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ABSTRACT
Binary neutron star mergers are rich laboratories for physics, accessible with ground-based
interferometric gravitational-wave detectors such as the Advanced LIGO and Advanced Virgo.
If a neutron star remnant survives the merger, it can emit gravitational waves that might be
detectable with the current or next generation detectors. The physics of the long-lived post-
merger phase is not well understood and makes modelling difficult. In particular the phase
of the gravitational-wave signal is not well modelled. In this paper, we explore methods for
using long duration post-merger gravitational-wave signals to constrain the parameters and
the properties of the remnant. We develop a phase-agnostic likelihood model that uses only
the spectral content for parameter estimation and demonstrate the calculation of a Bayesian
upper limit in the absence of a signal. With the millisecond magnetar model, we show that
for an event like GW170817, the ellipticity of a long-lived remnant can be constrained to less
than about 0.5 in the parameter space used.
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1 IN T RO D U C T I O N

The detection of gravitational wave (GW) signals from binary black
hole mergers (Abbott et al. 2016, 2017a, 2019d), and the binary
neutron star (BNS) merger GW170817 (Abbott et al. 2017b) by the
Advanced Laser Interferometer Gravitational-Wave Observatory
(LIGO) and the Advanced Virgo (Aasi et al. 2015; Acernese et al.
2015) in their first and second observing runs (O1 and O2) show
that compact binary coalescences are primary sources of GWs
for terrestrial GW detectors. BNS mergers in particular provide
an extremely rich environment for studying physics at conditions
unattainable on the Earth.

Searches by LIGO scientific collaboration and the Virgo collab-
oration following GW170817 did not find any evidence for GWs
from a neutron star (NS) remnant (Abbott et al. 2017d, 2019a,b,c),
although there has been a claim for evidence of short-duration post-
merger signal (van Putten & Della Valle 2019). The nature of the
remnant in a BNS coalescence depends on the mass and spin of
the remnant and the nuclear equation of state (see e.g. Baiotti &

� E-mail: banag002@umn.edu (SB); mcoughli@caltech.edu (MWC)

Rezzolla 2017; Piro, Giacomazzo & Perna 2017). One possible
outcome is the formation of a rapidly rotating, highly magnetized,
and long-lived (t ≥ 10 s) massive NS. Although no conclusive
evidence for a long-lived remnant was found following GW170817,
observations of X-ray afterglows of short gamma-ray bursts support
this evolutionary pathway for a relatively large fraction of mergers
(e.g. Rowlinson et al. 2013). Observations of GWs from a long-
lived post-merger remnant could help probe the complex physics
governing the pre- and post-merger phase, as well as help constrain
the equation of state of massive remnants. Some predictions of GW
signals from long-lived remnants suggest they may be observable
with second-generation observatories out to 40 Mpc (e.g. Dall’Osso
et al. 2015), although more realistic analyses that account for
the energy budget (Sarin et al. 2018) are more pessimistic and
suggest that they might only be detectable with third-generation
GW detectors (Punturo et al. 2010; Hild et al. 2011).

There has been much work in exploring the GW emission from
newly born magnetars. The nature of these GWs can depend
sensitively on a number of aspects of NS physics, including early
cooling before transition to superfluidity, the effect of the magnetic
field on the equilibrium shape, the internal dynamical state of a fully
degenerate, oblique rotator, and the strength of the electromagnetic

C© 2020 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/4/4945/5714112 by guest on 24 M
ay 2024

http://orcid.org/0000-0001-7852-7484
http://orcid.org/0000-0002-8262-2924
mailto:banag002@umn.edu
mailto:mcoughli@caltech.edu


4946 S. Banagiri et al.

torque on the newly born NS (e.g. Cutler 2002; Dall’Osso et al.
2015; Doneva, Kokkotas & Pnigouras 2015; Lasky & Glampedakis
2016). The amplitudes and phases of the GWs depend on the
complicated details of these physical mechanisms, which makes
modelling and hence astrophysical inference from GW detections
difficult. While there exist unmodelled Bayesian inference pipelines
like BayesWave (Cornish & Littenberg 2015; Chatziioannou et al.
2017) – which fits any signal using a wavelet expansion of variable
dimensions – such analysis can be computationally expensive for
long-transient signals considered in this paper.

