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Introduction. The SiW-Ecal [START_REF] Videau | A Si-W calorimeter for linear collider physics[END_REF] is a sampling electromagnetic calorimeter developed for the ILD detector [START_REF][END_REF] of the future International Linear Collider (ILC).

Its detector elements are called slabs and are based on high-resistivity silicon diodes of several hundred microns thickness, divided in pixels of 5 × 5 mm 2 , alternated with tungsten absorbers. The previous prototypes tested a tower of "short slabs" featuring an active region of 18 × 18 cm 2 for each single ASU, and fully described in [START_REF] Kawagoe | Beam test performance of the highly granular SiW-ECAL technological prototype for the ILC[END_REF]. The long slab is a new prototype that has been designed to demonstrate that it is electronically viable to operate a long electronic board chain. It consists of 8 electronic front-end boards (named ASU for Active Sensor Unit), assembled together to create a 144 × 18 cm 2 detector which is the typical size of the slabs in the ILD barrel (Figure 1). For this prototype, we have relaxed the geometrical constraints imposed by the ILD to focus on the electronics and the performance of the detector along the length. Each board has been equipped with a 320 µm thick small sensor (2 × 2 cm 2 for 4 × 4 pixels) produced by the Hamamatsu Photonics company.

Mechanics. For use in beam tests, a mechanical structure of 3 meters long, shown in Figure 2, has been built, allowing to support the slab and to incline it in the beam with a precision of 1 • . It ensures the mechanical rigidity (max 1 mm of bend over a 3 m length) to ensure reliable operation in all conditions. Shielding is added to avoid electro-magnetic induced noise. The directional blockable wheels allow placing the detector in the beam easily. side with a conductive glue. On the upper side sits the reading ASICs, named Skiroc 2 and designed by OMEGA group [START_REF] Callier | Skiroc2, front end chip designed to readout the electromagnetic calorimeter at the ilc[END_REF]. The ASUs are chainable to obtain long slabs with an almost continuous active surface. At the end of the chain, a front-end board reads the ASICs and transmits data to the Data Acquisition 2 System (DAQ) described in [START_REF] Gastaldi | A scalable gigabit data acquisition system for calorimeters for linear collider[END_REF]. The long slab prototype is the first attempt to chain the ASUs to test their communication and performance. For testing purpose, flat cables have been chosen for data and clocks to ease dismounting without degrading transmission performance. The impedances and adaptive systems (called drivers) have been tuned for every differential line by termination resistors. For bias voltage, shielded cables has been used with lemo connectors, allowing to reduce the electromagnetic noise and ease the connection.

The length of the prototype induces difficulties for clock and signal propagation and data integrity. In particular, reflections appear on the clock lines. Indeed, the clock line has a comb shape (in order to be evenly distributed), and the signal bounces in the stubs, creating reflection. As a consequence, the clock signal is not square but include glitches in the transition region. This creates extra clock beats and does not allow to transfer the configuration bitstream correctly to the ASICs. This problem was solved by adjusting the level of the glitches by adding an RC filter in front. The filter parameters were optimized by simulating an isolated clock line using the Cadence Sigrity tool [6], integrating the PCB electrical specification and the driver characteristics. Even if the RC filter permits the use of the actual prototype, a new design of clock lines has to be developed in future versions of ASU to avoid the comb shape, as it has been done for data lines.

Another difficulty induced by the length of the prototype is the increased level of noise on the sensor's bias voltage. The SiW-Ecal readout is very sensitive to this noise which must be reduced to the minimum. To achieve this goal, we insert RC filters on the bias line between the ASUs. We use third order filters, adapted to reduce high frequency noises above 100 kHz. In the final version, for compacity, it is planned to use a Kapton sheet instead of cables; a change of the design will be required to include these RC filters.

Finally, it has been observed that the bandwidth of the DAQ is not entirely sufficient when the long slab has all its memories full. For example, in case of a pedestal calibration, it is necessary to read all channels of all chips at the same time. In the future, we need to use a parallel reading of partitions of ASICs inside the front-end board.

Testing. The long slab performance has been tested with cosmics, radioactive sources and with 3 GeV electrons in the beam tests at DESY, Hamburg. In particular, radioactive sources have been used at every step of mounting a new ASU to test the behaviour of the new board and also to check the noise induced by the card on the others. This methodology allowed us to detect the problems before they mingle with another one.

