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Abstract: This paper addresses the commodity constrained split delivery vehicle routing problem

(C-SDVRP) where customers require multiple commodities. This problem arises when customers

accept to be delivered separately. All commodities can be mixed in a vehicle as long as the vehicle

capacity is satisfied. Multiple visits to a customer are allowed, but a given commodity must be

delivered in one delivery.

In this paper, we propose a heuristic based on the adaptive large neighborhood search (ALNS) to

solve the C-SDVRP, with the objective of efficiently tackling medium and large sized instances. We

take into account the distinctive features of the C-SDVRP and adapt several local search moves to

improve a solution. Moreover, a mathematical programming based operator (MPO) that reassigns

commodities to routes is used to improve a new global best solution.

Computational experiments have been performed on benchmark instances from the literature. The

results assess the efficiency of the algorithm, which can provide a large number of new best-known

solutions in short computational times.

Keywords: vehicle routing problem; multiple commodities; adaptive large neighborhood search;

local search.

1 Introduction

The vehicle routing problem (VRP) and its variants have been widely studied in the literature

(Toth and Vigo, 2014). In the VRP with multiple commodities, capacitated vehicles are used to

deliver a set of commodities and meet the demands of customers. Four different strategies to deliver

a set of commodities to customers were presented by Archetti et al. (2014): separate routing, mixed

routing, split delivery mixed routing and commodity constrained split delivery mixed routing.

In the separate routing strategy, a specific set of vehicles is dedicated to each commodity, and any

commodity has to be delivered to any customer by a single vehicle visit. In this case, considering each

commodity separately is a classical capacitated VRP (CVRP). A customer is visited as many times

as the number of commodities that he/she requires. In other words, if a customer needs multiple

commodities, this customer needs to be served several times, even if all the commodities could be

delivered by only one vehicle.

In the mixed routing strategy any set of commodities can be mixed in the same vehicle, and all

customers must be delivered at once. If a customer requires one or more commodities, all of them

are delivered by a single vehicle in a single visit. Here again, the problem that arises corresponds to

a single CVRP. In this delivery strategy, when the remaining capacity of a vehicle is not sufficient
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to deliver all the demand of a given customer, it is wasted with a possible increase in transportation

costs.

In the split delivery mixed routing strategy, any set of commodities can be mixed in the same

vehicle. The commodities can be split in any possible way. Moreover, a commodity can be delivered

to a customer by several vehicles. The problem that arises corresponds to the split delivery VRP

(SDVRP) that was introduced by Dror and Trudeau (1989) and Dror and Trudeau (1990). For an

extensive review of SDVRP, the interested reader is referred to the survey by Archetti and Speranza

(2012). In the split delivery mixed routing strategy, a customer can be visited several times if this is

beneficial, even if this customer requires only one commodity. This strategy minimizes transportation

costs but may cause inconvenience to customers (Archetti et al., 2008). For example, if one commodity

is delivered by several vehicles, the handling time for the customer may increase significantly.

The commodity constrained split delivery mixed routing (C-SDVRP) is a strategy recently proposed

by Archetti et al. (2014) to deliver multiple commodities. In the C-SDVRP, any set of commodities

can be mixed in the same vehicle. The demand of a customer can be split, but only as many times

as the required commodities and when a commodity is delivered to a customer, the entire required

amount is handed over. As a consequence, one commodity can be delivered by only one vehicle.

The C-SDVRP shares similarities with the SDVRP. However, a significant difference is that the

demand of a customer cannot be arbitrarily split since a commodity has to be delivered by the same

vehicle. Thus, only splitting a request of a customer according to different commodities is allowed.

Considering the convenience of customers and transportation costs, the C-SDVRP is more interesting

than the other three strategies to deliver multiple commodities. This problem arises in several real-life

situations, for instance in the delivery of groups of products: dairy products, fresh fruits, or vegetables

to supermarkets, catering services or restaurants. Each group of products represents a commodity.

These commodities can be mixed in the same vehicle. For the customer, it is acceptable to have

more than one delivery, but splitting the delivery of a specific commodity (a group of products) is not

practical at all. Few commodities are considered. The number of deliveries for a customer is therefore

acceptable. Moreover, considering to split deliveries is beneficial for the entire logistic system since it

reduces transportation costs.

Despite its practical relevance, the C-SDVRP has received very little attention. The C-SDVRP

was first introduced by Archetti et al. (2014). A branch-and-cut algorithm was proposed by the

authors and is able to solve to optimality 25 out of 64 small instances (15 customers) within 30

minutes. Archetti et al. (2014) also proposed a heuristic method to tackle this problem. The heuristic

consists in making copies of each customer (one for each required commodity) and uses an open-access

injection-ejection algorithm for the CVRP. This solving method is simple but does not seem to be

very efficient. Indeed, customer replicas share the same location, so the resulting capacitated VRP

has many equivalent solutions. We use an example to highlight this point.

Figure 1 shows an example where customers require multiple commodities. A square indicates

the location of the depot and circles represent the locations of the three clients. The number of

commodities is three. The number on each edge corresponds to the associated travel cost, and the

numbers in the dotted ellipses are the demands for each commodity. To increase readability, a different

colored ellipse represents each commodity. For instance, for each customer, the number in the red

ellipse is the demand of commodity one required by this customer. Each vehicle has a capacity of

Q = 10 units.

According to the heuristic used by Archetti et al. (2014), the C-SDVRP is solved as a CVRP where

the set of customers contains all the customer replicas. Figure 2 shows two solutions of this example.

Solution 1 is composed of three routes to serve all of the demand. Route 1 serves the whole

demand for customer 1 (6 units) and commodity 1 of customer 2 (3 units) for a total of 9 units. Route

2 delivers the remaining of the demand of customer 2 (5 units) and commodities 1 and 2 (5 units) of

customer 3. The remaining demand for customer 3 (1 unit) is delivered in route 3. The three routes
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Figure 1: An example from Archetti et al. (2014).

(a) Solution 1. (b) Solution 2.

Figure 2: Two solutions of the instance in Figure 1.

cost 11.5, 11.5 and 8 respectively. The total cost is then 31.

Solution 2 is also composed of three routes. Route 1 is the same as in solution 1. Route 2 delivers

the remaining of the demand of customer 2 (5 units) and commodity 1 (3 units) of customer 3. The

remaining demand for customer 3 (3 units) is delivered in route 3. The three routes cost 11.5, 11.5

and 8 respectively, for a total cost of 31.

These two solutions are different. However, in essence, the two solutions are equivalent in that

customers’ replicas share the same location. Taking this specific feature of the problem into account

to avoid exploring many equivalent solutions is a real challenge.

In a more recent work Archetti et al. (2015) proposed an extended formulation for the C-SDVRP

and developed a branch-price-and-cut algorithm. This algorithm has limitations for solving large-scale

instances: optimal solutions were obtained with up to 40 customers and 3 commodities per customer

within 2 hours. We are not aware of any other study in the literature solving the C-SDVRP.

This paper aims at proposing an efficient heuristic to tackle medium and large sized C-SDVRP

instances. To this end, we propose an adaptive large neighborhood search (ALNS) heuristic tak-

ing into account the specialty of the C-SDVRP. ALNS is an efficient metaheuristic proposed by

Ropke and Pisinger (2006) and extends the large neighborhood search (LNS) heuristic (Shaw, 1997,

1998) by allowing multiple destroy and repair methods to be used within the same search. Recently,

ALNS has been successfully applied to the capacitated VRP (Sze et al., 2016) and to many variants

of the VRP (Azi et al., 2014, François et al., 2016, Masson et al., 2013, Sze et al., 2017).

The contributions of this paper are as follows. First, a new heuristic method for the C-SDVRP is

proposed. As mentioned earlier, if a customer is replicated as many time as the required commodities,

many equivalent solutions exist. Hence, to avoid this pitfall, the proposed method explicitly takes

this feature into account. To improve a solution, we adapt existing local search (LS) operators to

deal with a customer as a whole (i.e., with the whole demand he/she requires) or only as a part (i.e.,

with a single commodity he/she requires). Second, in order to further improve the quality of a new
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and better encountered solution, a mixed integer programming (MIP) based operator is developed.

Finally, we provide a large number of new best-known solutions for medium and large sized C-SDVRP

instances up to 100 customers and 3 commodities per customer within about 10 minutes of computing

time.

The rest of this paper is organized as follows. Section 2 defines the C-SDVRP. The proposed

algorithm for the C-SDVRP is described in Section 3. Section 4 reports the computational results.

Section 5 concludes the paper and suggests new directions for future research.

2 Problem definition

The C-SDVRP is defined on a directed graph G = (V,A) in which V = {0}
⋃

VC is the set of

vertices, and A is the set of arcs. More precisely, VC = {1, ..., n} represents the set of customer vertices,

and 0 is the depot. A cost cij is associated with each arc (i, j) ∈ A and represents the non-negative

cost of travel from i to j. Let M = {1, ...,M} be the set of available commodities. Each customer

i ∈ VC requires a quantity dim ≥ 0 of commodity m ∈ M. Note that a customer i ∈ VC may request

any subset of commodities, namely dim may be equal to zero for some m ∈ M.

