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Let X = {X(t) : t ∈ RN} be an isotropic Gaussian random field with
real values. In a first part we study the mean number of critical points of
X with index k using random matrices tools. We obtain an exact expression
for the probability density of the kth eigenvalue of a N -GOE matrix. We
deduce some exact expressions for the mean number of critical points with a
given index. In a second part we study attraction or repulsion between these
critical points. A measure is the correlation function. We prove attraction
between critical points when N > 2, neutrality for N = 2 and repulsion for
N = 1. The attraction between critical points that occurs when the dimension
is greater than two is due to critical points with adjacent indexes. A strong
repulsion between maxima and minima is proved. The correlation function
between maxima (or minima) depends on the dimension of the ambient space.

1. Introduction. Critical points of random fields play an important role in small or large
dimension. In large dimension data they appear in the study of algorithms of maximisation
of the likelihood [13, 29]. In smaller dimension they play a role in many applications from
various areas: detection of peaks in a random field [16, 32, 33, 34], optimisation of a response
modelled by a random field [19], modelling of random sea waves [24, 7, 28]. Critical points
and their indexes are an important element of the geometry of random fields. They appear in
the computation of the Euler characteristic [2, 18]. They are a subject of study on their own
as in [27, 3, 11, 17].

Let X = {X(t) : t ∈ RN} be an isotropic Gaussian random field with real values. If we
look at the repartition of the critical points of X as a function of their index in dimension
two, considerations of symmetry and of Euler characteristic (see, for example, [1], lemma
6.1.1) imply that if N c(S), N c

0 (S), N c
2 (S), N c

1 (S) are respectively the number of critical,
minimum, maximum and saddle points on a given set S

(1) E(N c
0 (S)) = E(N c

2 (S)) =
1

2
E(N c

1 (S)) =
1

4
E(N c(S)).

In higher dimensions simulations suggest that such a simple result does not hold true. The
purpose of Section 3 is to compute these expectations using random matrices tools. With
this objective in mind, we obtain an exact expression for the probability density of the kth
ordered eigenvalue of a N -GOE matrix (see Theorem 3.5 and (22)–(28)). We deduce exact
expressions for the mean number of critical points with a given index (Propositions 3.2,
3.7 and 3.8). In particular, for N = 3, if we denote by N c

0 (S), N c
1 (S), N c

2 (S) and N c
3 (S)

respectively the number of minimum, the number of critical points with index 1 and 2 (see
Section 3, equation (9) for the definition) and the number of maximum on a given set S, we
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obtain (see Proposition 3.7)

E(N c
0 (S)) = E(N c

3 (S)) =
29− 6

√
6

116
E(N c(S)),

E(N c
1 (S)) = E(N c

2 (S)) =
29 + 6

√
6

116
E(N c(S)).

Proposition 3.8 gives these expectations for N = 4.
On the other hand Section 4 studies how the critical points are spread in the space. In

a pioneering work, Belyaev, Cammarota and Wigman [11] study the attraction or repulsion
(see Section 4.2 for a precise definition) of the point process of critical points of a particular
random wave model in dimension 2. In the case of random processes (N = 1), it was gen-
erally admitted that repulsion between crossings or critical points occurs. In fact this result
has never been written explicitly so it is the object of Section 4.4 with Proposition 4.4. With
respect to this behaviour the result of [11] is unexpected since no repulsion occurs between
critical points. The object of Section 4.5 is to explore the phenomenon of attraction or re-
pulsion for a large class of random fields, in all dimensions and for each type of indexes.
A precise definition of attraction and repulsion is given in Section 4.2. Theorem 4.6 proves
attraction between critical points when N > 2, neutrality for N = 2 and repulsion for N = 1.
Theorem 4.9 shows that the attraction between critical points that occurs when the dimen-
sion is greater than 2 is due to the attraction between critical points with adjacent indexes. In
Theorem 4.11 we prove a strong repulsion, growing with N , between maxima and minima.
Finally Theorem 4.12 gives an upper bound to the correlation function between maxima (or
equivalently minima) proving repulsion for N < 5.

In Appendix A we prove the validity of all the Kac-Rice formulas used in the paper. Ap-
pendix B is devoted to the proofs of Lemmas 2.1, 4.1 and 4.2.

2. Notation, main assumptions and background.

2.1. Notation.

• ϕ(·) and Φ(·) are respectively the probability density and the cumulative distribution func-
tion of a standard Gaussian variable, Φ̄(·) := 1−Φ(·).

• If X and Y are random vectors, Var(X) denotes the variance-covariance matrix of X and

Cov(X,Y ) := E
((
X −E(X)

)(
Y −E(Y )

)>)
.

• For X and Y two random vectors pX(x) is the probability density of X at x and
pX(x/Y = y) the probability density of X conditionally to Y = y when these densi-
ties exist.

• For a random field X = {X(t) : t ∈ RN}, we denote by ∇X(t) the gradient of X(t) and
by ∇2X(t) its Hessian, when they exist.

• i(M) is the index of the matrix M : the number of its negative eigenvalues.

• z+ and z− denote respectively sup(0, z) and − inf(0, z).

• Xi1i2...in(t) denotes
∂nX(t)

∂ti1∂ti2 . . . ∂tin
.
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• Idn is the identity matrix of size n; Jn,p the (n× p)-matrix with all elements equal to 1.

• |S| is the Lebesgue measure of the Borel set S.

• For a random field X = {X(t) : t ∈RN} the number of critical points is precisely defined
for every Borel set S as

N c(S) := #{t ∈ S :∇X(t) = 0}.

2.2. Main assumptions. In the sequel we will use the following assumptions (Ak), with
k = 2, 3 or 4.

ASSUMPTION (Ak). • X = {X(t) : t ∈ RN} is a stationary and isotropic Gaussian
field with real values. We assume, without loss of generality, that it is centred with variance
1. We set

E(X(s)X(t)) = c(s, t) = r(||s− t||2).

• r is of class Ck. This is equivalent to the existence of a finite 2kth spectral moment λ2k

and it implies that X is k times differentiable in quadratic mean. Note that ∀`= 1, . . . ,N
and n= 1, . . . , k

1 = Var(X(t)) = r(0),

λ2n := Var

(
∂nX(t)

∂tn`

)
= (−1)n

(2n)!

n!
r(n)(0).(2)

• To avoid the trivial case of a constant random field, we assume that λ2 =−2r′(0)> 0.

• When N > 1 we know from Lemma 2.1 below that λ2nλ2n−4 > λ2
2n−2 for n= 2, . . . , k.

When N = 1, we have to assume these relations to avoid the particular case of the sine-
cosine process.

• When k = 2 we have to assume, in addition for the validity of the Kac-Rice formula, that
X is C2 which is slightly stronger than the finiteness of λ4 . When k ≥ 3 the fact that X is
C2 is a consequence of the finiteness of λ6.

Note that, of course, (A4) is stronger than (A3) which is itself stronger than (A2).

2.3. Background. We give two lemmas that will be needed in the next sections. The first
one gives universal properties for X . The second one is more technical.

LEMMA 2.1. Let X be a stationary and isotropic Gaussian field. When λ2k is finite, the
spectral moments satisfy for n= 2, . . . , k

(3) λ2nλ2n−4 ≥
(2n− 1)

(2n− 3)

(2n− 4 +N)

(2n− 2 +N)
λ2

2n−2.

Moreover when i1 + j1, . . . , iN + jN are all even and when all the quantities hereunder are
well defined

E

(
∂|i|X(t)

∂ti11 , . . . , ∂t
iN
N

∂|j|X(t)

∂tj11 , . . . , ∂t
jN
N

)
=

∂|i|+|j|c(s, t)

∂si11 , . . . , ∂s
iN
N ∂t

j1
1 , . . . , ∂t

jN
N

∣∣∣∣∣
s=t

= (−1)|j|r(|β|)(0)

N∏
`=1

(2β`)!

β`!
= (−1)|β|+|j|λ2|β|

|β|!
(2|β|)!

N∏
`=1

(2β`)!

β`!
,(4)
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where |β| = |i|+ |j|
2

and β` =
i` + j`

2
for ` = 1, . . . ,N . In the other cases the covariances

vanish.

REMARK 2.2. Note that the coefficientsK(n,N) :=
(2n− 1)

(2n− 3)

(2n− 4 +N)

(2n− 2 +N)
are greater

than 1 when N > 1 and take the value 1 when N = 1.

The proof of Lemma 2.1 is given in Appendix B.

In the sequel we need a precise description of the distribution of X(t),∇X(t),∇2X(t)
and, for technical reasons in the last section, we need to add X1ii,X11`,X1111 for 1≤ i≤N
and 2≤ `≤N . To get independence we have to partition this vector as follows. Set

ζ1 := (X2(t), . . . ,X`−1(t),X`+1(t),XN (t))> ,

ζ2 := (Xij(t), i, j = 1, . . . ,N and i 6= j)> ,

ζ3 := (X(t),X1111(t),X11(t),X22(t),X33(t), . . . ,XNN (t))> ,

ζ4 := (X1(t),X111(t),X122(t),X133(t), . . . ,X1NN (t))> ,

ζ5 := (X`(t),X11`(t))
> .

LEMMA 2.3. Under Assumption (A4) the random vectors ζ1, ζ2, ζ3, ζ4 and ζ5 defined
above are Gaussian, independent, centred with variance matrices respectively given by

Var (ζ1) = λ2IdN−2, Var (ζ2) =
λ4

3
IdN(N−1)/2, Var (ζ3) =M(N+2),

Var (ζ4) = M̃(N+1), Var (ζ5) =

(
λ2 −λ4/3
−λ4/3 λ6/5

)
,

where

M(N+2) =



1 λ4 −λ2 −λ2 . . .−λ2

λ4 λ8 −λ6 −λ6/5 . . .−λ6/5
−λ2 −λ6 λ4 λ4/3 . . . λ4/3
−λ2

...
−λ2

−λ6/5
...

−λ6/5

λ4/3
...

λ4/3

(
2λ4

3
IdN−1 +

λ4

3
JN−1

)


and

M̃(N+1) =


λ2 −λ4 −λ4/3 . . .−λ4/3
−λ4 λ6 λ6/5 . . . λ6/5
−λ4/3

...
−λ4/3

λ6/5
...

λ6/5

(
2λ6

15
IdN−1 +

λ6

15
JN−1

)
 .

Moreover we have

(5) det (Var (X11(t),X22(t), . . . ,XNN (t))) = (N + 2)2N−1

(
λ4

3

)N
,

(6)

det (Var (X1(t),X122(t), . . . ,X1NN (t))) =

(
2λ6

15

)N−2 3(N + 1)λ2λ6 − 5(N − 1)λ2
4

45
.
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PROOF OF LEMMA 2.3. The joint distribution of ζ1, ζ2, ζ3, ζ4 is a direct consequence of
(4). Now let us prove (5) and (6). We have

Var(X11(t),X22(t), . . . ,XNN (t)) =
2λ4

3
IdN +

λ4

3
JN,N .

For x, y ∈R it is well known that

(7) det(xIdN + yJN,N ) = xN−1(x+Ny).

