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ABSTRACT
Redshift-space distortions (RSD) in galaxy redshift surveys generally break both the isotropy
and homogeneity of galaxy distribution. While the former aspect is particularly highlighted as
a probe of growth of structure induced by gravity, the latter aspect, often quoted as wide-angle
RSD but ignored in most of the cases, will become important and critical to account for as
increasing the statistical precision in next-generation surveys. However, the impact of wide-
angle RSD has been mostly studied using linear perturbation theory. In this paper, employing
the Zel’dovich approximation, i.e. first-order Lagrangian perturbation theory for gravitational
evolution of matter fluctuations, we present a quasi-linear treatment of wide-angle RSD,
and compute the cross-correlation function. The present formalism consistently reproduces
linear theory results, and can be easily extended to incorporate relativistic corrections (e.g.
gravitational redshift).

Key words: methods: analytical – galaxies: distances and redshifts – cosmology: theory –
large-scale structure of Universe.

1 IN T RO D U C T I O N

The large-scale structure of the Universe, as partly seen by galaxy
distributions, has evolved dominantly under the influence of gravity
and cosmic expansion. While the spatial inhomogeneity of matter
and galaxy distribution is in nature random and stochastic, it is
supposed to be statistically homogeneous and isotropic. However,
the observation can break homogeneity and isotropy. In particular,
the galaxy distribution observed via spectroscopic survey appears
distorted along the observer’s line of sight (LOS) due to the
contribution of peculiar velocities to the measured redshift of a
galaxy, referred to as the redshift-space distortions (RSD).

RSD generally complicates the data analysis and cosmological
interpretation of the observed galaxy clustering, but one advantage
may be that RSD provides an additional information on the velocity
field at large scales. Indeed, taking the distant-observer or plane-
parallel limit, the statistical homogeneity is approximately restored,
and the apparent anisotropies induced by RSD are characterized

� E-mail: ataruya@yukawa.kyoto-u.ac.jp

well by the multipole expansion with respect to the LOS direction
of the distant observer. On large scales, such anisotropies are
described by linear theory only with few low multipoles, which tell
us that the strength of anisotropies is directly related to the growth
of cosmic structure induced by gravity (Kaiser 1987; Hamilton
1992). In this respect, the measurement of clustering anisotropies
caused by RSD offers an exciting opportunity to probe gravity
on cosmological scales. This explains why there have been so far
numerous works in both theory and observation to model, predict,
and measure the anisotropies of galaxy clustering, leading to fruitful
cosmological constraints (e.g. Linder 2008; Percival & White 2009;
Song & Percival 2009; Taruya, Nishimichi & Saito 2010; Vlah
et al. 2012; Beutler et al. 2014; Carlson, Reid & White 2013; Alam
et al. 2017a).

With the wealth of large data set from future galaxy surveys, the
statistical precision will be substantially improved, and it will help
to further tighten the cosmological constraints (see Weinberg et al.
2013, for a review). However, one must be careful in characterizing
the galaxy clustering. Since the statistical homogeneity is not fully
ensured in the presence of RSD, and the techniques developed so
far in both measurement and theoretical predictions heavily rely on
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statistical homogeneity, the impact of its violation, often quoted
as wide-angle effect, can introduce systematics in constraining
cosmology with RSD measurement, potentially leading to a biased
cosmological result.

Indeed, the impact of wide-angle effect on RSD have been long
studied in both analytical and numerical approaches, and there is
thus a large number of literature on this topic, including early
works (Fisher, Scharf & Lahav 1994; Heavens & Taylor 1995;
Hamilton & Culhane 1996; Zaroubi & Hoffman 1996; Szalay,
Matsubara & Landy 1998; Matsubara 2000). For cosmological
data analyses including the wide-angle effect, see e.g. Tadros et al.
(1999), Matsubara, Szalay & Landy (2000), Pope et al. (2004), and
Okumura et al. (2008).

One important consequence of the wide-angle effect is that
when naively applying the multipole expansion in a certain LOS
definition, it produces new contributions not only at even multipoles
but also at odd multipoles. Indeed, such contributions have been
recently detected and measured at a statistically significant level
from SDSS BOSS DR12 (Beutler, Castorina & Zhang 2019) (see
Gaztanaga, Bonvin & Hui 2017, for the analysis using DR10). This
immediately implies that as increasing the statistical precision, the
wide-angle effect can definitely give an impact on cosmological
interpretation from future surveys, and theoretical prediction and
measurement technique beyond the distant-observer limit have to be
developed from a modern viewpoint (Yoo & Seljak 2015; Castorina
& White 2018a,b; Beutler et al. 2019).

There is also another motivation why we need to care about
wide-angle effect. In general, the observed galaxy distributions are
further distorted due to the relativistic corrections that arise from
the light propagation in an inhomogeneous universe. For instance, a
measurement of redshift receives corrections not only from galaxy’s
peculiar motion by Doppler effect, but also from the gravity induced
by galaxy and foreground large-scale structure, i.e. gravitational
redshift and integrated Sachs–Wolfe effects (e.g. Yoo, Fitzpatrick
& Zaldarriaga 2009; Yoo 2010; Bonvin & Durrer 2011; Challinor
& Lewis 2011; Yoo et al. 2012). Those relativistic contributions are
known to produce anisotropies in the observed galaxy distributions
(e.g. Bertacca et al. 2012; Raccanelli et al. 2018), and some of
the effects can generate odd multipoles in the cross-correlation
function and cross power spectrum between different biased objects
(McDonald 2009; Bonvin, Hui & Gaztañaga 2014). Recent numer-
ical studies taking consistently the relativistic effects into account
suggest that relativistic contributions become manifest at large
scales (Breton et al. 2019), and could be detected in future surveys
(see Alam et al. 2017b, for a recent measurement). Thus, a precision
measurement of odd multipoles can offer an interesting cosmo-
logical test of general relativity, alternative to the standard RSD
measurement. Nevertheless, relativistic contributions are basically
tiny, and one must be careful to discriminate from the wide-angle
contributions, which also produce non-vanishing odd multipoles.

In these respects, a precision theoretical modelling of RSD taking
account of wide-angle effect is a rather critical issue. Beyond
linear theory, however, except the numerical study using N-body
simulations (e.g. Raccanelli et al. 2010), little analytical work has
been done (but see Shaw & Lewis 2008). Recently, Castorina
& White (2018b) have presented the first quasi-linear treatment
of the wide-angle effects based on the Zel’dovich approximation
(Zel’dovich 1970; Shandarin & Zeldovich 1989; Novikov 2010),
particularly focusing on the autocorrelation function. In this paper,
adopting the same Zel’dovich approximation, we generalize it to
the calculation of the cross-correlation function of galaxies/haloes.
Along the lines of generalization, we clarify similarities and
differences between our formalism and that of Castorina & White

(2018b), who actually considered part of the wide-angle terms with
the Zel’dovich approximation. Our formalism takes into account
all possible wide-angle terms relevant at the Newtonian level,
assuming the uniform radial selection function. With this treatment,
it is shown to be consistent with linear theory of wide-angle RSD
discussed in the literature. We then study the impact of wide-angle
effects in the cross-correlation functions. The cross-correlation
between different biased objects is known to break the symmetry
of the pair counting, and in the presence of wide-angle effects,
this can produce an additional contribution to the anisotropies in
the two-point statistics. Comparing the Zel’dovich approximation
with linear theory predictions as well as N-body simulations, we
quantitatively investigate the possible impact of its non-linear
effect, particularly focusing on the weakly non-linear scales. In
a separate paper, on the basis of the formalism in this paper, we will
further incorporate the relativistic corrections into the prediction
of cross-correlation functions, and make a detailed comparison
between analytical predictions and simulations with relativistic
corrections.

This paper is organized as follows. In Section 2, after briefly men-
tioning the RSD, we present an analytical framework to compute
the cross-correlation functions at quasi-linear regime, employing
the Zel’dovich approximation. Several remarks on the statistical
calculation are addressed together with the comments on the treat-
ment by Castorina & White (2018b). Then, in Section 3, we present
the results based on our quasi-linear formalism, and quantify the
non-linear impacts of the wide-angle effects on the cross-correlation
functions, which are compared with linear theory predictions and
N-body simulations. Our important findings and an implications are
summarized in Section 4. Derivation of the analytical expressions in
Zel’dovich approximation as well as the linear theory formulas for
cross-correlation functions are presented in detail in Appendix A
and D, respectively, together with supplemental formulas and proof
in Appendices B and C.

2 W I DE-ANGLE CROSS-CORRELATI ON
FUNCTI ON IN R EDSHI FT SPACE

In this paper, we are interested in computing and predicting the
correlation function in redshift space without taking the distant-
observer or plane-parallel limit. Here, we only consider the Doppler
effect as a major source to cause RSD. An extension to include
relativistic correction will be studied in a separate paper. In the
presence of Doppler effect only, the comoving position at a given
redshift z in redshift space, s, is related to the real-space counterpart
x through

s = x + 1

a H
(v · x̂) x̂, (1)

where v is the velocity field at real-space position x, and x̂ is
the unit vector defined by x̂ ≡ x/|x|. The quantities a and H
are, respectively, the scale factor of the Universe and Hubble
parameter at a given redshift z. Note that in the distant-observer
limit, observer’s LOS vector, x̂, is replaced with a specific direction
vector ẑ.

With the definition of redshift space given above, consider the
density fluctuations. Denoting the number density field of the
objects X by n

(S)
X (s), we define

δ
(S)
X (s) = n

(S)
X (s)〈

n
(S)
X (s)

〉 − 1. (2)
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Figure 1. Geometric configuration of redshift-space cross-correlation func-
tion. Along the line-of-sight direction d, a pair of objects X and Y is found
at the positions s1 and s2, where the density fields, denoted by δ

(S)
X and

δ
(S)
Y , is measured. The separation between these two objects is defined by

s ≡ s2 − s1. Misalignment between s and d is characterized by the angle
ϕ or the directional cosine given by μ ≡ cos ϕ. Note that at this point,
the meaning of line-of-sight direction is not well defined, and will be later
specified (see Section 3).

The bracket 〈· · · 〉 stands for the ensemble average. Then, the cross-
correlation function between different species X and Y is given by

ξ
(S)
XY (s1, s2) ≡

〈
δ

(S)
X (s1) δ

(S)
Y (s2)

〉
. (3)

Note that the cross-correlation function defined above is, as
opposed to the one in real space, not simply described by the
function of the separation between two objects. In the presence
of observer’s LOS vector x̂ in equation (1), both the statistical
homogeneity and isotropy of the galaxy distributions no longer
hold, and we generally need three variables to characterize the
correlation function in redshift space. That is, ξ

(S)
XY is given as a

function of the distances to the objects |s1| and |s2|, and separation
s ≡ |s2 − s1| (see Fig. 1). In other words, the correlation function
is described with the triangle characterized by the vectors, s1, s2,
and s ≡ s2 − s1, and it is invariant under the transformation such
that the shape of this triangle remains unchanged.