A fleet of identical vehicles with capacity Q is based at the depot and is able to deliver any subset

of commodities.

The problem is to find a solution that minimizes the total transportation cost, and that involves

two related decisions such as finding a set of vehicle routes that serve all customers and selecting the

commodities that are delivered by a vehicle route to each customer. Moreover, each solution must be

such that:

1. each route starts and ends at the depot;

2. the total quantity of commodities delivered by each vehicle does not exceed the vehicle capacity;

3. each commodity requested by each customer must be delivered by a single vehicle;

4. the demands of all customers need to be satisfied.

We use the example presented in Figure 1 to illustrate an optimal solution of a C-SDVRP instance.

The solution is provided in Figure 3. In the C-SDVRP case, two vehicle routes are required to deliver

all the commodities required by the customers. One route (black line) delivers all the commodities of

customer 1 (6 units) and delivers commodities 1 and 3 of customer 3. The cost of this route is 13.

The other route (purple line) delivers all the commodities of customer 2 (8 units) and commodity 2

of customer 3 (2 units). The cost of this route is 11.5. The total cost of the solution is 24.5. For the

solutions obtained using the other three delivery strategies (separate routing, mixed routing and split

delivery mixed routing), the interested reader is referred to Archetti et al. (2014).

Figure 3: An optimal solution for the C-SDVRP instance proposed in Figure 1.
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3 Adaptive large neighborhood search

In order to tackle the C-SDVRP for medium and large instances, we propose a heuristic method

based on the ALNS framework of Ropke and Pisinger (2006). We make use of local search, and we

develop a mathematical programming based operator to improve the quality of solutions.

Due to the characteristics of the problem under study, one node can be duplicated as many times

as the number of commodities required by the associated customer (Archetti et al., 2014). With each

duplicated node, we then associate the demand of the customer for the corresponding commodity.

However, the simple duplication of customers without further consideration of the customer location

can produce several equivalent solutions as illustrated previously in the paper. To enhance the per-

formance of the algorithm, we explicitly consider customer replications for each commodity and the

customer as a single entity associated with its total demand. To this intent and for the sake of clarity,

in the following, we will call the duplicated nodes customer-commodity, and we will use the term

customer to refer to the customer associated with the total demand.

We represent a solution of C-SDVRP as the set of routes needed to serve all customers. In order to

take into account the specific features of the C-SDVRP, a route can be represented by (1) a sequence

of customers, or by (2) a sequence of customer-commodities. Note that, because a customer can

be delivered by several vehicles, in the representation with customers, it is possible that a customer

appears in several routes (with different commodities).

The second representation gives more flexibility but increases in complexity. To clarify this, we

consider the case of removing a customer from a solution. In the first case, when removing a customer

from a route, the customer associated with all the commodities delivered by the route is removed. In

the second case, it is possible to remove only one commodity. We illustrate the two representations in

Figures 4 and 5. We use the example presented in Figure 1. Figure 4 shows a set of routes represented

as two sequences of customers. If customer 1 is removed from route 1, then customer 1 with all the

three commodities is removed. If customer 3 in route 2 is removed, then customer 3 with commodity 2

is removed. Once a customer is removed, the remaining capacity of this route increases and the cost

decreases. Note that even if customer 3 has been removed from route 2, he is still present in route 1.

Figure 5 shows a set of routes represented as two sequences of customer-commodities. In order to

better understand the feature of C-SDVRP, we hide the circle which represents the customer. In fact,

the two routes imply the same solution as shown in Figure 4. If commodity 2 of customer 3 in route 2

is removed, then the remaining capacity of this route increases and the cost decreases. However, if one

commodity (like commodity 1) of customer 1 is removed, then the remaining capacity of this route

increases but the cost of this route does not change.

(a) Initial solution. (b) Solution after removing customer 1
from route 1 and customer 3 from route 2.

Figure 4: Two sequences of customers.

As mentioned above, in this paper we present operators for customers and customer-commodities

that work based on the specific need. It is important to note that to deal with both customers and

customer-commodities, each route in the solution has two concurrent representations. In the first
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(a) Initial solution. (b) Solution after removing commodity 1 of customer 1
from route 1 and commodity 2 of customer 3 from route 2.

Figure 5: Two sequences of customer-commodities.

representation, each route contains a sequence of customers, and a set of commodities is associated

with each customer (see Figure 4 for an example). In the second representation, each route contains a

sequence of customer-commodities (see Figure 5 for an example). When using an operator, the corre-

sponding representation (customers or customer-commodities) is used. The following considerations

are then taken into account when translating one representation to the other:

• In the second representation with customer-commodities, when a route contains several com-

modities of the same customer, it is always optimal to group them (since there is zero cost to

travel between these customer-commodities). Thus, in the first representation, a customer will

not appear twice on the same route.

• When dealing with the second representation with customer-commodities, it is possible that a

customer appears in different routes (with different commodities). Hence, it is possible in the

first representation with customers that a customer appears in several routes (e.g., customer 3

in Figure 4(a)).

• When dealing with the first representation with customers, moving a customer means to move

that customer with the associated commodities in the current route. These commodities may

be a subset of the commodities required by this customer.

3.1 General framework

The basic idea of ALNS is to improve the current solution by destroying it and rebuilding it. It relies

on a set of removal and insertion heuristics which iteratively destroy and repair solutions. The removal

and insertion heuristics are selected using a roulette wheel mechanism. The probability of selecting a

heuristic is dynamically influenced by its performance in past iterations (Pisinger and Ropke, 2010).

A sketch of the method is outlined in Algorithm 1.

In Algorithm 1, sbest represents the best solution found during the search, while s is the current

solution at the beginning of an iteration. The cost of a solution s is denoted by f(s).

A removal heuristic hrem and an insertion heuristic hins are applied to the current solution s. We

indicate by srem and sins the intermediate solutions obtained after applying hrem and hins respectively.

hrem removes and hins inserts ρ customers or customer-commodities, where ρ is a parameter that

varies between ρmin and ρmax. We adapt the strategy proposed by François et al. (2016) to set the

value of ρ: we slightly destroy the current solution when a new solution has just been accepted

(small values of ρ), and we increase the value of ρ proportionally to the number of iterations without

improvements. The probabilities of selecting a removal or an insertion heuristic are dynamically

adjusted during the search (Section 3.8).

Once the heuristics hrem and hins have been applied, the solution obtained sins is possibly improved

by applying a local search. The resulting solution is denoted by s′ (Section 3.3).
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We allow the insertion heuristics to propose solutions that violate the capacity constraint. This

is done with the aim of reducing the number of routes in the solution. Infeasibility is then penalized

in the objective function by adding a factor proportional to the violation. Details on the penalization

of the load violation are given in Section 3.9. We then try to recover feasibility by applying the local

search.

Whenever a new best solution is obtained, a mathematical programming based operator (MPO) is

applied to further improve the new best solution (Section 3.7). This can be seen as an intensification

phase of the algorithm.

The new solution s′ is then subject to an acceptance rule. If accepted, the new solution becomes

the current solution. Otherwise, the current solution does not change. This is repeated until a stopping

criterion is met and the best solution found sbest is returned.

Algorithm 1 Adaptive large neighborhood search framework.

1: sinit ←generate an initial feasible solution using split procedure and LS

2: ρ← ρmin, s← sinit, sbest ← sinit
3: repeat

4: Roulette wheel: select a removal heuristic hrem and an insertion heuristic hins
5: Destroy: srem ← remove ρ customers (or customer-commodities) from s applying hrem
6: Repair: sins ← insert removed customer-commodities into srem applying hins
7: Improve: s′ ← improve solution sins with local search (Algorithm 2)

8: if f(s′) < f(sbest) then

9: sbest ← improve solution s′ with MPO (Section 3.7)

10: s′ ← sbest
11: end if

12: if accept(s′, s) then

13: s← s′, ρ← ρmin

14: else

15: ρ← ρ+ 1, or ρmin if ρ = ρmax

16: end if

17: Update roulette wheel

18: until stopping criterion is met

19: return sbest

In the following, each component of this algorithm is explained in detail.

3.2 Initial solution

Let ncc be the number of customer-commodities. A feasible initial solution is constructed as

follows. First, we randomly determine a sequence of customer-commodities and we construct a giant

tour S = (S0, S1, . . . , Sncc), where S0 represents the depot and Si is the i
th customer-commodity in the

sequence. Then, we apply a split procedure to get a feasible solution. This procedure is inspired by

the works of Beasley (1983) and Prins (2004). It works on an auxiliary graph H = (X ,Acc,Z), where

X contains ncc+1 nodes indexed from 0 to ncc, where 0 is a dummy node and node i, i > 0, represents

customer-commodity Si. Acc contains one arc (i, j), i < j, if a route serving customer-commodities

Si+1 to Sj is feasible with respect to the capacity Q of the vehicle. The weight zij of arc (i, j) is equal

to the cost of the trip that serves (Si+1, Si+2, . . . , Sj) in this same order. The optimal splitting of the

giant tour S corresponds to a minimum cost path from 0 to ncc in H. Finally, this feasible solution is

improved by applying local search (Algorithm 2).
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3.3 Local search

In order to improve a solution, a local search procedure (LS) is applied. LS is based on a set of

classical operators that work on customers and on customer-commodities.