In this paper, we develop methods for Bayesian inference of
long-transient signals that are robust towards some modelling
uncertainties. We focus on the phase of the signal in particular and
derive phase-agnostic likelihoods that depend only on the spectral
content of the signal. We use this likelihood in the context of
Bayesian parameter estimation to constrain intrinsic properties of a
(long-lived) remnant such as ellipticity and the braking index, using
the millisecond magnetar model waveform (Lasky et al. 2017; Sarin
et al. 2018) as an example waveform. We note that while we use
this waveform model to study and develop parameter estimation
methods, we do not claim that this is a realistic model of long-lived
post-merger emission. We show how this formalism performs both
in the presence and the absence of a signal and how upper limits
can be placed on GW emission in the case of non-detection.

2 MILLISECOND MAG NETA R MODEL

The search for post-merger emission from GW170817 by LIGO
and Virgo (Abbott et al. 2017d, 2019c) considered a variety of
possible signals, ranging from subsecond to hour-long time-scales.
In particular, the search for a signal from a long-lived remnant was
based on a model derived from the dynamics of a spinning-down
NS proposed by Sarin et al. (2018) and Lasky et al. (2017). This
model – hearafter referred to as the millisecond magnetar model –
derives the frequency evolution of the waveform from a spinning-
down nascent NS with an arbitrary but fixed braking index n. We
reproduce some of the details of the model below.

We assume that the rotational evolution of the star is described
by the torque equation: �̇ ∝ �n, where � is the star’s angular
frequency. We also assume quadrupole GW emission caused by a
non-zero ellipticity of the NS, so that f(t) = �(t)/π. Integrating the
torque equation yields the GW frequency:

f (t) = f0

(
1 + t − t0

τ

)1/(1−n)

, t ≥ t0. (1)

Here t0 is the start time of the emission (with some definition of t =
0), f0 is the initial GW frequency (at t = t0), and τ is the spin-down
time-scale. Equation (1) can describe emission from a variety of
physical processes responsible for spin-down. For example, n =
3 describes magnetic dipole powered spin-down in vacuum, while
n = 5 describes spin-down powered by emission of quadrupolar
GWs. The amplitude of the GW signal decreases with time as

h(t) = h0

(
1 + t − t0

τ

)2/(1−n)

, (2)

where we define an amplitude parameter h0 as

h0 = 4π2G

c4

Izzε

d
f 2

0 . (3)

Here d is the distance of the source, Izz is the moment of inertia, and
ε is the eccentricity of the NS.

Figure 1. A normalized strain time–frequency map made with simulated
Gaussian data recoloured with O2 noise. A loud signal has been added for
demonstration. The duration of each fast Fourier transform is 4 s and the
entire map is 200 s long.

3 L I K E L I H O O D M O D E L

A common way to search for GW sources that are difficult to
accurately model is to look for excess power in time–frequency
representations (tf-maps) of GW detector data (Anderson et al.
2001; Klimenko et al. 2008; Sutton et al. 2010; Thrane et al.
2011). To detect GWs, the tf-maps are parsed by pattern recognition
algorithms looking for statistically significant clusters of pixels –
for example, seeded (Khan & Chatterji 2009; Prestegard & Thrane
2017) and seedless (Thrane & Coughlin 2013, 2014; Coughlin,
Thrane & Christensen 2014) clustering algorithms using predefined
templates have been widely used in the past.

In this paper, we use tf-maps of discrete (complex) Fourier
transforms of the data, normalized by the noise power spectral
density (PSD). An example map with a loud simulated signal is
shown in Fig. 1. We assume that the noise is Gaussian and stationary
over the period of analysis, and only consider correlations that are
diagonal in both frequency and time. While this is a reasonable
approximation for simulated advanced LIGO data used in this paper
(see Appendix C), this would not be true for real interferometric
data, in which case alternate basis like discrete wavelet transforms
(see e.g. Littenberg & Cornish 2010) might be a much more suitable
choice.

The likelihood model we start with assumes that the residual
noise when the signal is subtracted from the data is coloured
Gaussian noise. The Gaussian likelihood for a pixel in tf-map is
given by (Veitch et al. 2015)1

L(d̃ij |θ̄ ) = 2

πT Sn
j

exp

(
− 2

T

|d̃ij − h̃ij (θ̄ )|2
Sn

j

)
, (4)

where i, j are indices for the pixel at the i-th time segment and
j-th frequency bin of the tf-map. The terms d̃ij , h̃ij , and Sn

j are
the Fourier transform of the data, the signal model, and the noise
PSD in the pixel i, j, respectively. The term T is the duration of the

1We note here that the correct normalization of the Gaussian likelihood
function in the frequency domain should be proportional to σ−2, and not to
σ−1 like in real time domain data. This is because frequency domain noise
is generally complex in which both the real and imaginary parts of the noise
are independently Gaussian. See appendix D of Romano & Cornish (2017)
for a careful examination of this.
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data used for the Fourier transform, and θ is the vector of model
parameters. We point to Thrane & Talbot (2019) for a review of
methods of Bayesian inference used in GW astrophysics.

