Observation of Several Sources of $C P$ Violation in $B^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$Decays

Roel Aaij, Carlos Abellán Beteta, Bernardo Adeva, Marco Adinolfi, Christine

Angela Aidala, Ziad Ajaltouni, Simon Akar, Pietro Albicocco, Johannes Albrecht, Federico Alessio, et al.

To cite this version:

Roel Aaij, Carlos Abellán Beteta, Bernardo Adeva, Marco Adinolfi, Christine Angela Aidala, et al.. Observation of Several Sources of $C P$ Violation in $B^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$Decays. Phys.Rev.Lett., 2020, 124 (3), pp.031801. 10.1103/PhysRevLett.124.031801 . hal-02317331

HAL Id: hal-02317331

https://hal.science/hal-02317331

Submitted on 23 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Observation of Several Sources of $\boldsymbol{C P}$ Violation in $B^{+} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$Decays

R. Aaij et al.*
(LHCb Collaboration)

(Received 16 September 2019; published 21 January 2020)

Abstract

Observations are reported of different sources of $C P$ violation from an amplitude analysis of $B^{+} \rightarrow$ $\pi^{+} \pi^{+} \pi^{-}$decays, based on a data sample corresponding to an integrated luminosity of $3 \mathrm{fb}^{-1}$ of $p p$ collisions recorded with the LHCb detector. A large $C P$ asymmetry is observed in the decay amplitude involving the tensor $f_{2}(1270)$ resonance, and in addition significant $C P$ violation is found in the $\pi^{+} \pi^{-} S$ wave at low invariant mass. The presence of $C P$ violation related to interference between the $\pi^{+} \pi^{-} S$ wave and the P wave $B^{+} \rightarrow \rho(770)^{0} \pi^{+}$amplitude is also established; this causes large local asymmetries but cancels when integrated over the phase space of the decay. The results provide both qualitative and quantitative new insights into $C P$-violation effects in hadronic B decays.

DOI: 10.1103/PhysRevLett.124.031801

Violation of symmetry under the combined chargeconjugation and parity-transformation operations, $C P$ violation, gives rise to differences between matter and antimatter. Violation of $C P$ symmetry can occur in the amplitudes that describe hadron decay, in neutral hadron mixing, or in the interference between mixing and decay (for a review, see, e.g., Ref. [1]). For charged mesons, only $C P$ violation in decay is possible, where an asymmetry in particle and antiparticle decay rates can arise when two or more different amplitudes contribute to a transition. In particular, the phase of each complex amplitude can be decomposed into a weak phase, which changes sign under $C P$, and a strong phase, which is $C P$ invariant. Differences in both the weak and strong phases of the contributing amplitudes are required for an asymmetry to occur.

In the standard model, weak phases arise from the elements of the Cabibbo-Kobayashi-Maskawa matrix [2,3] that are associated with quark-level transition amplitudes. Decays of B hadrons that do not contain any charm quarks in the final state, such as $B^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$, are of particular interest as both tree-level and loop-level amplitudes are expected to contribute with comparable magnitudes, so that large $C P$-violation effects are possible. Indeed, significant asymmetries have been observed in the two-body $B^{0} \rightarrow K^{+} \pi^{-} \quad[4-6]$ and $B^{0} \rightarrow \pi^{+} \pi^{-} \quad[4,6,7]$ decays. In two-body decays, nontrivial strong phases can arise from rescattering or other hadronic effects. In threebody or multibody decays, variation of the strong phase is

[^0]also expected due to the intermediate resonance structure, and hence amplitude analyses can provide additional sensitivity to $C P$-violation effects.

Analysis of the distribution of $B^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$decays (the inclusion of charge-conjugated processes is implied throughout this Letter, except where asymmetries are discussed) across the Dalitz plot [8,9], which provides a representation of the two-dimensional phase space for the decays, has been previously performed by the BABAR collaboration $[10,11]$. A model-independent analysis by the LHCb collaboration, with over an order of magnitude more signal decays and much better signal purity compared to the $B A B A R$ data sample, subsequently observed an intriguing pattern of $C P$ violation in its phase space, notably in regions not associated to any known resonant structure [12,13]. The observed variation of the $C P$ asymmetry across the Dalitz plot is expected to be related to the changes in strong phase associated with hadronic resonances, but, to date, it has not yet been explicitly described with an amplitude model. Many phenomenological studies [14-20] have provided possible interpretations of the asymmetries. Particular attention has been devoted to whether large $C P$-violation effects could arise from the interference between the broad low-mass spin-0 contributions and the spin-1 $\rho(770)^{0}$ resonance [21-24], from mixing between the $\rho(770)^{0}$ and $\omega(782)$ resonances [25-27], or from $\pi \pi \leftrightarrow K \bar{K}$ rescattering [21,23,24,28]. Further experimental studies are needed to clarify which of these sources are connected to the observed $C P$ asymmetries.

In this Letter, results are reported on the amplitude structure of $B^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$decays, obtained by employing decay models that account for $C P$ violation. The results are based on a data sample corresponding to $3 \mathrm{fb}^{-1}$ of $p p$ collisions at center-of-mass energies of 7 and 8 TeV , collected with the LHCb detector. A more detailed
description of the analysis is given in a companion paper [29]. The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range $2<\eta<5$, described in detail in Refs. [30,31].

The selection of signal candidates closely follows the procedure used in the model-independent analysis of the same data sample [12], with minor enhancements. Events containing candidates are selected online by a trigger [32] that includes a hardware and software stage. The hardware stage requires either energy deposits in the calorimeters associated to signal particles or a trigger caused by other particles in the event. The software triggers require that the signal tracks come from a secondary vertex consistent with the decay of a b hadron. In the offline selection, two multivariate algorithms are used to separate the $B^{+} \rightarrow$ $\pi^{+} \pi^{+} \pi^{-}$signal from background formed from random combinations of tracks, and from other B decays with misidentified final state particles, such as $B^{+} \rightarrow K^{+} \pi^{+} \pi^{-}$. Candidates that originate from $B^{+} \rightarrow \bar{D}^{0} \pi^{+}$with subsequent $\bar{D}^{0} \rightarrow \pi^{+} \pi^{-}$or misidentified $K^{+} \pi^{-}$decays are removed with a veto on both $\pi^{+} \pi^{-}$invariant mass combinations.

After application of all selection requirements, the $B^{+}-$ candidate mass distribution is fitted to obtain signal and background yields. The fit function includes components for signal decays, combinatorial background and misidentified $B^{+} \rightarrow K^{+} \pi^{+} \pi^{-}$decays. The signal region in the B^{+} candidate mass, $5.249<m\left(\pi^{+} \pi^{+} \pi^{-}\right)<5.317 \mathrm{GeV} / c^{2}$, which is used for the Dalitz-plot analysis, is estimated to contain a 20600 ± 1600 signal, a 4400 ± 1600 combinatorial background, and $143 \pm 11 B^{+} \rightarrow K^{+} \pi^{+} \pi^{-}$decays, where the uncertainties reflect the combination of statistical and systematic effects. The Dalitz-plot distributions of selected B^{+}and B^{-}candidates are displayed in Fig. 1, where the phase space is folded by ordering the $\pi^{+} \pi^{-}$pairs by their invariant mass, $m_{\text {low }}<m_{\text {high }}$.

Given the large number of broad overlapping resonances and decay-channel thresholds, it is particularly challenging to model the $B^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$decay phenomenologically. Therefore, on top of the conventional "isobar" model using
a coherent sum of all nonzero spin resonances, three complementary approaches are used to describe the S wave amplitude. The first continues in the isobar approach, comprising the coherent sum of a σ pole [33] together with a $\pi \pi \leftrightarrow K \bar{K}$ rescattering term [34]; the second uses the K matrix formalism with parameters obtained from scattering data [35-37]; and the third implements a "quasi-modelindependent" (QMI) approach, inspired by previous QMI analyses [38], where the dipion mass spectrum is divided into bins with independent magnitudes and phases that are free to vary in the amplitude fit.

The amplitude for B^{+}and B^{-}signal decays is constructed as the sum over N resonant contributions and the S-wave component,

$$
\begin{equation*}
A^{ \pm}\left(m_{13}^{2}, m_{23}^{2}\right)=\sum_{j=1}^{N} c_{j}^{ \pm} F_{j}\left(m_{13}^{2}, m_{23}^{2}\right)+A_{\mathrm{S}}^{ \pm}\left(m_{13}^{2}, m_{23}^{2}\right), \tag{1}
\end{equation*}
$$

where m_{13} and m_{23} denote the $\pi^{+} \pi^{-}$invariant mass combinations. Bose symmetry is accounted for by enforcing the amplitude to be identical under interchange of the two like-sign pions, making the labeling of the two combinations arbitrary. The F_{j} term is the normalized dynamical amplitude of resonance j, represented by a mass line shape multiplied by the spin-dependent angular distribution using the Zemach tensor formalism $[39,40]$ and Blatt-Weisskopf barrier factors [41]. The complex coefficients, $c_{j}^{ \pm}$, give the relative contribution of each resonance, and $A_{\mathrm{S}}^{ \pm}$is the S-wave amplitude (isobar, K matrix, or QMI). The amplitude models account for $C P$-violating differences between the distributions of B^{+}and B^{-}decays by allowing the $c_{j}^{ \pm}$coefficients, and relevant parameters in $A_{\mathrm{S}}^{ \pm}$, to take different values in the two cases. A likelihood function is constructed from the squared magnitude of the signal amplitude, accounting for efficiency effects and normalization, and including background contributions modeled from data sidebands and simulation. The signal parameters are evaluated in the fit by minimizing the

FIG. 1. Dalitz-plot distributions for (a) B^{+}and (b) B^{-}candidate decays to $\pi^{ \pm} \pi^{+} \pi^{-}$. Depleted regions are due to the \bar{D}^{0} veto.
negative logarithm of the total likelihood, calculated for all candidates in the signal region. The LAURA++ package [42] is used for the isobar and K-matrix approaches, while a GPU-accelerated version of the MINT2 fitter [43] is used for the QMI approach.

