E(X ′′11(t)/X ′1(t), X ′1(0)) = (12ρr′′+8ρ3r′′′)
(−(2r′ + 4ρ2r′′)X ′1(t) + 2r′(0)X ′1(0))

4(r′(0))2 − (2r′ + 4ρ2r′′)2
=: (12ρr′′+8ρ3r′′′)K̄1(t).

Any other case corresponds to independence between gradient and Hessian.

B.2. Conditional distribution

Since the conditional variance-covariance matrix is equal to the unconditional variance-covariance matrix
diminished by the variance of the conditional expectation, we compute this last term only.
Let us consider for example the two terms ξ11(0), ξ11(t). The 2 × 2 matrix to subtract is (12ρr′′ +
8ρ3r′′′)2 Var(K1(t); K̄1(t)) with:

Var(K1(t); K̄1(t)) =
1

4(r′(0))2 − (2r′ + 4ρ2r′′)2

(
−2r′(0) −(2r′ + 4ρ2r′′)

−(2r′ + 4ρ2r′′) −2r′(0)

)
.

In the same way for i 6= 1 :

Var(Ki(t); K̄i(t)) =
1

4r′(0)2 − 4(r′)2

(
−2r′(0) −2r′

−2r′ −2r′(0)

)
.

Giving the extra term to substract to get the following lemma

Lemma B.1. We note ξd(t) the vector (ξ11(t), . . . , ξNN (t)) and ξu(t) the vector
(
ξ12(t), ξ13(t), . . . , ξ(N−1)N (t)

)
.

The joint distribution of (ξd(0), ξu(0), ξd(t), ξu(t)) is centred Gaussian with variance-covariance matrix:
Γ1 0 Γ3 0
0 Γ2 0 Γ4

Γ3 0 Γ1 0
0 Γ4 0 Γ2

 .
Γ1 is the N ×N matrix:

Γ1 =


12r′′(0) 4r′′(0) · · · 4r′′(0)

4r′′(0)
. . . 4r′′(0)

...
... 4r′′(0)

. . . 4r′′(0)
4r′′(0) · · · 4r′′(0) 12r′′(0)

+
ρ2r′(0)

2[r′(0)2 − (r′ + 2r′′ρ2)2]
×M,

with

M =


(12r′′ + 8ρ2r′′′)2 4r′′(12r′′ + 8ρ2r′′′) · · · 4r′′(12r′′ + 8ρ2r′′′)

4r′′(12r′′ + 8ρ2r′′′) 16r′′2 · · · 16r′′2

...
...

. . .
...

4r′′(12r′′ + 8ρ2r′′′) 16r′′2 · · · 16r′′2

 .
Γ2 is the N(N−1)

2 × N(N−1)
2 diagonal matrix:

Γ2 =

[
D1 0
0 D2

]
with D1 =

(
4r′′(0) +

8ρ2(r′′)2r′(0)

r′(0)2 − (r′)2

)
IdN−1 and D2 = (4r′′(0)) Id (N−1)(N−2)

2
.
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We note a := 4r
′′

+ 8ρ2r
′′′

and d := 12r
′′

+ 48ρ2r
′′′

+ 16ρ4r(4). Γ3 is the N ×N matrix:

Γ3 =



d a · · · · · · a
a 12r′′ 4r′′ · · · 4r′′

... 4r′′
. . . 4r′′

...
...

... 4r′′
. . . 4r′′

a 4r′′ · · · 4r′′ 12r′′

+
ρ2(r′ + 2r′′ρ2)

2
[
r′(0)2 − (r′ + 2r′′ρ2)2

] ×M.

Γ4 is the N(N−1)
2 × N(N−1)

2 diagonal matrix:

Γ4 =

[
D̃1 0

0 D̃2

]
with D̃1 =

(
a+

8ρ2(r′′)2r′

r′(0)2 − r′2

)
IdN−1 and D̃2 = 4r′′Id (N−1)(N−2)

2
.

B.3. Proof of Lemma 5.1

First note that (30) and (33) are deduced from Lemma B.1 above.

B.3.1. Proof of (27)

det (Var (∇X(0),∇X(t))) = det(Var(X ′1(0), . . . , X ′N (0), X ′1(s), . . . , X ′N (s)))

' det(Var(X ′1(0), . . . , X ′N (0), X ′1(0) + ρX
′′

11(0), . . . , X ′N (0) + ρX
′′

1N (0)))

' det(Var(X ′1(0), . . . , X ′N (0), ρX
′′

11(0), . . . , ρX
′′

1N (0)))

' ρ2N det(Var(X ′1(0), . . . , X ′N (0), X
′′

11(0), . . . , X
′′

1N (0))).

Using Lemma 5.6 we obtain (27).

B.3.2. Proof of (28)

We now consider the case of ξ11(t).

Var (ξ11(t)) = Var (ξ11(0)) =
det(Var(X ′1(0), . . . , X ′N (0), X

′′

11(0), X ′1(t), . . . , X ′N (t)))

det (Var (∇X(0),∇X(t)))

'
det(Var(X ′1(0), . . . , X ′N (0), X

′′

11(0), ρX
′′

11(0) + ρ2

2 X
′′′

111(0), ρX
′′

12(0), . . . , ρX
′′

1N (0)))

det (Var (∇X(0),∇X(t)))

' 3N−1

λN2 λ
N
4

det(Var(X ′1(0), . . . , X ′N (0), X
′′

11(0),
ρ

2
X
′′′

111(0), X
′′

12(0), . . . , X
′′

1N (0)))

' ρ23N−1

4λN2 λ
N
4

det(Var(X ′1(0), . . . , X ′N (0), X
′′

11(0), . . . , X
′′

1N (0), X
′′′

111(0))).