Given the uncertainty in the physics of the post-merger model
describing the phase evolution of the remnants, we do not expect
the signal to be accurate. Therefore we need to incorporate our
ignorance of the true phase of the signal when analysing the data.
One way to do this is by marginalizing the phase of each pixel
independently of other pixels.2 The resultant phase marginalized
likelihood depends only on the spectral content of the signal, and
can be written as

Lφ(d̃ij |θ̄) = 2

πT Sn
j

exp

(
− 2

T

|d̃ij |2 + |h̃ij |2
Sn

j

)
I0

[
4

T

|d̃ij ||h̃ij |
Sn

j

]
,

(5)

where I0(x) is the zeroth-order modified Bessel function of the
first kind. We refer the reader to Appendix A for the derivation
of equation (5). This likelihood is for a single pixel of one
interferometer. We take the product of likelihoods over all pixels to
extend it over the entire tf-map. The simplest way to incorporate
multiple detectors is to take the product of likelihoods for each
detector:

L({dk}|θ̄ ) =
∏
i,j ,k

Lφ(dijk|θ̄ ), (6)

where k is an index over interferometers.
Tests of the likelihood in equation (5) show that the recovered

parameters suffer from biases unless the exact spectrum of the
noise is known. A common way to estimate the noise PSD is by
calculating the mean of the PSDs of neighbouring or off source data
segments. This estimate has a variance about the true PSD of the
noise, which would need to be accounted for when large amounts
of data are analysed. One way to do this is to marginalize over the
true PSD in a pixel given our measurement of Sn

j . Starting with the
Gaussian likelihood in equation (4) and using a χ2 prior for the true
PSD gives a likelihood based on a Student’s t-distribution for each
pixel:

LS(d̃ij |θ̄ ) = 4 

(
1 + ν

2

)
πT νSn

j 
(ν/2)

[
1 + 4

T

|d̃ij − h̃ij |2
ν Sn

j

]−(1+ ν
2 )

. (7)

Here ν is the number of degrees of freedom of the χ2 prior. A natural
value for ν is ν = 2N, where N is the number of data segments
used to calculate Sn

j . As pointed out in Rover, Meyer & Christensen
(2011), Student’s t-distributions with fewer degrees of freedom have
larger tails, implying that they better account for uncertainties in
the noise PSD and yield more robust inferences. This is however
limited by the assumption that the noise is stationary. Methods
that simultaneously model the noise along with the signal such as
in Littenberg et al. (2013) and Cornish & Littenberg (2015) would
work better for non-stationary real data. We find that using fewer
degrees of freedom gives better inferences; we estimate the PSD
using N = 40 segments, and use ν = N in all the examples shown
in this paper.

Having corrected for the PSD variance, we marginalize over the
phase of the signal tf-map again to obtain a likelihood functions

2The phase marginalization being done here is different from the one used
in parameter estimation analysis of compact binary coalescence, e.g. Veitch
et al. (2015). The phase evolution of compact binary waveforms is well
understood, and it is only the initial phase that is marginalized over.

based on hypergeometric functions for each pixel:

LS,φ(d̃ij |θ̄ ) = αij

2
(1 − βij )γ 2F1

(
0.5, −γ, 1,

2βij

βij − 1

)

+αij

2
(1 + βij )γ 2F1

(
0.5, −γ, 1,

2βij

βij + 1

)
, (8)

where

αij = 2 

(
1 + ν

2

)
πνSn

j 
(ν/2)

[
ν Sn

j + |d̃ij |2 + |h̃ij |2
ν Sn

j

]−(1+ ν
2 )

,

βij = 2 |dij ||hij |
|dij |2 + |hij |2 + νSn

j

, γ = −
(

1 + ν

2

)
. (9)

We point the reader to Appendix B for the derivation and more
details about both equations (7) and (8).