Let us first introduce some notation that will be useful in the remaining part of the section. Let u

and v be two different nodes. They are associated with a customer or a customer-commodity, or one

of them may be the depot depending on the operator. These nodes may belong to the same route or

different routes. Let x and y be the successors of u and v in their respective routes. R(u) denotes the

route that visits node u.

Operators on customers

Here we present the operators that are defined for customers. These operators consider a customer

together with all the commodities delivered to this customer in a given route. The different operators

are illustrated in Figure 6 (where we only represent the intra-route cases).

(a) Insert customer. (b) Swap customers. (c) 2-opt on customers.

Figure 6: Local search operators with customers.

Insert customer: this operator removes a customer u and inserts it after customer v.

Swap customers: this operator swaps the positions of customer u and customer v.

2-opt on customers: if R(u) = R(v), this operator replaces (u, x) and (v, y) by (u, v) and (x, y).

Operators on customer-commodities

Here, we present the operators that are defined for customer-commodities. The different operators

are illustrated in Figure 7.

Insert customer-commodity : this operator removes a customer-commodity u then inserts it

after customer-commodity v.

Swap customer-commodities: this operator swaps customer-commodity u and customer-commodity

v.

We can notice that the insert and swap operators for customer-commodities allow some moves

that are not feasible when we consider only customers. In most cases, the insertion of a customer or

of only one of the commodities to be delivered has the same cost. However, during the search, we

allow the violation of the vehicle capacity, and the infeasibility is penalized (see Section 3.9). In an

infeasible solution with some overcapacity in a route, it may be possible that inserting customers in

other routes also leads to an infeasibility; while inserting only a customer-commodity decreases the

infeasibility or leads to a feasible solution. Similarly, a swap of customers may not be feasible (or
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(a) Insert customer-commodity. (b) Swap customer-commodities.

Figure 7: Local search operators with customer-commodities.

lead to an increase in the cost) due to the vehicle capacity restriction. At the opposite, when the

commodities of some customers are delivered in several routes, swapping customer-commodities may

be feasible with respect to the capacity and decreases the solution cost. As an example, in Figure 7,

case (b), v and w are two commodities for the same customer, while u is a commodity for another

customer who requires two commodities. Swapping u with both v and w may not be possible because

of vehicle capacity while swapping customer-commodities u and v decreases the cost of the solution.

Note that we do not consider a 2-opt operator based on customer-commodities. Since this oper-

ator works on elements of the same route, it is never beneficial to split apart customer-commodities

associated to the same customer. It follows that its behavior would be the same as the operator 2-opt

on customers.

LS is applied when the split procedure has generated an initial solution or when the removal

and insertion heuristics have modified the solution. In the first case, we do not allow the solution

to be infeasible with respect to the vehicle capacity. In the second case, the insertion heuristic can

produce infeasible solutions. As a consequence, LS (and thus the operators) may have to address the

infeasibility of the current solution. LS is depicted in Algorithm 2. Given a solution, first, four local

search operators are applied: insert customer, insert customer-commodity, swap customers and swap

customer-commodities. They are invoked iteratively until there is no further improvement. Then the

operator 2-opt of customers is applied. If it improves the solution, we reiterate with the first four

operators. After exploring the neighbor defined by each operator, the move that improves the most is

implemented. When all the local search operators fail, routes of the current solution are concatenated

and split algorithm is applied again. This strategy is inspired by Prins (2009). If this provides a better

solution, the whole procedure is repeated.

3.4 Removal heuristics

This section describes the set of removal heuristics we propose to destroy the current solution.

Heuristics Shaw removal and worst removal use the representation of a solution with customers, while

random removal can be applied to both representations with customers and customer-commodities.

Another operator that randomly removes one route is also considered.

Shaw removal: this heuristic aims to remove a set of customers which are similar based on a
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Algorithm 2 Local search procedure.

1: Let s be a (feasible or infeasible) solution
2: repeat

3: repeat

4: repeat

5: Obtain s′ by applying the insert customer operator; s = s′

6: Obtain s′ by applying the insert customer-commodity operator; s = s′

7: Obtain s′ by applying the swap customers operator; s = s′

8: Obtain s′ by applying the swap customer-commodities operator; s = s′

9: until No improvement has been obtained
10: Obtain s′ by applying the 2-opt of customers operator; s = s′

11: until No improvement has been obtained
12: Obtain a giant tour by concatenation of trips
13: Apply the split procedure
14: until No improvement has been obtained

specified criterion (e.g., location or demand). When customers with really different characteristics are

removed, it is likely that each customer is then reinserted at the same position in the solution. Hence,

by removing similar customers, Shaw removal aims to provide a different solution once an insertion

heuristic has been applied.

Here, we define similarity between two customers as the distance between these two customers. The

heuristic works as follows: a first customer i is randomly selected and removed. We then compute the

similarity between customer i and the other customers (here, it is the distance), and sort the customers

in a list L, according to the similarity with customer i. A determinism parameter pd (pd ≥ 1) is used

to have some randomness in the customer selection to be removed in L, with a higher probability for

the firsts customers. The removed customer then plays the role of customer i and the procedure is

repeated until ρ customers have been removed. The interested reader can find a detailed Shaw removal

pseudocode in Ropke and Pisinger (2006).

Worst removal: this heuristic aims at removing the customers who induce a high cost in the

solution. More precisely, at each iteration, we first calculate for each customer the cost decrease if

it is removed from the solution. Then customers are sorted in decreasing order according to these

values. As in Shaw removal, a determinism parameter pd controls the randomization in the choice of

the worst customer to remove.

Random removal: this removal heuristic randomly chooses ρ customers and removes them from

the current solution. It can also be applied with customer-commodities, by randomly removing ρ

customer-commodities.

Route removal: in this removal heuristic, an entire route from the current solution is randomly

selected, and all the customer-commodities on this route are removed.

3.5 Insertion heuristics

In this section, we describe the insertion heuristics implemented in the proposed ALNS algorithm.

In this work, all insertion heuristics consider customer-commodities.

Greedy insertion: in this insertion heuristic, at each iteration, for each removed customer-

commodity i, we first compute the best insertion cost ∆f1
i : cost of inserting the customer-commodity

at its best position into the solution (i.e., the insertion that minimizes the increase of the cost of the

solution). Then, the customer-commodity with the minimum insertion cost is selected to be inserted

at its best position. After each iteration, the insertion costs of the remaining removed customer-

commodities are recomputed. This process stops when all customer-commodities have been inserted.

Regret insertion: this insertion heuristic chooses, at each iteration, the removed customer-
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commodity which produces the biggest regret if it is not inserted at its best position at the current

iteration. In regret-k heuristic, at each iteration, we first calculate, for each removed customer-

commodity i, ∆f1
i the cost of inserting i at its best position, and ∆fη

i (η ∈ {2; ...; k} the cost of

inserting i at its ηth best position. Then, for each customer-commodity i the regret value is computed

as: regi =
∑k

η=2(∆fη
i −∆f1

i ). This represents the extra cost if i is not inserted at the current iteration

in its best position. Finally, the customer-commodity with highest regret value regi is inserted at its

best position into the solution. The heuristic continues until all customer-commodities have been

inserted. For regret-k insertion heuristics in this work, we have considered the values of k to be two

and three.

Random insertion: this insertion heuristic randomly chooses a removed customer-commodity,

and randomly chooses the insertion position in the solution.

Note that when inserting customer-commodities, violations of vehicle capacity are allowed and

penalized in the cost function (see Section 3.9). However, we also impose a maximum capacity violation

on each route. Hence, it is possible that a customer-commodity cannot be inserted in any route of the

current solution. In this case, we create one additional route which includes this customer-commodity.

3.6 Acceptance and stopping criterion

When the removal, insertion and LS steps have been applied, we use a simulated annealing criterion

to determine if the new solution obtained s′ is accepted. However, a deterministic decision rule is

applied in two cases. At each iteration of the algorithm, if s′ has a lower cost than the current solution

s (f(s′) < f(s)), then s′ is accepted. The solution s′ is rejected if the costs f(s′) and f(s) are equal.

We reject solutions with the same cost in order to avoid working with equivalent solutions where some

customer-commodities belonging to the same customer have been exchanged.

When f(s′) > f(s), then s′ is accepted with probability e−(f(s′)−f(s))/T , where T > 0 is the

temperature. As proposed in Ropke and Pisinger (2006), the initial temperature is set such that a

solution which is w% worst than the initial solution sinit is accepted with a probability paccept. More

formally, T is chosen such that e−(w·f(sinit))/T = paccept. Then, at each iteration of the ALNS, the

temperature T is decreased using the formula T = T · γ, where γ ∈ [0, 1] is the cooling factor.

The stopping criterion for the whole procedure is a fixed number of ALNS iterations.

3.7 Mathematical programming based operator to reassign commodities

When a new best solution is identified, we intensify the search by applying a mathematical pro-

gramming based operator (MPO). The main purpose is to assign the visits to a specific customer

among the solution routes in a different way by solving a capacitated facility location problem.