With the exception of the S wave, the included components are identical in each approach and consist of the $\rho(770)^{0}$ and $\omega(782)$ resonances described by a coherent $\rho-\omega$ mixing model [44], and the $f_{2}(1270), \rho(1450)^{0}$, and $\rho_{3}(1690)^{0}$ resonances. These latter three resonances are all described by relativistic Breit-Wigner line shapes. The choice of which resonances to include is made starting from the model obtained in the BABAR analysis [11], with additional contributions included if they cause a significant improvement in the fit to data.

In each approach, model coefficients for B^{+}and B^{-}decays are obtained simultaneously. The amplitude coefficients extracted from the fit, $c_{j}^{ \pm}=(x \pm \delta x)+i(y \pm \delta y)$, where positive (negative) signs are used for $B^{+}\left(B^{-}\right)$decays, are defined such that $C P$ violation is permitted. For the dominant $\rho-\omega$ mixing component, the magnitude of the coefficient in the B^{+}amplitude is fixed to unity to set the scale, while both B^{+}and B^{-}coefficients are aligned to the real axis as the absolute phase carries no physical meaning.

Good overall agreement between the data and the model is obtained for all three S-wave approaches, with some
localized discrepancies that are discussed below. Moreover, the values for the $C P$-averaged fit fractions and quasi-twobody $C P$ asymmetries (rate asymmetries between a quasi-two-body decay and its $C P$ conjugate), derived from the fit coefficients and given in Table I, show good agreement between the three approaches.

Projections of the data and the fit models are shown in regions of the data with $m\left(\pi^{+} \pi^{-}\right)<1 \mathrm{GeV} / c^{2}$ in Fig. 2. The $\rho(770)^{0}$ resonance is found to be the dominant component in all models, with a fit fraction of around 55% and a quasi-twobody $C P$ asymmetry that is consistent with zero. The effect of $\rho-\omega$ mixing is very clear in the data [Fig. 2(b)] and is well described by the models. Contrary to some theoretical predictions [25-27], there is no evident $C P$-violation effect associated with $\rho-\omega$ mixing. However, a clear $C P$ asymmetry is seen at values of $m\left(\pi^{+} \pi^{-}\right)$below the $\rho(770)^{0}$ resonance, where only the S-wave amplitude contributes significantly [Fig. 2(a)]. A detailed inspection of the behavior of the S wave, given in Ref. [29], shows that this $C P$ asymmetry remains approximately constant up to the inelastic threshold $2 m_{K}$, where it appears to change sign; this is seen in all three approaches to the S wave description. Estimates of the significance of this $C P$-violation effect give values in excess of ten Gaussian standard deviations (σ) in all the S-wave models. These estimates are obtained from the change in negative log-likelihood between, for each S-wave approach,

TABLE I. Results for $C P$-conserving fit fractions, quasi-two-body $C P$ asymmetries, and phases for each component relative to the combined $\rho(770)^{0}-\omega(782)$ model, given for each S-wave approach. The $\rho(770)^{0}$ and $\omega(782)$ values are extracted from the combined $\rho(770)^{0}-\omega(782)$ mixing model. The first uncertainty is statistical while the second is systematic.

Contribution	Fit fraction (10-2)	$A_{C P}\left(10^{-2}\right)$	B^{+}phase (${ }^{\circ}$)	B^{-}phase (${ }^{\circ}$)
Isobar model				
$\rho(770)^{0}$	$55.5 \pm 0.6 \pm 2.5$	$+0.7 \pm 1.1 \pm 1.6$	\ldots	\ldots
$\omega(782)$	$0.50 \pm 0.03 \pm 0.05$	$-4.8 \pm 6.5 \pm 3.8$	$-19 \pm 6 \pm 1$	$+8 \pm 6 \pm 1$
$f_{2}(1270)$	$9.0 \pm 0.3 \pm 1.5$	$+46.8 \pm 6.1 \pm 4.7$	$+5 \pm 3 \pm 12$	$+53 \pm 2 \pm 12$
$\rho(1450)^{0}$	$5.2 \pm 0.3 \pm 1.9$	$-12.9 \pm 3.3 \pm 35.9$	$+127 \pm 4 \pm 21$	$+154 \pm 4 \pm 6$
$\rho_{3}(1690)^{0}$	$0.5 \pm 0.1 \pm 0.3$	$-80.1 \pm 11.4 \pm 25.3$	$-26 \pm 7 \pm 14$	$-47 \pm 18 \pm 25$
S wave	$25.4 \pm 0.5 \pm 3.6$	$+14.4 \pm 1.8 \pm 2.1$		
Rescattering	$1.4 \pm 0.1 \pm 0.5$	$+44.7 \pm 8.6 \pm 17.3$	$-35 \pm 6 \pm 10$	$-4 \pm 4 \pm 25$
σ	$25.2 \pm 0.5 \pm 5.0$	$+16.0 \pm 1.7 \pm 2.2$	$+115 \pm 2 \pm 14$	$+179 \pm 1 \pm 95$
K matrix				
$\rho(770)^{0}$	$56.5 \pm 0.7 \pm 3.4$	$+4.2 \pm 1.5 \pm 6.4$		\ldots
$\omega(782)$	$0.47 \pm 0.04 \pm 0.03$	$-6.2 \pm 8.4 \pm 9.8$	$-15 \pm 6 \pm 4$	$+8 \pm 7 \pm 4$
$f_{2}(1270)$	$9.3 \pm 0.4 \pm 2.5$	$+42.8 \pm 4.1 \pm 9.1$	$+19 \pm 4 \pm 18$	$+80 \pm 3 \pm 17$
$\rho(1450)^{0}$	$10.5 \pm 0.7 \pm 4.6$	$+9.0 \pm 6.0 \pm 47.0$	$+155 \pm 5 \pm 29$	$-166 \pm 4 \pm 51$
$\rho_{3}(1690)^{0}$	$1.5 \pm 0.1 \pm 0.4$	$-35.7 \pm 10.8 \pm 36.9$	$+19 \pm 8 \pm 34$	$+5 \pm 8 \pm 46$
S wave	$25.7 \pm 0.6 \pm 3.0$	$+15.8 \pm 2.6 \pm 7.2$		
QMI				
$\rho(770)^{0}$	$54.8 \pm 1.0 \pm 2.2$	$+4.4 \pm 1.7 \pm 2.8$		
$\omega(782)$	$0.57 \pm 0.10 \pm 0.17$	$-7.9 \pm 16.5 \pm 15.8$	$-25 \pm 6 \pm 27$	$-2 \pm 7 \pm 11$
$f_{2}(1270)$	$9.6 \pm 0.4 \pm 4.0$	$+37.6 \pm 4.4 \pm 8.0$	$+13 \pm 5 \pm 21$	$+68 \pm 3 \pm 66$
$\rho(1450)^{0}$	$7.4 \pm 0.5 \pm 4.0$	$-15.5 \pm 7.3 \pm 35.2$	$+147 \pm 7 \pm 152$	$-175 \pm 5 \pm 171$
$\rho_{3}(1690)^{0}$	$1.0 \pm 0.1 \pm 0.5$	$-93.2 \pm 6.8 \pm 38.9$	$+8 \pm 10 \pm 24$	$+36 \pm 26 \pm 46$
S wave	$26.8 \pm 0.7 \pm 2.2$	$+15.0 \pm 2.7 \pm 8.1$	\ldots	. . .

FIG. 2. Projections of data and fits (top) on $m_{\text {low }}$ in (a) the low $m\left(\pi^{+} \pi^{-}\right)$region and (b) the $\rho-\omega$ region, with (bottom) the corresponding $C P$ asymmetries in these ranges.
the baseline fit and alternative fits where no such $C P$ violation is allowed.

An additional source of $C P$ violation, associated principally with the interference between S and P waves, is clearly visible when inspecting the $\cos \theta_{\text {hel }}$ distributions separately in regions above and below the $\rho(770)^{0}$ peak [Figs. 3(a) and 3(b)]. Here, $\theta_{\text {hel }}$ is the angle, evaluated in the $\pi^{+} \pi^{-}$rest frame, between the pion with opposite charge to

FIG. 3. Projections of the $C P$ asymmetry for data and fits as a function of $\cos \theta_{\text {hel }}$ in the regions (a) below and (b) above the $\rho(770)^{0}$ resonance pole.
the B and the third pion from the B decay. These asymmetries are modeled well in all three approaches to the S-wave description. Evaluation of the significance of $C P$ violation in the interference between S and P waves gives values in excess of 25σ in all the S-wave models.

At higher $m\left(\pi^{+} \pi^{-}\right)$values, the $f_{2}(1270)$ component is found to have a $C P$-averaged fit fraction of around 9% and a very large quasi-two-body $C P$ asymmetry of around 40%, as can be seen in Fig. 4 and Table I. This is the first observation of $C P$ violation in any process involving a

FIG. 4. Projections of data and fits (top) on $m_{\text {low }}$ in the $f_{2}(1270)$ mass region, with (bottom) the corresponding $C P$ asymmetry.
tensor resonance. The central value of the $C P$ asymmetry is consistent with some theoretical predictions [19,45,46] that, however, have large uncertainties. The significance of $C P$ violation in the complex amplitude coefficients of the $f_{2}(1270)$ component is in excess of 10σ. This conclusion holds in all the S-wave models and is robust against variations of the models performed to evaluate systematic uncertainties.

The parameters associated to the $\rho(1450)^{0}$ and $\rho_{3}(1690)^{0}$ resonances agree less well, but are nevertheless broadly consistent, between the different models. The small $\rho_{3}(1690)^{0}$ contribution exhibits a large quasi-two-body $C P$ asymmetry; however this result is subject to significant systematic uncertainties, particularly due to ambiguities in the amplitude model, and therefore is not statistically significant.