So we obtain (5). We have

det (Var (X1(t),X122(t), . . . ,X1NN (t))) = det

[
λ2 Ã12

Ã21 Ã22

]
,

with Ã12 =
[
−λ4/3 · · · −λ4/3

]
, Ã21 = Ã>12 and Ã22 =

2λ6

15
IdN−1 +

λ6

15
JN−1,N−1.

Then using the fact that for a partitioned matrix Ã=

[
Ã11 Ã12

Ã21 Ã22

]
we have (see [30] p.46)

(8) det Ã= det Ã11 × det(Ã22 − Ã21Ã
−1
11 Ã12),

we obtain

det (Var (X1(t),X122(t), . . . ,X1NN (t)))

= λ2 det

(
2λ6

15
IdN−1 + JN−1,N−1

(
3λ2λ6 − 5λ2

4

45λ2

))
.

Finally using (7) we obtain (6).

3. Mean number of critical points with a given index. In this section X is a random
field satisfying Assumption (A2). Then it is proved in Appendix A that the sample paths are
almost surely Morse and this implies that the number of critical points with index k in a Borel
set S, N c

k (S), is well defined. More precisely

(9) N c
k (S) := #{t ∈ S :∇X(t) = 0, i(∇2X(t)) = k}.

We define also the number of critical points of index k above the level u by

(10) N c
k (u,S) := #{t ∈ S :∇X(t) = 0, i(∇2X(t)) = k, X(t)> u}.

The aim of this section is to derive explicit and exact expressions for the expectation of (9)
and (10).

3.1. The general case. By Kac-Rice formulas (68) and (69) and Lemma 2.3 we get

E (N c
k (S)) =

|S|
(2πλ2)N/2

E
(
|det(∇2X(t))|1i(∇2X(t))=k

)
.(11)

E(N c
k (u,S)) =

|S|
λ
N/2
2 (2π)(N+1)/2

∫ +∞

u
exp

(
−x

2

2

)
(12)

×E
(
|det(∇2X(t))1i(∇2X(t))=k|

/
X(t) = x

)
dx.

Our main tool will be the use of random matrices theory and more precisely the GOE distribu-
tion. We recall that Gn is said to have the GOE (Gaussian Orthogonal Ensemble) distribution
if it is symmetric and all its elements are independent centred Gaussian variables satisfying
E(G2

ii) = 1 and E(G2
ij) = 1

2 . The relation between GOE matrices and the study of critical
points of stationary isotropic Gaussian fields is due to the following lemma initially due to
[8] and that can be derived from Lemma 2.3.
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LEMMA 3.1. Let GN be a size N GOE matrix and Λ a N (0,1/2) random variable
independent of GN . Then ∇2X(t) is equal in distribution to√

2λ4

3

(
GN −ΛIdN

)
,

and under the assumption that λ4 ≥ 3λ2
2, ∇2X(t) conditionally to X(t) = x, is distributed

as √
2λ4

3

(
GN − Λ̃IdN

)
,

where Λ̃ is a N
(
λ2x

√
3

2λ4
,
λ4 − 3λ2

2

2λ4

)
random variable independent of GN .

We recall that the joint density fN of the eigenvalues (µ1, . . . , µN ) of a N -GOE matrix (see
Theorem 3.3.1 of [25]) is given by:

(13) fN (µ1, . . . , µN ) = kN exp

(
−
∑N

i=1 µ
2
i

2

) ∏
1≤i<k≤N

|µk − µi| ,

where:

(14) kN := (2π)−N/2 (Γ(3/2))N

(
N∏
i=1

Γ(1 + i/2)

)−1

.

Using Lemma 3.1, (11), (12) and (13) we get the following proposition.

PROPOSITION 3.2. Let Lp be the pth ordered eigenvalue of a (N + 1)-GOE matrix
(L1 <L2 < . . . < LN+1). For X and S as above, under Assumption (A2)

(15) E (N c
k (S)) =

|S|
π(N+1)/2

(
λ4

3λ2

)N/2 kN
kN+1

1

N + 1
E

(
exp

(
−
L2
k+1

2

))
.

When λ4 − 3λ2
2 > 0,

(16) E(N c
k (u,S)) =

|S|
π(N+1)/2

(
λ4

3λ2

)N/2 kN
kN+1

1

N + 1

×E

{
exp

(
−
L2
k+1

2

)
Φ̄

[√
λ4

λ4 − 3λ2
2

(
u−Lk+1

√
6λ2√
λ4

)]}
,

and when λ4 − 3λ2
2 = 0

(17) E(N c
k (u,S)) =

|S|
π(N+1)/2

kN
kN+1

λ
N/2
2

N + 1
E

(
exp

(
−
L2
k+1

2

)
1Lk+1>u/

√
2

)
.

REMARK 3.3. Such kind of result was first obtained by [4] for the p-spin spherical spin
glass model defined on the Euclidean sphere of radius

√
N of RN . This result can also be

found in [17] (Proposition 3.9) written in a slightly different way. In this paper we go further:
in Theorem 3.5 we obtain an exact expression for the probability density of the kth ordered
eigenvalue of a N -GOE matrix, denoted by qkN (l) (see (20) and (22)–(28)). We can deduce
exact expressions for (15), (16) and (17) as in Propositions 3.7, and 3.8.
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REMARK 3.4. As remarked in [10] the condition λ4 ≥ 3λ2
2 is met if the covariance func-

tion r is a “Schoenberg covariance”: it is a valid covariance function in every dimension.
Note that more general cases have been studied by [17].

PROOF OF PROPOSITION 3.2. Using (11), Lemma 3.1 and (13)

E
(
|det∇2X(t)|1i(∇2X(t))=k

)
=

(
2λ4

3

)N/2
kNN !

∫
µ1<µ2<···<µk<λ<µk+1<···<µN

∏
1≤i<k≤N

|µk − µi|
∏

1≤i≤N
|λ− µi|

exp

(
−
∑N

i=1 µ
2
i

2

)
π−1/2 exp(−λ2/2) exp(−λ2/2)dµ1 . . . dµNdλ

=

(
2λ4

3

)N/2
π−1/2 kN

kN+1

N !

(N + 1)!
E

(
exp

(
−
L2
k+1

2

))
,

which proves (15). Using Lemma 3.1, by (12) and (13) we can write

E(N c
k (u,S)) =

|S|
λ
N/2
2 (2π)(N+1)/2

∫ +∞

u
exp

(
−x

2

2

)(
2λ4

3

)N/2
kNN !

×
∫
µ1<µ2<···<µk<y<µk+1<···<µN

∏
1≤i<k≤N

|µk − µi|
∏

1≤i≤N
|y− µi| exp

(
−
∑N

i=1 µ
2
i

2

)

× exp(−y2/2) exp(y2/2)pY (y)dµ1 . . . dµN dy dx.

Integrating first with respect to x we obtain (16). In the same way, when λ4 − 3λ2
2 = 0,

∇2X(t)/X(t) = x is distributed as
√

2λ2
2GN − λ2xIdN and following the same lines as

previously we obtain (17).

3.2. Exact expressions. Before giving exact expressions for E(N c
k (S)) and E(N c

k (u,S))
we obtain, in the following paragraph 3.2.1, some results concerning the probability density
of the kth ordered eigenvalue of a N -GOE matrix. These results will be used in paragraph
3.2.2, with Propositions 3.2, to derive exact expressions for E(N c

k (S)) and E(N c
k (u,S)).

3.2.1. Probability density of the kth ordered eigenvalue of a N -GOE matrix. We denote
by L1 ≤ L2 ≤ . . . ≤ LN the ordered eigenvalues of a N -GOE matrix. We denote by qkN (`)
the probability density of Lk. In this section we obtain an expression for qkN (`). We give
explicit expressions of qkN (`) for N = 2, 3, 4, 5 and k = 1, . . . ,N . In particular we obtain
that q2

3(`) is the density of a N (0,1/2) random variable.

Let Fp(n) be the set of the parts of {1,2, . . . , n} of size p. Let I ∈ Fp(n), let ` ∈ R, we
define DIi (`) = (−∞, `) when i ∈ I and DIi (`) = (`,+∞) when i /∈ I . We denote by s(.)
the sign function. We define the matrix Aα(I, `), for α= 1 or 2, as follows. When n is even,
Aα(I, `) is the n× n skew matrix whose elements are, ∀i, j = 1 . . . , n:
(18)

aαi,j(I, `) =

∫
DI

i (`)
dx

∫
DI

j (`)
dy s(y− x)xi−1yj−1(x− `)α(y− `)α exp

(
−x

2 + y2

2

)
.
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When n is odd , Aα(I, `) is the (n+ 1)× (n+ 1) skew matrix whose elements are defined
by (18) ∀i, j = 1 . . . , n and we add the extra terms, for i= 1, . . . , n:
(19)

aαi,n+1(I, `) =−aαn+1,i(I, `) =

∫
DI

i (`)
xi−1(x− `)α exp

(
−x

2

2

)
dx and aIn+1,n+1(`) = 0.

We are now able to state the following theorem that gives an exact expression for qkN (`),
the probability density of Lk, the kth ordered eigenvalue of a N -GOE matrix.

THEOREM 3.5. Using notations above, for ` ∈R and for k = 1, . . . ,N we have

(20) qkN (`) = kNN !(−1)k−1 exp

(
−`

2

2

) ∑
I∈Fk−1(N−1)

Pf
(
A1(I, `)

)
where kN is given by (14) and Pf

(
A1(I, `)

)
is the Pfaffian of the skew matrix A1(I, `)

defined by (18) and (19) with n=N − 1 and α= 1.

REMARK 3.6. The probability density of the kth ordered eigenvalue of a N -GOE matrix
was only known for k =N , the largest eigenvalue (see [20]). Theorem 3.5 gives an expression
for all k = 1, . . . ,N .

PROOF OF THEOREM 3.5. LetGN−1 be a (N−1)-GOE matrix with eigenvalues denoted
by µ1, . . . , µN−1. For ` ∈R, we set for k = 2, . . . ,N − 1, Ok(`) = {(µi, i= 1, . . . ,N − 1) ∈
RN−1 : µ1 ≤ µ2 ≤ . . .≤ µk−1 ≤ `≤ µk ≤ . . .≤ µN−1}, with trivial adaptation when k = 1
and N . L1 <L2 < . . . < LN denote the ordered eigenvalues of a N -GOE matrix. Using (13),
the probability density of Lk is given by:

qkN (l) =N !

∫
Ok(`)

fN (µ1, . . . , µN−1, `)dµ1 . . . dµN−1

=
kNN !

kN−1

∫
Ok(`)

(−1)k−1 det(GN−1 − `IdN−1)fN−1(µ1, . . . , µN−1)

× exp

(
−`

2

2

)
dµ1 . . . dµN−1.

Thus qkN (l) =
kN
kN−1

N(−1)k−1 exp

(
−`

2

2

)
γk−1
N−1,1(`) where

γk−1
N−1,1(`) = kN−1(N − 1)!

×
∫
Ok(`)

N−1∏
i=1

(µi − `)
∏

1≤i<j≤N−1

(µj − µi) exp

(
−
∑N−1

i=1 µ2
i

2

)
dµ1 . . . dµN−1.

We set hm(µj , `) = µm−1
j (µj−`) exp

(
−µ2

j/2
)

. We denote by H(µµµ, `) the matrix {hm(µj , `),m, j =

1, . . . ,N − 1}. Then calculating det(H(µµµ, `)) using a Vandermonde determinant we obtain:

γk−1
N−1,1(`) = kN−1(N − 1)!

∫
Ok(`)

det(H(µµµ, `))dµ1 · · ·µN−1.