We use Figures 8 (a) and (b) to explain the idea behind MPO. In the example, we assume the vehicle

capacity is 10 units. The number dim in the ellipse reflects the demand of commodity m required by

customer i. We focus on the commodities of customer 2: the ellipses with a solid line in Figure 8.

We assume that Figure 8 (a) is a solution obtained after LS. Customer 2 has two commodities: the

first is delivered on route 2, and the second is delivered on route 3. Inserting or swapping one of

these two customer-commodities does not provide a better solution. However, we can notice that the

deliveries to customer 2 can be reassigned to the first route and the total cost decreases, as shown in

Figure 8 (b). The reader can notice that the operators implemented in LS do not consider this kind

of movements.

Let us introduce the notation that we need to formally present MPO. First, we assume that

customer i is considered. We indicate by:

• Mi the set of commodities required by customer i;

• si the solution obtained from the current solution by removing all the visits to customer i;
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(a) Solution before using MPO. (b) Solution after using MPO.

Figure 8: MPO for reassigning commodities.

• Ri the set of routes in si;

• cir the cost to insert (best insertion) customer i in route r ∈ Ri;

• Qi
r the remaining capacity in route r ∈ Ri.

Then, we introduce the following binary decision variables:

ximr =

{

1 if the delivery of commodity m of customer i is assigned to route r ∈ Ri;

0 otherwise.

xir =

{

1 if at least the delivery of one commodity required by customer i is assigned to route r ∈ Ri;

0 otherwise.

The mathematical program that we solve in order to apply MPO is the following:

(IPMPO)min
∑

r∈Ri

cirx
i
r (1)

s.t.
∑

r∈Ri

ximr = 1, ∀ m ∈ Mi (2)

∑

m∈Mi

dimximr ≤ Qi
rx

i
r, ∀ r ∈ Ri (3)

ximr ∈ {0, 1}, ∀ m ∈ Mi, r ∈ Ri (4)

xir ∈ {0, 1}, ∀ r ∈ Ri (5)

This mathematical program corresponds to a capacitated facility location problem, where only the

costs related to the inclusion of a new route in the solution (the fixed cost) are taken into account.

The objective function (1) aims to minimize the total insertion cost. Constraints (2) require that the

delivery of each commodity (i.e., the delivery of each customer-commodity) must be assigned to one

route. Constraints (3) impose that the total quantity of commodities assigned to a selected vehicle

does not exceed its remaining capacity. Constraints (4)-(5) define the decision variables.

(IPMPO) is solved for each i ∈ VC , but only the reassignment of visits associated with the highest

cost reduction is effectively implemented.
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3.8 Adaptive weight adjustment

A roulette wheel is used to give more or less importance to the removal and insertion heuristics

to be used. The procedure implemented is based on the principles described in Ropke and Pisinger

(2006) and François et al. (2016). This last variant includes a normalization process for the score. The

main difference in our approach is that removal and insertion heuristics are not selected independently.

A pair of removal and insertion heuristics hp = {hrem;hins} is chosen in each iteration. We denote by

Hp the set of pair of heuristics to be used. Each pair hp is associated with a weight ωhp , a score πhp ,

and θhp the number of times that pair hp has been used. Initially, all pairs of heuristics have the same

weight and
∑

p∈Hp
ωhp = 1.

We define a segment as a fixed number of ALNS iterations in the proposed algorithm. During

a segment, the weights of all pairs are kept constant. Before starting a new segment, for each pair

hp ∈ Hp, the score πhp and the number of times the pair is used θhp are reset to 0. During a segment,

each time a pair hp is used, θhp is increased by 1, and if the new solution s′ is accepted after using pair

hp, the score πhp is updated according to: πhp ← πhp + σµ, where σµ (µ ∈ {1; 2; 3}) reflects different

cases regarding the score change πhp . That is, the score πhp is increased by σ1 when s′ is a new best

solution, or σ2 when s′ is a new improved solution (f(s′) < f(s)) but not a new best solution, or

σ3 when s′ is not an improved solution but has been accepted according to the simulated annealing

criterion. The values σµ (σµ ∈ [0, 1]) are normalized to satisfy σ1 + σ2 + σ3 = 1.

At the end of each segment, we update all the weights of the pairs of heuristics based on the

recorded scores. First, the score πhp is updated as: πhp ←
πhp

θhp
, where θhp is the number of times that

pair hp was used in this segment. If θhp = 0, we set πhp to the same value as in the previous segment.

Then, the scores of all pairs of heuristics are normalized:

π̄hp =
πhp

∑

h∈Hp
πh

. (6)

Let ωhp,q be the weight of pair hp used in segment q, and λ ∈ [0, 1] a factor which determines the

change rate in the performance of the pair of heuristics. At the end of segment q, the weight of all

pairs of heuristics hp to be applied in segment q + 1 is updated as:

ωhp,q+1 = (1− λ)ωhp,q + λπ̄hp . (7)

3.9 Infeasibility penalization scheme

In our implementation of the ALNS, we allow some violations of the vehicle capacity in order to

reduce the number of routes. Let Kinit be the number of vehicles used in the initial solution sinit.

Then, the vehicle capacity Q can be extended by an amount of Qextra = Q
Kinit

. If a vehicle delivers

more than Q units of products, we penalize the infeasibility by adding to the solution cost a term

proportional to the load violation which is βl(s), where l(s) is the total load violation of the solution

s and β is the penalty rate.

The penalty rate β is related to capacity violations. Initially, β is set equal to a minimum value

βmin computed as

βmin = 10 ·
f(sinit)

∑

i∈VC ,m∈M
dim

,

where f(sinit) is the cost of the initial solution obtained after applying the split procedure and LS.

This ratio approximates an average transportation cost per unit of demand.

The penalty rate β is dynamically modified during the search since a high rate may eliminate

infeasibility quickly, but may also prevent searching other promising regions. We keep track of the

number of infeasible solutions obtained during the last consecutive I iterations of the ALNS algorithm.

If Iinf infeasible solutions are obtained consecutively, the value of β is increased to 2β. Similarly, if
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Ifeas feasible solutions are generated consecutively, the value of β is decreased to max {βmin;β/2}.

4 Computational experiments

In this section, we present the results obtained by the proposed ALNS heuristic. The algorithm

was implemented in C++ and ran on an Intel (R) Core(TM) i7-4600U, 2.10GHz, and 16GB of RAM.

We first describe in Section 4.1 the test instances on which we evaluate our algorithm. In Section 4.2

we report the values of the parameters that we set for the ALNS. Then, in Section 4.3 we perform a

sensitivity analysis to determine which insertion and removal heuristics lead to the best performance

of the proposed algorithm. A set of settings is tested on a subset of instances, and the best is used to

perform all other computational tests. In Section 4.4, we analyze the effect of the number of iterations

on the computational time and the solution quality. Then, Section 4.5 reports the results on the

testbed. The effectiveness of the MPO is studied in Section 4.6, while in Section 4.7 we validate

the effectiveness of integrating a local search in the large neighborhood search. We examine how the

computational time of our method varies according to the instance size in Section 4.8. Finally, Section

4.9 provides managerial insights about the split customers that are delivered by more than one vehicle.

4.1 Instances

To assess the efficiency of our algorithm, we perform computational experiments on the benchmark

instances proposed by Archetti et al. (2014). These instances are built from the R101 and C101

Solomon instances for the VRP with Time Windows (Solomon (1987)), from which the customer

locations are kept. From instances R101 and C101, several instances for the C-SDVRP were generated

by considering the n first customers, with n ∈ {15, 20, 40, 60, 80, 100}.

In the testbed, up to 3 commodities are taken into account. The number of commodities is indicated

by M (M ∈ {2; 3}). Each commodity is required by a customer with a probability p of 0.6 (on average

each customer needs 2 out of 3 commodities) or with probability p equal to 1 (each customer requires

all commodities). The quantity of each commodity required by a customer varies within the intervals

∆ = [1, 100] or ∆ = [40, 60]. A last parameter α ∈ {1.1, 1.5, 2, 2.5} is used to determine the vehicle

capacity from the original one in Solomon instances. We indicate by P = (I,M, p,∆, α) (where

I ∈ {R101, C101}) the set of parameters used by Archetti et al. (2014) to generate instances.

When n = 15, 64 instances are available, one for each combination of parameters in set P. These

are referred as small instances. When n ∈ {20, 40, 60, 80}, 80 mid-size instances are available: 20

instances for each value of n. For the mid-size instances, the combination of parameters in P is

restricted to M = 3, α = 1.5 and ∆ = [1, 100]. Hence I and p can take two values each, leading four

combinations of parameters. For each combination, five instances have been generated, leading to 20

instances in total. When n = 100, 320 large instances are available, that means five instances for each

combination of parameters in set P.

In the following sections, we present the parameter setting for our algorithm and the results

obtained. We provide detailed results on each of the 464 instances in the Appendix A. Due to the high

number of instances, we only report average results. In particular, we present results for each group

of instances, where a group is defined by a quartet (n,I,M, p). Results for a group are averaged on

the values of α and ∆.