The main sources of experimental systematic uncertainty are related to the signal, combinatorial and peaking background parametrization in the B^{+}invariant-mass fit, and the description of the efficiency variation across the Dalitz plot. Also considered, and found to be numerically larger for most results, are systematic uncertainties related to the physical amplitude models. These comprise the variation of masses and widths, according to the world averages [47], of established resonances, in addition to the inclusion of more speculative resonant structures. A small contribution from the $\rho(1700)^{0}$ resonance is expected by some theory predictions [48] and is considered a source of systematic uncertainty since the inclusion of this term did not significantly improve the models' agreement with data.

A clear discrepancy between all three modeling approaches and the data can be observed in the $f_{2}(1270)$ region (Fig. 4). This discrepancy can be resolved by freeing the $f_{2}(1270)$ mass parameter in the fit; however, the values obtained are significantly different from the world-average value. The discrepancy could arise from interference with an additional spin-2 resonance in this region, but all well-established states are either too high in mass or too narrow in width to be likely to cause a significant effect. The inclusion of a second spin-2 component in this region, with free mass and width parameters, results in values of the $f_{2}(1270)$ mass consistent with the world average, where parameters of the additional state are broadly consistent with those of the speculative $f_{2}(1430)$ resonance; however the values obtained for the mass and width of the additional state are inconsistent between fits with different approaches to the S-wave description. Subsequent analysis of larger data samples will be required to obtain a more detailed understanding of the $\pi \pi D$ wave in $B^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$decays. Variation of the $f_{2}(1270)$ mass with respect to the world-average value, along with the addition of a second spin- 2 resonance in this region, are taken into account in the systematic uncertainties.

In summary, an amplitude analysis of the $B^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$ decay is performed with data corresponding to $3 \mathrm{fb}^{-1}$ of

LHCb Run 1 data, using three complementary approaches to describe the large S-wave contribution to this decay. Good agreement is found between all three models and the data. In all cases, significant $C P$ violation is observed in the decay amplitudes associated with the $f_{2}(1270)$ resonance and with the $\pi^{+} \pi^{-} S$ wave at low invariant mass, in addition to $C P$ violation characteristic of interference between the spin-1 $\rho(770)^{0}$ resonance and the spin- $0 S$-wave contribution. Violation of $C P$ symmetry is previously unobserved in these processes and, in particular, this is the first observation of $C P$ violation in the interference between two quasi-two-body decays. As such, these results provide significant new insight into how $C P$ violation manifests in multibody B-hadron decays, and motivate further study into the processes that govern $C P$ violation at low $\pi \pi$ invariant mass.