We denote by I(µµµ, `, k) the (N − 1)× (N − 1) diagonal matrix defined by

I(µµµ, `, k) = diag(1µ1≤`, . . . ,1µk−1≤`,1µk≥`, . . . ,1µN−1≤`)
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with trivial adaptations when k = 1 or k =N . We set

H?(µµµ, `, k) := H(µµµ, `)I(µµµ, `, k).

Then

γk−1
N−1,1(`) = kN−1(N − 1)!

∫
µ1≤...≤µN−1

det(H?(µµµ, `, k))dµ1 · · ·µN−1.

Now we need to introduce some more notation. Let I and J ∈ Fp(n) and M a n×n matrix,
we set ∆I,J(M) for det(MI,J). We use the convention ∆∅,∅(M) = 1. K̄ = {1, . . . , n}\K
for any subset K . Let I ∈ Fp(n), σI is the permutation of (1,2, . . . , n) such that σI |(1,2,...,p)
(resp. σI |(p+1,...,n)) is an increasing one-to-one mapping from (1,2, . . . , p) on I (resp. from
(p + 1, . . . , n) on Ī). Finally we denote by ε(σ) the signature of the permutation σ of
(1,2, . . . , n).

For a (n+ p)× (n+ p) matrix D we have, for any J ∈ Fp(n+ p) fixed,

(21) detD =
∑

I∈Fp(n+p)

ε(σI)ε(σJ)∆I,J(D)∆Ī,J̄(D).

We apply it for p= k− 1, n=N − k and J = {1, . . . , k− 1}. We get ε(σJ) = 1 and

γk−1
N−1,1(`) = kN−1(N − 1)!

∑
I∈Fk−1(N−1)

ε(σI)

×
∫
µ1≤...≤µN−1

∆I,J(H?(µµµ, `, k))∆Ī,J̄(H?(µµµ, `, k))dµ1 · · ·µN−1.

We denote by HI(µµµ, `) the matrix {hm(µj , `)1µj∈DI
m(`),m, j = 1, . . . ,N − 1}. We have

∆I,J(H?(µµµ, `)) = ∆I,J(HI(µµµ, `)) and ∆Ī,J̄(H?(µµµ, `)) = ∆Ī,J̄(HI(µµµ, `)).

To check this, note that, for example, for j ≤ k − 1, the indicator function appearing in the
entry (m,j) of H?(µµµ, `, k) is 1µj≤`. For every I and for m ∈ I , this quantity is also equal to
1µj∈DI

m(`).

Then using (21) with p= k−1, n=N−k and J = {1, . . . , k−1}, we have ∆Ĩ,J(HI(µµµ, `)) =

0 when Ĩ 6= I and

det(HI(µµµ, `))1µ1≤...≤µN−1
= ε(σI)∆I,J(HI(µµµ, `))∆Ī,J̄(HI(µµµ, `))1µ1≤...≤µN−1

.

We conclude that

γk−1
N−1,1(`) = kN−1(N − 1)!

∑
I∈Fk−1(N−1)

∫
µ1≤...≤µN−1

det(HI(µµµ, `))dµ1 · · ·µN−1.

Since Pf
(
A1(I, `)

)
=

∫
µ1≤...≤µN−1

det(HI(µµµ, `))dµ1 · · ·µN−1 (see [15], [26] or equation

(13) in [20]) we obtain (20). This concludes the proof.

The major drawback of the result above is its complicated form. However, for small values
of N , we are able to get an explicit expression for qkN (l) and consequently (using (15), (16)
and (17)) for E (N c

k (S)) and E (N c
k (u,S)). We give some examples below and we derive
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Propositions 3.7 and 3.8 which are new results.

Examples: After tedious calculations we obtain

1. For N = 2: q1
2(l) = q2

2(−l) and

(22) q2
2(l) =

exp
(
− l2

2

)
2
√
π

[
exp

(
− l

2

2

)
+
√

2πlΦ(l)

]
.

2. For N = 3: q1
3(l) = q3

3(−l), q2
3(l) =

exp
(
−l2
)

√
π

and

(23) q3
3(l) =

exp
(
− l2

2

)
π
√

2

[√
π(2l2 − 1)Φ

(
l
√

2
)

+
√

2π exp

(
− l

2

2

)
Φ(l) + l exp

(
−l2
)]
.

3. For N = 4: q1
4(l) = q4

4(−l), q2
4(l) = q3

4(−l) and

(24) q3
4(l) =

exp
(
− l2

2

)
2π

[
3l

2
exp

(
−3l2

2

)
+
√

2π

(
1− l2

2

)
Φ̄(l) exp

(
−l2
)

−π(2l3 − 3l)√
2

Φ
(
l
√

2
)

Φ̄(l) +
3
√
π(1 + 2l2)

2
Φ
(
l
√

2
)

exp

(
− l

2

2

)]
.

(25) q4
4(l) =

exp
(
− l2

2

)
2π

[
3l

2
exp

(
−3l2

2

)
−
√

2π

(
1− l2

2

)
Φ(l) exp

(
−l2
)

+
π(2l3 − 3l)√

2
Φ
(
l
√

2
)

Φ(l) +
3
√
π(1 + 2l2)

2
Φ
(
l
√

2
)

exp

(
− l

2

2

)]
.

4. For N = 5: q1
5(l) = q5

5(−l), q2
5(l) = q4

5(−l) and

(26) q3
5(l) = q4

5(l)− 2q5
5(l) +

√
2 exp

(
− l2

2

)
3π3/2

[
π
(
4l4 − 12l2 + 3

)
Φ
(
l
√

2
)

+
√
π

(
3l3 − 13l

2

)
exp

(
−l2
)

+
√

2π

(
l4 + 3l2 +

3

4

)
exp

(
− l

2

2

)
Φ(l)

]
.

(27) q4
5(l) =

√
2 exp

(
− l2

2

)
3π3/2

[√
2π exp

(
−3l2

2

)(
l3

2
+

5l

4

)
+
√

2πΦ
(
l
√

2
)

exp

(
− l

2

2

)(
l4 + 3l2 +

3

4

)]
.

(28) q5
5(l) =

√
2 exp

(
− l2

2

)
3π3/2

[(
2l4 − 6l2 +

3

2

)
πΦ2

(
l
√

2
)

+

(
l4 + 3l2 +

3

4

)√
2πΦ

(
l
√

2
)

Φ(l) exp

(
− l

2

2

)
+
√

2π

(
l3

2
+

5l

4

)
Φ(l) exp

(
−3l2

2

)
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+

(
3l3 − 13l

2

)√
πΦ
(
l
√

2
)

exp
(
−l2
)

+
(
l2 − 2

)
exp

(
−2l2

)]
.

These probability densities are plotted in Figure 1. They all seem very close to a Gaussian
density. But only one, q2

3(l), is exactly Gaussian.

FIG 1. Probability densities qkN (l), k = 1, . . . ,N , of the ordered eigenvalues of a N GOE matrix for N =
2,3,4,5.

3.2.2. Mean number of critical points. For N = 2, using (15) and (23), after some cal-
culations, we retreive (1) with

E (N c(S)) =
2|S|√

3π

(
λ4

3λ2

)
.

In Proposition 3.7 we give the exact expression of E (N c
k (S)) when N = 3 for k = 0,1,2,3.

This proposition is a new result.

PROPOSITION 3.7. Under the conditions of Proposition 3.2 when N = 3

E (N c
0 (S)) = E(N c

3 (S)) =
|S|
π2
√

2

(
λ4

3λ2

)3/2(29− 6
√

6

12
√

6

)
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E (N c
1 (S)) = E(N c

2 (S)) =
|S|
π2
√

2

(
λ4

3λ2

)3/2(29 + 6
√

6

12
√

6

)
.

Consequently:

E (N c
0 (S))

E (N c(S))
=

E (N c
3 (S))

E (N c(S))
=

29− 6
√

6

116
' 0.1233

E (N c
1 (S))

E (N c(S))
=

E (N c
2 (S))

E (N c(S))
=

29 + 6
√

6

116
' 0.3767.

In the same way for N = 4, we obtain the expressions given in Proposition 3.8.

PROPOSITION 3.8. Set I := E
(
Φ(Y )Φ(

√
2Y )

)
, Y being a Gaussian centred variable

with variance 1/3. Under the conditions of Proposition 3.2 when N = 4

E (N c
1 (S)) = E (N c

3 (S)) =
|S|
π2

(
λ4

3λ2

)2( 25

24
√

3

)
,

E (N c
0 (S)) = E(N c

4 (S)) =
|S|
π2

(
λ4

3λ2

)2(I × 100π− 57

48
√

3π

)
,

E (N c
2 (S)) =

|S|
π2

(
λ4

3λ2

)2(50π(1− 2I) + 57

24
√

3π

)
.

Consequently,

E (N c
1 (S))

E (N c(S))
=

E (N c
3 (S))

E (N c(S))
=

1

4
,

E (N c
0 (S))

E (N c(S))
=

E (N c
4 (S))

E (N c(S))
=
I × 100π− 57

200π
' 0.060,

E (N c
2 (S))

E (N c(S))
=

50π(1− 2I) + 57

100π
' 0.380.

Note that, in the same way, it is possible to obtain exact expressions for the mean number of
critical points above a level u for N = 2, 3 or 4 using (23), (24), (25) and (26), (27), (28)
with Proposition 3.2.

4. Correlation function between critical points. In this section X is a random field
satisfying Assumption (A2).

4.1. Correlation function, two points function. The correlation function of a point pro-
cess P is defined by [14]

A(s, t) := lim
ε→0

1

V 2(ε)
E (P(B(s, ε))P(B(t, ε))) when it exists,

where P(B(s, ε)) is the number of points in the ball with center s and radius ε and V (ε) its
volume of this ball. When the considered process is stationary and isotropic, this function
depends only on the norm ρ := ‖s− t‖ and by a small abuse of notation we will denote it by
A(ρ).
Suppose now that the point process P is the process of critical points of X . Under our condi-
tions, the Kac-Rice formula of order two in sufficiently small sets is valid (see Appendix A,
Proposition A.3, equation (70)) . In particular if S and T are disjoint, sufficiently close and
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sufficiently small (as B(s, ε) and B(t, ε) for s 6= t and ‖s− t‖ and ε sufficiently small), the
Kac-Rice formula of order two (70) yields

(29) E[N c(S)N c(T )]

=

∫
S×T

E
(
|det(∇2X(s)) det(∇2X(t))|/∇X(s) =∇X(t) = 0

)
p∇X(s),∇X(t)(0,0)dsdt,

proving that for ρ sufficiently small, A(ρ) is well defined and given by

(30) A(ρ) = E
(
|det(∇2X(0)) det(∇2X(t))|/∇X(0) =∇X(t) = 0

)
p∇X(0),∇X(t)(0,0)

with, for example, t= ρe1 and e1 := (1,0, . . . ,0).
Some papers, as [11] consider the behaviour as ρ→ 0 of

T (ρ) := E(N c(Bρ)(N c(Bρ)− 1)), Bρ is any ball with radius ρ.

It is elementary to see that if A(ρ)' Cρd then T (ρ)' CV 2
Nρ

d+2N , where ' means, as in
the rest of the paper, equivalence as ρ→ 0 and VN is the volume of the unit ball.