We summarize all the notations used to present the results in Table 1.

4.2 ALNS parameters

In this section, we present the values of the parameters set in our ALNS algorithm. The proba-

bilities to select the pairs of removal and insertion heuristics are updated after a number of iterations

called a segment. In our implementation, we define a segment as 100 iterations.
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Table 1: Notations for computational results

Symbol Meaning

C101/R101 Name of the original Solomon instance
n Number of customers
M Number of commodities
p Probability that a customer requires a commodity
id Instance id (5 mid and large sized instances are generated for each combination of parameters in P)
∆ Demand range of each customer for each commodity
α Value for generating the vehicle capacity (see Archetti et al. (2015))
CCm Total number of customers that require commodity m
ncc Total number of customer commodities

avg.ncc Average total number of customer commodities in each group of instances
nbIns Number of instances in each group
OPT Optimal solution value from literature (when available)
BKS Best known solution value from literature (when available)
Cost Best solution cost found by the proposed algorithm
∆O Percentage of improvement between Cost and OPT (∆O = 100 ∗ (Cost− OPT )/OPT )
∆B Percentage of improvement between Cost and BKS (∆B = 100 ∗ (Cost −BKS)/BKS)
∆O/B To indicate that the value is ∆O if an optimal value if available, and ∆B otherwise
avg.∆O Average percentage of improvement between Cost and OPT (∆O = 100 ∗ (Cost −OPT )/OPT )
avg.∆B Average percentage of improvement between Cost and BKS (∆B = 100 ∗ (Cost− BKS)/BKS)
min.∆O Minimum percentage of improvement between Cost and OPT (∆O = 100 ∗ (Cost −OPT )/OPT )
max.∆B Maximum percentage of improvement between Cost and BKS (∆B = 100 ∗ (Cost −BKS)/BKS)
t(s) CPU time in second
avg.t(s) Average CPU time in seconds
nbOPT Number of optimal solutions obtained
nbE Number of solution values obtained equal to the best known
nbNBK Number of new best known solutions obtained
nbR Number of routes
nbMPO Number of times that MPO is called for a instance
nbMPOimp Number of times that MPO improves the new best solution during the search
avg.nbMPO Average number of times that the MPO is called for each group of instances
avg.nbMPOimp Average number of times that the MPO improves the current best solution for each group of instances
* Indicates the solution value is optimal
nbSplit Number of split customers (that are delivered by more than one vehicle)
nb2-split Number of split customers delivered by exactly two vehicles
nb3-split Number of split customers delivered by exactly three vehicles
nbNearDepot Number of split customers that are close to the depot
nbLargeDemand Number of split customers with a large demand
nbCluster Number of split customers located inside a cluster of customers

To set the values of σ1, σ2, σ3, preliminary experiments were carried out on instances with n = 80

customers for some combinations. The best results were obtained when σ1 = 0.7, σ2 = 0.1, σ3 = 0.2.

We set the reaction factor λ that appears in Equation (7) to 0.5 as proposed in Masson et al. (2013)

(instead of λ = 0.1 as in Ropke and Pisinger (2006)) to ensure higher reactivity when performing fewer

iterations. The determinism parameter pd in Shaw removal and worst removal heuristics is equal to 6

as in Ropke and Pisinger (2006).

The acceptance of a new current solution is based on a simulated annealing criterion. The initial

value of the temperature T is set so that a solution that is w% worse than the current solution is

accepted with probability paccept with w = 0.35 and paccept = 0.7. In addition, we set the cooling

factor γ to 0.999.

In order to destroy a solution, we need to determine the number ρ of customers (or customer-

commodities) to be removed. We follow the scheme proposed by François et al. (2016): small moves

are applied when a new solution has just been accepted, while large moves are applied when no

new solution has been accepted in the most recent iterations. The value of ρ evolves in the interval

[ρmin, ρmax]. For small instances (n = 15), we set ρmin = N/2, ρmax = N , while for the other

instances, we set ρmin = N/10 and ρmax = N/4. When the removal heuristic is customer-based,

then N represents the number of customers (N = n). When the removal heuristics are defined for

customer-commodities, N represents the number of customer-commodities (N = ncc).

To update the penalization rate for capacity violations, we consider the number of infeasible and

feasible solutions that are obtained consecutively. These values are respectively set to Iinf = 50 and
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Ifeas = 5 after performing preliminary experiments.

4.3 Efficiency assessment for the removal and insertion heuristics

In Sections 3.4 and 3.5, we propose several removal and insertion heuristics to be used inside the

ALNS framework. Before testing the proposed algorithm on the set of instances, we use a subset of

instances in order to determine the removal and insertion heuristics that are used inside the ALNS

framework. We also consider configurations with only one removal and one insertion heuristic, which

corresponds to designing a large neighborhood search (LNS). This permits to emphasize the efficiency

of individual insertion and removal heuristics, and also to point out the benefit of the adaptive approach

included in the design of the ALNS when choosing the removal and insertion heuristics.

This analysis is performed to tune the proposed algorithm. We only use the 20 instances with

n = 80 customers. A summary of these experiments is reported in Table 2. The first column shows

which configuration is considered (LNS or ALNS). The second column enumerates the configurations

that we tested. Columns 3 to 7 indicate which removal heuristics are used in a specific configuration.

Among them, ‘RandC’ and ‘RandCC’ represent the random removal heuristic considering customers

and customer-commodities, respectively. Columns 8 to 11 indicate which insertion heuristics are used.

In columns 12 to 14 we report the following average statistics for each configuration: the gap with the

best-known solutions, the computational time in seconds, the number of new best-known solutions

(see Table 1).

Table 2: LNS configurations compared to ALNS configurations.

Removal heuristics Insertion heuristics Results

conf. Shaw RandC RandCC Worst Route Greedy Regret-2 Regret-3 Rand avg.∆B avg.t(s) nbNBK

LNS 1 × × -0.77 521.18 20

2 × × -0.72 438.34 19
3 × × -0.54 276.76 17
4 × × -0.23 714.33 13
5 × × 0.01 333.60 10
6 × × -0.61 533.30 20
7 × × -0.78 541.81 19

8 × × -0.07 1106.18 11
9 × × -0.10 1146.84 13

ALNS 10 × × × × × × × × × -0.71 562.29 20

11 × × × × -0.72 513.49 19
12 × × × × -0.77 500.97 19
13 × × × × × -0.79 511.00 20

14 × × × × × -0.68 467.99 20
15 × × × × × -0.63 555.34 20
16 × × × × × × -0.66 530.26 19
17 × × × × × × -0.79 477.49 19

In the first five configurations, we study the influence of the removal heuristic. To this intent, the

insertion heuristic is kept fixed. Using the Shaw removal heuristic, the LNS is able to improve all the

best-known solutions.

Configurations 6 to 8 point out the impact of the insertion heuristic. We fixed the removal heuristic

to the Shaw removal since it provided the best results in the previous experiments. These tests show

that all insertion heuristics perform well except the random insertion. To further evaluate the behavior

of the random insertion heuristic we consider configuration 9 where we modify the removal heuristic.

It can be observed that the results do not improve. Among the LNS configurations, combining the

Shaw removal with the regret-3 insertion provides the best results.

In the second part of Table 2, we consider different configurations for the ALNS framework,

with several removal and insertion heuristics. Configuration 10 shows the performance of the ALNS

algorithm using all proposed heuristics. In other configurations, only a subset of them is invoked in

the ALNS. As we can see, using all the proposed removal and insertion heuristics does not provide
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the best results. The best configuration is configuration number 13: an ALNS with two removal

heuristics: Shaw and random removal of customers, and three insertion heuristics: greedy, regret-2

and regret-3. In the following sections, all reported computational experiments have been conducted

using this configuration.

4.4 Analysis with respect to the number of iterations

We examine the impact of the number of iterations for different instance sizes. Preliminary compu-

tational experiments showed that the algorithm converges after a certain number of iterations. Thus,

we aim to determine the number of iterations that would be a good compromise between the solution

quality and the computational time.

For small instances and medium instances with 20 customers (mid-20), we run our algorithm with

the number of iteration iter limited to 100, 1000, 3000 and 5000. We compare the results with those

reported in Archetti et al. (2014) and Archetti et al. (2015). In Table 3 and Table 4 we report average

statistics for different values of iter: the gap with respect to the optimal values, the computational

time in seconds, the number of optimal solutions obtained (see Table 1).

Results over the testbed are indicated in bold. Detailed results are provided in Appendix A.

According to Table 3, the proposed algorithm solves to optimality 57 out of 64 small instances when

100 iterations are allowed, within an average computational time of 2 seconds. When we increase the

number of iterations to 3000, the number of optimal solutions reaches 63 with an average computational

time of 12 seconds. The average gap with optimal solutions obtained by Archetti et al. (2015) varies

from 0.10% to 0.03%. Increasing the number of iterations to 5000 does not improve the quality of the

results.

When n = 20, results reported in Table 4 indicate that our method identifies an optimal solution in

5000 iterations for 18 out of the 19 instances for which Archetti et al. (2015) provided optimal values.

The average gap with the best-known values is less than 0.01%. Over the whole set, the average CPU

time is less than 1 minute.