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ, and FINEP (Brazil); MOST and NSFC (China); CNRS/ IN2P3 (France); BMBF, DFG, and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland), and OSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions, and ERC (European Union); ANR, Labex P2IO and OCEVU, and Région Auvergne-Rhóne-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, and the Thousand Talents Program (China); RFBR, RSF, and Yandex LLC (Russia); GVA, XuntaGal, and GENCAT (Spain); the Royal Society and the Leverhulme Trust (United Kingdom).
[1] T. Gershon and V. V. Gligorov, $C P$ violation in the B system, Rep. Prog. Phys. 80, 046201 (2017).
[2] N. Cabibbo, Unitary Symmetry and Leptonic Decays, Phys. Rev. Lett. 10, 531 (1963).
[3] M. Kobayashi and T. Maskawa, $C P$ violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49, 652 (1973).
[4] J. P. Lees et al. (BABAR Collaboration), Measurement of $C P$ asymmetries and branching fractions in charmless two-body
B-meson decays to pions and kaons, Phys. Rev. D 87, 052009 (2013).
[5] Y.-T. Duh et al. (Belle Collaboration), Measurements of branching fractions and direct $C P$ asymmetries for $B \rightarrow K \pi$, $B \rightarrow \pi \pi$ and $B \rightarrow K K$ decays, Phys. Rev. D 87, 031103(R) (2013).
[6] R. Aaij et al. (LHCb Collaboration), Measurement of $C P$ asymmetries in two-body $B_{(s)}^{0}$-meson decays to charged pions and kaons, Phys. Rev. D 98, 032004 (2018).
[7] J. Dalseno et al. (Belle Collaboration), Measurement of the $C P$ violation parameters in $B^{0} \rightarrow \pi^{+} \pi^{-}$decays, Phys. Rev. D 88, 092003 (2013).
[8] R. H. Dalitz, On the analysis of tau-meson data and the nature of the tau-meson, Philos. Mag. 44, 1068 (1953).
[9] E. Fabri, A study of tau-meson decay, Nuovo Cim. 11, 479 (1954).
[10] B. Aubert et al. (BABAR Collaboration), An amplitude analysis of the decay $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{ \pm} \pi^{\mp}$, Phys. Rev. D 72, 052002 (2005).
[11] B. Aubert et al. (BABAR Collaboration), Dalitz plot analysis of $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{ \pm} \pi^{\mp}$ decays, Phys. Rev. D 79, 072006 (2009).
[12] R. Aaij et al. (LHCb Collaboration), Measurement of $C P$ violation in the three-body phase space of charmless $B^{ \pm}$ decays, Phys. Rev. D 90, 112004 (2014).
[13] R. Aaij et al. (LHCb Collaboration), Measurement of $C P$ Violation in the Phase Space of $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$and $B^{ \pm} \rightarrow$ $\pi^{+} \pi^{-} \pi^{ \pm}$Decays, Phys. Rev. Lett. 112, 011801 (2014).
[14] D. Xu, G.-N. Li, and X.-G. He, U-spin analysis of $C P$ violation in B^{-}decays into three charged light pseudoscalar mesons, Phys. Lett. B 728, 579 (2014).
[15] B. Bhattacharya, M. Gronau, and J. L. Rosner, $C P$ asymmetries in three-body $B^{ \pm}$decays to charged pions and kaons, Phys. Lett. B 726, 337 (2013).
[16] B. Bhattacharya, M. Gronau, M. Imbeault, D. London, and J. L. Rosner, Charmless B \rightarrow PPP decays: The fullysymmetric final state, Phys. Rev. D 89, 074043 (2014).
[17] S. Kränkl, T. Mannel, and J. Virto, Three-body non-leptonic B decays and QCD factorization, Nucl. Phys. B899, 247 (2015).
[18] R. Klein, T. Mannel, J. Virto, and K. K. Vos, $C P$ violation in multibody B decays from QCD factorization, J. High Energy Phys. 10 (2017) 117.
[19] Y. Li, A.-J. Ma, Z. Rui, W.-F. Wang, and Z.-J. Xiao, Quasi-two-body decays $B_{(s)} \rightarrow P f_{2}(1270) \rightarrow P \pi \pi$ in the perturbative QCD approach, Phys. Rev. D 98, 056019 (2018).
[20] J. H. A. Nogueira, I. Bediaga, T. Frederico, P. C. Magalhães, and J. Molina Rodriguez, Suppressed $B \rightarrow P V C P$ asymmetry: CPT constraint, Phys. Rev. D 94, 054028 (2016).
[21] J.-P. Dedonder, A. Furman, R. Kamiński, L. Leśniak, and B. Loiseau, S-, P- and D-wave final state interactions and $C P$ violation in $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{ \pm} \pi^{\mp}$ decays, Acta Phys. Pol. B 42, 2013 (2011).
[22] Z.-H. Zhang, X.-H. Guo, and Y.-D. Yang, $C P$ violation in $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$in the region with low invariant mass of one $\pi^{+} \pi^{-}$pair, Phys. Rev. D 87, 076007 (2013).
[23] J. H. Alvarenga Nogueira, I. Bediaga, A. B. R. Cavalcante, T. Frederico, and O. Lourenço, $C P$ violation: Dalitz
interference, $C P T$, and final state interactions, Phys. Rev. D 92, 054010 (2015).
[24] I. Bediaga and P. C. Magalhães, Final state interaction on $B^{+} \rightarrow \pi^{-} \pi^{+} \pi^{+}$, arXiv:1512.09284.
[25] X.-H. Guo, O. M. A. Leitner, and A. W. Thomas, Enhanced direct $C P$ violation in $B^{+} \rightarrow \rho^{0} \pi^{+}$, Phys. Rev. D 63, 056012 (2001).
[26] C. Wang, Z.-H. Zhang, Z.-Y. Wang, and X.-H. Guo, Localized direct $C P$ violation in $B^{ \pm} \rightarrow \rho^{0}(\omega) \pi^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$, Eur. Phys. J. C 75, 536 (2015).
[27] H.-Y. Cheng, C.-K. Chua, and Z.-Q. Zhang, Direct $C P$ violation in charmless three-body decays of B mesons, Phys. Rev. D 94, 094015 (2016).
[28] H.-Y. Cheng, C.-K. Chua, and A. Soni, Final state interactions in hadronic B decays, Phys. Rev. D 71, 014030 (2005).
[29] R. Aaij et al. (LHCb Collaboration), companion paper, Amplitude analysis of the $B^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$decay, Phys. Rev. D 101, 012006 (2020).
[30] A. A. Alves, Jr. et al. (LHCb Collaboration), The LHCb detector at the LHC, J. Instrum. 3, S08005 (2008).
[31] R. Aaij et al. (LHCb Collaboration), LHCb detector performance, Int. J. Mod. Phys. A 30, 1530022 (2015).
[32] R. Aaij et al., The LHCb trigger and its performance in 2011, J. Instrum. 8, P04022 (2013).
[33] J. A. Oller, Final state interactions in hadronic D decays, Phys. Rev. D 71, 054030 (2005).
[34] I. Bediaga, O. Lourenço, and T. Frederico, $C P$ violation and $C P T$ invariance in $B^{ \pm}$decays with final state interactions, Phys. Rev. D 89, 094013 (2014).
[35] R. H. Dalitz and S. F. Tuan, The phenomenological representation of K-nucleon scattering and reaction amplitudes, Ann. Phys. (Leipzig) 10, 307 (1960).
[36] I. J. R. Aitchison, K-matrix formalism for overlapping resonances, Nucl. Phys. A189, 417 (1972).
[37] V. V. Anisovich and A. V. Sarantsev, K matrix analysis of the $\left(I J^{P C}=00^{++}\right)$-wave in the mass region below 1900 MeV , Eur. Phys. J. A 16, 229 (2003).
[38] E. M. Aitala et al. (E791 Collaboration), Model independent measurement of S-wave $K^{-} \pi^{+}$systems using $D^{+} \rightarrow K \pi \pi$ decays from Fermilab E791, Phys. Rev. D 73, 032004 (2006); Erratum, Phys. Rev. D 74, 0059901 (2016).
[39] C. Zemach, Three pion decays of unstable particles, Phys. Rev. 133, B1201 (1964).
[40] C. Zemach, Use of angular-momentum tensors, Phys. Rev. 140, B97 (1965).
[41] J. Blatt and V. E. Weisskopf, Theoretical Nuclear Physics, (Wiley, New York, 1952).
[42] J. Back et al., LAURA++: A Dalitz plot fitter, Comput. Phys. Commun. 231, 198 (2018).
[43] J. Rademacker, P. d'Argent, and J. Dalseno, mint2, https:// doi.org/10.5281/zenodo. 2585535.
[44] P. E. Rensing, Single electron detection for SLD CRID and multi-pion spectroscopy in $K^{-} p$ interactions at $11 \mathrm{GeV} / c$, Ph.D. thesis, Stanford University, SLAC-421, 1993.
[45] H.-Y. Cheng and K.-C. Yang, Charmless hadronic B decays into a tensor meson, Phys. Rev. D 83, 034001 (2011).
[46] Z.-T. Zou, X. Yu, and C.-D. Lu, Nonleptonic twobody charmless B decays involving a tensor meson in the
perturbative QCD approach, Phys. Rev. D 86, 094015 (2012).
[47] M. Tanabashi et al. (Particle Data Group), Review of particle physics, Phys. Rev. D 98, 030001 (2018).
[48] Y. Li, A.-J. Ma, W.-F. Wang, and Z.-J. Xiao, Quasi-twobody decays $B_{(s)} \rightarrow P \rho^{\prime}(1450), P \rho^{\prime \prime}(1700) \rightarrow P \pi \pi$ in the perturbative QCD approach, Phys. Rev. D 96, 036014 (2017).
R. Aaij, ${ }^{30}$ C. Abellán Beteta, ${ }^{47}$ B. Adeva, ${ }^{44}$ M. Adinolfi, ${ }^{51}$ C. A. Aidala, ${ }^{78}$ Z. Ajaltouni, ${ }^{8}$ S. Akar, ${ }^{62}$ P. Albicocco, ${ }^{21}$ J. Albrecht, ${ }^{13}$ F. Alessio, ${ }^{45}$ M. Alexander ${ }^{56}$ A. Alfonso Albero, ${ }^{43}$ G. Alkhazov, ${ }^{36}$ P. Alvarez Cartelle, ${ }^{58}$ A. A. Alves Jr., ${ }^{44}$ S. Amato, ${ }^{2}$ Y. Amhis, ${ }^{10}$ L. An,${ }^{20}$ L. Anderlini, ${ }^{20}$ G. Andreassi, ${ }^{46}$ M. Andreotti, ${ }^{19}$ J. E. Andrews, ${ }^{63}$ F. Archilli, ${ }^{21}$ J. Arnau Romeu, ${ }^{9}$ A. Artamonov, ${ }^{42}$ M. Artuso, ${ }^{65}$ K. Arzymatov,,${ }^{40}$ E. Aslanides, ${ }^{9}$ M. Atzeni, ${ }^{47}$ B. Audurier, ${ }^{25}$ S. Bachmann,,15 J. J. Back, ${ }^{53}$ S. Baker, ${ }^{58}$ V. Balagura, ${ }^{10, b}$ W. Baldini, ${ }^{19,45}$ A. Baranov, ${ }^{40}$ R. J. Barlow, ${ }^{59}$ S. Barsuk, ${ }^{10}$ W. Barter,,${ }^{58}$ M. Bartolini, ${ }^{22}$ F. Baryshnikov, ${ }^{74}$ V. Batozskaya, ${ }^{34}$ B. Batsukh, ${ }^{65}$ A. Battig, ${ }^{13}$ V. Battista, ${ }^{46}$ A. Bay, ${ }^{46}$ F. Bedeschi, ${ }^{27}$ I. Bediaga, ${ }^{1}$ A. Beiter, ${ }^{65}$ L. J. Bel, ${ }^{30}$ V. Belavin, ${ }^{40}$ S. Belin, ${ }^{25}$ N. Beliy, ${ }^{4}$ V. Bellee, ${ }^{46}$ K. Belous,,${ }^{42}$ I. Belyaev, ${ }^{37}$ G. Bencivenni, ${ }^{21}$ E. Ben-Haim, ${ }^{11}$ S. Benson, ${ }^{30}$ S. Beranek, ${ }^{12}$ A. Berezhnoy, ${ }^{38}$ R. Bernet, ${ }^{47}$ D. Berninghoff, ${ }^{15}$ E. Bertholet, ${ }^{11}$ A. Bertolin, ${ }^{26}$ C. Betancourt, ${ }^{47}$ F. Betti, ${ }^{18, c}$ M. O. Bettler, ${ }^{52}$ Ia. Bezshyiko, ${ }^{47}$ S. Bhasin, ${ }^{51}$ J. Bhom, ${ }^{32}$ M. S. Bieker, ${ }^{13}$ S. Bifani, ${ }^{50}$ P. Billoir, ${ }^{11}$ A. Birnkraut, ${ }^{13}$ A. Bizzeti, ${ }^{20, \mathrm{~d}}$ M. Bjørn, ${ }^{60}$ M. P. Blago, ${ }^{45}$ T. Blake, ${ }^{53}$ F. Blanc, ${ }^{46}$ S. Blusk, ${ }^{65}$ D. Bobulska, ${ }^{56}$ V. Bocci, ${ }^{29}$ O. Boente Garcia, ${ }^{44}$ T. Boettcher, ${ }^{61}$ A. Boldyrev, ${ }^{75}$ A. Bondar, ${ }^{41, e}$ N. Bondar, ${ }^{36}$ S. Borghi, ${ }^{59,45}$ M. Borisyak, ${ }^{40}$ M. Borsato, ${ }^{15}$ M. Boubdir, ${ }^{12}$ T. J. V. Bowcock, ${ }^{57}$ C. Bozzi, ${ }^{19,45}$ S. Braun, ${ }^{15}$ A. Brea Rodriguez, ${ }^{44}$ M. Brodski, ${ }^{45}$ J. Brodzicka, ${ }^{32}$ A. Brossa Gonzalo, ${ }^{53}$ D. Brundu, ${ }^{25,45}$ E. Buchanan,,${ }^{51}$ A. Buonaura, ${ }^{47}$ C. Burr, ${ }^{59}$ A. Bursche, ${ }^{25}$ J. S. Butter, ${ }^{30}$ J. Buytaert, ${ }^{45}$ W. Byczynski, ${ }^{45}$ S. Cadeddu, ${ }^{25}$ H. Cai, ${ }^{69}$ R. Calabrese, ${ }^{19, f}$ S. Cali, ${ }^{21}$ R. Calladine, ${ }^{50}$ M. Calvi ${ }^{23, g}$ M. Calvo Gomez, ${ }^{43, h}$ P. Camargo Magalhaes, ${ }^{51}$ A. Camboni, ${ }^{43, h}$ P. Campana, ${ }^{21}$ D. H. Campora Perez, ${ }^{45}$ L. Capriotti, ${ }^{18, \mathrm{c}}$ A. Carbone, ${ }^{18, c}$ G. Carboni, ${ }^{28}$ R. Cardinale, ${ }^{22}$ A. Cardini, ${ }^{25}$ P. Carniti, ${ }^{23, g}$ K. Carvalho Akiba, ${ }^{2}$ A. Casais Vidal, ${ }^{44}$ G. Casse, ${ }^{57}$ M. Cattaneo, ${ }^{45}$ G. Cavallero, ${ }^{22}$ R. Cenci, ${ }^{27, \text { i, }}$ M. G. Chapman, ${ }^{51}$ M. Charles, ${ }^{11,45}$ Ph. Charpentier, ${ }^{45}$ G. Chatzikonstantinidis, ${ }^{50}$ M. Chefdeville, ${ }^{7}$ V. Chekalina, ${ }^{40}$ C. Chen, ${ }^{3}$ S. Chen, ${ }^{25}$ S.-G. Chitic, ${ }^{45}$ V. Chobanova, ${ }^{44}$ M. Chrzaszcz, ${ }^{45}$ A. Chubykin, ${ }^{36}$ P. Ciambrone, ${ }^{21}$ X. Cid Vidal, ${ }^{44}$ G. Ciezarek,,${ }^{45}$ F. Cindolo, ${ }^{18}$ P.E. L. Clarke, ${ }^{55}$ M. Clemencic, ${ }^{45}$ H. V. Cliff, ${ }^{52}$ J. Closier, ${ }^{45}$ J. L. Cobbledick, ${ }^{59}$ V. Coco, ${ }^{45}$ J. A. B. Coelho, ${ }^{10}$ J. Cogan, ${ }^{9}$ E. Cogneras, ${ }^{8}$ L. Cojocariu, ${ }^{35}$ P. Collins, ${ }^{45}$ T. Colombo, ${ }^{45}$ A. Comerma-Montells, ${ }^{15}$ A. Contu, ${ }^{25}$ G. Coombs, ${ }^{45}$ S. Coquereau, ${ }^{43}$ G. Corti, ${ }^{45}$ C. M. Costa Sobral, ${ }^{53}$ B. Couturier, ${ }^{45}$ G. A. Cowan,,${ }^{55}$ D. C. Craik,,${ }^{61}$ A. Crocombe,,${ }^{53}$ M. Cruz Torres, ${ }^{1}$ R. Currie, ${ }^{55}$ C. L. Da Silva, ${ }^{64}$ E. Dall'Occo, ${ }^{30}$ J. Dalseno, ${ }^{44,51}$ C. D'Ambrosio, ${ }^{45}$ A. Danilina, ${ }^{37}$ P. d'Argent, ${ }^{15}$ A. Davis, ${ }^{59}$ O. De Aguiar Francisco, ${ }^{45}$ K. De Bruyn, ${ }^{45}$ S. De Capua, ${ }^{59}$ M. De Cian, ${ }^{46}$ J. M. De Miranda, ${ }^{1}$ L. De Paula, ${ }^{2}$ M. De Serio, ${ }^{17, j}$ P. De Simone, ${ }^{21}$ J. A. de Vries, ${ }^{30}$ C. T. Dean,,56 W. Dean, ${ }^{78}$ D. Decamp, ${ }^{7}$ L. Del Buono, ${ }^{11}$ B. Delaney, ${ }^{52}$ H.-P. Dembinski, ${ }^{14}$ M. Demmer, ${ }^{13}$ A. Dendek, ${ }^{33}$ D. Derkach, ${ }^{75}$ O. Deschamps, ${ }^{8}$ F. Desse, ${ }^{10}$ F. Dettori, ${ }^{25}$ B. Dey, ${ }^{6}$ A. Di Canto, ${ }^{45}$ P. Di Nezza, ${ }^{21}$ S. Didenko, ${ }^{74}$ H. Dijkstra, ${ }^{45}$ F. Dordei, ${ }^{25}$ M. Dorigo, ${ }^{27, k}$ A. C. dos Reis, ${ }^{1}$ A. Dosil Suárez, ${ }^{44}$ L. Douglas, ${ }^{56}$ A. Dovbnya, ${ }^{48}$ K. Dreimanis, ${ }^{57}$ L. Dufour, ${ }^{45}$ G. Dujany, ${ }^{11}$ P. Durante, ${ }^{45}$ J. M. Durham, ${ }^{64}$ D. Dutta, ${ }^{59}$ R. Dzhelyadin, ${ }^{42, a}$ M. Dziewiecki, ${ }^{15}$ A. Dziurda, ${ }^{32}$ A. Dzyuba, ${ }^{36}$ S. Easo, ${ }^{54}$ U. Egede,,${ }^{58}$ V. Egorychev, ${ }^{37}$ S. Eidelman, ${ }^{41, e}$ S. Eisenhardt, ${ }^{55}$ U. Eitschberger, ${ }^{13}$ R. Ekelhof, ${ }^{13}$ S. Ek-In, ${ }^{46}$ L. Eklund, ${ }^{56}$ S. Ely, ${ }^{65}$ A. Ene, ${ }^{35}$ S. Escher, ${ }^{12}$ S. Esen, ${ }^{30}$ T. Evans, ${ }^{62}$ A. Falabella, ${ }^{18}$ C. Färber, ${ }^{45}$ N. Farley, ${ }^{50}$ S. Farry, ${ }^{57}$ D. Fazzini, ${ }^{10}$ M. Féo, ${ }^{45}$ P. Fernandez Declara, ${ }^{45}$ A. Fernandez Prieto, ${ }^{44}$ F. Ferrari, ${ }^{18, \mathrm{c}}$ L. Ferreira Lopes, ${ }^{46}$ F. Ferreira Rodrigues, ${ }^{2}$ S. Ferreres Sole, ${ }^{30}$ M. Ferro-Luzzi, ${ }^{45}$ S. Filippov, ${ }^{39}$ R. A. Fini, ${ }^{17}$ M. Fiorini, ${ }^{19, f}$ M. Firlej, ${ }^{33}$ C. Fitzpatrick, ${ }^{45}$ T. Fiutowski, ${ }^{33}$ F. Fleuret, ${ }^{10, b}$ M. Fontana, ${ }^{45}$ F. Fontanelli, ${ }^{22,1}$ R. Forty ${ }^{45}$ V. Franco Lima, ${ }^{57}$ M. Franco Sevilla, ${ }^{63}$ M. Frank, ${ }^{45}$ C. Frei, ${ }^{45}$ J. Fu, ${ }^{24, m}$ W. Funk, ${ }^{45}$ E. Gabriel, ${ }^{55}$ A. Gallas Torreira, ${ }^{44}$ D. Galli, ${ }^{18, c}$ S. Gallorini, ${ }^{26}$ S. Gambetta,,${ }^{55}$ Y. Gan, ${ }^{3}$ M. Gandelman, ${ }^{2}$ P. Gandini, ${ }^{24}$ Y. Gao, ${ }^{3}$ L. M. Garcia Martin, ${ }^{77}$ J. García Pardiñas, ${ }^{47}$ B. Garcia Plana, ${ }^{44}$ J. Garra Tico, ${ }^{52}$ L. Garrido, ${ }^{43}$ D. Gascon, ${ }^{43}$ C. Gaspar,,${ }^{45}$ G. Gazzoni, ${ }^{8}$ D. Gerick, ${ }^{15}$ E. Gersabeck, ${ }^{59}$ M. Gersabeck, ${ }^{59}$ T. Gershon, ${ }^{53}$ D. Gerstel, ${ }^{9}$ Ph. Ghez, ${ }^{7}$ V. Gibson, ${ }^{52}$ A. Gioventù, ${ }^{44}$ O. G. Girard, ${ }^{46}$ P. Gironella Gironell, ${ }^{43}$ L. Giubega, ${ }^{35}$ K. Gizdov, ${ }^{55}$ V. V. Gligorov, ${ }^{11}$ C. Göbel, ${ }^{67}$ D. Golubkov, ${ }^{37}$ A. Golutvin, ${ }^{58,74}$ A. Gomes, ${ }^{1, n}$ I. V. Gorelov, ${ }^{38}$ C. Gotti, ${ }^{23,8}$ E. Govorkova, ${ }^{30}$ J. P. Grabowski, ${ }^{15}$ R. Graciani Diaz, ${ }^{43}$ L. A. Granado Cardoso, ${ }^{45}$ E. Graugés, ${ }^{43}$ E. Graverini, ${ }^{46}$ G. Graziani, ${ }^{20}$ A. Grecu, ${ }^{35}$ R. Greim, ${ }^{30}$ P. Griffith, ${ }^{25}$ L. Grillo, ${ }^{59}$ L. Gruber, ${ }^{45}$ B. R. Gruberg Cazon, ${ }^{60}$ C. Gu, ${ }^{3}$ E. Gushchin, ${ }^{39}$ A. Guth, ${ }^{12}$ Yu. Guz, ${ }^{42,45}$ T. Gys, ${ }^{45}$ T. Hadavizadeh, ${ }^{60}$ C. Hadjivasiliou, ${ }^{8}$ G. Haefeli, ${ }^{46}$ C. Haen, ${ }^{45}$ S. C. Haines, ${ }^{52}$ P. M. Hamilton, ${ }^{63}$ Q. Han, ${ }^{6}$ X. Han, ${ }^{15}$ T. H. Hancock, ${ }^{60}$ S. Hansmann-Menzemer, ${ }^{15}$ N. Harnew, ${ }^{60}$ T. Harrison, ${ }^{57}$ C. Hasse, ${ }^{45}$
M. Hatch, ${ }^{45}$ J. He, ${ }^{4}$ M. Hecker,,${ }^{58}$ K. Heijhoff, ${ }^{30}$ K. Heinicke, ${ }^{13}$ A. Heister, ${ }^{13}$ K. Hennessy, ${ }^{57}$ L. Henry, ${ }^{77}$ M. Heß, ${ }^{71}$ J. Heuel, ${ }^{12}$ A. Hicheur, ${ }^{66}$ R. Hidalgo Charman, ${ }^{59}$ D. Hill, ${ }^{60}$ M. Hilton, ${ }^{59}$ P. H. Hopchev, ${ }^{46}$ J. Hu, ${ }^{15}$ W. Hu, ${ }^{6}$ W. Huang, ${ }^{4}$ Z. C. Huard, ${ }^{62}$ W. Hulsbergen, ${ }^{30}$ T. Humair, ${ }^{58}$ M. Hushchyn, ${ }^{75}$ D. Hutchcroft, ${ }^{57}$ D. Hynds, ${ }^{30}$ P. Ibis, ${ }^{13}$ M. Idzik, ${ }^{33}$ P. Ilten, ${ }^{50}$ A. Inglessi, ${ }^{36}$ A. Inyakin, ${ }^{42}$ K. Ivshin, ${ }^{36}$ R. Jacobsson, ${ }^{45}$ S. Jakobsen, ${ }^{45}$ J. Jalocha, ${ }^{60}$ E. Jans, ${ }^{30}$ B. K. Jashal, ${ }^{77}$ A. Jawahery, ${ }^{63}$ F. Jiang, ${ }^{3}$ M. John, ${ }^{60}$ D. Johnson, ${ }^{45}$ C. R. Jones, ${ }^{52}$ C. Joram, ${ }^{45}$ B. Jost, ${ }^{45}$ N. Jurik, ${ }^{60}$ S. Kandybei, ${ }^{48}$ M. Karacson, ${ }^{45}$ J. M. Kariuki, ${ }^{51}$ S. Karodia, ${ }^{56}$ N. Kazeev, ${ }^{75}$ M. Kecke, ${ }^{15}$ F. Keizer, ${ }^{52}$ M. Kelsey, ${ }^{65}$ M. Kenzie,,${ }^{52}$ T. Ketel, ${ }^{31}$ B. Khanji, ${ }^{45}$ A. Kharisova, ${ }^{76}$ C. Khurewathanakul, ${ }^{46}$ K. E. Kim, ${ }^{65}$ T. Kirn, ${ }^{12}$ V. S. Kirsebom, ${ }^{46}$ S. Klaver, ${ }^{21}$ K. Klimaszewski, ${ }^{34}$ S. Koliiev, ${ }^{49}$ M. Kolpin, ${ }^{15}$ A. Kondybayeva, ${ }^{74}$ A. Konoplyannikov, ${ }^{37}$ P. Kopciewicz, ${ }^{33}$ R. Kopecna, ${ }^{15}$ P. Koppenburg, ${ }^{30}$ I. Kostiuk, ${ }^{30,49}$ O. Kot, ${ }^{49}$ S. Kotriakhova, ${ }^{36}$ M. Kozeiha, ${ }^{8}$ L. Kravchuk, ${ }^{39}$ M. Kreps, ${ }^{53}$ F. Kress, ${ }^{58}$ S. Kretzschmar, ${ }^{12}$ P. Krokovny, ${ }^{41, \mathrm{e}}$ W. Krupa, ${ }^{33}$ W. Krzemien, ${ }^{34}$ W. Kucewicz, ${ }^{32,0}$ M. Kucharczyk, ${ }^{32}$ V. Kudryavtsev, ${ }^{41, e}$ G. J. Kunde, ${ }^{64}$ A. K. Kuonen, ${ }^{46}$ T. Kvaratskheliya, ${ }^{37}$ D. Lacarrere, ${ }^{45}$ G. Lafferty, ${ }^{59}$ A. Lai, ${ }^{25}$ D. Lancierini, ${ }^{47}$ G. Lanfranchi, ${ }^{21}$ C. Langenbruch, ${ }^{12}$ T. Latham, ${ }^{53}$ C. Lazzeroni, ${ }^{50}$ R. Le Gac, ${ }^{9}$ R. Lefèvre, ${ }^{8}$ A. Leflat, ${ }^{38}$ F. Lemaitr,,${ }^{45}$ O. Leroy, ${ }^{9}$ T. Lesiak, ${ }^{32}$ B. Leverington, ${ }^{15}$ H. Li, ${ }^{68}$ P.-R. Li, ${ }^{4, p}$ X. Li, ${ }^{64}$ Y. Li, ${ }^{5}$ Z. Li, ${ }^{65}$ X. Liang, ${ }^{65}$ T. Likhomanenko, ${ }^{73}$ R. Lindner, ${ }^{45}$ F. Lionetto, ${ }^{47}$ V. Lisovskyi, ${ }^{10}$ G. Liu, ${ }^{68}$ X. Liu, ${ }^{3}$ D. Loh, ${ }^{53}$ A. Loi, ${ }^{25}$ J. Lomba Castro, ${ }^{44}$ I. Longstaff, ${ }^{56}$ J. H. Lopes, ${ }^{2}$ G. Loustau, ${ }^{47}$ G. H. Lovell, ${ }^{52}$ D. Lucchesi, ${ }^{26, q}$ M. Lucio Martinez, ${ }^{44}$