4.2. Attraction, neutrality, repulsion.

• The reference of neutral point process is the Poisson process for which the correlation
function A(ρ) is constant and T (ρ) behaves as ρ2N .

• The repulsion is defined by the fact that the correlation function A(ρ) tends to zero as
ρ→ 0. Equivalently T (ρ) = o(ρ2N ). Note that determinental processes [23] are a way of
constructing repulsive point processes.

• The attraction is just the contrary: as ρ→ 0, A(ρ)→+∞,
T (ρ)

ρ2N
→+∞.

As already mentioned in the preceding section, under our assumptions the sample paths are
a.s. Morse, and the index of each critical point can a.s. be defined. We can generalise the
definition of the correlation function by

(31) Ai1,i2(s, t) := lim
ε→0

1

V 2(ε)
E
(
N c
i1(B(s, ε))N c

i2(B(t, ε))
)
, when it exists.

The Kac-Rice formula (71) yields that for ρ sufficiently small this function is well defined
and

(32) Ai1,i2(ρ) = p∇X(0),∇X(t)(0,0)

×E
(
|det(∇2X(0))1i(∇2X(0))=i1 det(∇2X(t))1i(∇2X(t))=i2 |/∇X(0) =∇X(t) = 0

)
,

with again t = ρe1. In the same way, we can consider attraction, neutrality or repulsion be-
tween critical points with indexes i1 and i2.

Before giving our main results concerning correlation functions between critical points,
we give in the following paragraph some results concerning the conditional distribution of
∇2X(0),∇2X(t) given ∇X(0) =∇X(t) = 0.

4.3. Conditional distribution of ∇2X(0),∇2X(t). In this section, for short, r(ρ2),
r′(ρ2), r′′(ρ2), r′′′(ρ2) and r(4)(ρ2) are denoted by r, r′, r′′, r′′′ and r(4). We recall that
t= ρe1.
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LEMMA 4.1. Let ξ(0) and ξ(t) be a representation of the distribution of ∇2X(0) and
∇2X(t) given∇X(0) =∇X(t) = 0. We note ξd(t) the vector (ξ11(t), . . . , ξNN (t)) and ξu(t)
the vector

(
ξ12(t), ξ13(t), . . . , ξ(N−1)N (t)

)
. The joint distribution of (ξd(0), ξu(0), ξd(t), ξu(t))

is centred Gaussian with variance-covariance matrix:
Γ1 0 Γ3 0
0 Γ2 0 Γ4

Γ3 0 Γ1 0
0 Γ4 0 Γ2

 .
Γ1 is the N ×N matrix:

Γ1 =


12r′′(0) 4r′′(0) · · · 4r′′(0)

4r′′(0)
. . . 4r′′(0)

...
... 4r′′(0)

. . . 4r′′(0)
4r′′(0) · · · 4r′′(0) 12r′′(0)

+
ρ2r′(0)

2[r′(0)2 − (r′ + 2r′′ρ2)2]
×M,

with

M =


(12r′′ + 8ρ2r′′′)2 4r′′(12r′′ + 8ρ2r′′′) · · · 4r′′(12r′′ + 8ρ2r′′′)

4r′′(12r′′ + 8ρ2r′′′) 16r′′2 · · · 16r′′2

...
...

. . .
...

4r′′(12r′′ + 8ρ2r′′′) 16r′′2 · · · 16r′′2

 .
Γ2 is the N(N−1)

2 × N(N−1)
2 diagonal matrix:

Γ2 =

[
D1 0
0 D2

]
with D1 =

(
4r′′(0) +

8ρ2(r′′)2r′(0)

r′(0)2 − (r′)2

)
IdN−1 and D2 =

(
4r′′(0)

)
Id (N−1)(N−2)

2

.

We set a := 4r′′ + 8ρ2r′′′ and d := 12r′′ + 48ρ2r′′′ + 16ρ4r(4). Γ3 is the N ×N matrix:

Γ3 =


d a · · · · · · a
a 12r′′ 4r′′ · · · 4r′′

... 4r′′
. . . 4r′′

...
...

... 4r′′
. . . 4r′′

a 4r′′ · · · 4r′′ 12r′′

+
ρ2(r′ + 2r′′ρ2)

2
[
r′(0)2 − (r′ + 2r′′ρ2)2

] ×M.

Γ4 is the N(N−1)
2 × N(N−1)

2 diagonal matrix:

Γ4 =

[
D̃1 0

0 D̃2

]
with D̃1 =

(
a+

8ρ2(r′′)2r′

r′(0)2 − r′2

)
IdN−1 and D̃2 = 4r′′Id (N−1)(N−2)

2

.

The proof of Lemma 4.1 is given in Appendix B.

In the following lemma, we give the equivalent of the variance-covariance matrix of
∇2X(0),∇2X(t) given ∇X(0) =∇X(t) = 0 as ρ→ 0.

LEMMA 4.2. Using the same notation as in Lemma 4.1, for j 6= k and j, k 6= 1, as ρ→ 0

(33) det (Var (∇X(0),∇X(t)))' ρ2N λ
N
2 λ

N
4

3N−1
,
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Var (ξ11(t))' ρ2

4

(λ2λ6 − λ2
4)

λ2
, Var (ξ1j(t))'

ρ2

4

(9λ2λ6 − 5λ2
4)

45λ2
,(34)

Var (ξjj(t))'
8λ4

9
, Var (ξjk(t))'

λ4

3
,(35)

(36) Cov (ξ11(t), ξjj(t)) = ρ2 11λ2λ6 − 15λ2
4

180λ2
+ o(ρ2), Cov (ξjj(t), ξkk(t))'

2λ4

9
.

(37) All the other covariances Cov(ξil(t), ξmn(t)) are zero, ∀i, l,m,n ∈ {1, . . . ,N}.
We have of course the same relations for ξ(0).

Moreover we have ∀j, k ∈ {2, . . . ,N} and ∀i ∈ {1, . . . ,N}; as ρ→ 0,

(38) Cov (ξjk(0), ξjk(t))'Var (ξjk(t)) , Cov (ξ1i(0), ξ1i(t))'−Var (ξ1i(t)) ,

(39)

Cov (ξ11(0), ξjj(t)) = ρ2 15λ2
4 − 7λ2λ6

180λ2
+ o(ρ2), Cov (ξjj(0), ξkk(t))'

2λ4

9
for j 6= k,

(40) All the other covariances Cov(ξil(0), ξmn(t)) are zero, ∀i, l,m,n ∈ {1, . . . ,N}.
Finally we also have

(41) det (Var (ξ11(t), ξ11(0)))' ρ6

144

(λ4λ8 − λ2
6)(λ2λ6 − λ2

4)

λ2λ4
.

The proof of Lemma 4.2 is given in Appendix B. It is based on some lengthy computations
but uses a trick that simplify drastically computations. We present it here in the example of
the proof of (33).

TRICK 4.3. Because a determinant is invariant by adding to some row (resp. column) a
linear combination of other rows (resp. columns) as ρ→ 0,

det (Var (∇X(0),∇X(t))) = det(Var(X ′1(0), . . . ,X ′N (0),X ′1(t), . . . ,X ′N (t)))

= det(Var(X ′1(0), . . . ,X ′N (0),X ′1(t)−X ′1(0), . . . ,X ′N (t)−X ′N (0)))

' ρ2N det(Var(X ′1(0), . . . ,X ′N (0),X
′′

11(0), . . . ,X
′′

1N (0))).

Using Lemma 2.3 we obtain (33).

4.4. Correlation function between critical points for random processes. The result below
appears in a hidden way in Proposition 4.5 or Section 5.2 of [9] or in [5]. It is stated in term
of crossings of a level and can be applied directly to critical points that are simply crossings
of the level zero of the derivative.

PROPOSITION 4.4. Let X = {X(t) : t ∈R} be a stationary and isotropic Gaussian pro-
cess with real values satisfying Assumption (A3). Let A(ρ) be the correlation function be-
tween critical points of X defined in (30). Then, as ρ→ 0

(42) A(ρ)' (λ2λ6 − λ2
4)

8π
√
λ4λ3

2

ρ.

Under Assumption (A4), let A1,1(ρ) (resp. A0,0(ρ)) be the correlation function between max-
ima (resp. minima) defined in (32). Then as ρ→ 0

(43) A1,1(ρ) =A0,0(ρ)' (λ4λ8 − λ2
6)3/2

1296π2(λ2
4)(λ2λ6 − λ2

4)1/2
ρ4.
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Note that all the coefficients above are positive. The interpretation of the proposition is that
we have always repulsion between critical points and a very strong repulsion between max-
ima or between minima. As we will see, the surprising result is that does not remain true in
higher dimension.
Before beginning the proof we need to give the following lemma .

LEMMA 4.5. Let X,Y be two jointly Gaussian variables with common variance σ2 and
correlation c. Let r a positive real. Then as c→−1

E
(
(X+Y +)r

)
'Krσ

−2(1+r)
(

det(Var(X,Y ))
)(2r+1)/2

,

where

Kr =
1

2π

∫ +∞

0

∫ +∞

0
xryr exp

(
− (x+ y)2

2

)
dxdy <+∞ , K1 =

1

6π
.

Moreover as c→−1

E
(
X+Y −

)
' σ2

2
.

PROOF OF LEMMA 4.5. We set Σ := Var(X,Y ). Then

E
(
(X+Y +)r

)
=

∫ +∞

0

∫ +∞

0
xryr

1

2π
√

det Σ
exp

(
− σ2(x2 − 2cxy+ y2)

2 det Σ

)
dxdy

' 1

2π
(det Σ)(2r+1)/2σ−2(1+r)

∫ +∞

0

∫ +∞

0
xryr exp

(
− (x+ y)2

2

)
dxdy,

where we have made the change of variables x= x′
√

det Σ

σ2
, y = y′

√
det Σ

σ2
and the passage

to the limit is justified because the integrand is a monotone function of c. It is easy to check
the convergence of the integral.

E
(
X+Y −

)
=−

∫ +∞

0

∫ 0

−∞

xy

2π
√

det Σ
exp

(
− σ2(x2 − 2cxy+ y2)

2 det Σ

)
dydx.

Integrating first with respect to y we obtain

E
(
X+Y −

)
=

(det Σ)3/2

2πσ4
− c
∫ +∞

0

x2

σ
√

2π
exp

(
− x2

2σ2

)
Φ

(
−cx

√
σ2

det Σ

)
dx.

As c→−1,
det Σ

σ2
= σ2(1− c2)→ 0, therefore∫ +∞

0

x2

σ
√

2π
exp

(
− x2

2σ2

)
Φ

(
−cx

√
σ2

det Σ

)
dx→ σ2

2
.

Moreover
(det Σ)3/2

σ6
→ 0. That concludes the proof.

PROOF OF PROPOSITION 4.4. The first relation (42) is a particular case of Theorem 4.6
below. Let us prove the second relation (43). By (32)

A0,0(ρ) = pX′(ρ),X′(0)(0,0) E
(
X ′′(0)+X ′′(ρ)+/X ′(0) =X ′(ρ) = 0

)
.
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By (33) we have

pX′(ρ),X′(0)(0,0)' ρ−1
(

2π
√
λ4λ2

)−1
.