4 A NA LY SIS

We now use the likelihood in equation (8) to recover a simulated
signal from the millisecond magnetar model added to Gaussian
noise coloured with the O2 PSD of Hanford and Livingston
Advanced LIGO detectors. We make tf-maps that are 200 s long,
divided into 4 s Tukey-windowed fast Fourier transform (FFT)
pixels. In this analysis, we assume that we know the distance d
and the sky location of the remnant, which were simulated to be the
same as GW170817 and its electromagnetic counterpart (Abbott
et al. 2017b,c), i.e. (RA, Dec.) = (13.h1634, −23.◦3185) and d =
40 Mpc. We also assume a polarization angle of ψ = 0 and an
optimal orientation of the remnant, i.e. cos ι = 1.

We sample over the five-dimensional parameter space θ =
{h0, t0, τ, n, f0} using PYMULTINEST (Buchner et al. 2014), a
PYTHON wrapper for the nested sampling implementation of MULTI-
NEST (Feroz, Hobson & Bridges 2009). We use flat priors for all
parameters3 except h0, for which we use a uniform in log prior from
10−24 to 10−21. The left-hand panel of Fig. 2 shows an example
of the parameter estimation of a simulated signal. In this case, the
parameters are constrained roughly to a per cent level.

The right-hand panel of Fig. 2 shows results from an analysis with
Gaussian noise. In the absence of a signal, the posterior of the signal
amplitude h0 can be used to place upper limits on some properties
of the remnant. Here, we get a 95 per cent upper limit on h0 of
2.1 × 10−23 with a uniform in log prior. Using the posterior samples
and with equation (3), we can constrain the physical parameters of
the remnants. In this case for example assuming a distance of 40 Mpc
and the same fiducial moment of inertia as in Abbott et al. (2019c) of
Izz = 4.34 × 1038 kg m2, we get a 95 per cent limit on ellipticity of
0.499. In reality we might not know the distance and the sky position
in the absence of an electromagnetic counterpart, and the moment
of inertia, polarization, and inclination angle of the remnant would
also not be known precisely. These extra sources of uncertainty
would need to be folded into both the analysis and the upper
limit calculation, either as extra parameters or using constraints
from other measurements (e.g. the distance measurement from the
inspiral signal).

The upper limit on h0 is also consistent with Fig. 3, where we
attempt to recover the simulated signals different amplitude levels
while keeping constant the spectral parameters. The figure shows

3The priors extend from 20 to 70 s for t0, from 2.3 to 5 on n, and from 625
to 725 Hz on f0. The parameter τ is degenerate with t0, so in place of τ we
actually sample over T = τ + t0 with a flat prior between 50 and 150 s.
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Figure 2. Posteriors for a millisecond magnetar model simulation based on equation (1). The coloured regions in the 1D posteriors show 95 per cent confidence
intervals. The vertical green lines in the left-hand panel are the true values corresponding to log10(h0) = −22.0, t0 = 30 s, τ = 105 s, n = 3, and f0 = 650 Hz
from left to right. The dark and the light regions in the 2D posteriors are 68 and 95 per cent confidence levels, respectively. The posteriors on the right for
Gaussian noise when no signal is present.

Figure 3. Posterior recoveries for the millisecond magnetar model showing the levels at which spectral parameters are constrained at different amplitude
values. The vertical axis on the left shows the amplitude values used for the simulations. The solid dots are the maximum a posteriori values and the error bars
correspond to 95 per cent confidence levels. The vertical dashed–dotted lines are the true values. Note that the x-axis for these plots does not show to the full
prior range and we have zoomed in to see the error bars better.

95 per cent confidence intervals with which the spectral parameters
are recovered at different amplitudes. While the posteriors are well
constrained for h0 ≥ 4.0 × 10−23, for a signal with amplitude h0 ≤
2.5 × 10−23, the posteriors span almost the entire prior range.

We finally use the marginalized likelihood model on simulated
signals with incorrect phase evolution models. We first test this in the
frequency domain with phase-scrambled maps – which are tf-maps

with random fluctuations added to the phase of each pixel. We find
that the recovered posteriors are consistent with the true values, as
expected for this statistic. We also perform a similar test by adding
fluctuations to the time domain phase evolution of the signal. We
note that care is needed in the time domain that the fluctuations
not be large enough to affect the frequency evolution in the signal.
Fig. 4 shows the results for a signal with small fluctuations added in

MNRAS 492, 4945–4951 (2020)
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Figure 4. Posteriors recoveries for a simulation with small fluctuations
added to the phase evolution. The coloured regions in the 1D posteriors
show 95 per cent confidence intervals. The vertical green lines in the left-
hand panel are the true values corresponding to log10(h0) = −22.0, t0 =
30 s, τ = 105 s, n = 3, and f0 = 650 Hz from left to right. The dark and the
light regions in the 2D posteriors are 68 and 95 per cent confidence levels,
respectively.

the time domain, which demonstrate posterior recoveries consistent
with the true parameters of the model.