2.1 Zel’dovich approximation

Our primary interest is to develop the quasi-linear theory of
wide-angle redshift-space correlation function. For this purpose,
we follow Castorina & White (2018b) and use the Zel’dovich
approximation, which allows us to predict the position and motion of
mass element, given an initial condition of density field (Zel’dovich
1970; Shandarin & Zeldovich 1989; Novikov 2010). An important
building block in the Zel’dovich approximation is the displacement
field of each mass element, which is given as a function of
Lagrangian coordinate (initial position of each mass element), q. In
what follows, we assume that the objects of our interest to measure
the correlation function simply follow the velocity flow of mass
distributions (i.e. no velocity bias). Denoting the displacement field

by �(q), the Eulerian position x and velocity of mass element at x
are then expressed as

x = q + �(q), v(x) = a
d�(q)

dt
. (4)

The Zel’dovich approximation gives a simple analytical expression
for the displacement field in terms of the (Lagrangian) linear density
field δL as

∇ · �ZA(q) = −δL(q). (5)

Recalling that the linear density field is related to initial density
field δ0 through δL = D+(t) δ0 with D+ being linear growth factor,
we have

v = aH f (t) �ZA(q). (6)

Here, the function f is linear growth rate defined by

f (t) ≡ d ln D+(t)

d ln a(t)
. (7)

Substituting these relations into equation (1), we obtain (hereafter
we omit the subscript ZA, and simply write �),

si = qi + {δij + f x̂i x̂j }�j (q)

� qi + {δij + f q̂i q̂j }�j (q). (8)

Note that the second line is valid at first-order Lagrangian per-
turbation theory (i.e. Zel’dovich approximation). Here, we used the
Einstein summation convention. The subscripts i and j take values 1,
2, or 3. Equation (8) gives a mapping relation between redshift space
and Lagrangian space, and is a basis to compute statistical quantities
in redshift space given the statistical properties in Lagrangian space.

2.2 Analytical expression

Once established the relation between Eulerian- and Lagrangian-
space positions, we now express the observed number density field
of the population X, defined in redshift space, n

(S)
X , in terms of

the Lagrangian-space quantities. In what follows, we assume the
linear bias relation for all objects to cross-correlate. Note that
the extension to incorporate the non-linear Lagrangian bias into
statistical calculation has been made in the case of distant-observer
or plane-parallel limit by Carlson et al. (2013), Wang, Reid &
White (2014), and White (2014) (see also Matsubara 2008b, 2014,
for slightly different formalism).

Using the number conservation in each space, we have

n
(S)
X (s) d3s = nX(x)d3x = nX

{
1 + bL

X δL(q)
}

d3q, (9)

where nX is the mean number density at a given redshift, and we
assume it to be constant over the survey region. The quantity bL

X is
the Lagrangian linear bias parameter for the population X, which is
related to the Eulerian linear bias bX through bX = 1 + bL

X . Note that
nX does not in general coincide with the mean density in redshift
space, 〈n(S)

X (s)〉, unless we take distant-observer or plane-parallel
limit. Equation (9) is then rewritten with

n
(S)
X (s) = nX

∣∣∣∣ ∂s
∂q

∣∣∣∣−1 {
1 + bL

X δL(q)
}

= nX

∫
d3q δD[s − q − � (S)(q)]

{
1 + bL

X δL(q)
}

= nX

∫
d3k

(2π )3

∫
d3q ei k·{s−q−� (S)

(q)} {1 + bL
X δL(q)

}
,

(10)

MNRAS 491, 4162–4179 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/491/3/4162/5638878 by guest on 23 M
ay 2024



Wide-angle effects at quasi-linear scales 4165

where the quantity δD is the Dirac delta function, which is re-
expressed in the third line, introducing the auxiliary variable (wave
vector), k. Here, we define the redshift-space displacement field,
� (S) (see equation 8):

�
(S)
i (q) = (δij + f q̂i q̂j ) �j (q)

≡ Rij (q̂) �j (q). (11)

Substituting equation () into the redshift-space density fluctu-
ation given at equation (2), the cross-correlation function ξ

(S)
XY at

equation (3) is expressed as

1 + ξ
(S)
XY (s1, s2) = 〈{

1 + δ
(S)
X (s1)

}{
1 + δ

(S)
Y (s2)

}〉
= DXDY (s1, s2)

RX(s1)RY (s2)
, (12)

with the functions given at the denominator and numerator, RX,Y and
DXDY , respectively, defined by

RX,Y (s) ≡
∫

d3k
(2π )3

∫
d3q eik·{s−q}

×
〈

e−ik·� (S)
(q)

{
1 + bL

X,Y δL(q)
}〉

, (13)

DXDY (s1, s2) ≡
∫

d3k1d3k2

(2π )6

∫
d3q1d3q2

× eik1·{s1−q1}+ik2·{s2−q2}

×
〈

e−ik1·� (S)
(q1)−ik2·� (S)

(q2)

× {
1 + bL

XδL(q1)
}{

1 + bL
Y δL(q2)

}〉
. (14)

Note that the ensemble average in these expressions is evaluated
with respect to the randomness of linear density field δL, which
is, in Lagrangian space, statistically homogeneous and isotropic.
Thus, one may expect that taking the average, quantities with
brackets are expressed, after all, as function of separation only,
i.e. |q2 − q1|. If this is the case, the expressions given above can
be drastically simplified under the Gaussian initial condition. Per-
forming analytically the integrals over wavenumbers, RX,Y is found
to be 1, and DXDY is finally reduced to the form involving three-
dimensional Gaussian integral, which can be evaluated numerically
with a better convergence (Bond & Couchman 1988; Schneider
& Bartelmann 1995; Fisher & Nusser 1996; Taylor & Hamilton
1996, e.g.). However, this simplification can be applied only in
the distant-observer or plane-parallel limit. Due to the position-
dependent matrix Rij in the displacement field � (S), the brackets
have non-trivial dependence of the Lagrangian positions even after
taking the averages. This is solely due to the wide-angle RSD that
observer’s LOS direction varies over the sky, and cannot be taken
to be a specific direction.

Thus, taking a proper account of the wide-angle effect, the calcu-
lation of equations (13) and (14) ceases to be trivial. Nevertheless,
it is still possible to reduce the expressions of RX,Y and DXDY

given above to those involving three- and six-dimensional Gaussian
integrals, respectively. In Appendix A, we derive the final forms.
The expression of RX,Y is summarized as follows:

RX(s) = RY (s) =
∫

d3q
(2π )3/2|detA| e−(1/2)A−1

ij
(s−q)i (s−q)j , (15)

where the matrix Aij is defined by

Aij (q) ≡ 〈
�

(S)
i (q)� (S)

j (q)
〉
. (16)

Note that starting with the expression given at equation (A1),
one can also derive an approximate expression in the following
analytical form (see Appendix A1):

RX(s) � 1 + (2f + f 2)

(
σ 2

d

s2
+ σ 4

d

s4
+ 3

σ 6
d

s6
+ · · ·

)
, (17)

which is accurate for the large-distance case with σ d/s � 1. Here,
σ d is the rms of the Lagrangian displacement field, and its explicit
expression is given at equation (A29).

On the other hand, for DXDY , we introduce the six-dimensional
vectors for Lagrangian and redshift-space positions, Q and S, and
write these as Q = (q1, q2) and S = (s1, s2). Then, the correlation
term DXDY is expressed as follows:

DXDY (s1, s2) =
∫

d6 Q
(2π )3|detA|1/2

e−(1/2)A−1
ab

(S−Q)a (S−Q)b

× [
1 + bL

XbL
Y ξL(|q2 − q1|) − A−1

cd Uc(S − Q)d

− {
A−1

cd − A−1
ce A−1

df (S − Q)e(S − Q)f
}
Wcd

]
.

(18)

The subscripts a, b, . . . run over 1−6. The explicit expressions for
the quantities given above, Ua , Aab, and Wab, as well as the 3 × 3
matrix Aij, are all presented in Appendix A2. Note that the function
DXDY depends on the bias parameters not only explicitly in the
coefficient of ξL but also implicitly through the definitions of Ua

and Wab (see equations A15 and A16).
In what follows, we use equations (15) and (18) to give quan-

titative predictions of wide-angle cross-correlation function ξ
(S)
XY .

Numerical integrals involved in these expressions are performed
specifically with cuhre routine in the CUBA library (Hahn 2005).1

2.3 Relation to Castorina & White (2018b)

Before closing this section, we compare our formalism in Section 2
with the one given in Castorina & White (2018b), who have
first presented the analytical calculation of wide-angle effects
beyond linear theory prediction based on the same Zel’dovich
approximation as we adopted. To be precise, Castorina & White
(2018b) considered part of the wide-angle effects. Here, we clarify
the differences between our and their treatments.

Let us first check that the present formalism correctly reproduces
the well-known linear theory result with wide-angle corrections
under the uniform radial selection function. We derive the linear-
order expression for the redshift-space density fluctuation, δ

(S)
X ,

given at equation (2). Substituting the expression for the num-
ber density field at equation (10) into equation (2), we Taylor-
expand the exponents. At the leading order, the denominator
〈n(S)

X 〉 does not play any role, and the expansion of the numerator
leads to

δ
(S)
X,lin(s) =

∫
d3k

(2π )3

∫
d3q ei k·(s−q)

× [
bL

X δL(q) − i k · � (S)(q)
]
. (19)

Recalling that � (S) is the displacement field defined in redshift
space, and it is related to the real-space displacement field through

1http://www.feynarts.de/cuba/
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�
(S)
i = (δij + f q̂i q̂j ) �j (see equation 11), we have

δ
(S)
X,lin(s) =

∫
d3k

(2π )3

∫
d3q ei k·(s−q)

× [
bL

X δL(q) − i k · �(q) − i f (k · q̂){q̂ · �(q)}],
(20)

which can be recast as

δ
(S)
X,lin(s) = bL

X δL(s) − ∇s · �(s) − f ∇s · [{ŝ · �(s)} ŝ] . (21)

Here, ŝ is unit vector given by ŝ ≡ s/|s|, and the operator ∇s stands
for the divergence in the redshift-space coordinates. Note that the
second and third terms at right-hand side have been derived from
equation (20) by rewriting the factor i k ei k·(s−q) in the integrand
with −∇q ei k·(s−q), and performing the integral over k. Using the
formulas ∂ŝi/∂sj = (δij − ŝi ŝj )/|s| and (ŝ · ∇s) ŝ = 0, the last term
of the above expression is rewritten with

∇s · [{ŝ · �(s)} ŝ] =
{

2

s
+ (ŝ · ∇s)

}
{�(s) · ŝ} . (22)

Further, in Zel’dovich approximation, the real-space displacement
field and its spatial derivative are related to the velocity and density
field through v = a H f � and ∇s · � = −δL (see equations 5 and
6). Then, equation (21) is finally reduced to the following form:

δ
(S)
X,lin(s) = bX δL(s) − 1

a H

{
2

s
+ (ŝ · ∇s)

}
(v · ŝ), (23)

where the factor 1 + bL
X has been replaced with the Eulerian

linear bias parameter bX. Equation (23) coincides with the well-
known result for redshift-space linear density field taking account
of the wide-angle effects, assuming a uniform radial selection
function (e.g. Kaiser 1987; Szalay et al. 1998; Yoo & Seljak
2015).2 Note that the term proportional to (2/s) (v · ŝ) is often
called the selection function terms, and in general cases with non-
uniform radial selection function, the factor 2 is replaced with
α(r) = 2 + dln φ(r)/dln r, with φ(r) being the radial selection
function slowly varying function of the radial distance, r (e.g.
Kaiser 1987; Szalay et al. 1998; Yoo & Seljak 2015; Castorina &
White 2018a).