Y. Luo, ${ }^{3}$ A. Lupato, ${ }^{26}$ E. Luppi, ${ }^{19, f}$ O. Lupton, ${ }^{53}$ A. Lusiani, ${ }^{27}$ X. Lyu, ${ }^{4}$ F. Machefert, ${ }^{10}$ F. Maciuc, ${ }^{35}$ V. Macko, ${ }^{46}$ P. Mackowiak, ${ }^{13}$ S. Maddrell-Mander, ${ }^{51}$ O. Maev,,${ }^{36,45}$ A. Maevskiy ${ }^{75}$ K. Maguire, ${ }^{59}$ D. Maisuzenko, ${ }^{36}$ M. W. Majewski, ${ }^{33}$ S. Malde, ${ }^{60}$ B. Malecki, ${ }^{45}$ A. Malinin, ${ }^{73}$ T. Maltsev, ${ }^{41, \mathrm{e}}$ H. Malygina, ${ }^{15}$ G. Manca, ${ }^{25, r}$ G. Mancinelli, ${ }^{9}$ D. Marangotto, ${ }^{24, \mathrm{~m}}$ J. Maratas, ${ }^{8,5}$ J. F. Marchand, ${ }^{7}$ U. Marconi, ${ }^{18}$ C. Marin Benito, ${ }^{10}$ M. Marinangeli, ${ }^{46}$ P. Marino, ${ }^{46}$ J. Marks, ${ }^{15}$ P. J. Marshall, ${ }^{57}$ G. Martellotti, ${ }^{29}$ L. Martinazzoli, ${ }^{45}$ M. Martinelli, ${ }^{45,23,8}$ D. Martinez Santos, ${ }^{44}$ F. Martinez Vidal ${ }^{77}$ A. Massafferri, ${ }^{1}$ M. Materok, ${ }^{12}$ R. Matev,,${ }^{45}$ A. Mathad, ${ }^{47}$ Z. Mathe, ${ }^{45}$ V. Matiunin, ${ }^{37}$ C. Matteuzzi, ${ }^{23}$ K. R. Mattioli, ${ }^{78}$ A. Mauri, ${ }^{47}$ E. Maurice,,${ }^{10, b}$ B. Maurin, ${ }^{46}$ M. McCann, ${ }^{58,45}$ A. McNab,,${ }^{59}$ R. McNulty, ${ }^{16}$ J. V. Mead, ${ }^{57}$ B. Meadows, ${ }^{62}$ C. Meaux, ${ }^{9}$ N. Meinert, ${ }^{71}$ D. Melnychuk, ${ }^{34}$ M. Merk, ${ }^{30}$ A. Merli, ${ }^{24, m}$ E. Michielin, ${ }^{26}$ D. A. Milanes, ${ }^{70}$ E. Millard, ${ }^{53}$ M.-N. Minard, ${ }^{7}$ O. Mineev, ${ }^{37}$ L. Minzoni, ${ }^{19, f}$ D. S. Mitzel, ${ }^{15}$ A. Mödden, ${ }^{13}$ A. Mogini, ${ }^{11}$ R. D. Moise, ${ }^{58}$ T. Mombächer, ${ }^{13}$ I. A. Monroy, ${ }^{70}$ S. Monteil, ${ }^{8}$ M. Morandin, ${ }^{26}$ G. Morello,,${ }^{21}$ M. J. Morello, ${ }^{27, t}$ J. Moron, ${ }^{33}$ A. B. Morris, ${ }^{9}$ R. Mountain, ${ }^{65}$ H. Mu, ${ }^{3}$ F. Muheim, ${ }^{55}$ M. Mukherjee, ${ }^{6}$ M. Mulder, ${ }^{30}$ D. Müller, ${ }^{45}$ J. Müller, ${ }^{13}$ K. Müller, ${ }^{47}$ V. Müller, ${ }^{13}$ C. H. Murphy ${ }^{60}$ D. Murray, ${ }^{59}$ P. Naik, ${ }^{51}$ T. Nakada, ${ }^{46}$ R. Nandakumar, ${ }^{54}$ A. Nandi, ${ }^{60}$ T. Nanut, ${ }^{46}$ I. Nasteva, ${ }^{2}$ M. Needham,,${ }^{55}$ N. Neri, ${ }^{24, m}$ S. Neubert, ${ }^{15}$ N. Neufeld, ${ }^{45}$ R. Newcombe, ${ }^{58}$ T. D. Nguyen, ${ }^{46}$ C. Nguyen-Mau, ${ }^{46, u}$ S. Nieswand, ${ }^{12}$ R. Niet, ${ }^{13}$ N. Nikitin, ${ }^{38}$ N. S. Nolte, ${ }^{45}$ A. Oblakowska-Mucha, ${ }^{33}$ V. Obraztsov, ${ }^{42}$ S. Ogilvy, ${ }^{56}$ D. P. O'Hanlon, ${ }^{18}$ R. Oldeman, ${ }^{25, r}$ C. J. G. Onderwater ${ }^{72}$ J. D. Osborn, ${ }^{78}$ A. Ossowska, ${ }^{32}$ J. M. Otalora Goicochea, ${ }^{2}$ T. Ovsiannikova, ${ }^{37}$ P. Owen,,${ }^{47}$ A. Oyanguren, ${ }^{77}$ P. R. Pais, ${ }^{46}$ T. Pajero, ${ }^{27, \text { t }}$ A. Palano, ${ }^{17}$ M. Palutan,,${ }^{21}$ G. Panshin, ${ }^{76}$ A. Papanestis, ${ }^{54}$ M. Pappagallo, ${ }^{55}$ L. L. Pappalardo, ${ }^{19, f}$ W. Parker, ${ }^{63}$ C. Parkes, ${ }^{59,45}$ G. Passaleva,,${ }^{20,45}$ A. Pastore, ${ }^{17}$ M. Patel, ${ }^{58}$ C. Patrignani, ${ }^{18, c}$ A. Pearce,,${ }^{45}$ A. Pellegrino, ${ }^{30}$ G. Penso, ${ }^{29}$ M. Pepe Altarelli, ${ }^{45}$ S. Perazzini, ${ }^{18}$ D. Pereima, ${ }^{37}$ P. Perret, ${ }^{8}$ L. Pescatore, ${ }^{46}$ K. Petridis, ${ }^{51}$ A. Petrolini, ${ }^{22,1}$ A. Petrov, ${ }^{73}$ S. Petrucci, ${ }^{55}$ M. Petruzzo, ${ }^{24, \mathrm{~m}}$ B. Pietrzyk, ${ }^{7}$ G. Pietrzyk, ${ }^{46}$ M. Pikies, ${ }^{32}$ M. Pili, ${ }^{60}$ D. Pinci, ${ }^{29}$ J. Pinzino, ${ }^{45}$ F. Pisani, ${ }^{45}$ A. Piucci, ${ }^{15}$ V. Placinta,,${ }^{35}$ S. Playfer,,${ }^{55}$ J. Plews, ${ }^{50}$ M. Plo Casasus, ${ }^{44}$ F. Polci, ${ }^{11}$ M. Poli Lener, ${ }^{21}$ M. Poliakova, ${ }^{65}$ A. Poluektov, ${ }^{9}$ N. Polukhina, ${ }^{74, v}$ I. Polyakov, ${ }^{65}$ E. Polycarpo, ${ }^{2}$ G. J. Pomery, ${ }^{51}$ S. Ponce, ${ }^{45}$ A. Popov, ${ }^{42}$ D. Popov, ${ }^{50}$ S. Poslavskii, ${ }^{42}$ K. Prasanth, ${ }^{32}$ E. Price, ${ }^{51}$ C. Prouve, ${ }^{44}$ V. Pugatch, ${ }^{49}$ A. Puig Navarro, ${ }^{47}$ H. Pullen, ${ }^{60}$ G. Punzi, ${ }^{27, \mathrm{i}}$ W. Qian, ${ }^{4}$ J. Qin, ${ }^{4}$ R. Quagliani, ${ }^{11}$ B. Quintana, ${ }^{8}$ N. V. Raab, ${ }^{16}$ B. Rachwal, ${ }^{33}$ J. H. Rademacker, ${ }^{51}$ M. Rama, ${ }^{27}$ M. Ramos Pernas, ${ }^{44}$ M. S. Rangel, ${ }^{2}$ F. Ratnikov, ${ }^{40,75}$ G. Raven, ${ }^{31}$ M. Ravonel Salzgeber, ${ }^{45}$ M. Reboud, ${ }^{7}$ F. Redi, ${ }^{46}$ S. Reichert, ${ }^{13}$ F. Reiss, ${ }^{11}$ C. Remon Alepuz, ${ }^{77}$ Z. Ren, ${ }^{3}$ V. Renaudin, ${ }^{60}$ S. Ricciardi, ${ }^{54}$ S. Richards, ${ }^{51}$ K. Rinnert, ${ }^{57}$ P. Robbe, ${ }^{10}$ A. Robert, ${ }^{11}$ A. B. Rodrigues, ${ }^{46}$ E. Rodrigues, ${ }^{62}$ J. A. Rodriguez Lopez, ${ }^{70}$ M. Roehrken, ${ }^{45}$ S. Roiser, ${ }^{45}$ A. Rollings, ${ }^{60}$ V. Romanovskiy, ${ }^{42}$ A. Romero Vidal, ${ }^{44}$ J. D. Roth, ${ }^{78}$ M. Rotondo, ${ }^{21}$ M. S. Rudolph, ${ }^{65}$ T. Ruf, ${ }^{45}$ J. Ruiz Vidal, ${ }^{77}$ J. J. Saborido Silva, ${ }^{44}$ N. Sagidova, ${ }^{36}$ B. Saitta, ${ }^{25, r}$ V. Salustino Guimaraes, ${ }^{67}$ C. Sanchez Gras, ${ }^{30}$ C. Sanchez Mayordomo, ${ }^{77}$ B. Sanmartin Sedes, ${ }^{44}$ R. Santacesaria, ${ }^{29}$ C. Santamarina Rios, ${ }^{44}$ M. Santimaria, ${ }^{21,45}$ E. Santovetti, ${ }^{28, w}$ G. Sarpis, ${ }^{59}$ A. Sarti, ${ }^{21, x}$ C. Satriano, ${ }^{29, y}$ A. Satta, ${ }^{28}$ M. Saur, ${ }^{4}$ D. Savrina, ${ }^{37,38}$ S. Schael, ${ }^{12}$ M. Schellenberg, ${ }^{13}$ M. Schiller, ${ }^{56}$ H. Schindler, ${ }^{45}$ M. Schmelling, ${ }^{14}$ T. Schmelzer, ${ }^{13}$ B. Schmidt, ${ }^{45}$ O. Schneider, ${ }^{46}$ A. Schopper, ${ }^{45}$ H. F. Schreiner, ${ }^{62}$ M. Schubiger, ${ }^{30}$ S. Schulte,,${ }^{46}$ M. H. Schune, ${ }^{10}$ R. Schwemmer, ${ }^{45}$ B. Sciascia, ${ }^{21}$ A. Sciubba, ${ }^{29, x}$ A. Semennikov, ${ }^{37}$ E. S. Sepulveda, ${ }^{11}$ A. Sergi, ${ }^{50,45}$ N. Serra, ${ }^{47}$ J. Serrano, ${ }^{9}$ L. Sestini, ${ }^{26}$ A. Seuthe,,${ }^{13}$ P. Seyfert, ${ }^{45}$ M. Shapkin, ${ }^{42}$ T. Shears, ${ }^{57}$ L. Shekhtman,,${ }^{41, e}$ V. Shevchenko, ${ }^{73}$ E. Shmanin, ${ }^{74}$ B. G. Siddi, ${ }^{19}$ R. Silva Coutinho, ${ }^{47}$ L. Silva de Oliveira, ${ }^{2}$ G. Simi, ${ }^{26, q}$ S. Simone, ${ }^{17, j}$ I. Skiba, ${ }^{19}$ N. Skidmore, ${ }^{15}$ T. Skwarnicki, ${ }^{65}$ M. W. Slater, ${ }^{50}$ J. G. Smeaton, ${ }^{52}$ E. Smith, ${ }^{12}$ I. T. Smith, ${ }^{55}$ M. Smith,,${ }^{58}$ M. Soares,,${ }^{18}$ L. Soares Lavra, ${ }^{1}$
M. D. Sokoloff, ${ }^{62}$ F. J. P. Soler, ${ }^{56}$ B. Souza De Paula, ${ }^{2}$ B. Spaan, ${ }^{13}$ E. Spadaro Norella, ${ }^{24, \mathrm{~m}}$ P. Spradlin, ${ }^{56}$ F. Stagni, ${ }^{45}$ M. Stahl, ${ }^{15}$ S. Stahl, ${ }^{45}$ P. Stefko, ${ }^{46}$ S. Stefkova, ${ }^{58}$ O. Steinkamp, ${ }^{47}$ S. Stemmle, ${ }^{15}$ O. Stenyakin,,${ }^{42}$ M. Stepanova, ${ }^{36}$ H. Stevens, ${ }^{13}$ A. Stocchi, ${ }^{10}$ S. Stone, ${ }^{65}$ S. Stracka, ${ }^{27}$ M. E. Stramaglia, ${ }^{46}$ M. Straticiuc, ${ }^{35}$ U. Straumann,,${ }^{47}$ S. Strokov, ${ }^{76}$ J. Sun, ${ }^{3}$ L. Sun, ${ }^{69}$ Y. Sun, ${ }^{63}$ K. Swientek, ${ }^{33}$ A. Szabelski, ${ }^{34}$ T. Szumlak, ${ }^{33}$ M. Szymanski, ${ }^{4}$ Z. Tang, ${ }^{3}$ T. Tekampe, ${ }^{13}$ G. Tellarini, ${ }^{19}$ F. Teubert, ${ }^{45}$ E. Thomas, ${ }^{45}$ M. J. Tilley, ${ }^{58}$ V. Tisserand, ${ }^{8}$ S. T Jampens, ${ }^{7}$ M. Tobin, ${ }^{5}$ S. Tolk,,${ }^{45}$ L. Tomassetti,,${ }^{19, f}$ D. Tonelli, ${ }^{27}$ D. Y. Tou, ${ }^{11}$ E. Tournefier, ${ }^{7}$ M. Traill, ${ }^{56}$ M. T. Tran, ${ }^{46}$ A. Trisovic,,${ }^{52}$ A. Tsaregorodtsev, ${ }^{9}$ G. Tuci,,${ }^{27,45, i}$ A. Tully, ${ }^{52}$ N. Tuning, ${ }^{30}$ A. Ukleja, ${ }^{34}$ A. Usachov, ${ }^{10}$ A. Ustyuzhanin, ${ }^{40,75}$ U. Uwer, ${ }^{15}$ A. Vagner, ${ }^{76}$ V. Vagnoni, ${ }^{18}$ A. Valassi, ${ }^{45}$ S. Valat, ${ }^{45}$ G. Valenti, ${ }^{18}$ M. van Beuzekom, ${ }^{30}$ H. Van Hecke, ${ }^{64}$ E. van Herwijnen, ${ }^{45}$ C. B. Van Hulse, ${ }^{16}$ J. van Tilburg, ${ }^{30}$ M. van Veghel, ${ }^{30}$ R. Vazquez Gomez, ${ }^{45}$ P. Vazquez Regueiro, ${ }^{44}$ C. Vázquez Sierra, ${ }^{30}$ S. Vecchi, ${ }^{19}$ J. J. Velthuis, ${ }^{51}$ M. Veltri, ${ }^{20, z}$ A. Venkateswaran,${ }^{65}$ M. Vernet, ${ }^{8}$ M. Veronesi, ${ }^{30}$ M. Vesterinen, ${ }^{53}$ J. V. Viana Barbosa, ${ }^{45}$ D. Vieira, ${ }^{4}$ M. Vieites Diaz, ${ }^{44}$ H. Viemann, ${ }^{71}$ X. Vilasis-Cardona, ${ }^{43, h}$ A. Vitkovskiy, ${ }_{3}^{30}$ M. Vitti, ${ }^{52}$ V. Volkov, ${ }^{38}{ }^{38}$ A. Vollhardt, ${ }^{47}$ D. Vom Bruch,,${ }^{11}$ B. Voneki, ${ }^{45}$ A. Vorobyev, ${ }^{36}$ V. Vorobyev, ${ }^{41, \mathrm{e}}$ N. Voropaev, ${ }^{36}$ R. Waldi, ${ }^{71}$ J. Walsh,,${ }^{27}$ J. Wang, ${ }^{3}$ J. Wang, ${ }^{5}$ M. Wang, ${ }^{3}$ Y. Wang, ${ }^{6}$ Z. Wang, ${ }^{47}$ D. R. Ward,,${ }^{52}$ H. M. Wark, ${ }^{57}$ N. K. Watson, ${ }^{50}$ D. Websdale, ${ }^{58}$ A. Weiden, ${ }^{47}$ C. Weisser, ${ }^{61}$ M. Whitehead, ${ }^{12}$ G. Wilkinson, ${ }^{60}$ M. Wilkinson, ${ }^{65}$ I. Williams, ${ }^{52}$ M. Williams, ${ }^{61}$ M. R. J. Williams,,${ }^{59}$ T. Williams,,${ }^{50}$ F. F. Wilson, ${ }^{54}$ M. Winn, ${ }^{10}$ W. Wislicki, ${ }^{34}$ M. Witek, ${ }^{32}$ G. Wormser, ${ }^{10}$ S. A. Wotton, ${ }^{52}$ K. Wyllie, ${ }^{45}$ Z. Xiang, ${ }^{4}$ D. Xiao, ${ }^{6}$ Y. Xie, ${ }^{6}$ H. Xing,${ }^{68}$ A. Xu, ${ }^{3}$ L. Xu, ${ }^{3}$ M. Xu, ${ }^{6}$ Q. Xu, ${ }^{4}$ Z. Xu, ${ }^{7}$ Z. Xu, ${ }^{3}$ Z. Yang, ${ }^{3}$ Z. Yang, ${ }^{63}$ Y. Yao, ${ }^{65}$ L. E. Yeomans ${ }^{57}{ }^{57}$ H. Yin, ${ }^{6}$ J. Yu, ${ }^{6, \text { aa }}$ X. Yuan, ${ }^{65}$ O. Yushchenko, ${ }^{42}$ K. A. Zarebski, ${ }^{50}$ M. Zavertyaev, ${ }^{14, v}$ M. Zeng, ${ }^{3}$ D. Zhang, ${ }^{6}$ L. Zhang, ${ }^{3}$ S. Zhang, ${ }^{3}$ W. C. Zhang, ${ }^{3, b b}$ Y. Zhang, ${ }^{45}$ A. Zhelezov, ${ }^{15}$ Y. Zheng, ${ }^{4}$ Y. Zhou, ${ }^{4}$ X. Zhu, ${ }^{3}$
V. Zhukov, ${ }^{12,38}$ J. B. Zonneveld, ${ }^{55}$ and S. Zucchelli ${ }^{18, c}$
(LHCb Collaboration)