5 C O N C L U S I O N

Post-merger signals from NSs are a promising source of GWs
for second and third generation GW detectors. In this paper, we
have described the application of a Bayesian likelihood formalism
to the characterization of long-duration post-merger signals from
binary NS mergers. We showed that this formalism is robust against
fluctuations in phase evolution and is capable of constraining and
measuring important astrophysical parameters like the spin, the
braking index, moment of inertia, and the eccentricity of magnetars.
We note in particular the possibility to estimate the braking index
of the remnant NS with GW data. There have been only two
measurements of braking indices of millisecond magnetars to
date using X-ray observations following short gamma-ray bursts
(Lasky et al. 2017). Braking index measurements would be of
particular interest since that would give direct information of the
underlying mechanics of the spin-down. In conjugation with on-
going developments (Takami, Rezzolla & Baiotti 2014; Bernuzzi,
Dietrich & Nagar 2015; Tsang, Dietrich & Van Den Broeck 2019)
in modelling of post-merger GW emission, parameter estimation
methods can also help constrain the nuclear equation of state at
very high densities.

As the second-generation GW detectors progress towards their
design sensitivity, it is plausible that there will be a detection
of a long-transient GW signal in the coming observing runs. In
addition to post-merger searches, analyses of these signals also
benefit from development of parameter estimations methods that
make minimal model assumptions. We are planning further devel-
opments of robust methods of sky localization for transients that are

especially important. One assumption we have made throughout
this work is that the spectral model is well known. We are also
developing parameter estimation methods that can handle a wider
range of model uncertainties, and help in extracting astrophysical
information from future detections.
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APPENDIX A : PHASE MARGINALIZED
L I K E L I H O O D

We derive equation (5) the phase marginalized Bessel function
likelihood. We begin with equation (4) and write it by explicitly
separating the phase term as

L(d̃ij |θ̄ ,φh
ij ) = 2

πT Sn
j

exp

(
− 2

T

|d̃ij |2 + |h̃ij |2
Sn

j

)

× exp

(
4

T

|d̃ij ||h̃ij | cos(φd
ij − φh

ij )

Sn
j

)
, (A1)

where φh
ij and φd

ij are the model and data phase in the pixel i, j. We
marginalize over φh

ij (or over φij = φd
ij − φh

ij ) with a uniform prior
as a natural choice. The marginalization integral is

I
φ
ij = 1

2π

∫ 2π

0
dφ exp

(
4

T

|d̃ij ||h̃ij |
Sn

j

cos φ

)
. (A2)

The integral can be described in terms of a zeroth-order modified
Bessel function of the first kind (Arfken 2012), such the marginal-
ized likelihood is

Lφ(d̃ij |θ̄) = 2

πT Sn
j

exp

(
− 2

T

|d̃ij |2 + |h̃ij |2
Sn

j

)
I0

[
4

T

|d̃ij ||h̃ij |
Sn

j

]
.

(A3)

APPENDIX B: PHASE AND PSD
M A R G I NA L I Z E D L I K E L I H O O D

A common way to estimate the noise PSD at some frequency is
by averaging over the PSDs estimate from N neighbouring time
segments:

Savg = 1

N

N∑
i

Si . (B1)

In the frequency domain, both the real and imaginary parts of the
noise are assumed to be drawn from a coloured Gaussian noise. If
the true PSD is S, then the expectation value of both the real and
imaginary part of the noise is S/2. Then the following sum follows
a χ2 distribution with 2N degrees of freedom:

2

S

N∑
i

Si = 2N

S
Savg. (B2)

In general if some data X ∼ N(0, σ 2) and νY 2/σ 2 ∼ χ2
ν , where

Y is an estimator for σ , then the random variable t = X/Y will
form a Student’s t-distribution with ν degrees of freedom (James
2006). Using that here, we get the PSD marginalized likelihood for a
pixel,

LS(d̃ij |θ̄ ) = 4 

(
1 + ν

2

)
πT νSn

j 
(ν/2)

[
1 + 4

T

|d̃ij − h̃ij |2
νSn

j

]−(1+ ν
2 )