Define

w := Cov
(
X ′′(0),X ′′(ρ)/X ′(0) =X ′(ρ) = 0

)
,

v := Var
(
X ′′(0)/X ′(0) =X ′(ρ) = 0

)
= Var

(
X ′′(ρ)/X ′(0) =X ′(ρ) = 0

)
,

D := det
(
Var

(
X ′′(0),X ′′(ρ)/X ′(0) =X ′(ρ) = 0

))
= v2 −w2.

By (38), (34) and (41) we have w '−v,

v ' ρ2λ2λ6 − λ2
4

4λ2
and D ' ρ6 (λ4λ8 − λ2

6)(λ2λ6 − λ2
4)

144λ2λ4
.

Now using Lemma 4.5 we get

E
(
X ′′(0)+X ′′(ρ)+/X ′(0) =X ′(ρ) = 0

)
' D3/2

6πv2
.

That concludes the proof.

4.5. Correlation function between critical points for random fields.

4.5.1. All the critical points. Consider X = {X(t) : t ∈ RN} a stationary and isotropic
Gaussian field with real values. Let us consider two points s, t ∈ RN . Theorem 4.6 below,
gives the asymptotic expression (as ρ→ 0) of the correlation function between critical points
(30) of any isotropic Gaussian field. It generalizes the result of [11] and of [12] to general
fields in any dimension.

THEOREM 4.6. Let X = {X(t) : t ∈ RN} be a stationary and isotropic Gaussian field
with real values satisfying Assumption (A3). Let A(ρ) be the correlation function between
critical points (30). Then as ρ→ 0,

(44) A(ρ)' ρ2−N γN−1

233(N−1)/2πN

(√
λ4

λ2

)N
(λ2λ6 − λ2

4)

λ2λ4
,

where γN−1 is defined by

γN−1 := E
(
det2 (GN−1 −ΛIdN−1)

)
,

with GN−1 a (N − 1)-GOE matrix and Λ an independent Gaussian random variable with
variance 1/3.

REMARK 4.7. We set γN−1,2(x) := E
(
det2 (GN−1 − xIdN−1)

)
. Note that formulas

2.2.16 and 2.2.17 in [26] give explicit expressions for the calculation of γN−1,2(x) for x ∈R.

REMARK 4.8. • Of course when N = 1, we retrieve (42).
• In the particular case N = 2, our result agrees with the result of [12], Theorem 1.2.
• Theorem 4.6 means that, for N = 2, there is a neutrality between critical points and for
N > 2 there is even attraction! This is quite different from the case N = 1. The next
theorem will give an interpretation of this phenomenon.
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• A first important consequence is finiteness of the second moment of the number of critical
points. Indeed if S is a compact set of RN we can write the Kac-Rice formulas of order 1
and 2, (11), (29), (32). If N c(S) is the number of critical points that belong to S then

E(N c(S)) = |S|E
(
|det∇2X(t)|

)
p∇X(t)(0)

and

(45) E
(
(N c(S))(N c(S)− 1)

)
=

∫
S2

A(||s− t||)ds dt.

Since λ4 is assumed to be finite, the expectation is always finite. As for the second factorial
moment, its finiteness is in general not systematic. In our case (44) implies the convergence
of the integral in (45) on the diagonal implying in turn the finiteness of the second moment.
Nevertheless our conditions are less general than [22] or [6].

PROOF OF THEOREM 4.6. For the simplicity of the exposition we admit in a first step all
passages to the limit. They will be justified at the end of the proof. By (30)

(46) A(ρ) = E(|det(ξ(0)) det(ξ(t))|)p∇X(0),∇X(t)(0,0),

with t= ρe1. We recall that ξ(0) and ξ(t) are a representation of the conditional distribution
of the Hessian at 0 and t. Because of (33),

(47) p∇X(0),∇X(t)(0,0)' ρ−N3(N−1)/2λ
−N/2
2 λ

−N/2
4 (2π)−N .

It remains to study the expectation in (46). We denote by ξ−1(t) the (N − 1) × (N − 1)
matrix corresponding to the Hessian matrix ξ(t) without its first row and column.
Let us develop det (ξ(t)) with respect to the first row, for example. The first term is
ξ11(t) det (ξ−1(t)).
Consider another term and develop it now with respect to the first column. Each of the N − 1
terms that appear are products that include a factor ξ1jξj′1 with j, j′ 6= 1 so because of (34)
they are Op(ρ2): divided by ρ2 they are bounded in probability. As a consequence we have
proved that

det (ξ(t)) = ξ11(t) det (ξ−1(t)) +Op(ρ
2).

By (35) and (34) we have

(48) ξ−1(t)'
√

2λ4

3
(GN−1 −ΛIdN−1) ,

where Λ is a N (0,1/3) random variable, GN−1 is a size (N − 1) GOE matrix defined previ-
ously, Λ and GN−1 are independent. So

(49) det (ξ−1(t))'
(

2λ4

3

)(N−1)/2

det (GN−1 −ΛIdN−1) .

The order of magnitude of the first term in the development of the determinant is then ρ.
In conclusion we have proved that

det (ξ(t)) =Op(ρ) = ξ11(t) det (ξ−1(t)) +Op(ρ
2)(50)

det (ξ(0)) det (ξ(t)) =Op(ρ
2) = ξ11(0)ξ11(t) det (ξ−1(0)) det (ξ−1(t)) +Op(ρ

3).

By (38), (36) and (37):

Corr(ξ11(0), ξ11(t))→−1, Corr(ξjk(t), ξjk(0))→ 1, ∀j, k ∈ 2, . . . ,N,

Cov(ξ11(t), ξjj(t)) =O(ρ2), Cov(ξ11(t), ξjk(t)) = 0 ∀j 6= k ∈ 1, . . . ,N.
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Then

(51) det (ξ(0)) det (ξ(t))'−ξ11(t)2det2 (ξ−1(t))

E (|det (ξ(0)) det (ξ(t)) |)'Var(ξ11(t)) E
(
det2 (ξ−1(t))

)
,

Finally equations (34) and (49) with (47) and (46) give (44).

Justification of the passages to the limit: Since we are in the Gaussian space generated by
the random field X all the variables considered above are jointly Gaussian. So their absolute
values are bounded by the maximum in absolute value of a bounded random field. General
results about the maximum of random fields, for example the Borell-Sudakov-Tsirelson the-
orem ([9] Section 2.4) implies that the maximum of its absolute value has moments of every
order, giving all the dominations needed.

4.5.2. Correlation function between critical points with adjacent indexes.

THEOREM 4.9. Let X = {X(t) : t ∈ RN} be a stationary and isotropic Gaussian field
with real values satisfying Assumption (A3). Let Ak,k+1(ρ) be the correlation function (32)
between critical points with index k and critical points with index k + 1, k = 0, . . . ,N − 1.
Then as ρ→ 0,

(52) Ak,k+1(ρ)' ρ2−N γkN−1

243(N−1)/2πN

(√
λ4

λ2

)N
(λ2λ6 − λ2

4)

λ2λ4
,

where γkN−1 is defined by

(53) γkN−1 := E
(
det2 (GN−1 −ΛIdN−1)1{i(GN−1−ΛIdN−1)=k}

)
,

with GN−1 a (N −1)-GOE matrix and Λ an independent centred Gaussian random variable
with variance 1/3.

This theorem gives an interpretation to Theorem 4.6: the attraction for N ≥ 3 is in fact
due to attraction between critical points with adjacent indexes.

Again, in the particular case of the random plane wave (N = 2), our result agrees with the
result of [11], formula (9).

We set γkN−1,2(x) := E
(
det2 (GN−1 − xIdN−1)1{i(GN−1−xIdN−1)=k}

)
for x ∈R. Before

proving Theorem 4.9 we give in the following lemma an exact expression for the calculation
of γkN−1,2(x).

LEMMA 4.10. Using notation above and notation introduced in paragraph 3.2.1 we have

γkN−1,2(x) = kN−1(N − 1)!
∑

I∈Fk(N−1)

Pf
(
A2(I, `)

)
,

where kN−1 is given by (14) and Pf
(
A2(I, `)

)
is the Pfaffian of the skew matrix A2(I, `)

defined by (18) and (19) with n=N − 1 and α= 2.
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PROOF OF LEMMA 4.10. The proof follows the same lines as in Theorem 3.5 with

γkN−1,2(`) = kN−1(N − 1)!

∫
Ok+1(`)

N−1∏
i=1

(µi − `)2

∏
1≤i<j≤N−1

(µj − µi) exp

(
−
∑N−1

i=1 µ2
i

2

)
dµ1 . . . dµN−1.

Then we set H(µµµ, `) the matrix {hm(µj , `),m, j = 1, . . . ,N − 1} with hm(µj , `) =

µm−1
j (µj − `)2 exp

(
−µ2

j/2
)

.

PROOF OF THEOREM 4.9. By (32) we have

Ak,k+1(ρ) = p∇X(0),∇X(t)(0,0) E
(
|det ξ(0)|1{i(ξ(0))=k}|det ξ(t)|1{i(ξ(t))=k+1}

)
=−p∇X(0),∇X(t)(0,0) E

(
det (ξ(0))1{i(ξ(0))=k} det ξ(t)1{i(ξ(t))=k+1}

)
.

We can modify the computation of the determinant of ξ(0) in (50) to compute in place
det
(
ξ(0)− λIdN

)
:

(54) det (ξ(0)− λIdN ) =
(
ξ11(0)− λ

)
det (ξ−1(0)− λIdN−1) +Op(ρ

2).

Note that as ρ→ 0, ξ(0) converges in L2 (or a.s. if we use a Skorohod imbedding argument)
to 

0 0 . . . 0
0
... ξ−1(0)
0

 .

Its eigenvectors converge to those of this last matrix. These eigenvectors are associated to
different eigenvalues so we can define properly the eigenvalue µ1 that tends to zero. Because
of (54) with λ= µ1:

(ξ11(0)− µ1) det (ξ−1(0)− µ1IdN−1) =Op(ρ
2),

implying in turn that

µ1 = ξ11(0) +Op(ρ
2).

On the other hand, the others eigenvalues, say µ2, . . . , µN , converge in distribution to that
given by the right-hand side of (48). This implies in turn that

1{i(ξ(0))=k} ' 1{ξ11(0)<0;i(ξ−1(0))=k−1} + 1{ξ11(0)>0;i(ξ−1(0))=k}.

As a consequence, when computing E
(
det (ξ(0))1{i(ξ(0))=k} det ξ(t)1{i(ξ(t))=k+1}

)
, we

have four cases to consider depending on the signs of ξ11(0), ξ11(t). First we consider the
case ξ11(0)> 0, ξ11(t)< 0. We have the equivalent of (51)

det (ξ(0)) det (ξ(t))1{ξ11(0)>0,ξ11(t)<0}1{i(ξ−1(t))=i(ξ−1(0))=k}

=−ξ11(t)21{ξ11(t)<0}det2 (ξ−1(t))1{i(ξ−1(t))=k} +Op(ρ
3),
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giving

E
(
|det (ξ(0)) det (ξ(t)) |1{ξ11(0)>0,ξ11(t)<0}1{i(ξ−1(t))=i(ξ−1(0))=k}

)
= 1/2 Var(ξ11(t)) E

(
det2 (ξ−1(t))1{i(ξ−1(t))=k}

)
+O(ρ3).

This gives (52) as soon as we have checked that the three other cases give smaller contribu-
tions which is direct.

4.5.3. Correlation function between critical points with extreme indexes. First, we give
a bound for the correlation function between maxima and minima (Theorem 4.11) then a
bound for the correlation function between maxima (or between minima) (Theorem 4.12).