In Appendix C, for the sake of the completeness, we also
show that our formalism, starting from the expression given at
equation (12), consistently reproduces the linear cross-correlation
function with wide-angle effects. Note that in this case, not only the
numerator in equation (12) but also the denominator, i.e. product
of mean density, RXRY , play a role, and have to be taken into
consideration properly.

Let us next look at the linear density field based on the treatment
by Castorina & White (2018b). A crucial assumption or proposition
is to rewrite the redshift-space displacement field � (S), given at
equation (11), with

CW�
(S)
i (q) = (δij + f ŝi ŝj ) �j (q), (24)

where the redshift-position s is linked to the Lagrangian counterpart
q through equation (8). Seemingly, equation (24) is relevant,
and looks equivalent to equation (11) at linear order. However,
substituting it into (19) and repeating the same calculation as given

2To be precise, we assume the constant mean number density, and the
contribution from its evolution is ignored in equation (23).

above, we obtain the following expression:3

CWδ
(S)
X,lin(s) = bL

X δL(q) − ∇s · �(s) − f [ŝ · {(ŝ · ∇s)�(s)}] , (25)

which is finally reduced to

CWδ
(S)
X,lin(s) = bX δL(q) − 1

a H
(ŝ · ∇s)(v · ŝ). (26)

Compared to equation (23), the above expression misses the
selection function terms, proportional to (2/s) (v · ŝ). The second
term at right-hand side of equation (26) is known to produce the
wide-angle effect, and is shown to play an important role (e.g.
Bonvin et al. 2014). On the other hand, due to the suppression
factor, the contribution of the selection function terms seemingly
becomes unimportant for the clustering signal at high-z. We will
come back to this point, and discuss its actual impact in comparison
with N-body simulations in Section 3.3.2.

Another notable difference between this paper and Castorina &
White (2018b) appears in the expression of redshift-space correla-
tion function. In this paper, starting from the mapping formula given
at equations (1) and (8), the redshift-space correlation function
has been derived from scratch, the resultant expression of which
involves six-dimensional integrals. On the other hand, Castorina &
White (2018b) have obtained the expression based on the real-space
correlation function, replacing simply the displacement field in real
space with redshift-space counterpart, � (S), adopting equation (24).
Since their derivation makes use of the statistical isotropy and
homogeneity that hold in real-space correlation function, the final
expression involves only the three-dimensional integral. While
this treatment greatly reduces the computational cost, translational
invariance is, taking account of the wide-angle effect, violated in the
actual redshift space, and thus their final expression is only valid
if we take the plane-parallel limit. Despite of this, the predicted
behaviours of the wide-angle corrections are found to be similar
to those obtained from our treatment, especially for even multipole
moments of correlation functions. We will see quantitatively the
similarities and differences between their treatment and the present
formalism.

3 R ESULTS

In this section, based on the expression given at equation (12) with
(15) and (18), we present the predictions of redshift-space cross-
correlation functions, which are compared with linear theory and
N-body simulations. In doing so, we made a slight extension of
the linear theory formalism to predict the cross-correlation function
including wide-angle corrections. In Appendix D, we present the
analytical expressions for linear cross-correlation function, and the
results are summarized as the trigonometric polynomial expansion,
using the technique developed by Szapudi (2004) and Pápai &
Szapudi (2008).4

As we discussed, the cross-correlation function ξ
(S)
XY is given as

function of the three variables, associated with the triangle formed

3When integrating equation (19) over q, we treat the unit vector ŝ in
equation (24) independent of the Lagrangian position q, in a similar way to
what we derived equation (21).
4To be strict, the analytical expressions for linear cross-correlation function
has been presented in Bonvin et al. (2014), in a mixture of relativistic
and standard RSD contributions. In Appendix D, we re-derived the full
analytical expressions, leaving only the relevant standard RSD contributions,
and present the results together with the formulas for multipole expansion
based on three different representation of LOS direction.
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Wide-angle effects at quasi-linear scales 4167

with the positions of pair of objects (s1 and s2) and their separation
s ≡ s2 − s1. To characterize it, as shown in Fig. 1, we may introduce
the LOS distance d, the vector pointing to a pair of objects from
the observer, and the misalignment angle ϕ between the LOS
direction and separation for a pair of objects. Then, the correlation
function can be expressed as the function of s = |s|, d = |d|, and
μ ≡ cos ϕ = d̂ · ŝ, i.e. ξ

(S)
XY (s, d, μ). It is convenient to express it as

multipole expansion:

ξ
(S)
XY (s1, s2) =

∑
�

ξ
(S)
� (s, d) P�(μ). (27)

Note that the multipole moment ξ
(S)
� depends not only on separation

s but also on the LOS distance d. One thus has to further expand
ξ

(S)
� in powers of (s/d):

ξ
(S)
� (s, d) =

∑
n

( s

d

)n

ξ
(S)
�,n(s). (28)

The leading-order contributions with n = 0, i.e. ξ
(S)
�,0 represent the

conventional multipole correlation functions in the plane-parallel
limit, where even multipoles are only relevant non-vanishing quan-
tities. On the other hand, higher order terms of n ≥ 1 basically
describe the wide-angle corrections, for which both even and odd
multipoles become generally non-zero.

One important remark of the multipole expansion in equa-
tions (27) and (28) is that the wide-angle contributions crucially
depends on how we choose the LOS direction, and the impact of
wide-angle effects is largely changed. This point has been recently
investigated in both analytical and numerical calculations (Reim-
berg et al. 2016; Castorina & White 2018b; Beutler et al. 2019).
In what follows, keeping these aspects in mind, we will present a
quantitative estimate of the impact of wide-angle effects, focusing
particularly on quasi-linear scales. Analytical and numerical results
presented below are obtained assuming a flat lambda cold dark
matter (CDM) model, with the initial power spectrum created
by CAMB (Lewis, Challinor & Lasenby 2000). The fiducial model
parameters are chosen based on the 7-yr WMAP results (Komatsu
et al. 2011): �m = 0.25733 for matter density, �b = 0.04356 for
baryon density, � = 0.74259 for dark energy with equation-of-
state parameter w = −1, �r = 8.076 × 10−5 for radiation density,
h = 0.72 for Hubble parameter, ns = 0.963 for scalar spectral index,
and finally, σ 8 = 0.801 for the normalization amplitude of the matter
fluctuations at 8 h−1 Mpc.

3.1 Deviation from plane-parallel limit

Let us evaluate quantitatively the impact of wide-angle corrections,
varying the distance to the objects, d. For a sufficiently long distance
larger than the separation, i.e. d 
 s, the variation of d is equivalent
to that of redshift, z. Here, we consider the mid-point LOS as one
of the simplest definitions:

Mid-point : d ≡ 1

2
(s1 + s2). (29)

Then, we compute the multipole moments of the cross-correlation
function ξ

(S)
� , assuming bX = 2.07 and bY = 1.08 as a fiducial set of

Eulerian bias parameters.
First look at the even multipole moments. In Fig. 2, the results for

� = 0 (left), 2 (middle), and 4 (right), are shown at z = 0.1 (black),
0.33 (green), and 0.57 (blue), corresponding to the distance d = 0.29,
0.92, and 1.50 h−1 Gpc, respectively. Note that the latter two cases
are close to the mean redshifts of SDSS BOSS LRG/LOWZ
and CMASS samples. The plotted quantity here is the fractional

difference of the correlation function relative to the one in the plane-
parallel limit, |ξ (S)

� /ξ
(S)
�,pp − 1| with ξ

(S)
�,pp being the multipole cross-

correlation function in the plane-parallel limit, equivalently ξ
(S)
�,0 in

equation (28). Solid lines are the results obtained from Zel’dovich
approximation, which are compared with linear theory predictions,
depicted as dashed lines.

Overall, both the linear and Zel’dovich predictions give the same
trend, that is, the impact of wide-angle corrections, characterized
by the departure from plane-parallel limit, becomes prominent at
large separation, and it is more significant at lower redshifts (small
d). Note that a sharp feature near s = 140 h−1 Mpc in the monopole
and s = 20 h−1 Mpc in the hexadecapole just comes from the zero-
crossing of the correlation function. Quasi-linear prediction with
Zel’dovich slightly changes the impact of wide-angle corrections
in the monopole and quadrupole, and the structure of the baryon
acoustic peak is smeared to some extent. The is a well-known
non-linear feature in both real and redshift space (e.g. Crocce
& Scoccimarro 2008; Matsubara 2008a; Taruya et al. 2009). On
the other hand, the hexadecapole exhibits a notable enhancement
of the deviation from plane-parallel limit, and compared to the
linear theory, it amounts to several tens of percent even at small
separation. Remarkably, these behaviours are qualitatively similar
to those obtained in Castorina & White (2018b), although they
considered the autocorrelation function, ignoring the contributions
arising from the selection function (see figs 3 and 4 of their paper5).
We have also examined the cases with different values of bias
parameters. Increasing bX while keeping bY, the resultant fractional
difference is found to decrease for monopole, but to increase for
hexadecapole. For quadrupole, no notable change is found. As
shown in Appendix D2, the wide-angle corrections are of the order
of O((s/d)2), and they include the terms linearly proportional to
the bias in all multipoles. Recalling the fact that in the plane-
parallel limit, the monopole and quadrupole include, respectively,
the terms proportional to bXbY and (bX + bY) (see equations D21
and D22), the fractional difference |ξ (S)

� /ξ
(S)
�,pp − 1| tends to decrease

for monopole, and to have a small bias dependence for quadrupole.
On the other hand, the hexadecapole in the plane-parallel limit
has no bias dependence see equation D23). Thus, the fractional
difference gets large as increasing the bias parameters. Although
this argument is based on the linear theory formulas in D2, we
expect that it generally holds even beyond linear regime.