Since large instances usually require more iterations to obtain high-quality results, we compare the

ALNS algorithm behavior with 5000 and 10000 iterations on mid-80 instances. In Table 5, we report

average results and the gap with respect to the best-known values. Detailed results are provided in

Appendix A. ALNS can provide best-known solutions for the 20 mid-80 instances in the benchmark.

Within 5000 iterations, the best-known solutions can be improved by about 0.79% on average and the

CPU times is less than 9 minutes. When 10000 iterations are executed, the solutions are averagely

0.92% better than the best-known values. On the other side, the average computational times are

almost doubled.

4.5 Computational experiments on the whole testbed

In this section, we consider the results obtained on the whole set of instances for the C-SDVRP

with the designed ALNS algorithm. As determined in the previous sections, the removal and insertion

heuristics are the ones of configuration 13, and the number of iterations is equal to 3000 (resp. 5000)

on small (resp. medium and large) instances. The algorithm is run once on each instance.

The comparison is made with the results reported in Archetti et al. (2014) and Archetti et al.

(2015). Archetti et al. (2015) propose a branch-and-price algorithm that can solve to optimality

instances with up to 40 customers but that can systematically close instances with up to 20 customers.

When the optimal value is not available we compare to the best known solution (BKS) given either

by Archetti et al. (2014) or Archetti et al. (2015).

For the 64 small instances, an optimal solution is known. Results reported in Table 3 indicate

that our algorithm finds an optimal solution for 63 out of 64 instances. The average optimality gap is

0.03%.
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Table 3: Impact of the number of iterations on small instances.

instances ALNS (100 iterations) ALNS (1000 iterations) ALNS (3000 iterations) ALNS (5000 iterations)

n M p avg.ncc nbIns avg.∆O avg.t(s) nbOPT avg.∆O avg.t(s) nbOPT avg.∆O avg.t(s) nbOPT avg.∆O avg.t(s) nbOPT

C101 15 2 0.6 22 8 0.00 0.93 8 0.00 2.82 8 0.00 7.24 8 0.00 11.65 8
C101 15 2 1 30 8 0.01 1.64 7 0.00 4.45 8 0.00 10.63 8 0.00 16.86 8
C101 15 3 0.6 28 8 0.00 1.13 8 0.00 3.92 8 0.00 10.40 8 0.00 17.12 8
C101 15 3 1 45 8 0.47 3.72 4 0.33 9.81 7 0.21 22.26 7 0.21 34.62 7
R101 15 2 0.6 22 8 0.00 1.07 8 0.00 2.89 8 0.00 7.02 8 0.00 11.05 8
R101 15 2 1 30 8 0.00 2.10 8 0.00 4.75 8 0.00 10.76 8 0.00 16.99 8
R101 15 3 0.6 28 8 0.00 1.26 8 0.00 3.88 8 0.00 9.65 8 0.00 15.59 8
R101 15 3 1 45 8 0.35 3.36 6 0.00 8.63 8 0.00 20.21 8 0.00 31.57 8

total 64 0.10 1.90 57 0.04 5.14 63 0.03 12.27 63 0.03 19.43 63
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Table 4: Impact of the number of iterations on mid-20 instances.

instances ALNS (100 iterations) ALNS (1000 iterations) ALNS (3000 iterations) ALNS (5000 iterations)

n M p avg.ncc nbIns avg.∆O/B avg.t(s) nbOPT avg.∆O/B avg.t(s) nbOPT avg.∆O/B avg.t(s) nbOPT avg.∆O/B avg.t(s) nbOPT

C101 20 3 0.6 37.4 5 0.26 2.41 3 0.10 8.11 4 0.10 20.66 4 0.00 33.38 5
C101 20 3 1 60 5 0.66 5.75 1 0.11 21.13 2 0.04 49.66 4 0.00 77.14 5
R101 20 3 0.6 37.4 5 0.01 3.87 4 0.00 9.60 5 0.00 22.09 5 0.00 34.87 5
R101 20 3 1 60 5 0.82 10.68 1 0.16 25.66 2 0.01 54.17 3 0.01 81.72 3

total 20 0.44 5.68 9 0.09 16.12 13 0.04 36.65 16 0.00 56.78 18
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Table 5: Impact of the number of iterations on mid-80 instances.

instances ALNS (5000 iterations) ALNS (10000 iterations)

n M p avg.ncc nbIns avg.∆B avg.t(s) nbNBK avg.∆B avg.t(s) nbNBK

C101 80 3 0.6 150.4 5 -0.77 373.36 5 -0.88 690.87 5
C101 80 3 1 240 5 -0.75 704.20 5 -0.83 1339.55 5
R101 80 3 0.6 150.4 5 -0.84 319.83 5 -1.06 605.74 5
R101 80 3 1 240 5 -0.81 646.61 5 -0.93 1196.69 5

total 20 -0.79 511.00 20 -0.92 958.21 20

For the mid-20 instances (n = 20), 19 out of 20 instances have a known optimal value. The

proposed algorithm can find 18 out of 19 optimal values. On average, the gap with respect to BKS

(either optimal or feasible) is lower than 0.01%.

For the mid-40 instances (n = 40), average results are reported in Table 6. Only 5 optimal values

are known. On average, the proposed ALNS finds solutions that are 0.26% better than the best-known

solutions (either optimal or feasible). Our algorithm finds 4 out of the 5 known optimal solution while

9 new best-known solutions have been identified. The algorithm runs in less than 2 minutes on average.

Table 6: Summary of results on mid-40 sized instances.

instances ALNS results

n M p avg.ncc nbIns avg.∆ min∆ max∆ avg.t(s) nbOPT nbE nbNBK

C101 40 3 0.6 76.2 5 -0.12 -0.42 0.15 78.14 2 - 2
C101 40 3 1 120 5 -0.76 -1.91 0.00 161.39 - - 4
R101 40 3 0.6 76.2 5 0.15 0.00 0.29 80.70 1 - -
R101 40 3 1 120 5 -0.32 -0.78 0.00 148.33 1 1 3

total 20 -0.26 -1.91 0.29 117.14 4 1 9

For instances with n ≥ 60, no optimal solution is available. For the mid-60 instances (n = 60) (see

Table 7), the ALNS finds solutions that are on average 0.49% better than the BKS. Among them,

15 new best-known values are obtained. The CPU times are less than 5 minutes on average.

Table 7: Summary of results on mid-60 sized instances.

instances ALNS results

n M p avg.ncc nbIns avg.∆B min∆B max∆B avg.t(s) nbE nbNBK

C101 60 3 0.6 110 5 -0.56 -1.40 0.00 193.12 1 4
C101 60 3 1 180 5 -0.38 -1.13 0.25 403.78 - 3
R101 60 3 0.6 110 5 -0.41 -0.83 0.00 177.20 1 3
R101 60 3 1 180 5 -0.61 -1.20 -0.14 353.24 - 5

total 20 -0.49 -1.40 0.25 281.83 2 15

As presented in Table 5 on mid-80 instances (n = 80), the ALNS identifies solutions that are 0.79%

better than the BKS, and new best-known values are found for all instances.

Table 8 reports the results on the 320 large instances (n = 100). The ALNS finds 300 new best-

known values with an average improvement of 0.70%. The computational time is around 10 minutes

which is very reasonable when considering the instance size.

4.6 Effectiveness of MPO operator in the ALNS algorithm

As described in Section 3.7 we developed a mathematical programming based operator (MPO)

to re-assign commodities for one customer to the routes of a solution. Due to the increase observed

in computational time consumption, we decided to use it only to improve a new global best solution

further. In this section, we analyze the results on medium and large instances to prove the effectiveness
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Table 8: Summary of results on large sized instances.

instances ALNS results

n M p avg.ncc nbIns avg.∆B min∆B max∆B avg.t(s) nbNBK

C101 100 2 0.6 136.4 40 -0.66 -1.69 0.24 330.02 38
C101 100 2 1 200 40 -0.77 -1.64 0.03 569.11 39
C101 100 3 0.6 188.4 40 -0.77 -2.04 0.73 557.46 39
C101 100 3 1 300 40 -1.17 -2.88 0.32 1106.23 37
R101 100 2 0.6 136.4 40 -0.53 -1.50 1.05 323.48 36
R101 100 2 1 200 40 -0.55 -1.28 0.29 557.74 36
R101 100 3 0.6 188.4 40 -0.53 -1.23 0.02 548.02 39
R101 100 3 1 300 40 -0.62 -1.72 0.25 1078.70 36

total 320 -0.70 -2.88 1.05 633.85 300

of MPO in our algorithm. In Table 9, we indicate the average number of times that MPO is called

for each group of instances as well as the average number of times that MPO improves the new best

solution for each group of instances. Detailed results are reported in Appendix A (Table 13 and

Table 14).