THEOREM 4.11. Let X = {X(t) : t ∈ RN ,N > 1} be a stationary and isotropic Gaus-
sian field with real values satisfying Assumption (A3). Let A0,N (ρ) be the correlation func-
tion (32) between minima and maxima. Then for all ε > 0 there exists a positive constant
K(ε)> 0 such that as ρ→ 0,

(55) A0,N (ρ)≤K(ε)× ρ2N−1−ε.

Upper bound (55) proves strong repulsion between maxima and minima.

THEOREM 4.12. Let X = {X(t) : t ∈ RN ,N > 1} be a stationary and isotropic Gaus-
sian field with real values satisfying Assumption (A4). Let AN,N (ρ) (respectively A0,0(ρ))
be the correlation function (32) between maxima (respectively minima). Then ∀ε > 0 there
exists a constant K̃(ε)> 0 such that as ρ→ 0,

(56) A0,0(ρ) =AN,N (ρ)≤ K̃(ε)× ρ5−N−ε.

Upper bound (56) proves repulsion between maxima (or minima) for N < 5.
In the particular case N = 1, note that, strictly speaking, Proposition 4.4 gives no equiva-

lent of Theorem 4.11. In fact, since a maxima is followed by a minima and reciprocally it is
easy to deduce from (42) that we have (55) with ε = 0. On the other hand (43) implies that
the result of Theorem 4.12 holds true with ε= 0.

As this work was achieved we have discovered the work [12] which is similar to the result
of this section but limited to the dimension N = 2. In this last particular case Theorem 4.6 is
the analogue of Theorem 1.2 of [12]; Theorem 4.9 has no equivalent in [12]; Theorems 4.11
and 4.12 are similar but a little weaker than Theorems 1.3 and 1.4 of [12] that are obtained by
a difficult diagonalization of the Hessian which is absolutely impossible in the case N > 2.

PROOF OF THEOREM 4.11. We use Hadamard’s inequality. If M is a positive semidefi-
nite matrix of size N

det(M)≤M11 × · · · ×MNN .

As a consequence for any symmetric matrix M ′

(57) det(M ′)1{i(M ′)=0} ≤ (M ′11)+ × · · · × (M ′NN )+ .

By Kac-Rice formula (32)

A0,N (ρ) = p∇X(0),∇X(t)(0,0) E
(
|det ξ(0)|1{i(∇2ξ(0))=0}|det ξ(t)|1{i(∇2ξ(t))=N}

)
.
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We have

A0,N (ρ)≤ (−1)Np∇X(0),∇X(t)(0,0) E
(
ξ+

11(0)ξ+
22(0) . . . ξ+

NN (0)ξ−11(t)ξ−22(t) . . . ξ−NN (t)
)
.

By Cauchy-Schwarz inequality and symmetry of the role of 0 and t we obtain

A0,N (ρ)≤ (−1)N−1p∇X(0),∇X(t)(0,0) E
(
ξ+

11(0)2ξ+
22(0) . . . ξ+

NN (0)ξ−22(t) . . . ξ−NN (t)
)
.

By Hölder’s inequality for every p > 1

A0,N (ρ)≤ p∇X(0),∇X(t)(0,0)× Iρ ×
(

E
(
ξ+

11(0)2p/(p−1)
))(p−1)/p

.

where Iρ :=
(
E
(
|ξ+

22(0) . . . ξ+
NN (0)ξ−22(t) . . . ξ−NN (t)|p

))1/p. Since ξ11(0) is centred Gaussian

with variance ρ2λ2λ6 − λ2
4

4λ2
, there exists a constant K(p)> 0 depending on p such that(
E
(
ξ+

11(0)2p/(p−1)
))(p−1)/p

≤ ρ2K(p).

By (47) we have p∇X(0),∇X(t)(0,0) =O(ρ−N ). Now let us prove that

(58) Iρ =O
(
ρ(N−1)(2+1/p)

)
.

We set ξ̃ := (ξ22(0), . . . , ξNN (0), ξ22(t), . . . , ξNN (t)), ξ̃i the ith coordinate of ξ̃ for i =
1, . . . ,2N − 2, ξ̃−i (resp. ξ̃−(i,j)) the vector ξ̃ without its ith (resp. ith and jth) coordi-
nate(s). We set Σρ := Var(ξ̃). We define S = {x ∈ R2N−2 : x1 > 0, . . . , xN−1 > 0, xN <
0, . . . , x2N−2 < 0}. Then

(59) Iρ =

(∫
S

|ξ̃1 . . . ξ̃2N−2|p

(2π)(2N−2)/2
√

det Σρ

exp

(
−1

2
ξ̃Σ−1

ρ ξ̃>
)
dξ̃

)1/p

.

• Equivalent of det(Σρ) as ρ→ 0

For short we set Xi :=Xi(0) and Xij :=Xij(0).

det Σρ =
det Var(X22, . . . ,XNN ,X22(t), . . . ,XNN (t),X1, . . . ,XN ,X1(t), . . . ,XN (t))

det Var(X1, . . . ,XN ,X1(t), . . . ,XN (t))
.

Using Trick 4.3, we obtain as ρ→ 0

det Σρ ' ρ2(N−1) det Var(X22, . . . ,XNN ,X122, . . . ,X1NN ,X1, . . . ,XN ,X11, . . . ,X1N )

det Var(X1, . . . ,XN ,X11, . . . ,X1N )
.

Using Lemma 2.3, (5) and (6) we get, as ρ→ 0

det Σρ 'ρ2(N−1) det Var(X11, . . . ,XNN ) det Var(X1,X122, . . . ,X1NN )

Var(X1) Var(X11)

'ρ2(N−1)(N + 2)

(
2λ4

3

)N−1(2λ6

15

)N−2(3(N + 1)λ2λ6 − 5(N − 1)λ2
4

135λ2

)
.

So

ρ2(1−N) det Σρ ' g := (N + 2)

(
2λ4

3

)N−1(2λ6

15

)N−2(3(N + 1)λ2λ6 − 5(N − 1)λ2
4

135λ2

)
.
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By (3) we have λ2λ6 ≥
5(2 +N)

3(4 +N)
λ2

4. Since
5(N − 1)

3(N + 1)
<

5(2 +N)

3(4 +N)
we deduce that g > 0

under our hypotheses.

• Equivalent of Σ−1
ρ as ρ→ 0.

Because of the exchangeability of the coordinates 2, . . . ,N

Σ−1
ρ :=

(
αρIdN−1 + βρJN−1,N−1 γρIdN−1 + δρJN−1,N−1

γρIdN−1 + δρJN−1,N−1 αρIdN−1 + βρJN−1,N−1

)
.

Using the classical expression of conditional variance and covariance(
Σ−1
ρ

)
ii

=
1

Var(ξ̃i/ξ̃−i)
=

det Var(ξ̃−i)

det Var(ξ̃)(
Σ−1
ρ

)
ij

=
−Cov(ξ̃i, ξ̃j/ξ̃−(i,j))

det Var(ξ̃i, ξ̃j/ξ̃−(i,j))
=

Var(ξ̃i/ξ̃−(i,j)) + Var(ξ̃j/ξ̃−(i,j))−Var(ξ̃i + ξ̃j/ξ̃−(i,j))

2 det Var(ξ̃i, ξ̃j/ξ̃−(i,j))

=
det Var(ξ̃−j) + det Var(ξ̃−i)− det Var(ξ̃i + ξ̃j , ξ̃−(i,j))

2 det Var(ξ̃)
,

and using the same techniques as those previously used for the calculation of the equivalent
of det(Σρ) and for the proof of Lemma 4.2, we obtain the equivalents of

(
Σ−1
ρ

)
11

,
(
Σ−1
ρ

)
12

,(
Σ−1
ρ

)
1N

and
(
Σ−1
ρ

)
1(N+1)

.

We get ρ2αρ ' α :=
15

2λ6
, ρ2βρ ' β :=

15

2λ6

5λ2
4 − 3λ2λ6

3(N + 1)λ2λ6 − 5(N − 1)λ2
4

, ρ2γρ ' −α and

ρ2δρ '−β. So ρ2Σ−1
ρ converges to

Σ̃ :=

(
αIdN−1 + βJN−1,N−1 −αIdN−1 − βJN−1,N−1

−αIdN−1 − βJN−1,N−1 αIdN−1 + βJN−1,N−1

)
where the matrix αIdN−1 + βJN−1,N−1 is positive definite under our conditions. Indeed by
(7)

det(αIdn + βJn,n) = αn−1(α+ nβ),

and we have α> 0 and

α+ nβ =
15

2λ6

3(N + 1− n)λ2λ6 − 5(N − 1− n)λ2
4

3(N + 1)λ2λ6 − 5(N − 1)λ2
4

> 0 ∀n= 1, . . . ,N − 1

under our conditions.

• Formal finite limit

We make the change of variables ξ̃ = ρz in (59) to obtain

(60) Iρ = ρ(2N−2)+(N−1)/p

×

∫
S

|z1 . . . z2N−2|p

(2π)(2N−2)/2
√
ρ2(1−N) det Σρ

exp

(
−1

2
z
(
ρ2Σ−1

ρ

)
z>
)
dz

1/p

.
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We set z̄1 := (z1, . . . , zN−1), z̄2 := (zN , . . . , z2N−2) and

fρ(z) :=
|z1 . . . z2N−2|p

(2π)(2N−2)/2
√
ρ2(1−N) det Σρ

exp

(
−1

2
z
(
ρ2Σ−1

ρ

)
z>
)
.

As ρ→ 0, fρ(z) converges to
|z1 . . . z2N−2|p

(2π)(2N−2)/2√g
exp

(
−1

2
zΣ̃z>

)
equals to

|z1 . . . z2N−2|p

(2π)(2N−2)/2√g
exp

(
−1

2
(z̄1 − z̄2)(αIdN−1 + βJN−1,N−1)(z̄1 − z̄2)>

)
that is integrable on S since g > 0 and αIdN−1 + βJN−1,N−1 is positive definite.

• Domination

Let us choose g0, α0 and β0 such that 0 < g0 < g, 0 < α0 < α and β0 < β such that
0<α0 + nβ0 ∀n= 1, . . . ,N − 1 which is always possible. Then for ρ sufficiently small
(61)

fρ(z)≤
|z1 . . . z2N−2|p

(2π)(2N−2)/2√g0
exp

(
−1

2
(z̄1 − z̄2)(α0IdN−1 + β0JN−1,N−1)(z̄1 − z̄2)>

)
.

Since α0 > 0 and α0 + nβ0 > 0 ∀n = 1, . . . ,N − 1, α0IdN−1 + β0JN−1,N−1 is positive
definite and the right hand side of (61) is integrable on S . Finally we conclude the proof
taking p= 1− ε.

PROOF OF THEOREM 4.12. We follow the same lines as in the proof of Theorem 4.11.
By Kac-Rice formula (32):

A0,0(ρ) = p∇X(0),∇X(t)(0,0) E
(
|det ξ(0)|1{i(∇2ξ(0))=0}|det ξ(t)|1{i(∇2ξ(t))=0}

)
.

Using (57), Cauchy-Schwarz inequality and symmetry of the role of 0 and t we get

A0,0(ρ)≤ p∇X(0),∇X(t)(0,0) E
(
ξ+

11(0)ξ+
11(t)ξ+

22(0)2 . . . ξ+
NN (0)2

)
.