Next look at the odd multipoles, which become vanishing in the
plane-parallel limit. Any deviation from linear theory will therefore
directly show up in the total signal, without taking ratio. Fig. 3 shows
the dipole (left) and octupole (right) moments of cross-correlation
function, multiplied by the square of separation. We see clearly the
baryon acoustic feature in linear theory prediction, but it is smeared
in Zel’dovich approximation, as expected from the behaviour in
even multipole. The amplitude of the odd multipoles is basically
proportional to the difference of the bias parameter, bX − bY, and
hence it becomes zero in the autocorrelation case. Typically, it is
smaller than that of the even multipoles by one order of magnitude.
Nevertheless, it can still be detectable even with current surveys,
depending on the LOS definition (Gaztanaga et al. 2017). Since the
observed relativistic effects such as gravitational redshift effect also
produce non-zero odd multipoles, a quantitative prediction of odd
multipoles arising from the standard Doppler effect is crucial. In this

5To be strict, figs 3 and 4 of their paper adopts the bisector LOS, not the
mid-point LOS. Nevertheless, as we will show in Section 3.2, the differences
between bisector and mid-point LOS are sufficiently small.
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4168 A. Taruya et al.

Figure 2. Fractional difference of the monopole (left), quadrupole (middle), and hexadecapole (right) moments of correlation function between predictions
with and without wide-angle effects, |ξ (S)

� /ξ
(S)
�,pp − 1|, where ξ

(S)
�,pp represents the multipole correlation function in the plane-parallel limit. The results at z = 0.1,

0.33, and 0.57 are shown in different colours. Solid and dashed lines are, respectively, the predictions based on Zel’dovich approximation and linear theory,
assuming the Eulerian linear bias of bX = 2.07 and bY = 1.08.

Figure 3. Dipole (left) and octupole (right) moments of cross-correlation function at z = 0.1 (black), 0.33 (green), and 0.57 (blue). The plotted results are the
multipole correlation function multiplied by s2. Solid and dashed lines are the predictions based on Zel’dovich approximation and linear theory, respectively.
Same as in Fig. 2, we assume the Eulerian linear bias of bX = 2.07 and bY = 1.08.

respect, the present formalism based on Zel’dovich approximation
would help to disentangle several effects from the measured odd
multipoles, and could be used to probe relativistic effects at quasi-
linear scales.

3.2 Dependence of line-of-sight definitions

As we mentioned, the impact of wide-angle effects can change with
the definition of the LOS direction. Here, we compute the cross-
correlation function with several definitions of the LOS direction,
and see how the results are quantitatively changed. In addition to
the mid-point LOS, one may consider the end-point LOS, for which
we take one of the position vectors s1 and s2 to be the LOS vector.
Here, we adopt

End-point : d = s1. (30)

This definition is frequently used in measuring the multipole power
spectra. One advantage of adopting equation (30) is that one can
construct a fast power spectrum estimator, making full use of the
fast Fourier transform (Bianchi et al. 2015; Scoccimarro 2015).
Another natural definition is the angular bisector line between
position vectors s1 and s2:

Bisector : d = s1s2

s1 + s2
(ŝ1 + ŝ2). (31)

In Fig. 4, fixing the redshift to z = 0.33 (corresponding to
the comoving distance d = 0.92 h−1 Gpc), we plot the fractional
difference, as similarly shown in Fig. 2, for the even multipoles.
Further, in Fig. 5, the odd multipoles are shown, multiplying by
the square of separation. Again, the cross-correlation is computed
assuming the linear Eulerian biases of bX = 2.07 and bY = 1.08.
In both figures, the results for mid-point, end-point, and bisec-
tor LOS are, respectively, depicted as blue, magenta, and green
lines.

For even multipoles, as we see from Fig. 4, the dependence of the
LOS definitions is not so large except for the hexadecapole (� = 4).
The main reason basically comes from the fact that in linear theory,
the lowest order wide-angle corrections in equation (28) appears at
n ≥ 2 in all the three cases. In Appendix D2, we present the leading-
order expressions for the wide-angle corrections to the cross-
correlation in linear theory. The expressions indicate that the impact
of the LOS dependence also changes with the bias parameters, but
it is linear dependence on bX and bY. For hexadecapole, the end-
point LOS definition gets a larger wide-angle correction, and for the
prediction with Zel’dovich approximation, the deviation from the
plane-parallel limit exceeds 10 per cent even at the scales smaller
than the baryon acoustic peak, s � 80 h−1 Mpc.

For odd multipoles, a more significant difference can be seen in
Fig. 5. While no clear difference of the results is found for the mid-
point and bisector LOS definitions, the end-point LOS gives a rather
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Wide-angle effects at quasi-linear scales 4169

Figure 4. Dependence of monopole (left), quadrupole (middle), and hexadecapole (right) cross-correlation functions on the LOS definition at z = 0.33. Same
as in Fig. 2, we assume the Eulerian linear bias of bX = 2.07 and bY = 1.08, and the fractional differences between the cross-correlation function with and
without wide-angle corrections, |ξ (S)

� (s)/ξ (S)
�,pp(s) − 1|, are plotted in each panel. The results for the mid-point, end-point, and bisector LOS are, respectively,

shown in magenta, blue, and green colours. Solid and dashed lines are the predictions based on Zel’dovich approximation and linear theory, respectively.

Figure 5. Dependence of LOS definition on dipole (left) and octupole (right) moments of cross-correlation functions at z = 0.33. The plotted results are the
multipole correlation function multiplied by s2, assuming the Eulerian linear bias of bX = 2.07 and bY = 1.08. Meanings of line types and colours are the same
as in Fig. 4. Note that the results for mid-point LOS are overlapped with those for bisector LOS.

large differences in both dipole and octupole moments. In particular,
the dipole correlation function changes its sign. Indeed, these
behaviours are qualitatively explained by the analytic expression
in linear theory, as shown in Appendix D2. At the lowest order of
expansion in equation (28), we have

bisectξ
(S)
1,1(s) =mid ξ

(S)
1,1(s), (32)

bisectξ
(S)
3,1(s) =mid ξ

(S)
3,1(s), (33)

for the bisector LOS, and

endξ
(S)
1,1(s) =mid ξ

(S)
1,1(s) − 2

5
f

(
bX + bY + 6

7
f

)
�0

2(s), (34)

endξ
(S)
3,1(s) =mid ξ

(S)
3,1(s) + 2

5
f

(
bX + bY + 6

7
f

)
�0

2(s)

+ 16

63
f 2 �0

4(s), (35)

for the end-point LOS definition. Here, the function �n
m is defined

by (see equation D28)

�n
m(s) =

∫
dk k2

2π2

jm(ks)

(ks)n
PL(k). (36)

Since the functions �0
2 and �0

4 give the positive contributions at
the scales of our interest, the above expressions imply that the
dipole moment for the end-point LOS is shown to be always smaller
than that for the mid-point or bisector LOS, whereas the end-point

octupole always gets a positive correction on top of the prediction for
mid-point LOS. Another notable feature may be that the differences
of the predictions between Zel’dovich approximation and linear
theory look larger for the end-point LOS. This is particularly true
at large scales beyond baryon acoustic peak. This implies that the
effect of non-linear gravitational growth would become significant
for the end-point LOS, and thus an accurate non-linear modelling
would be important.

3.3 Comparison with simulations

Finally, the predictions based on Zel’dovich approximation are
compared with N-body simulations. For this purpose, we measure
the cross-correlation functions from the full-sky halo catalogue
presented in Breton et al. (2019). This catalogue has been created
based on the full-sky light-cone outputs of the CDM RayGal-
GroupSims cosmological N-body simulation with 40963 particles
in a volume of (2.625 h−1 Gpc)3. Using ray-tracing techniques, all
the relevant relativistic contributions to the observed large-scale
structure have been self-consistently incorporated under the weak-
field approximation, including also the wide-angle effects on RSD.
In this respect, the catalogue provides an ideal suite for modelling,
characterizing and testing relativistic signature detectable with
future surveys. But, here, we consider the standard Doppler effect
only, and rather focus on the wide-angle effects, ignoring all
other contributions. A detailed comparison of the analytical model
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4170 A. Taruya et al.

with the data including relativistic effects will be presented in
a companion paper (Saga et al. in preparation). Note that the
volume-averaged redshift of this catalogue is z = 0.341, and the
cosmological parameters are the same as we adopted in this paper.

3.3.1 Non-linear impacts on odd multipoles

Fig. 6 shows the measured results of the dipole (left) and octupole
(right) cross-correlations for the mid-point LOS observer, obtained
from the halo sub-samples of data H100 and data H1600 (upper),
and data H100 and data H800 (lower).6 The bias of these samples
is estimated from the ratio of autocorrelation function to give
1.08, 1.69, and 2.07 for data H100, data H800, and data H1600,
respectively (see table 2 of Breton et al. 2019). The errorbars of
the measured results indicate the statistical error estimated from the
jackknife method with 32 re-samplings. Though the size of errors
is large, we see clearly the non-zero signals both from dipole and
octupoles, which are purely originated from the wide-angle effects.
We have also measured the monopole and quadrupole moments of
cross-correlation functions, which yield a much larger and clearer
signal. However, they are basically dominated by the contributions
from the plane-parallel limit, as shown in Figs 2 and 4, and hence
it is difficult to isolate tiny wide-angle corrections from others.

In Fig. 6, analytical predictions with Zel’dovich approximation
are plotted in magenta solid lines, adopting the measured linear
bias parameters in Breton et al. (2019) (see table 2 of their paper).
Note that in computing the cross-correlation function, we take
haloes with larger (smaller) bias to be the object X (Y), so that
the separation vector, given by s = s2 − s1, always points to the
haloes with smaller bias (see Fig. 1). The redshift in the analytic
calculations was actually chosen to be the mean redshift of the most
massive haloes (i.e. data H1600), z = 0.334. To be precise, this is
slightly different from the volume-averaged one (z = 0.341), but a
qualitative aspect of the comparison remains totally unchanged. In
fact, the predictions agree well with measured results, and capture
the overall trends, although the linear theory predictions, depicted
as dashed lines, also give a good job. Since the measured odd
multipoles are still noisy, one cannot clearly see that the Zel’dovich
approximation outperforms the linear theory prediction. Rather, one
might say that the linear theory still works well to model and predict
their impacts (see Beutler et al. 2019, for practical application).