By Lemma 5.6 we obtain Var (ξ11(t)) ' ρ2

4

(λ6λ2 − λ2
4)

λ2
. The other variances are obtained in the same

way.
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B.3.3. Proof of (29), (31) and (32)

• We consider Cov(ξjj(t), ξkk(t)) for j 6= k and j, k 6= 1. Since

Cov(ξjj(t), ξkk(t)) =
1

2
(Var (ξjj(t) + ξkk(t))−Var(ξjj(t))−Var(ξkk(t)))

and since, by (28), Var(ξjj(t)) = Var(ξkk(t)) =
8λ4

9
, we just need to calculate Var(ξjj(t) + ξkk(t)).

Var (ξjj(t) + ξkk(t)) =
det(Var(X

′′

jj(t) +X
′′

kk(t), X ′1(0), . . . , X ′N (0), X ′1(t), . . . , X ′N (t)))

det (Var (∇X(0),∇X(t)))

'
det(Var(X

′′

jj(0) +X
′′

kk(0), X ′1(0), . . . , X ′N (0), ρX
′′

11(0), ρX
′′

12(0), . . . , ρX
′′

1N (0)))

det
(
Var

(
X ′1(0), . . . , X ′N (0), ρX

′′
11(0), ρX

′′
12(0), . . . , ρX

′′
1N (0)

))
'

det(Var(X
′′

jj(0) +X
′′

kk(0), X ′1(0), . . . , X ′N (0), X
′′

11(0), X
′′

12(0), . . . , X
′′

1N (0)))

det
(
Var

(
X ′1(0), . . . , X ′N (0), X

′′
11(0), X

′′
12(0), . . . , X

′′
1N (0)

))
By Lemma 5.6 we have

det(Var(X
′′

jj(0) +X
′′

kk(0), X ′1(0), . . . , X ′N (0), X
′′

11(0), X
′′

12(0), . . . , X
′′

1N (0)))

=

(
λ4

3

)N−1

λN2 det(Var(X
′′

11(0), X
′′

jj(0) +X
′′

kk(0))),

det(Var(X
′′

11(0), X
′′

jj(0) +X
′′

kk(0))) =
20λ2

4

9
,

and

det
(

Var
(
X ′1(0), . . . , X ′N (0), X

′′

11(0), X
′′

12(0), . . . , X
′′

1N (0)
))

=
λN2 λ

N
4

3N−1
.

Finally we obtain Var(ξjj(t) + ξkk(t)) ' 20λ4

9
, implying Cov(ξjj(t), ξkk(t)) ' 2λ4

9
. In the same way we

obtain Cov(ξjj(0), ξkk(t)) ' 2λ4

9
and (31).

• Now let us prove that Cov(ξ11(t), ξjj(t)) ' ρ2 11λ2λ6 − 15λ2
4

180λ2
for j 6= 1. We have, for j 6= 1 (see Section

B.1.3):

Cov(X
′′

jj(0), X ′i(0)) = 0, ∀i ∈ {1, . . . , N}

Cov(X
′′

jj(0), X ′i(s)) = 4ρr
′′
(ρ2)δ1i =: α2δ1i.

And with Section B.1.1 we deduce:

Var(ξjj(0)) =
det(Var(X ′1(0), . . . , X ′N (0), X ′1(s), . . . , X ′N (s), X

′′

jj(0)))

det (Var (∇X(t),∇X(s)))

=
det(Var(∇−(1)X(0),∇−(1)X(s)))× det(Var(X ′1(0), X ′1(s), X

′′

jj(0)))

det (Var (∇X(t),∇X(s)))
,
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where ∇−(1)X denotes the gradient without its first coordinate. Similarly:

Var(ξ11(0)) =
det(Var(∇−(1)X(0),∇−(1)X(s)))× det(Var(X ′1(0), X ′1(s), X

′′

11(0)))

det (Var (∇X(t),∇X(s)))

and:

Var(ξ11(0) + ξjj(0)) =
det(Var(∇−(1)X(0),∇−(1)X(s)))× det(Var(X ′1(0), X ′1(s), X

′′

11(0) +X
′′

jj(0)))

det (Var (∇X(t),∇X(s)))
.

It is easy to verify that:

det(Var(X ′1(0), X ′1(s), X
′′

11(0) +X
′′

jj(0))) =
8

3
λ4λ

2
2 − λ2(α1 + α2)2 − 8

3
λ4β

2
1

det(Var(X ′1(0), X ′1(s), X
′′

11(0))) = λ4λ
2
2 − λ2α

2
1 − λ4β

2
1

det(Var(X ′1(0), X ′1(s), X
′′

jj(0))) = λ4λ
2
2 − λ2α

2
2 − λ4β

2
1 ,

where β1 = −2r′(ρ2)− 4ρ2r
′′
(ρ2), α1 = 12ρr

′′
(ρ2) + 8ρ3r

′′′
(ρ2) and α2 = 4ρr

′′
(ρ2). We deduce:

Cov(ξ11(0), ξjj(0)) =

det(Var(∇−(1)X(0),∇−(1)X(s)))×
(

1

3
λ4λ

2
2 − λ2α1α2 −

1

3
λ4β

2
1

)
det (Var (∇X(t),∇X(s)))

.

It is easy to check that:

1

3
λ4λ

2
2 − λ2α1α2 −

1

3
λ4β

2
1 ' ρ4

(
11

180
λ2λ4λ6 −

λ3
4

12

)
.

We deduce, using analogous arguments as in Section B.3.1, that Cov(ξ11(0), ξjj(0)) = Cov(ξ11(t), ξjj(t)) '

ρ2 11λ2λ6 − 15λ2
4

180λ2
.

In the same way we prove Cov(ξ11(0), ξjj(t)) ' ρ2 15λ2
4 − λ2λ6

180λ2
.
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