By (47) we have p∇X(0),∇X(t)(0,0) =O(ρ−N ). Now let us prove that

(62) Ĭρ := E
(
ξ+

11(0)ξ+
11(t)ξ+

22(0)2 . . . ξ+
NN (0)2

)
=O(ρ4+1/p).

By Hölder’s inequality for every p > 1

(63) Ĭρ ≤
(
E
(
ξ+

11(0)pξ+
11(t)p

))1/p (
E
(
ξ+

22(0)2p/(p−1) . . . ξ+
NN (0)2p/(p−1)

))(p−1)/p
.

Since Cov(ξ11(0), ξ11(t))'−Var(ξ11(t)) (see Lemma 4.2), by Lemma 4.5

(64) E
(
ξ+

11(0)pξ+
11(t)p

)
' (const)

1

(Var(ξ11(t)))1+p
(det(Var(ξ11(0), ξ11(t))))p+1/2.

By Lemma 4.2 we have

Var(ξ11(t))' ρ2

4

(λ2λ6 − λ2
4)

λ2
,

det(Var(ξ11(0), ξ11(t)))' ρ6

144

(λ2λ6 − λ2
4)(λ4λ8 − λ2

6)

λ2λ4
,
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and by (64) we deduce

(65)
(
E
(
ξ+

11(0)pξ+
11(t)p

))1/p ' (const)ρ4+1/p.

We now consider the term
(

E
(
ξ+

22(0)2p/(p−1) . . . ξ+
NN (0)2p/(p−1)

))(p−1)/p
in (63).

We set ξ̆ := (ξ22(0), ξ33(0), . . . , ξNN (0)). ξ̆ is a Gaussian vector centred with variance-
covariance matrix

Var(ξ̆) = (aρIdN−1 + bρJN−1,N−1)

explicitly given in Lemma 4.1. According to Lemma 4.2, as ρ→ 0,

aρ→
2λ4

3
and bρ→

2λ4

9
.

Using Lebesgue’s dominated convergence theorem we can deduce that there exists a constant
C(p)> 0 such that, as ρ→ 0

(66) E
(
ξ+

22(0)2p/(p−1) . . . ξ+
NN (0)2p/(p−1)

)
'C(p).

(66) and (65) give (62). Finally we conclude the proof taking p= 1− ε.

APPENDIX A: VALIDITY OF KAC-RICE FORMULAS FOR STATIONARY
GAUSSIAN PROCESSES AND FIELDS

Let X = {X(t) : t ∈ U ⊂ RN} be a zero-mean, stationary Gaussian random field defined
on an open set U ⊂RN . We follow chapter 6 of [9]. So we need∇X(·) to be C1. Recall that
N c(S), N c

k (S) and N c
k (u,S) are respectively the number of critical points, the number of

critical points with index k and the number of critical points with index k above the level u
of the random field X(·) in a Borel set S ⊂ U .

PROPOSITION A.1. Let X = {X(t) : t ∈ U ⊂RN} be a zero-mean, stationary Gaussian
random field defined on an open set U ⊂RN . Suppose that X is C2 and that the distribution
of∇2X(t) does not degenerate, then the Kac-Rice formula of order one is always true in the
sense that for every Borel set S ⊂ U

E (N c(S)) = |S|p∇X(t)(0) E
(
|det(∇2X(t))|

)
(67)

E (N c
k (S)) = |S|p∇X(t)(0) E

(
|det(∇2X(t))|1i(∇2X(t))=k

)
(68)

(69) E (N c
k (u,S)) = |S|p∇X(t)(0)

×
∫ +∞

u
pX(t)(x) E

(
|det(∇2X(t))|1i(∇2X(t))=k/X(t) = x

)
.

In addition the sample paths are a.s. Morse functions.

Note that Lemma 2.3 implies that the conditions of Proposition A.1 are met for a random
field satisfying (A2).

REMARK A.2. In the particular case N = 1, the Kac-Rice formulas (67), (68) and (69)
are always true (both sides are equal, finite or infinite) when X is a zero-mean stationary
Gaussian process with C1 covariance function. This can be proved as in [21]. These condi-
tions are weaker than those in Proposition A.1.
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PROOF OF PROPOSITION A.1. We first consider the mean number of critical points. We
need to apply Theorem 6.2 of [9]. The conditions are clearly verified in our case except for
the condition (iv) :

P{∃t ∈ S :∇X(t) = 0,det(∇2X(t)) = 0}= 0.

This last condition is equivalent to the fact that the sample paths are a.s. Morse functions.
In the case of stationary random fields the simplest is to use Proposition 6.5 of [9] with
condition b). Note that because of stationarity, by an extension argument, we can get rid
of the compactness condition. Since ∇X(t) and ∇2X(t) are independent, this condition is
equivalent to

P{|det(∇2X(t))|< δ}→ 0 as δ→ 0.

which is equivalent to

P{|det(∇2X(t))|= 0}= 0.

This is implied by assuming the non degeneracy of ∇2X(t).

We consider now the case of Kac-Rice formula for the mean number of critical points with
a given index and above the level u . We have to apply Theorem 6.4 of [9]. More precisely
we have to write their formula (6.6) with

g(t, Y t) = g(∇2X(t),X(t)),

here the process Y t is simply the Gaussian vector ∇2X(t),X(t) which is Gaussian as re-
quired in Theorem 6.4 of [9]. On the other hand, g is the indicator of the index multiplied
by the indicator function that X(t) > u. It is not continuous and we must apply an approx-
imation with a continuous function, followed by a monotone convergence argument. Then,
since we have independence between X(t) and ∇X(t) and between ∇X(t) and ∇2X(t)
(see Lemma 2.3), we obtain (68) and (69).

For simplification we limit our second proposition to the isotropic case

PROPOSITION A.3. Under Assumption (A2), the Kac-Rice formula of order 2 is valid for
a sufficiently small set S in the sense that if S1 and S2 are sufficiently small and sufficiently
close to each other,

(70) E (N c(S1)N c(S2)) =

∫
S1×S2

dt1dt2p∇X(t1)∇X(t2)(0,0)

E
(
|det(∇2X(t1)) det(∇2X(t2))|/∇X(t1) =∇X(t2) = 0

)
(71) E (N c

k (S1)N c
k′(S2)) =

∫
S1×S2

dt1dt2p∇X(t1)∇X(t2)(0,0)

E
(
|det(∇2X(t1))1i(∇2X(t1))=k det(∇2X(t2))1i(∇2X(t2))=k′ |/∇X(t1) =∇X(t2) = 0

)
PROOF. We need to apply Theorem 6.3 from [9]. With respect to Proposition A.1, we need

in addition the distribution of ∇X(0),∇X(ρe1) to be non degenerated in R2N (Condition
(iii′) of [9]). From section B.2.1.1 we have

Var (∇X(0)) = Var (∇X(ρe1)) = λ2IdN

E
(
∇X(0)∇X(ρe1)T

)
= diag

(
− 2r′(ρ2)− 4ρ2r′′(ρ2),−2r′(ρ2), . . . ,−2r′(ρ2)

)
,
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which implies that the N vectors
(
Xi(0),Xi(ρe1)

)
, i= 1, . . . ,N are independent. It remains

to check that the correlation between Xi(0) and Xi(ρe1) cannot be 1. This is done by the
Taylor expansions

−2r′(ρ2) =−2r′(0)− 2ρ2r′′(0) + o(ρ2)

−2r′(ρ2)− 4ρ2r′′(ρ2) =−2r′(0)− 6ρ2r′′(0) + o(ρ2).

Since by hypothesis 0< r′′(0) = λ4/12<+∞ the result follows.
We consider now the case of Kac-Rice formula for the mean number of critical points with

a given index. We proceed using Theorem 6.4 of [9] as in the preceding case.

APPENDIX B: PROOFS OF LEMMAS

B.1. Proof of Lemma 2.1. We start by proving (3). The spectral moment of order 2p
has the following expressions

(72) λ2p =

∫
RN

〈e1, λ〉2pdF (λ) =

∫ +∞

0
x2pdG(x)

∫
SN−1

(
〈e1, u〉

)2p
dσ(u),

where F is the spectral measure; σ is the uniform probability on the sphere SN−1 and G
is a measure deduced from F by change in polar coordinates. Using the fact that a standard
normal variable is the independent product of a uniform variable on the sphere by a χ(N)
distribution and the fact that those two distributions have well known moments, we obtain

µ2p :=

∫
SN−1

(
〈e1, u〉

)2p
dσ(u) =

(2p− 1)!!Γ(N/2)

2pΓ(N/2 + p)
=

Γ(N/2)Γ(1/2 + p)√
πΓ(N/2 + p)

.

We have

µ2nµ2n−4 =
(2n− 4 +N)(2n− 1)

(2n− 2 +N)(2n− 3)
µ2

2n−2.

Using Cauchy-Schwarz inequality we conclude that

λ2nλ2n−4 = µ2nµ2n−4

∫ +∞

0
x2ndG(x)

∫ +∞

0
y2n−4dG(y)

=K(n,N)µ2
2n−2

∫ +∞

0
x2ndG(x)

∫ +∞

0
y2n−4dG(y)

≥K(n,N)µ2
2n−2

∫ +∞

0
x2n−2dG(x)

∫ +∞

0
y2n−2dG(y) =K(n,N)λ2

2n−2

giving (3). Now let us prove (4). By (72), see also [31] and [35], r(‖s− t‖2) can be written
as

r(‖s− t‖2) =

∫ +∞

0
dG(x)

∫
SN−1

cos
((
〈‖s− t‖e1, xu〉

))
dσ(u)

=

∫ +∞

0

∞∑
k=0

(−1)k
x2k
(
‖s− t‖2

)k
22k+(N−2)/2k!Γ(k+ 1 + (N − 2)/2)

dG(x).(73)

Thus setting |β|= |i|+ |j|
2

and βk =
ik + jk

2
for k = 1, . . . ,N , we have

∂|i|+|j|r(‖s− t‖2)

∂si11 , . . . , ∂s
iN
N ∂t

j1
1 , . . . , ∂t

jN
N

∣∣∣∣∣
s=t

=

∫ +∞

0

(−1)|β|x2|β|

22|β|+(N−2)/2|β|!Γ(|β|+ 1 + (N − 2)/2)
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×
∂|i|+|j|

(
‖s− t‖2

)|β|
∂si11 , . . . , ∂s

iN
N ∂t

j1
1 , . . . , ∂t

jN
N

∣∣∣∣∣
s=t

dG(x).

By the multinomial formula

(74)
(
‖s− t‖2

)|β|
=

∑
k1+...+kN=|β|

|β|!
k1!× . . .× kN !

(
(s1 − t1)2

)k1× . . .×((sN − tN )2
)kN

.

Thus

∂|i|+|j|
(
‖s− t‖2

)|β|
∂si11 , . . . , ∂s

iN
N ∂t

j1
1 , . . . , ∂t

jN
N

∣∣∣∣∣
s=t

= (−1)|j||β|!
N∏
k=1

(2βk)!

βk!
,

since the only term in the sum in the right side of (74) whose derivative is not null is the one

for which k1 =
i1 + j1

2
, . . . , kN =

iN + jN
2

. We obtain

∂|i|+|j|r(‖s− t‖2)

∂si11 , . . . , ∂s
iN
N ∂t

j1
1 , . . . , ∂t

jN
N

∣∣∣∣∣
s=t

=
(−1)|β|(−1)|j||β|!