Nevertheless, as shown in Breton et al. (2019), the deviation from
linear theory appears manifest when we consider the relativistic con-
tributions. In particular, the relativistic contributions tend to have a
large impact on non-linear correction (see Di Dio & Seljak 2019, for
a quantitative study with perturbation theory), and a large deviation
is indeed found for the dipole purely arising from relativistic effects
below 40−50 h−1 Mpc. In this respect, quasi-linear treatment of
wide-angle effects still deserves further investigation. Extending
the present formalism to include relativistic effect, we will study in
detail modelling and predicting the cross-correlation functions in a
separate paper (Saga et al. in preparation).

3.3.2 Impacts of selection function contributions

As a final remark, we discuss the impacts of the selection function
contributions, arising from the terms proportional to (2/s) (v · ŝ)

6The label, data HN, indicates the halo sub-sample in which each halo
contains dark matter particles of the numbers ranging from N to 2N, with
the mass of dark matter particle being 1.88 × 1010 h−1 M�.

in linear density field (second term in equation 23). In Fig. 6,
the predictions ignoring these contributions are plotted in blue
dot–dashed and black dotted lines, which respectively indicate the
results from Zel’dovich approximation and linear theory. Here, the
former is obtained by tracing the same calculation as done by
Castorina & White (2018b), with a slight extension to the cross-
correlation function. The latter is computed from equation (D19),
taking account of a part of the coefficients amn and bmn, i.e. a00, a02,
a20, a22, and b22.

Compared to the predictions shown in magenta solid and black
dashed lines, the results in the octupole moment remain almost
the same, and are hardly distinguishable from those including
the selection function contributions. The fractional differences are
merely ∼2.5 per cent even at s = 200 h−1 Mpc, and we checked
that this is also the case for even multipoles of � = 0, 2, and
4. Remarkably, however, the dipole cross-correlations exhibit a
rather notable difference, with qualitatively the same trend between
Zel’dovich and linear theory predictions.

These results can be deduced analytically from the linear theory
based on the expansion at equation (28) as follows. The dipole cross-
correlation function for the mid-point LOS observer is expressed,
at leading order, as ξ

(S)
1 (s, d) � (s/d) midξ

(S)
1,1(s) with the coefficient

midξ
(S)
1,1 given by equation (D29). As it has been pointed out by

Bonvin et al. (2014), Tansella et al. (2018), and Breton et al. (2019),
this coefficient can be decomposed into two parts, and the resultant
dipole correlation is expressed as7

ξ
(S)
1,lin(s, d) �

( s

d

)
{ξdiv(s) + ξwa(s)} ;

ξdiv(s) = 2

3
f (bX − bY ){�0

0(s) + �0
2(s)},

ξwa(s) = −2

5
f (bX − bY ) �0

2(s). (37)

In the above, ξ div includes the contribution of the (uniform)
selection function terms. On the other hand, the term ξwa, which
gives a negative amplitude, represents the rest of the wide-angle
contributions, arising from the projection of peculiar velocities on
to the radial LOS directions (third term in equation 23). That is,
ignoring the selection function contributions, the predicted dipole
becomes negative if bX > bY. This is consistent with the results
shown in Fig. 6. Note that for octupole, only the term corresponding
to ξwa appears at the leading order O(s/d) (equation D30), and thus
the predictions with and without the selection functions do not show
any difference.

The results suggest that a consistent framework to include all the
wide-angle contributions is important in predicting the dipole, and
a proper account of the selection function contribution is especially
crucial. For future practical application, a further extension of the
present formalism to incorporate non-uniform selection function
would be important. Since a part of the relativistic effects is also
known to produce similar contributions (e.g. Bertacca et al. 2012;
Raccanelli et al. 2018), a more careful treatment may be necessary
to identify and isolate the relativistic effects from others. Although
the present formalism can only deal with uniform selection function,
recalling the fact that the halo samples in our light-cone catalogue
is not perfectly uniform along the LOS, a good agreement with

7The dipole contributions coming from ξdiv and ξwa in equation (37) exactly
correspond to 〈ξdiv〉 and 〈ξwa〉 in Breton et al. (2019) (see equations 23 and
29 of their paper).
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Wide-angle effects at quasi-linear scales 4171

Figure 6. Comparison of the dipole (left) and octupole (right) moments of cross-correlation function between analytical predictions and measured results
in N-body simulations, adopting the mid-point LOS given at equation (29). Upper and lower panels shows the results for the haloes with different linear
bias: (bX, bY ) = (2.07, 1.08) (upper), (1.69, 1.08) (lower). The plotted results are the cross-correlation functions multiplied by s2 at z = 0.33. In each panel,
predictions based on linear theory and Zel’dovich approximation are shown in magenta solid and black dashed lines, respectively. Also, predictions ignoring
the selection function contributions are also shown in blue dot–dashed and black dotted lines, which are computed from Zel’dovich approximation and linear
theory, respectively. Note that for the octupole, predictions with and without selection function contributions mostly coincide with each other.

simulations suggests some hints to approximately treat non-uniform
selection function on top of the present formalism. We leave these
investigations to future work.

4 C O N C L U S I O N

The observations of large-scale structure, made through a specific
observer, often break symmetries inherent in the large-scale struc-
ture. But, the symmetry breaking induced by observer can bring
additional cosmological information, and offer an interesting test
of cosmology. This is the RSD arising from the peculiar velocity
of galaxies along the LOS direction. Increasing the statistical
precision in next-generation galaxy surveys, one will be able to
not only tighten the cosmological constraints from standard RSD
measurements, but also detect yet another distortion induced by the
relativistic effects. In doing so, a quantitative understanding of the
physical effects as well as the observational systematics is crucial
issue, and a possible impacts on the cosmological interpretation
needs to be investigated.

One such effect is the wide-angle effect, which appears man-
ifest for the statistics of a widely separated galaxies. Unlike the
standard RSD in which the plane-parallel limit of the observed

galaxy distribution is assumed with a fixed LOS direction, the
translational invariance is broken for the statistical correlation of
a widely separated galaxy pair, and this produces several non-trivial
properties for two-point correlation function. So far, analytical study
on the impact of wide-angle effects has been mostly restricted to
the linear theory framework. In this paper, employing the first-order
Lagrangian perturbation theory for gravitational clustering, i.e.
Zel’dovich approximation, we presented a quasi-linear formalism
of wide-angle effects to compute the cross-correlation function
between different biased objects.

Our quasi-linear treatment of cross-correlation function is similar
to what have been presented in Castorina & White (2018b).
We have clarified the similarity and differences between the two
treatments, and have checked in two ways that our treatment
correctly reproduces the linear theory of wide-angle RSD under
the uniform radial selection function. Our quasi-linear formalism
with Zel’dovich approximation is thus regarded as a consistent non-
linear extension taking a proper account of wide-angle effects.

We then studied quantitatively the impact of wide-angle effects on
the cross-correlation function at quasi-linear scales. In particular,
we evaluated the size of the wide-angle corrections that appear
in the conventional multipole expansion. We found that for even
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multipoles, higher multipoles tend to receive a larger wide-angle
correction to the cross-correlation function, and the quasi-linear
treatment with Zel’dovich approximation predicts a more significant
impact of the wide-angle effects on the hexadecapole moment even
at small scales. These findings are qualitatively similar to what
have been found by Castorina & White (2018b) in the case of the
autocorrelation function. Further, a noticeable result of the cross-
correlation function appears in the non-zero odd multipoles, which
basically vanish in the plane-parallel limit. The amplitude of odd
multipoles is roughly proportional to the difference between bias
parameters, and the baryon acoustic feature is clearly seen, with the
structure smeared in the quasi-linear predictions. Note cautiously
that the shape of odd multipoles can be drastically changed,
depending on which LOS definition we use. We showed that the
prediction based on the end-point LOS is rather different from
that for others. The linear theory formulas presented in Appendix D
would provide a useful guideline to understand the LOS dependence
of wide-angle effects, although a quantitative understanding needs
the quasi-linear treatment with Zel’dovich approximation.

Finally, we have compared our quasi-linear prediction of odd
multipoles with measured results in N-body simulations. The
predictions agree well with simulations, but within the statistical
error, no noticeable difference of the predictions between linear
theory and Zel’dovich approximation was found. In other words,
our results implies that the linear theory description of wide-angle
effects still works well at lower redshifts. Nevertheless, we note
that ignoring the selection function contributions, the predicted
dipole significantly deviates from simulations in both linear theory
and Zel’dovich approximation. In this respect, a proper account of
all wide-angle effects is crucial. Further, as it has been shown in
Breton et al. (2019), when including the relativistic contributions,
the linear theory prediction fails to describe the odd-multipole
cross-correlation at relatively large scales. A proper account of
the non-linear clustering effects seems essential for a quantitative
prediction, and in this respect, the present formalism is useful and
can be a basis to model and predict the cross-correlation functions
including relativistic corrections. We will discuss it in more detail
in a forthcoming paper.
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APPEN D IX A : A NA LY TIC EXPRESSION OF
C RO S S - C O R R E L AT I O N FU N C T I O N

In this appendix, starting from the expressions given at equation (12)
with (13) and (14), we derive analytical expressions for cross-
correlation function ξ

(S)
XY summarized at equations (15) and (18),

which involves three- and six-dimensional integrals for RX and
DXDY , respectively.

A1 RX , RY -part

To derive equation (15), we first make use of the fact that the
quantities � (S) and δL are Gaussian fields. Then, the bracket in the
integrand is rewritten with〈

e−ik·� (S)
(q)

{
1 + bL

XδL(q)
}〉 = exp

[
−1

2
kikj

〈
�

(S)
i (q)� (S)

j (q)
〉]

.

Here, we used the fact that 〈� (S)
i (q) δL(q)〉 = 0. This implies that

RX = RY. Using the definition at equation (16), we can rewrite
equation (13) with

RX(s) =
∫

d3k
(2π )3

∫
d3q ei k·(s−q) exp

[
−1

2
Aij (q)kikj

]
. (A1)

With the Gaussian integral formula at equation (B1), the integral
over wavevector is analytically performed to give equation (15):

RX(s) =
∫

d3q
(2π )3/2|detA|1/2

e−(1/2)A−1
ij

(s−q)i (s−q)j .

The explicit expression for the matrix Aij will be given in next
subsection (see equation A23).