During the test beam at DESY, we have accumulated data for both normal and inclined incidence of the beam to the silicon sensor surface. The positioning of the mechanical structure was performed with a laser to ensure full exposure of every pixel. We took data in all the pixels at three different angles of incidence to the silicon sensor surface (0, 45 and 60 degrees).

MIP fit. The Minimum Ionizing Particle (MIP) energy deposition is determined by fitting the pedestal subtracted analog-to-digital converter (ADC) spectra. This pedestal varies among the ASICs memories and channels and thus has to be evaluated for every memory associated with every channel. Once the pedestal subtracted, we fit the histogram of the energy deposition in every pixel. This is fitted by a sum of two Landau distributions convolved with a Gaussian. The first Landau distribution corresponds to a single MIP hitting the pixel during the integration time. The second Landau distribution models 2 MIPs (pile-up).

The contribution of a third Landau distribution can be neglected. As shown in Figure 3, with the inclined beam, the particle can sometimes go across two pixels. For a sufficiently uniform beam and in the simplest model when electron-hole pairs in the silicon always drift perpendicularly to its surface, the one-pixel signal is reduced in this case such that it has equal probabilities of being anywhere between zero and the total energy deposition in the silicon shared by two pixels. The energy deposited distribution is then modified. In particular, it starts not from zero on the left but from a plateau which remains flat until the point where the original Landau distribution starts growing significantly. A simulation of this situation has been performed with Geant4, presented in Figure 4, showing clearly the plateau on the left of the energy deposition histogram. This plateau and the left part of the Landau distribution can be modelled by assuming a uniform energy sharing of the deposited energy between two pixels.

Let's denote dE/dx Landau distribution by L(x) and the probability that the particle passes though two pixels by c. Then, the normalized distribution of energies deposited in one pixel is:

f (x) = (1 -c) L(x) +∞ 0 L(t) dt + c +∞ x L(t) t dt +∞ 0 +∞ x L(t) t dt dx (1)
where the second term describes the energy sharing. Namely, the total energy L(t) in the enumerator +∞ x L(t)/t dt is uniformly distributed in the range [0...L(t)] and creates the density L(t)/t which is then integrated over L(t) for all t ≥ x. This plateau is ideally suited for measuring the position and the shape of the trigger threshold, modelled by an error function denoted in the following by erf. The full fit can be performed with the following function:

erf(x) + 1 2 +∞ -∞ f (t) • Gauss(x -t, σ)dt (2)
where Gauss(x, σ) denotes the Gaussian with the center x and the sigma σ. Nevertheless, many improvements could be envisaged for the next version of the ASU:

• Clock line adaptation: the shape of this line has to be optimised to avoid reflections and limit the possibility of bitstream corruption

• RC filtering of the sensor's bias voltage: the current design uses a long Kapton covering all ASUs. It should be replaced by a single Kapton per ASU design to integrate a low-noise filter.

• The power supply of the ASICs has to be stabilised along the length of the slab, for example by equalising the length of all the power lines.

• The analysis has proved that the bandgap disparity between ASICs is not neglectable. Improvement requires the refactoring of the ASIC design (which has already been partly done with the new version Skiroc 2a). In case the bandgap spread between ASICs remains too large, they will have to be individually measured and compensated by software.

• The sequential reading of the ASIC limits the bandwidth and can cause problems during pedestal or charge injection calibrations. A solution with readout partitions has to be considered.

The successful operation of a long slab is a milestone toward a proof of the feasibility of the ILD SiW-Ecal. A prototype including all the previously mentioned improvements, the use of broader and thicker sensors and including all the mechanical constraints of the ILD experiment still needs to be built and tested with high energy electrons to fully assess the design.
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 1 Figure 1: Assembled long slab with 8 ASUs.
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 2 Figure 2: Long slab setup at DESY
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 3 Figure 3: When the prototype is inclined, the incident particle can cross two pixels, modifying the energy deposition spectrum.
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 4 Figure 4: On the GEANT4 simulation of 2 regions, the two-pixels energy sharing adds a low energy plateau to the single-pixel energy deposition histogram.
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 5 Figure 5: Full fit of the pedestal-subtracted signal histogram : two Landau distributions representing 1 and 2 MIPs respectively are convolved with a Gaussian. On the left, the pixel-sharing plateau is truncated by an erf function.

Figure 6 :

 6 Figure 6: MIP values corrected for incidence angle for all the ASUs of the prototype, at the incidence angles (0, 45 and 60 degrees)
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 7 Figure 7: The measured bandgap of the 8 ASIC of the long slab.
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 8 Figure 8: Fit of the MIP values along the length of the prototype (in ASU)