22|β|+(N−2)/2|β|!Γ(|β|+ 1 + (N − 2)/2)

×
N∏
k=1

(2βk)!

βk!

∫ +∞

0
x2|β|dG(x).

Furthermore, using (73), we have

r(|β|)(0) =
(−1)|β||β|!

22|β|+(N−2)/2|β|!Γ(|β|+ 1 + (N − 2)/2)

∫ +∞

0
x2|β|dG(x).

That gives the first equality in (4). The second equality is obtained using (2).

B.2. Proof of Lemma 4.1. We give the steps for the computation of the conditional
variance of ∇2X(0), ∇2X(t) given ∇X(0) =∇X(t) = 0 with t = ρe1. Some tedious but
easy calculations are not detailed. r(ρ2), r′(ρ2), r′′(ρ2), r′′′(ρ2) and r(4)(ρ2) are denoted by
r, r′, r′′, r′′′ and r(4) for short. The results below extend Lemma 2.1 to two times.

B.2.1. Unconditional distribution.

B.2.1.1. Gradient.

Var(∇X(t)) = Var(∇X(0)) =−2r′(0)IdN ,

Cov(X1(0),X1(t)) =−2r′ − 4ρ2r′′ and Cov(Xi(0),Xi(t)) =−2r′ for i 6= 1.

Any other covariance is zero.

B.2.1.2. Hessian. We define X ′′d (t) as (X11(t), . . . ,XNN (t)) and X ′′u(t) as {Xij(t),1 ≤
i < j ≤N}. These two vectors are independent and

Var(X ′′d (0)) = 4r′′(0)(2IdN + JN,N ),

Cov(X ′′d (0),X ′′d (t)) =

(
12r′′ + 48ρ2r′′′ + 16ρ4r(4) (4r′′ + 8ρ2r′′′)J1,(N−1)

(4r′′ + 8ρ2r′′′)J(N−1),1 4r′′(2IdN−1 + J(N−1),(N−1))

)
,

Var(X ′′u(0)) = 4r′′(0)IdN(N−1)/2,

Cov(X ′′u(0),X ′′u(t)) = diag
(
(4r′′ + 8ρ2r′′′)IdN−1,4r

′′Id(N−1)(N−2)/2

)
.
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B.2.1.3. Relation between gradient and Hessian.

E
(
X11(0)

/
X1(0),X1(t)

)
=

1

4r′(0)2 − (2r′ + 4ρ2r′′)2
(0,12ρr′′ + 8ρ3r′′′)

(
−2r′(0) 2r′ + 4ρ2r′′

2r′ + 4ρ2r′′ −2r′(0)

)(
X1(0)
X1(t)

)
= (12ρr′′ + 8ρ3r′′′)

(2r′ + 4ρ2r′′)X1(0)− 2r′(0)X1(t)

4r′(0)2 − (2r′ + 4ρ2r′′)2

=: (12ρr′′ + 8ρ3r′′′)K1(t).

For i 6= 1

E
(
X1i(0)

/
Xi(0),Xi(t)

)
=

1

4r′(0)2 − 4(r′)2
(0,4ρr′′)

(
−2r′(0) 2r′

2r′ −2r′(0)

)(
Xi(0)
Xi(t)

)
= 4ρr′′

2r′Xi(0)− 2r′(0)Xi(t)

4r′(0)2 − 4(r′)2
=: 4ρr′′Ki(t).

E
(
Xii(0)

/
X1(0),X1(t)

)
= 4ρr′′K1(t).

We have equivalent formulas, reversing time, for example:

E(X11(t)/X1(t),X1(0)) = (12ρr′′ + 8ρ3r′′′)
(−(2r′ + 4ρ2r′′)X1(t) + 2r′(0)X1(0))

4(r′(0))2 − (2r′ + 4ρ2r′′)2

=: (12ρr′′ + 8ρ3r′′′)K̄1(t).

Any other case corresponds to independence between gradient and Hessian.

B.2.2. Conditional distribution. Since the conditional variance-covariance matrix is
equal to the unconditional variance-covariance matrix diminished by the variance of the con-
ditional expectation, we compute this last term only.
Let us consider for example the two terms X11(0) and X11(t) given ∇X(0) =∇X(t) = 0.
The 2× 2 matrix to subtract is (12ρr′′ + 8ρ3r′′′)2 Var(K1(t), K̄1(t)) with

Var(K1(t), K̄1(t)) =
1

4(r′(0))2 − (2r′ + 4ρ2r′′)2

(
−2r′(0) −(2r′ + 4ρ2r′′)

−(2r′ + 4ρ2r′′) −2r′(0)

)
.

In the same way for i 6= 1 :

Var(Ki(t); K̄i(t)) =
1

4r′(0)2 − 4(r′)2

(
−2r′(0) −2r′

−2r′ −2r′(0)

)
.

Giving the extra term to substract to get Lemma 4.1.

B.3. Proof of Lemma 4.2. First note that (37) and (40) are deduced from Lemma 4.1.

B.3.1. Proof of (34), (35) and (41). We now consider the case of ξ11(t). Using Trick 4.3
we have

Var (ξ11(t)) =
det(Var(X1(0), . . . ,XN (0),X11(0),X1(t), . . . ,XN (t)))

det (Var (∇X(0),∇X(t)))

'det(Var(X1(0), . . . ,XN (0),X11(0),X1(t)−X1(0)− ρX11(0),

X2(t)−X2(0), . . . ,XN (t)−XN (0)))/det (Var (∇X(0),∇X(t)))

'ρ
23N−1

4λN2 λ
N
4

det(Var(X1(0), . . . ,XN (0),X11(0), . . . ,X1N (0),X111(0))).
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By Lemma 2.3 we obtain Var (ξ11(t)) ' ρ2

4

(λ2λ6 − λ2
4)

λ2
. The other variances in (34) and

(35) and the determinant (41) are obtained in the same way.

B.3.2. Proof of (36), (38) and (39) .
•We consider Cov(ξjj(t), ξkk(t)) for j 6= k and j, k 6= 1. Since

Cov(ξjj(t), ξkk(t)) =
1

2
(Var (ξjj(t) + ξkk(t))−Var(ξjj(t))−Var(ξkk(t)))

and since, by (34), Var(ξjj(t)) = Var(ξkk(t)) =
8λ4

9
, we just need to compute

Var (ξjj(t) + ξkk(t)) =
det(Var(Xjj(t) +Xkk(t),X1(0), . . . ,XN (0),X1(t), . . . ,XN (t)))

det (Var (∇X(0),∇X(t)))
.

Using Trick 4.3 we obtain

Var (ξjj(t) + ξkk(t))

'det(Var(Xjj(0) +Xkk(0),X1(0), . . . ,XN (0),X11(0),X12(0), . . . ,X1N (0)))

det (Var (X1(0), . . . ,XN (0),X11(0),X12(0), . . . ,X1N (0)))
.

By Lemma 2.3 we have

det(Var(Xjj(0) +Xkk(0),X1(0), . . . ,XN (0),X11(0),X12(0), . . . ,X1N (0)))

=

(
λ4

3

)N−1

λN2 det(Var(X11(0),Xjj(0) +Xkk(0))),

det(Var(X11(0),Xjj(0) +Xkk(0))) =
20λ2

4

9
and

det (Var (X1(0), . . . ,XN (0),X11(0),X12(0), . . . ,X1N (0))) =
λN2 λ

N
4

3N−1
.

Finally we obtain Var(ξjj(t) + ξkk(t))'
20λ4

9
, implying Cov(ξjj(t), ξkk(t))'

2λ4

9
. In the

same way we obtainCov(ξjj(0), ξkk(t))'
2λ4

9
, Cov(ξjk(0), ξjk(t))'Var(ξjk(t)) for j 6= k

and Cov(ξ1i(0), ξ1i(t))'−Var(ξ1i(t)) ∀i ∈ {1, . . . ,N}.

• Now let us prove that Cov(ξ11(t), ξjj(t)) = ρ2 11λ2λ6 − 15λ2
4

180λ2
+ o(ρ2) for j 6= 1. We have,

(see Lemma 2.3 and Sections B.2.1.2 and B.2.1.3)

Cov(Xjj(0),Xi(0)) = 0, ∀i, j ∈ {1, . . . ,N}

Cov(Xjj(0),Xi(t)) =−Cov(Xjj(t),Xi(0)) = 4ρr′′(ρ2)δ1i for j 6= i,

Cov(Xii(0),Xi(t)) =−Cov(Xii(t),Xi(0)) = (12ρr′′(ρ2) + 8ρ3r′′′(ρ2))δ1i and

Cov(X11(0),Xjj(t)) = 4r
′′
(ρ2) + 8ρ2r

′′′
(ρ2).

With Section B.2.1.1 we deduce

Var(ξjj(0)) =
det(Var(X1(0), . . . ,XN (0),X1(t), . . . ,XN (t),Xjj(0)))

det (Var (∇X(0),∇X(t)))

=
det(Var(∇−(1)X(0),∇−(1)X(t)))× det(Var(X1(0),X1(t),Xjj(0)))

det (Var (∇X(0),∇X(t)))
,
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where ∇−(1)X denotes the gradient without its first coordinate. Similarly

Var(ξ11(0)) =
det(Var(∇−(1)X(0),∇−(1)X(t)))× det(Var(X1(0),X1(t),X11(0)))

det (Var (∇X(0),∇X(t)))

and

Var(ξ11(0) + ξjj(0)) =

det(Var(∇−(1)X(0),∇−(1)X(t)))× det(Var(X1(0),X1(t),X11(0) +Xjj(0)))

det (Var (∇X(0),∇X(t)))
.

Using Lemma 2.3 we can verify that

det(Var(X1(0),X1(t),X11(0) +Xjj(0))) =
8

3
λ4λ

2
2 − λ2(α1 + α2)2 − 8

3
λ4β

2
1

det(Var(X1(0),X1(t),X11(0))) = λ4λ
2
2 − λ2α

2
1 − λ4β

2
1

det(Var(X1(0),X1(t),Xjj(0))) = λ4λ
2
2 − λ2α

2
2 − λ4β

2
1 ,

where β1 = −2r′(ρ2) − 4ρ2r′′(ρ2), α1 = 12ρr′′(ρ2) + 8ρ3r′′′(ρ2) and α2 = 4ρr′′(ρ2). We
deduce

Cov(ξ11(0), ξjj(0)) =

det(Var(∇−(1)X(0),∇−(1)X(t)))×
(

1

3
λ4λ

2
2 − λ2α1α2 −

1

3
λ4β

2
1

)
det (Var (∇X(0),∇X(t)))

.

We can check that

1

3
λ4λ

2
2 − λ2α1α2 −

1

3
λ4β

2
1 ' ρ4

(
11

180
λ2λ4λ6 −

λ3
4

12

)
.

We deduce, using Trick 4.3 and Lemma 2.3, that

Cov(ξ11(0), ξjj(0)) = ρ2 11λ2λ6 − 15λ2
4

180λ2
+ o(ρ2).

In the same way we prove Cov(ξ11(0), ξjj(t)) = ρ2 15λ2
4 − 7λ2λ6

180λ2
+ o(ρ2).
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