A further reduction of the above expression is not straightforward
because of the non-trivial dependence of the matrix Aij. But,
one can exploit the approximation with which RX,Y leads to a
simple analytical form. Taylor-expanding the exponential factor in
equation (A1), we have

RX,Y (s) =
∫

d3k
(2π )3

∫
d3q ei k·{s−q} ∑

n=0

1

n!

{
−kikj

2
Aij (q̂)

}n

=
∫

d3k
(2π )3

∫
d3q

×
∑
n=0

1

n!

{
1

2
Aij (q̂)

∂2

∂qi∂qj

}n

ei k·{s−q},

which, repeating the integration by part, is reduced to (see also
Section C for similar technique)

RX,Y (s) =
∑
n=0

1

n!

{
1

2

∂2

∂si∂sj

Aij (ŝ)

}n

. (A2)

Substituting the explicit expression of the matrix Aij at equa-
tion (A23) into the above, the approximate form of RX,Y truncating
at finite order in Aij is obtained to give equation (17), which is
expressed as function of s = |s|.

A2 DX DY -part

In order to derive the expression of DXDY relevant for numerical
calculations, let us first define the following quantities:

X1 ≡ bL
X δL(q1), X2 ≡ bL

Y δL(q2),

Y ≡ −i
{

k1 · � (S)(q1) + k2 · � (S)(q2)
}

. (A3)

Then, equation (14) is rewritten with

DXDY (s1, s2) =
∫

d3k1d3k2

(2π )6

∫
d3q1d3q2

×eik1·(s1−q1)+ik2·(s2−q2)
〈
eY (1 + X1)(1 + X2)

〉
.

(A4)

At first order in Lagrangian perturbation theory (i.e. Zel’dovich
approximation), the quantities X1, X2, and Y all follows Gaussian
statistics. Then, using the properties between moment and cumulant
generating function, one can exploit the following expression (see
e.g. Scoccimarro 2004; Matsubara 2008a; Taruya et al. 2010):

〈
eY (1 + X1)(1 + X2)

〉 = exp

[
1

2
〈Y 2〉c

]
{1 + 〈X1X2〉c + 〈X1Y 〉c

+〈X2Y 〉c + 〈X1Y 〉c〈X2Y 〉c}.

Here, the quantities enclosed by the bracket 〈· · · 〉c imply the
cumulants, for which the disconnected part of the ensemble average
is subtracted. In our case with Gaussian random fields of Xi and Y,
there is actually no distinction between cumulant and moment, and
we simply omit subscript c. Then, statistical quantities at right-hand
side are explicitly given as follows:

〈Y 2〉 = −k1,ik1,j Aij (q̂1) − k2,ik2,j Aij (q̂2)

− 2k1,ik2,j Bij (q1, q2), (A5)

〈X1Y 〉 = i bL
X k2,i Ui(q1, q2), (A6)

〈X2Y 〉 = i bL
Y k1,i Ui(q2, q1), (A7)

〈X1X2〉 = bL
XbL

Y ξL(|q2 − q1|), (A8)

where the quantity ξL is the correlation function of Lagrangian
matter density field, ξL(|q2 − q1|) ≡ 〈δL(q1)δL(q2)〉. Here, the
quantities Aij and Bij are the 3 × 3 matrices, and Ui are the three-
dimensional vectors, defined by

Aij (q̂) =
〈
�

(S)
i (q)� (S)

j (q)
〉

, (A9)

Bij (q1, q2) =
〈
�

(S)
i (q1)� (S)

j (q2)
〉

, (A10)

Ui(q1, q2) = −
〈
δL(q1)� (S)

i (q2)
〉

. (A11)

Note that equation (A9) is the same one as given at equation (16).
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Substituting equations (A5)–(A7) into equation (A4), the cross-
correlation term becomes

DXDY (s1, s2) =
∫

d3k1d3k2

(2π )6)

∫
d3q1d3q2

× ei k1·(s1−q1)+i k2·(s2−q2)

× exp

[
−1

2
k1,ik1,j Aij (q̂1) − 1

2
k2,ik2,j Aij (q̂2)

− k1,ik2,j Bij (q1, q2)

]
× [

1 + bL
XbL

Y ξL(q) + i bL
Xk2,iUi(q1, q2)

+ i bL
Y k1,iUi(q2, q1)

− bL
XbL

Y k1,ik2,j Ui(q2, q1) Uj (q1, q2)
]
. (A12)

The above expression is further simplified if we introduce
the six-dimensional vectors composed of two three-dimensional
vectors, i.e. K ≡ (k1, k2), Q ≡ (q1, q2), and S ≡ (s1, s2). Then,
equation (A12) is rewritten with

DXDY (s1, s2) =
∫

d6 K
(2π )6

∫
d6 Q ei Kc(S−Q)c

× exp

[
−1

2
Aab( Q)KaKb

] [
1 + bL

XbL
Y ξL(q)

+ i KcUc( Q) − KaKbWab( Q)
]
, (A13)

where the subscripts a, b, c run over 1−6. The quantities Aab and
Wab are the 6 × 6 matrices, and Ua is the six-dimensional vector,
given by

Aab =
(

A(q̂1) B(q1, q2)
T B(q1, q2) A(q̂2)

)
, (A14)

Ua =
(

bL
Y U(q2, q1)

bL
X U(q1, q2)

)
, (A15)

Wab = 1

2
bL

XbL
Y

(
0 Ui(q2, q1) Uj (q1, q2)

Uj (q2, q1) Ui(q1, q2) 0

)
.

(A16)

Now, making use of the formulas for multidimensional Gaussian
integrals in Appendix B, the integral over the six-dimensional
wavevector K is analytically performed, and we obtain

DXDY (s1, s2) =
∫

d6 Q
(2π )3|detA|1/2

e−(1/2)A−1
ab

(S−Q)a (S−Q)b

× [
1 + bL

XbL
Y ξL(q) − A−1

cd Uc(S − Q)d

− {
A−1

cd − A−1
ce A−1

df (S − Q)e(S − Q)f
}
Wcd

]
.

(A17)

This is equation (18).
For a quantitative calculation of equation (A17) or (18), we

further need explicit functional forms of 3 × 3 matrices Aij and
Bij as well as three-dimensional vectors U1,i and U2,i, which are the
building blocks of Aab, Wab, and Ua . Recall that the displacement
field in Zel’dovich approximation is related to the linear density

field δL through equation (5), we have

�
(S)
i (qJ ) = Rik(qJ )�ZA,i(qJ )

= Rik(qJ )
∫

d3 p
(2π )3

i pk

| p|2 δ̃L( p) ei p·qJ , (J = 1, 2)

(A18)

with δ̃L being the Fourier counterpart of the initial density field.
Substituting the above expression into the definitions given at
equations (A9)–(A11), we obtain

Aij (q̂J ) = Rik(q̂J ) Rjl(q̂J )
∫

d3 p
(2π )3

pkpl

p2
PL(p), (J = 1, 2)

(A19)

Bij (q1, q2) = Rik(q̂1) Rjl(q̂2)
∫

d3 p
(2π )3

pkpl

p2
ei p·(q2−q1) PL(p),

(A20)

Ui(q1, q2) = −Rik(q̂2)
∫

d3 p
(2π )3

i pk

p2
ei p·(q2−q1) PL(p),

(A21)

where the quantity PL is the linear power spectrum of the density
field δ̃L, defined by

〈δ̃L( p)δ̃L( p′)〉 = (2π )3 δD( p + p′) PL(p). (A22)

Using the rotational invariance of the integrals, the above expres-
sions are reduced to the simplified forms as

Aij (q̂J ) = Rik(q̂J )Rjk(q̂J ) σ 2
d ; (J = 1, 2), (A23)

Bij (q1, q2) = Rik(q̂1)Rjl(q̂2) {C(q) δkl + D(q) q̂k q̂l} (A24)

Ui(q1, q2) = Rik(q̂2)q̂k L(q), (A25)

with q ≡ |q2 − q1| and q̂k ≡ (q2,k − q1,k)/q. The explicit expres-
sions for the quantity σ 2

d and functions C, D, and L become

C(q) =
∫

dp

2π2

j1(pq)

pq
PL(p), (A26)

D(q) = −
∫

dp

2π2
j2(pq) PL(p), (A27)

L(q) =
∫

dp

2π2
p j1(pq) PL(p), (A28)

σ 2
d =

∫
dp

6π2
PL(p), (A29)

ξL(q) =
∫

dp

2π2
p2 j0(pq) PL(p), (A30)

where j�(x) is the spherical Bessel function of the first kind.

A P P E N D I X B: FO R M U L A S FO R
M U LT I D I M E N S I O NA L G AU S S I A N I N T E G R A L S

Here, we summarize the formulas for Gaussian integrals used to
derive the analytical expressions in Appendix A. Let Ka and Xa

be n-dimensional vectors, and Aab be n × n symmetric matrix
independent of Ka and Xa. Then, we have∫

dn K
(2π )n

ei KaXa exp

[
−1

2
KaKb Aab

]

= 1

(2π )n/2|detA|1/2
exp

[
−1

2
A−1

ab XaXb

]
, (B1)
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∫
dn K
(2π )n

ei KaXa Kc exp

[
−1

2
KaKb Aab

]

= i

(2π )n/2|detA|1/2
A−1

cd Xd exp

[
−1

2
A−1

ab XaXb

]
, (B2)

∫
dn K
(2π )n

ei KaXa KcKd exp

[
−1

2
KaKb Aab

]
= 1

(2π )n/2|detA|1/2

{
A−1

cd − A−1
ce A−1

df XeXf

}
× exp

[
−1

2
A−1

ab XaXb

]
. (B3)

APP ENDIX C : R ECOV ERY O F W IDE-ANGLE
LINEA R C RO SS-CORRELATION FUNCTIO N

In this appendix, for the sake of completeness, we show that
starting with the expressions involving the wide-angle effect, i.e.
Equations (12), (13), and (14), their leading-order expansions
correctly reproduce the linear theory including wide-angle effect.
To do this, we keep and expand the terms up to O(PL), then DXDY ,
RX , and RY are rewritten as

DXDY (s1, s2) �
∫

d3k1d3k2

(2π )6

∫
d3q1d3q2

× ei k1·{s1−q1}+i k2·{s2−q2}
[

1 + bL
XbL

Y ξL(q)

− 1

2
k1,ik1,j Aij (q1) − 1

2
k2,ik2,j Aij (q2)

− k1,ik2,j Bij (q1, q2) + i bL
X k2,iU1,i

+ i bL
Y k1,iU2,i + · · ·

]
. (C1)

To simplify the expression, we notice that a factor of wavenumber
k1,2 in the integrand is always multiplied by the exponential

ei k1·(s1−q1)+i k2·(s2−q2). Thus, we replace it with a Lagrangian
spatial derivative:

k1,i −→ i
∂

∂q1,i

, k2,i −→ i
∂

∂q2,i

. (C2)