Table 9: Effectiveness of MPO in the ALNS algorithm.

instances results

n M p avg.ncc nbIns avg.nbMPO avg.nbMPOimp

C101 20 3 0.6 37.4 5 2.60 0.00
C101 20 3 1 60 5 7.00 0.20
R101 20 3 0.6 37.4 5 4.00 0.20
R101 20 3 1 60 5 9.80 0.20

C101 40 3 0.6 76.2 5 8.00 0.20
C101 40 3 1 120 5 16.40 2.00
R101 40 3 0.6 76.2 5 12.40 0.00
R101 40 3 1 120 5 18.60 1.80

C101 60 3 0.6 110 5 20.80 0.20
C101 60 3 1 180 5 30.80 1.60
R101 60 3 0.6 110 5 18.00 0.80
R101 60 3 1 180 5 24.60 1.60

C101 80 3 0.6 150.4 5 29.00 1.60
C101 80 3 1 240 5 32.00 6.40
R101 80 3 0.6 150.4 5 23.80 1.00
R101 80 3 1 240 5 29.60 2.40

C101 100 2 0.6 136.4 40 27.05 0.85
C101 100 2 1 200 40 29.65 2.00
C101 100 3 0.6 188.4 40 31.60 1.33
C101 100 3 1 300 40 37.28 3.33
R101 100 2 0.6 136.4 40 27.15 0.53
R101 100 2 1 200 40 30.15 2.10
R101 100 3 0.6 188.4 40 32.40 2.23
R101 100 3 1 300 40 34.48 3.58

For medium instances (namely for n = 20, 40, 60, 80), the impact of MPO on the quality of the

solution increases as the instance size increases. Especially, when p = 1, MPO has a greater impact

than when p = 0.6. The main reason is that, when p = 1, all customers require all the commodities

while a smaller number of commodities are required when p = 0.6. As a consequence, for the same

number of customers in the instance, the number of customer-commodities is larger. Therefore, when

p = 1, the difficulty of solving the problem increases as well as the possibilities to reassign commodities

with MPO. For large instances (n = 100), the same conclusions on the performance of MPO can be

drawn.
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4.7 Evaluation of the LS in the ALNS algorithm

In this section, we evaluate the importance of the local search in our ALNS algorithm. We run,

on mid-80 instances, the ALNS algorithm without LS and MPO with a limit of 400000 iterations. We

then compare the results obtained by the ALNS with LS and MPO on 5000 iterations. This choice

is made to have a comparison fair: we remove two optimization components, but we allow a large

number of iterations.

We compare the results obtained by the proposed algorithm, indicated by ALNS+LS+MPO, with

the same algorithm when LS and MPO are deactivated. This last version is indicated as ALNS-LS-

MPO. The performance comparison of both variants is reported in Table 10 for mid-80 and large

instances.

It is clear from Table 10 that after 400000 iterations the results obtained by the ALNS without

LS and MPO are of lower quality than those obtained by the original ALNS. We only obtain 15 new

best-known values for the 20 mid-80 instances. Moreover, the average improvement (0.39%) does

not compete with the improvement obtained with the proposed algorithm (ALNS+LS+MPO) while

the computational times are similar. The same observations can be made from the results for large

instances. We then conclude on the importance of the LS and MPO in the proposed ALNS algorithm.

4.8 Trend between instance size and computational time

Last, we examine how the CPU time required by the ALNS varies according to the instance size.

We consider the results obtained with 5000 iterations (even for the small instances) to perform the

analysis. We sort the 464 (small, medium and large) instances according to the number of customer-

commodities instead of the number of customers. The variation of the computational time avg.t(s)

according to the number of customer-commodities avg.ncc is depicted on Figure 9.
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Figure 9: The avg.t(s) of the ALNS with respect to avg.ncc

When the size of the instances increases, the average computational time significantly increases

(not in a linear fashion). This behavior is not surprising since when the size of the instances increases, it

takes more time to operate the LS operators, which computational complexity is O(n2
cc). Nevertheless,

the average computational time of our ALNS algorithm for the large instances (ncc = 300) remains

reasonable with less than 19 minutes.

4.9 Characteristics of split customers

As mentioned above, considering customer-commodity makes the problem more complex with

equivalent solutions since several commodities are related to the same customer and then have the same
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Table 10: Comparison between two ALNS variants on mid-80 and large instances.

instances ALNS+LS+MPO (5000 iterations) ALNS-LS-MPO (400000 iterations)

n M p avg.ncc nbIns avg.∆B min∆B max∆B avg.t(s) nbNBK avg.∆B min∆B max∆B avg.t(s) nbNBK

C101 80 3 0.6 150.4 5 -0.77 -1.48 -0.01 373.36 5 -0.70 -1.50 0.11 330.77 4
C101 80 3 1 240 5 -0.75 -1.36 -0.24 704.20 5 -0.49 -1.08 0.02 686.68 4
R101 80 3 0.6 150.4 5 -0.84 -1.24 -0.05 319.83 5 -0.49 -1.03 0.57 348.14 4
R101 80 3 1 240 5 -0.81 -1.39 -0.50 646.61 5 0.11 -0.83 1.71 712.20 3

total 20 -0.79 -1.48 -0.01 511.00 20 -0.39 -1.50 1.71 519.45 15

C101 100 2 0.6 136.4 40 -0.66 -1.69 0.24 330.02 38 -0.23 -1.52 1.21 360.30 28
C101 100 2 1 200 40 -0.77 -1.64 0.03 569.11 39 -0.30 -1.58 1.30 606.03 26
C101 100 3 0.6 188.4 40 -0.77 -2.04 0.73 557.46 39 -0.28 -1.66 1.66 576.18 25
C101 100 3 1 300 40 -1.17 -2.88 0.32 1106.23 37 -0.57 -2.47 1.20 1256.61 26
R101 100 2 0.6 136.4 40 -0.53 -1.50 1.05 323.48 36 0.00 -0.75 1.12 366.70 20
R101 100 2 1 200 40 -0.55 -1.28 0.29 557.74 36 -0.08 -1.24 1.83 614.35 25
R101 100 3 0.6 188.4 40 -0.53 -1.23 0.02 548.02 39 0.21 -0.94 1.61 576.27 16
R101 100 3 1 300 40 -0.62 -1.72 0.25 1078.70 36 0.10 -1.78 2.67 1211.77 21

total 320 -0.70 -2.88 1.05 633.85 300 -0.14 -2.47 2.67 696.03 187
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location. Identifying the customers who are good candidates for being split into customer-commodities

can be beneficial for decision-makers. In this section, we propose to study the characteristics of

customers who are delivered by more than one vehicle. We name these customers split customers. We

provide detailed results on the 20 mid-80 instances with 5000 iterations for the ALNS algorithm.

Table 11 reports these detailed results for several characteristics about the split customers in

the best solution obtained on each instance. The first three columns report the characteristics of

the instance, and the fourth column indicates the identification number of the instance. Column

nbSplit reports the number of split customers (out of 80), and columns nb2-split and nb3-split indicate

the number of customers delivered by respectively 2 and 3 vehicles. Columns nbNearDepot and

nbLargeDemand report the number of split customers located near the depot and the number of split

customers with a large demand respectively. As Nagy et al. (2015), we consider that a customer is

located near the depot if he or she is one of the 25% of customers closest to the depot; and we consider

that a customer has a large demand if he or she is one of the 25% of customers with the largest

demand. Note that the demand of a customer is the sum of the demands for the commodities they

need. Column nbCluster reports the number of split customers located inside a cluster of customers.

As Nagy et al. (2015), we consider a customer to be in a cluster if at least five other customers are

inside its neighborhood. Two customers are neighbors if the distance between these two customers is

less than 30% of the average distance between the depot and all the customers in the instance. Using

this definition, in clustered instances (C101) more than 70% of customers are in a cluster, while in

random instance (R101) less than 30% of customers are in a cluster.

Table 11: Characteristics of split customers in the best solutions of mid-80 instances
(5000 iterations).

instances

n p id nbSplit nb2-split nb3-split nbNearDepot nbLargeDemand nbCluster

C101 80 0.6 1 7 7 0 2 3 7
2 5 5 0 3 1 5
3 7 7 0 4 2 5
4 9 8 1 3 5 7
5 10 10 0 1 7 6

1 1 20 19 1 5 5 18
2 14 14 0 4 4 14
3 18 18 0 6 4 13
4 14 14 0 4 4 14
5 18 18 0 6 2 16

R101 80 0.6 1 6 6 0 4 6 4
2 5 5 0 3 2 2
3 7 7 0 2 3 4
4 5 5 0 3 1 3
5 6 6 0 6 3 3

1 1 13 13 0 3 3 7
2 14 13 1 7 1 4
3 13 13 0 4 2 6
4 14 14 0 4 4 6
5 17 17 0 6 5 7

From the results in Table 11, it is clear that there are more split customers when customers require

more commodities. p denotes the probability that a customer requires a commodity. When p = 0.6,

the average number of split customers is 6.7, while when p = 1, there are 15.5 split customers on

average. Moreover, very few split customers are delivered by three vehicles, i.e., one vehicle for each

of the required commodities. In the 20 instances, there are only three split customers in this case. In

addition, one important feature of split customers is to be inside a cluster. Indeed, for C101 instances,

86% of split customers are inside a cluster. For R101 instances, 46% of split customers are inside a

cluster, while less than 30% of customers are in a cluster in these instances. Proximity to the depot is

also an important feature for split customers since 36% of split customers are near the depot. It is less

24



obvious to link large demands to split customers since 30% of split customers have a large demand.