, (B3)

with the natural choice of ν = 2N. Note that since we start with
the complex Gaussian distribution equation (4), the exponent is not
−(ν + 1)/2 and so this is not an exact Student’s t-distribution in
|d̃ij − h̃ij |. Now we marginalize over the phase. We define the αij,
β ij, and γ variables as in equation (9) that allows us to write the
likelihood as

Lij

S (d̃ij |θ̄ ) = αij

[
1 − βij cos(φs

ij − φh
ij )
]γ

. (B4)

We now marginalize over the phase term φij = φs
ij − φh

ij :

Lij

S (d̃ij |θ̄ ) = αij

2π

∫ 2π

0
dφij

[
1 − βij cos φij

]γ
. (B5)

The integral can be written in terms of Gauss hypergeometric
functions as

Lij

S (d̃ij |θ̄ ) = αij

2
(1 − βij )γ 2F1

(
0.5, −γ, 1,

2βij

βij − 1

)

+αij

2
(1 + βij )γ 2F1

(
0.5, −γ, 1,

2βij

βij + 1

)
, (B6)

which gives the phase and PSD marginalized likelihood for each
pixel.

A P P E N D I X C : TH E N O I S E C OVA R I A N C E O F
THE TF-MAP

In this section, we study the covariance of the simulated noise used
in this paper, and test the assumption of only using correlations
diagonal in frequency and time in the likelihood.

For the first test we simulated O(10 000) s of stationary advanced
LIGO coloured Gaussian noise and created tf-maps with 4 s
Tukey-windowed FFTs as in Section 4. We then made histograms
measuring different types of correlations using these FFTs which
we list below.

(i) Correlations between bins of the same frequency but at
neighbouring time segments, i.e. time segment adjacents to each
other in the tf-map.

(ii) Correlations between distinct frequency bins at neighbouring
time segments.

(iii) Correlations between frequency bins both distinct and at
same frequencies, across all time segments (i.e. not just neighbour-
ing ones).

(iv) Finally for completeness, distinct frequency bins at the same
time segments.
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Figure C1. Starting from the top left in clockwise direction, the plots show histograms of (i) correlations between two frequency bins at 650 Hz at adjacent
time segments, (ii) correlations between bins at 650 and 652 Hz at adjacent time segments, (iii) correlations between bins at 650 and 652 Hz across all time
segments, and (iv) correlations between bins at 650 and 652 Hz at the same time segments. The blue and the red traces correspond to the real and imaginary
parts of the correlations. The absolute values of the means of the correlations are (clockwise from top left) 3.3 × 10−49, 8.8 × 10−49, 6.5 × 10−52, and
1.7 × 10−48.

Example histograms are plotted in Fig. C1 for these different
types of correlations. We see that the mean values of the noise
correlation histograms are consistent with zero. This is expected
when any correlations between these frequency bins across time
segments is negligible. This was true across different frequency
choices in the advanced LIGO sensitive frequency band from ∼20 to
1000 Hz.

As another test we studied correlations across time using the time
domain autocorrelation function. We use noise correlation duration
as a metric to measure the duration of correlations of a stationary
(ergodic) random data. It is defined as (Bendat & Piersol 2000)

Tn = 2

Rxx(0)

∫ ∞

0
|Rxx(τ )| dτ, (C1)

where Rxx(τ ) is the time domain autocorrelation function calculated
as the inverse Fourier transform of a two-sided PSD. When using
the O2 PSD of advanced LIGO without narrow-band features, and
with a sampling frequency of 2048 Hz (fmax = 1024 Hz), we get Tn

≈ 0.34 s. This is already more than an order of magnitude smaller
than the segment duration being used in this paper, but most of the
correlations come from the lowest frequencies that are not typically
used in GW analysis. Indeed if we only consider frequencies above
30 Hz the correlation duration drops to around 0.02 s.

Finally, we plot the absolute value of the autocorrelation function
that was computed using an inverse FFT (IFFT) of the PSD in
Fig. C2 with a low frequency cut-off of 30 Hz. This shows that
the correlations at τ = 4 s are several orders of magnitude smaller

Figure C2. The absolute value of the autocorrelation function is plotted as
a function of the time difference. The correlation value at 4 s – indicated by
the red line – is at least two orders of magnitude smaller than 1.

in magnitude than Rxx(τ = 0). We should stress again that these
tests are valid only for noise that is stationary and Gaussian for
the duration of the entire spectrogram without strong narrow-band
features; assumptions that would not generally be true with real
data.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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