Then, the integration can be performed analytically in a systematic

manner. An explicit demonstration is given below for the term
involving Bij:∫

d3k1d3k2

(2π )6

∫
d3q1d3q2ei k1·{s1−q1}+i k2·{s2−q2}

×{−k1,ik2,j Bij (q1, q2)}

=
∫

d3k1d3k2

(2π )6

∫
d3q1d3q2 Bij (q1, q2)

× ∂2

∂q1,i∂q2,j

ei k1·{s1−q1}+ik2·{s2−q2}

=
∫

d3k1d3k2

(2π )6

∫
d3q1d3q2 ei k1·{s1−q1}+i k2·{s2−q2}

× ∂2

∂q1,i∂q2,j

Bij (q1, q2)

=
∫

d3q1d3q2 δD(s1 − q1)δD(s2 − q2)

× ∂2

∂q1,i∂q2,j

Bij (q1, q2)

= ∂2

∂s1,i∂s2,j

Bij (s1, s2). (C3)

Note that in the third line, integration by parts is performed,
assuming the finite support of the function Bij. Applying the above
procedure to other terms in the integrand, equation (C1) is reduced
to

DXDY (s1, s2) = 1 + bL
XbL

Y ξL(s)

+ 1

2

{
∂2

∂s1,i∂s1,j

Aij (ŝ1) + ∂2

∂s2,i∂s2,j

Aij (ŝ2)

}
(C4)

+ ∂2

∂s1,i∂s2,j

Bij (s1, s2)

+ bL
X

∂

∂s2,i

U1,i(s1, s2) + bL
Y

∂

∂s1,i

U2,i(s1, s2).

(C5)

Similarly, the function RX and RY are expanded up to leading order
in δL, and are computed systematically to give

RX(s1) =
∫

d3k1

(2π )3

∫
d3q1 ei k1·{s1−q1}

×
{

1 − 1

2
A1,ij (q̂1)k1,ik1,j + · · ·

}

= 1 + 1

2

∂2

∂s1,i∂s1,j

Aij (ŝ1). (C6)

RY (s2) = 1 + 1

2

∂2

∂s2,i∂s2,j

Aij (ŝ2). (C7)

Combining the expressions given at equations (C5), (C6), and (C7),
the leading order expression of the correlation function, ξ

(S)
XY,lin,

becomes

ξ
(S)
XY,lin(s1, s2) = DXDY (s1, s2)

RX(s1)RX(s2)
− 1

� bL
XbL

Y ξL(q) + ∂2

∂s1,i∂s2,j

Bij (s1, s2)

+ bL
X

∂

∂s2,i

U1,i(s1, s2) + bL
Y

∂

∂s1,i

U2,i(s1, s2).

(C8)

To further reduce the above expression, we evaluate the spatial
derivative of the matrix Bij and vectors UI,i. Based on the expressions
given at equations (A20) and (A21), a straightforward calculation
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leads to

∂2

∂s1,i∂s2,j

Bij (s1, s2) =
∫

d3k
(2π )3

eik·(s2−s1) PL(k)

×
(

1 + f μ2
1 + i 2f

μ1

ks1

)

×
(

1 + f μ2
2 − i 2f

μ2

ks2

)
, (C9)

∂

∂s2,i

U1,i(s1, s2) =
∫

d3k
(2π )3

eik·(s2−s1) PL(k)

×
(

1 + f μ2
2 − i 2f

μ2

ks2

)
, (C10)

∂

∂s1,i

U2,i(s1, s2) =
∫

d3k
(2π )3

eik·(s2−s1) PL(k)

×
(

1 + f μ2
1 + i 2f

μ1

ks1

)
, (C11)

with s1 = |s1| and s2 = |s2|. Here, the directional cosine μi is
defined by μi = k̂ · ŝi . Summing up the contributions above, we
finally obtain

ξ
(S)
XY,lin(s1, s2) =

∫
d3k

(2π )3
eik·(s2−s1) PL(k)

×
(

bX + f μ2
1 + i 2f

μ1

ks1

)

×
(

bY + f μ2
2 − i 2f

μ2

ks2

)
, (C12)

with bX,Y being the Eulerian linear bias given by bX,Y = 1 + bL
X,Y .

Equation (C12) fully coincides with the linear theory expression
that have been derived previously (e.g. Pápai & Szapudi 2008; Yoo
& Seljak 2015; Reimberg et al. 2016).

A PPEN D IX D : LIN EA R TH EO RY O F
CRO SS- C ORRELATION FUNCTION W ITH
WID E-ANGLE R SD

In this appendix, starting with equation (C12), we present the
analytical formulas to compute the cross-correlation function at
linear order, including the wide-angle effects.

D1 Expansion form of linear cross-correlation function

In Szapudi (2004) and Pápai & Szapudi (2008), the linear-order
correlation function with wide-angle effects is expanded in terms of
the tripolar spherical harmonics, and it is evaluated in three different
coordinate systems in the case of autocorrelation function (similar
expansion has been also introduced in Szalay et al. 1998). Here,
following Szapudi (2004) and Pápai & Szapudi (2008), we extend
their treatment to the linear-order correlation function between
different biased objects.

The tripolar spherical harmonics characterize the angular depen-
dence of correlation function, defined by

S�1,�2,�(ŝ1, ŝ2, ŝ) =
∑

m1,m2,m

(
�1 �2 �

m1 m2 m

)
×C∗

�1m1
(ŝ1)C∗

�2m2
(ŝ2)C∗

�m(ŝ), (D1)

with the function C�m(x̂) being the normalized spherical harmonics,
given by C�m(x̂) ≡ √

4π/(2� + 1) Y�m(x̂). Note that Wigner 3j
symbols appear at right-hand side. With the harmonics above,
we can separate the dependence of the distance and separation
from their angular dependence in the cross-correlation function at
equation (C12). We have

ξ
(S)
lin (s1, s2) =

∑
�1,�2,�

b�1,�2,�(s1, s2, s) S�1,�2,�,(ŝ1, ŝ2, ŝ). (D2)

The coefficients b�1,�2,� are given as the function of s1 = |s1|,
s2 = |s2|, and s = |s2 − s1|. The non-vanishing coefficients are
summarized as follows:

b000 =
{

bXbY + f

3
(bX + bY ) + f 2

9

}
ξ 2

0 (s), (D3)

b220 = 4 f 2

9
√

5
ξ 2

0 (s), (D4)

b202 = −2
√

5

3

(
bY f + f 2

3

)
ξ 2

2 (s), (D5)

b022 = −2
√

5

3

(
bX f + f 2

3

)
ξ 2

2 (s), (D6)

b222 = 4

9

√
10

7
f 2 ξ 2

2 (s), (D7)

b224 = 4

√
2

35
f 2 ξ 2

4 (s), (D8)

b101 = 2
√

3

(
bY f

s1
+ f 2

3 s1

)
ξ 1

1 (s), (D9)

b011 = −2
√

3

(
bXf

s2
+ f 2

3 s2

)
ξ 1

1 (s), (D10)

b121 = −4

√
2

15

f 2

s1
ξ 1

1 (s), (D11)

b211 = 4

√
2

15

f 2

s2
ξ 1

1 (s), (D12)

b123 = −4

√
7

15

f 2

s1
ξ 1

3 (s), (D13)

b213 = 4

√
7

15

f 2

s2
ξ 1

3 (s), (D14)

b110 = − 4 f 2

√
3 s1s2

ξ 0
0 (s), (D15)

b112 = −4

√
10

3

f 2

s1s2
ξ 0

2 (s), (D16)

where the function ξm
� is defined by

ξn
� (s) ≡

∫
dk

2π2
kn j�(ks) PL(k). (D17)

The coefficients given above exactly coincide with those listed in
Pápai & Szapudi (2008) if we set bX = 1 = bY and flip the sign for
the terms involving either of factor 1/s1 or 1/s2 (see equations 6–8 in
their paper). This is because the separation s, given by s = |s2 − s1|,
differs from the one defined in Pápai & Szapudi (2008).
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As it has been shown in Szapudi (2004) and Pápai & Szapudi
(2008), we can further exploit a simplified expansion, which is
suited for numerically computing the correlation function. To do
this, based on the expansion given in equation (D2), we choose
a specific coordinate system, in which the triangle formed with
the position vectors s1 and s2 is confined on the x−y plane, and
the pair separation vector s = s2 − s1 is parallel to the x-axis [i.e.
ŝ = (1, 0, 0)]. To be precise, we set

ŝ1 = {cos φ1, sin φ1, 0}, ŝ2 = {cos φ2, sin φ2, 0}. (D18)

This implies

S�1,�2,�(ŝ1, ŝ2, ŝ) = S�1,�2,�({θ1 = π/2, φ1},
{θ2 = π/2, φ2}, {θ = π/2, φ = 0}).

With this choice of coordinate system, the full expressions for linear
cross-correlation function can be described by a finite number of
terms that depend on the two angles φ1, φ2, and distances s1, s2,
and separation s:

ξ
(S)
XY (s1, s2) =

∑
m,n

{amn cos(mφ1) cos(nφ2)+bmn sin(mφ1) sin(nφ2)}.

(D19)

The non-vanishing coefficients amn and bmn for the linear cross-
correlation function are summarized as follows:

a00 =
{

bXbY + f

3
(bX + bY ) + 2 f 2

15

}
ξ 2

0 (s)

−
{

f

6
(bX + bY ) + 2f 2

21

}
ξ 2

2 (s) + 3 f 2

140
ξ 2

4 (s),

a02 = −
(

f

2
bX + 3 f 2

14

)
ξ 2

2 (s) + f 2

28
ξ 2

4 (s),

a20 = −
(

f

2
bY + 3 f 2

14

)
ξ 2

2 (s) + f 2

28
ξ 2

4 (s),

a22 = f 2

{
1

15
ξ 2

0 (s) − 1

21
ξ 2

2 (s) + 19

140
ξ 2

4 (s)

}
,

b22 = f 2

{
1

15
ξ 2

0 (s) − 1

21
ξ 2

2 (s) − 4

35
ξ 2

4 (s)

}
,

a10 = −
{

2 bY f

s1
+ 4 f 2

5 s1

}
ξ 1

1 (s) + f 2

5 s1
ξ 1

3 (s),

a01 =
{

2 bX f

s2
+ 4 f 2

5 s2

}
ξ 1

1 (s) − f 2

5 s2
ξ 1

3 (s),

a11 = 4 f 2

3 s1 s2

{
ξ 0

0 (s) − 2 ξ 0
2 (s)

}
,

a21 = 2 f 2

5 s2
ξ 1

1 (s) − 3 f 2

5 s2
ξ 1

3 (s),

a12 = −2 f 2

5 s1
ξ 1

1 (s) + 3 f 2

5 s1
ξ 1

3 (s),

b11 = 4 f 2

3 s1 s2

{
ξ 0

0 (s) + ξ 0
2 (s)

}
,

b21 = 2 f 2

5 s2

{
ξ 1

1 (s) + ξ 1
3 (s)

}
,

b12 = −2 f 2

5 s1

{
ξ 1

1 (s) + ξ 1
3 (s)

}
.