[^1][^2]
${ }^{76}$ National Research Tomsk Polytechnic University, Tomsk, Russia [associated with Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia]
 ${ }^{77}$ Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia-CSIC, Valencia, Spain (associated with ICCUB, Universitat de Barcelona, Barcelona, Spain)
 ${ }^{78}$ University of Michigan, Ann Arbor, USA (associated with Syracuse University, Syracuse, New York, USA)

${ }^{\mathrm{a}}$ Deceased.
${ }^{\mathrm{b}}$ Also at Laboratoire Leprince-Ringuet, Palaiseau, France.
${ }^{c}$ Also at Università di Bologna, Bologna, Italy.
${ }^{\mathrm{d}}$ Also at Università di Modena e Reggio Emilia, Modena, Italy.
${ }^{\mathrm{e}}$ Also at Novosibirsk State University, Novosibirsk, Russia.
${ }^{\mathrm{f}}$ Also at Università di Ferrara, Ferrara, Italy.
${ }^{\mathrm{g}}$ Also at Università di Milano Bicocca, Milano, Italy.
${ }^{\mathrm{h}}$ Also at LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
${ }^{i}$ Also at Università di Pisa, Pisa, Italy.
${ }^{j}$ Also at Università di Bari, Bari, Italy.
${ }^{k}$ Also at Sezione INFN di Trieste, Trieste, Italy.
${ }^{1}$ Also at Università di Genova, Genova, Italy.
${ }^{\mathrm{m}}$ Also at Università degli Studi di Milano, Milano, Italy.
${ }^{n}$ Also at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.
${ }^{\circ}$ Also at AGH—University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland.
${ }^{\mathrm{p}}$ Also at Lanzhou University, Lanzhou, China.
${ }^{\mathrm{q}}$ Also at Università di Padova, Padova, Italy.
${ }^{\mathrm{r}}$ Also at Università di Cagliari, Cagliari, Italy.
${ }^{\text {s }}$ Also at MSU—Iligan Institute of Technology (MSU-IIT), Iligan, Philippines.
${ }^{t}$ Also at Scuola Normale Superiore, Pisa, Italy.
${ }^{\text {u }}$ Also at Hanoi University of Science, Hanoi, Vietnam.
${ }^{\mathrm{v}}$ Also at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.
${ }^{w}$ Also at Università di Roma Tor Vergata, Roma, Italy.
${ }^{\mathrm{x}}$ Also at Università di Roma La Sapienza, Roma, Italy.
${ }^{\mathrm{y}}$ Also at Università della Basilicata, Potenza, Italy.
${ }^{\mathrm{z}}$ Also at Università di Urbino, Urbino, Italy.
${ }^{\text {aa }}$ Also at Physics and Micro Electronic College, Hunan University, Changsha City, China.
${ }^{\text {bb }}$ Also at School of Physics and Information Technology, Shaanxi Normal University (SNNU), Xi'an, China.