Note again that the coefficients amn and bmn coincide exactly with
those listed in Pápai & Szapudi (2008) if we set bX = 1 = bY, and
flip the sign for the terms involving either of factor 1/s1 or 1/s2.

D2 Line-of-sight dependent wide-angle corrections for
cross-correlation function

As we discussed in Section 3, the cross-correlation function for a
widely separated pair can be also expressed as a function of LOS
distance, d = |d|, separation for a pair of objects, s = |s2 − s1|, and
the directional cosine, μ = d̂ · ŝ, with unit vector ŝ defined by ŝ ≡
(s2 − s2)/s. When applying the conventional multipole expansion,
we have in general the following expression (see equations 27 and
28):

ξ
(S)
XY (s, d, μ) =

∑
�

∑
n

( s

d

)n

ξ
(S)
�,n(s)P�(μ). (D20)

In linear theory, the leading-order expressions for the coefficients
in n, i.e. ξ�,0, are reduced to the well-known formulas in the plane-
parallel limit (e.g. Hamilton 1992):

ξ
(S)
0,0(s) =

{
bXbY + f

3
(bX + bY ) + f 2

5

}
ξ 2

0 (s), (D21)

ξ
(S)
2,0(s) = −

{
2f

3
(bX + bY ) + 4f 2

7

}
ξ 2

2 (s), (D22)

ξ
(S)
4,0(s) = 8f 2

35
ξ 2

4 (s). (D23)

For higher order terms of n ≥ 1, the expressions for ξ
(S)
�,n depends

on the definition of LOS direction. Below, based on the expansion
form given at equation (D19), we derive the next-to-leading-order
expressions for the wide-angle corrections, i.e. ξ

(S)
�,1 for the odd

multipoles and ξ
(S)
�,2 for the even multipoles, in three different

definitions of LOS direction.

D2.1 Mid-point LOS

Consider first the mid-point LOS, defined at equation (29). With
this specific definition, the position vectors for the pair of objects,
s1 and s2, are expressed in terms of the LOS vector d and separation
vector s as

s1 = d − 1

2
s, s2 = d + 1

2
s. (D24)

We also recall that the two angles φ1 and φ2, defined in the
specific coordinate system in Section D1, are related to the position
vectors s1 and s2 through equation (D18). With a help of these
expressions and relation, we substitute the explicit form of the LOS
and separation vectors, s = (s, 0, 0) and d = d(μ,

√
1 − μ2, 0),

into the expansion at equation (D19). Then, the correlation function
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ξ
(S)
XY is expressed explicitly in terms of the three variables, s, d, and μ.

With this expression, the correlation function is now systematically
expanded in powers of (s/d).

For even multipole, the next-to-leading-order non-vanishing
contribution to equation (D20) appears at n = 2. Up to � = 4,
we have

midξ
(S)
0,2(s) =

{
f

9
(bX + bY ) − 14 f 2

15

}
�0

0(s)

+
{

7 f

90
(bX + bY ) − 69 f 2

315

}
�0

2(s) + 4 f 2

3
�2

0(s),

(D25)

midξ
(S)
2,2(s) = −

{
4 f

9
(bX + bY ) + 4 f 2

15

}
�0

0(s)

−
{

23 f

126
(bX + bY ) + 23 f 2

147

}
�0

2(s) − 8 f 2

245
�0

4(s),

(D26)

midξ
(S)
4,2(s) = −

{
8 f

35
(bX + bY ) + 48 f 2

245

}
�0

2(s) + 4 f 2

2695
�0

4(s),

(D27)

with the function �n
m(s) defined by

�n
m(s) ≡

∫
dk k2

2π2

jm(ks)

(ks)n
PL(k). (D28)

Note that this is related to the function ξn
m at equation (D17)

through �n
m = ξ 2−n

m /sn. Setting bX = bY, the expressions given
above coincide with those obtained by Reimberg et al. (2016) except
for the hexadecapole, where we found a small typo in their paper
(see equations 4.18– 4.20 of their paper).

On the other hand, the odd multipoles appears non-vanishing at
n = 1. We obtain

midξ
(S)
1,1(s) = 2

3
f (bX − bY )

{
�0

0(s) + 2

5
�0

2(s)

}
, (D29)

midξ
(S)
3,1(s) = 2

5
f (bX − bY ) �0

2(s). (D30)

The odd multipoles become vanishing in general for autocorrelation
function (i.e. bX = bY).

D2.2 End-point LOS

Let us next consider the end-point LOS defined by equation (30).
In this case, the position vectors s1 and 2 are expressed in terms of
d and s as

s1 = d, s2 = d + s. (D31)

Similar to the mid-point LOS case, we use equations (D31) and
(D18) to express the expansion at equation (D19) in terms of the
variables s, d, and μ.

Then, systematic expansion in power of (s/d) leads to the
following next-to-leading-order wide-angle corrections:

endξ
(S)
0,2(s) =

{
2 f

9
bX − 14 f 2

45

}
�0

0(s)

+
{

4 f

45
bX − 68 f 2

315

}
�0

2(s) + 4 f 2

3
�2

0(s), (D32)

endξ
(S)
2,2(s) = −

{
8 f

9
bX + 4 f 2

15

}
�0

0(s)

+
{

10 f

63
bX + 10 f 2

147

}
�0

2(s) + 12 f 2

245
�0

4(s),

(D33)

endξ
(S)
4,2(s) = −

{
32 f

9
bX + 96 f 2

245

}
�0

2(s) − 776 f 2

2695
�0

4(s)

(D34)

for the even multipoles, and

endξ
(S)
1,1(s) =

{
2 f

3
bX − 2 f

3
bY

}
�0

0(s)

−
{

2 f

15
bX + 2 f

3
bY + 12 f 2

35

}
�0

2(s), (D35)

endξ
(S)
3,1(s) =

{
4 f

5
bX + 12 f 2

35

}
�0

2(s) + 16 f 2

63
�0

4(s) (D36)

for the odd multipoles. Note that setting bX = bY and flipping
the overall sign, equations (D35) and (D36) coincide with those
obtained by Reimberg et al. (2016).8

Note that the above expressions are related to those in the mid-
point LOS case as follows:

endξ
(S)
0,2(s) =mid ξ

(S)
0,2(s) + f

9
(bX − bY )�0

0(s)

+ f

90

{
bX − 7 f − 18 f 2

7

}
�0

2(s), (D37)

endξ
(S)
2,2(s) =mid ξ

(S)
2,2(s) − 4 f

9
(bX − bY ) �0

0(s)

+ 43 f

126

{
bX + 23

43
bY + 198 f

301

}
�0

2(s)

+ 4 f 2

49
�0

4(s), (D38)

endξ
(S)
4,2(s) =mid ξ

(S)
4,2(s) − 24 f

35

{
bX − f

3
bY + 2 f 2

7

}
�0

2(s)

− 156 f 2

539
�0

4(s) (D39)

for even multipoles, and

endξ
(S)
1,1(s) =mid ξ

(S)
1,1(s) − 2

5
f

(
bX + bY + 6

7
f

)
�0

2(s), (D40)

endξ
(S)
3,1(s) =mid ξ

(S)
3,1(s) + 2

5
f

(
bX + bY + 6

7
f

)
�0

2(s)

+ 16 f 2

63
�0

4(s) (D41)

for odd multipoles. That is, the odd multipoles for the end-point
LOS generally become non-vanishing even if we set bX = bY.

D2.3 Bisector LOS

Finally, we consider the bisector LOS, and derive the wide-angle
corrections. From the definition given at equation (31) and the

8In their paper, the position vector s2 is taken to be the end-point LOS.
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geometrical relation, we can express the position vectors s1 and
s2 in terms of LOS vector d and separation vector s as follows:

s1 = d − (1 − t)s, s2 = d + t s (D42)

with the quantity t given by (Castorina & White 2018a,b)

t = d + s μ −
√

d2 + (s μ)2

2 s μ
. (D43)

Repeating the same procedure as given in Section D2.1 and D2.2,
equation (D19) is expressed in terms of the variables s, d, and μ,
and we can then expand it in powers of (s/d).

The non-vanishing even multipoles at next-to-leading order
become

bisectξ
(S)
0,2(s) =

{
f

9
bX + f

9
bY − 14 f 2

45

}
�0

0(s)

+
{

f

90
bX + f

90
bY − 11 f 2

45

}
�0

2(s) + 4 f 2

3
�2

0(s),

(D44)

bisectξ
(S)
0,2(s) = −

{
4 f

9
bX + 4 f

9
bY − 4 f 2

15

}
�0

0(s)

−
{

29 f

126
bX + 29 f

126
bY − 29 f 2

147

}
�0

2(s)

+ 16 f 2

735
�2

0(s), (D45)

bisectξ
(S)
4,2(s) = −

{
4 f

35
bX + 4 f

35
bY + 24 f 2

245

}
�0

2(s)

+ 4 f 2

245
�0

4(s), (D46)

which are compared with those in the mid-point LOS as follows:

bisectξ
(S)
0,2(s) =mid ξ

(S)
0,2(s) − f

15

{
bX + bY + 6 f

7

}
�0

2(s), (D47)

bisectξ
(S)
2,2(s) =mid ξ

(S)
2,2(s) − f

21

{
bX + bY + 6 f

7

}
�0

2(s)

+8 f 2

147
�0

4(s), (D48)

bisectξ
(S)
4,2(s) =mid ξ

(S)
4,2(s) + 4f

35

{
bX + bY + 6 f

7

}
�0

2(s)

+8 f 2

539
�0

4(s). (D49)

Setting bX = bY, equations (D44)–(D46) are basically the same
expressions as presented in Reimberg et al. (2016), where there are
minor typos in equations 4.25 and 4.26.

On the other hand, the leading-order non-vanishing odd multi-
poles are shown to be exactly coincide with those in the mid-point
LOS. That is, we have

bisectξ
(S)
1,1(s) =mid ξ

(S)
1,1(s), (D50

bisectξ
(S)
3,1(s) =mid ξ

(S)
3,1(s). D51)
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