[^0]: *Full author list given at the end of the article.
 Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP ${ }^{3}$.

[^1]: ${ }^{1}$ Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
 ${ }^{2}$ Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
 ${ }^{3}$ Center for High Energy Physics, Tsinghua University, Beijing, China
 ${ }^{4}$ University of Chinese Academy of Sciences, Beijing, China
 ${ }^{5}$ Institute Of High Energy Physics (ihep), Beijing, China
 ${ }^{6}$ Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
 ${ }^{7}$ Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France
 ${ }^{8}$ Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
 ${ }^{9}$ Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
 ${ }^{10}$ LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
 ${ }^{11}$ LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
 ${ }^{12}$ I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
 ${ }^{13}$ Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
 ${ }^{14}$ Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
 ${ }^{15}$ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
 ${ }^{16}$ School of Physics, University College Dublin, Dublin, Ireland ${ }^{17}$ INFN Sezione di Bari, Bari, Italy
 ${ }^{18}$ INFN Sezione di Bologna, Bologna, Italy
 ${ }^{19}$ INFN Sezione di Ferrara, Ferrara, Italy
 ${ }^{20}$ INFN Sezione di Firenze, Firenze, Italy
 ${ }^{21}$ INFN Laboratori Nazionali di Frascati, Frascati, Italy
 ${ }^{22}$ INFN Sezione di Genova, Genova, Italy
 ${ }^{23}$ INFN Sezione di Milano-Bicocca, Milano, Italy
 ${ }^{24}$ INFN Sezione di Milano, Milano, Italy
 ${ }^{25}$ INFN Sezione di Cagliari, Monserrato, Italy
 ${ }^{26}$ INFN Sezione di Padova, Padova, Italy
 ${ }^{27}$ INFN Sezione di Pisa, Pisa, Italy
 ${ }^{28}$ INFN Sezione di Roma Tor Vergata, Roma, Italy
 ${ }^{29}$ INFN Sezione di Roma La Sapienza, Roma, Italy
 ${ }^{30}$ Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
 ${ }^{31}$ Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
 ${ }^{32}$ Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland

[^2]: ${ }^{33}$ AGH—University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
 ${ }^{34}$ National Center for Nuclear Research (NCBJ), Warsaw, Poland
 ${ }^{35}$ Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
 ${ }^{36}$ Petersburg Nuclear Physics Institute NRC Kurchatov Institute (PNPI NRC KI), Gatchina, Russia
 ${ }^{37}$ Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia
 ${ }^{38}$ Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
 ${ }^{39}$ Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia
 ${ }^{40}$ Yandex School of Data Analysis, Moscow, Russia
 ${ }^{41}$ Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
 ${ }^{42}$ Institute for High Energy Physics NRC Kurchatov Institute (IHEP NRC KI), Protvino, Russia, Protvino, Russia
 ${ }^{43}$ ICCUB, Universitat de Barcelona, Barcelona, Spain
 ${ }^{44}$ Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
 ${ }^{45}$ European Organization for Nuclear Research (CERN), Geneva, Switzerland
 ${ }^{46}$ Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
 ${ }^{47}$ Physik-Institut, Universität Zürich, Zürich, Switzerland
 ${ }^{48}$ NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
 ${ }^{49}$ Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
 ${ }^{50}$ University of Birmingham, Birmingham, United Kingdom
 ${ }_{51}^{51}$ H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
 ${ }^{52}$ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
 ${ }^{53}$ Department of Physics, University of Warwick, Coventry, United Kingdom
 ${ }^{54}$ STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
 ${ }^{55}$ School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
 ${ }^{56}$ School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
 ${ }^{57}$ Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
 ${ }^{58}$ Imperial College London, London, United Kingdom
 ${ }^{59}$ School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
 ${ }^{60}$ Department of Physics, University of Oxford, Oxford, United Kingdom
 ${ }^{61}$ Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
 ${ }^{62}$ University of Cincinnati, Cincinnati, Ohio, USA
 ${ }^{63}$ University of Maryland, College Park, Maryland, USA
 ${ }^{64}$ Los Alamos National Laboratory (LANL), Los Alamos, USA
 ${ }^{65}$ Syracuse University, Syracuse, New York, USA
 ${ }^{66}$ Laboratory of Mathematical and Subatomic Physics, Constantine, Algeria [associated with Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil]
 ${ }^{67}$ Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
 [associated with Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil]
 ${ }^{68}$ South China Normal University, Guangzhou, China
 (associated with Center for High Energy Physics, Tsinghua University, Beijing, China)
 ${ }^{69}$ School of Physics and Technology, Wuhan University, Wuhan, China (associated with Center for High Energy Physics, Tsinghua University, Beijing, China)
 ${ }^{70}$ Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia
 (associated with LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité,
 CNRS/IN2P3, Paris, France)
 ${ }^{71}$ Institut für Physik, Universität Rostock, Rostock, Germany
 (associated with Physikalisches Institut,
 Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany)
 ${ }^{72}$ Van Swinderen Institute, University of Groningen, Groningen, Netherlands (associated with Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands)
 ${ }^{73}$ National Research Centre Kurchatov Institute, Moscow, Russia
 [associated with Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia]
 ${ }^{74}$ National University of Science and Technology "MISIS", Moscow, Russia [associated with Institute of Theoretical
 and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia]
 ${ }^{75}$ National Research University Higher School of Economics, Moscow, Russia (associated with Yandex School of Data Analysis, Moscow, Russia)