5 Conclusions

In this paper, we presented a dedicated heuristic algorithm for the C-SDVRP. The proposed algo-

rithm is based on an adaptive large neighborhood search framework introduced by Ropke and Pisinger

(2006). This is the first heuristic specifically designed with the aim to provide high-quality solutions

for the medium and large size instances. According to the main feature of the C-SDVRP, i.e. the

requirement of different commodities, we adapt some classical local search moves to consider either

with a customer (i.e., a customer and all its commodities) or a customer-commodity (namely, a single

commodity required by a customer). We developed a mathematical programming based operator to

intensify the search and further improve the best solutions. The results show that our ALNS algorithm

is very effective in finding high-quality solutions on large size instances. In particular, our method

outperforms the algorithms proposed in Archetti et al. (2014) and in Archetti et al. (2015).

The proposed ALNS algorithm could then be adapted to tackle other variants of routing problems

with split deliveries. One of these variants is the case with multiple depots and available quantities

at each depot. In this case, because of the limited quantities available for each commodity at each

depot, it is worth considering splitting deliveries to find feasible solutions. Another interesting variant

of the problem is the VRP with divisible deliveries and pickup (Gribkovskaia et al. (2007), Nagy et al.

(2015)): in this case, delivery and pickup naturally represent two different commodities, but a pickup

operation increases the use of the vehicle capacity, and it could then be optimal to visit twice the

same customer in one route.
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A Detailed results on the benchmark instances

Table 12, Table 13 and Table 14 report the detailed results for the small, medium and large

instances respectively. We report values in bold whenever we improve (or optimize or equal to) the

respective instances.
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Table 12: Detailed computational results for the small sized instances (n = 15).

instances ALNS results

M p ncc CC1 CC2 CC3 ∆ α OPT Cost ∆O t(s) nbR

C101 2 0.6 22 10 12 [1,100] 1.1 283.3404 283.3404 0.00 6.01 6
0.6 22 10 12 [40,60] 1.1 480.4342 480.4342 0.00 5.07 11
1 30 15 15 [1,100] 1.1 422.4965 422.4965 0.00 10.64 9
1 30 15 15 [40,60] 1.1 685.1662 685.1662 0.00 5.19 15
0.6 22 10 12 [1,100] 1.5 241.0386 241.0386 0.00 8.67 5
0.6 22 10 12 [40,60] 1.5 348.2731 348.2731 0.00 5.63 7
1 30 15 15 [1,100] 1.5 340.5474 340.5474 0.00 14.70 7
1 30 15 15 [40,60] 1.5 490.2973 490.2973 0.00 8.27 10
0.6 22 10 12 [1,100] 2 200.9092 200.9092 0.00 8.66 4
0.6 22 10 12 [40,60] 2 239.6829 239.6829 0.00 5.80 5
1 30 15 15 [1,100] 2 239.9424 239.9424 0.00 13.57 5
1 30 15 15 [40,60] 2 357.5929 357.5929 0.00 9.14 7
0.6 22 10 12 [1,100] 2.5 170.0453 170.0453 0.00 10.31 3
0.6 22 10 12 [40,60] 2.5 207.8259 207.8259 0.00 7.74 4
1 30 15 15 [1,100] 2.5 205.7830 205.7830 0.00 12.29 4
1 30 15 15 [40,60] 2.5 302.1813 302.1813 0.00 11.26 6

R101 2 0.6 22 10 12 [1,100] 1.1 408.8971 408.8971 0.00 7.43 7
0.6 22 10 12 [40,60] 1.1 565.3383 565.3383 0.00 4.12 11
1 30 15 15 [1,100] 1.1 537.2029 537.2029 0.00 9.75 9
1 30 15 15 [40,60] 1.1 679.0232 679.0232 0.00 5.26 15
0.6 22 10 12 [1,100] 1.5 353.0119 353.0119 0.00 6.77 5
0.6 22 10 12 [40,60] 1.5 455.9724 455.9724 0.00 6.88 8
1 30 15 15 [1,100] 1.5 443.0829 443.0829 0.00 12.31 7
1 30 15 15 [40,60] 1.5 558.9565 558.9565 0.00 8.03 10
0.6 22 10 12 [1,100] 2 301.4316 301.4316 0.00 8.50 4
0.6 22 10 12 [40,60] 2 379.2848 379.2848 0.00 7.69 6
1 30 15 15 [1,100] 2 370.5561 370.5561 0.00 14.73 5
1 30 15 15 [40,60] 2 444.1868 444.1868 0.00 9.27 8
0.6 22 10 12 [1,100] 2.5 280.7646 280.7646 0.00 7.50 3
0.6 22 10 12 [40,60] 2.5 342.6854 342.6854 0.00 7.27 5
1 30 15 15 [1,100] 2.5 323.5761 323.5761 0.00 13.68 4
1 30 15 15 [40,60] 2.5 401.6087 401.6087 0.00 13.03 6

C101 3 0.6 28 12 7 9 [1,100] 1.1 333.4709 333.4709 0.00 11.29 7
0.6 28 12 7 9 [40,60] 1.1 440.2241 440.2241 0.00 11.11 9
1 45 15 15 15 [1,100] 1.1 428.5164 435.7543 1.69 25.05 8
1 45 15 15 15 [40,60] 1.1 638.0919 638.0919 0.00 20.69 13
0.6 28 12 7 9 [1,100] 1.5 262.8069 262.8069 0.00 10.47 5
0.6 28 12 7 9 [40,60] 1.5 306.6363 306.6363 0.00 9.86 6
1 45 15 15 15 [1,100] 1.5 315.9600 315.96 0.00 25.38 6
1 45 15 15 15 [40,60] 1.5 457.9430 457.943 0.00 16.15 9
0.6 28 12 7 9 [1,100] 2 204.9380 204.938 0.00 10.83 4
0.6 28 12 7 9 [40,60] 2 263.2896 263.2896 0.00 9.34 5
1 45 15 15 15 [1,100] 2 265.0623 265.0623 0.00 23.37 5
1 45 15 15 15 [40,60] 2 347.3580 347.358 0.00 22.65 7
0.6 28 12 7 9 [1,100] 2.5 168.2958 168.2958 0.00 10.09 3
0.6 28 12 7 9 [40,60] 2.5 202.9044 202.9044 0.00 10.25 4
1 45 15 15 15 [1,100] 2.5 206.6970 206.697 0.00 20.36 4
1 45 15 15 15 [40,60] 2.5 310.7978 310.7978 0.00 24.45 6

R101 3 0.6 28 12 7 9 [1,100] 1.1 401.7502 401.7502 0.00 10.06 7
0.6 28 12 7 9 [40,60] 1.1 497.1385 497.1385 0.00 8.78 10
1 45 15 15 15 [1,100] 1.1 491.0411 491.0411 0.00 22.81 9
1 45 15 15 15 [40,60] 1.1 679.0232 679.0232 0.00 17.69 15
0.6 28 12 7 9 [1,100] 1.5 347.3693 347.3693 0.00 9.94 5
0.6 28 12 7 9 [40,60] 1.5 410.813 410.813 0.00 8.19 7
1 45 15 15 15 [1,100] 1.5 409.2905 409.2905 0.00 22.31 6
1 45 15 15 15 [40,60] 1.5 541.0336 541.0336 0.00 15.16 9
0.6 28 12 7 9 [1,100] 2 303.1439 303.1439 0.00 10.47 4
0.6 28 12 7 9 [40,60] 2 343.7159 343.7159 0.00 11.04 5
1 45 15 15 15 [1,100] 2 345.8351 345.8351 0.00 22.07 5
1 45 15 15 15 [40,60] 2 444.1868 444.1868 0.00 17.91 8
0.6 28 12 7 9 [1,100] 2.5 278.2234 278.2234 0.00 8.02 3
0.6 28 12 7 9 [40,60] 2.5 312.3100 312.31 0.00 10.69 4
1 45 15 15 15 [1,100] 2.5 320.3490 320.349 0.00 23.38 4
1 45 15 15 15 [40,60] 2.5 393.8357 393.8357 0.00 20.34 6
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Table 13: Detailed computational results for the mid sized instances (n ∈ {20; 40; 60; 80}).

instances ALNS results

n p ncc CC1 CC2 CC3 id OPT/BKS Cost ∆O/B t(s) nbMPO nbMPOimp nbR

C101 20 0.6 37 15 11 11 1 573.8617* 573.8617 0.00 31.67 2 0 6
39 13 10 16 2 592.0651* 592.0651 0.00 29.17 0 0 7
38 13 13 12 3 595.5289* 595.5289 0.00 36.29 4 0 7
40 9 14 17 4 617.8838* 617.8838 0.00 40.64 3 0 8
33 9 10 14 5 628.2804* 628.2804 0.00 29.14 4 0 8

1 60 20 20 20 1 750.6251* 750.6251 0.00 82.73 7 0 9
60 20 20 20 2 714.6453* 714.6453 0.00 78.86 9 1 9
60 20 20 20 3 626.1553* 626.1553 0.00 67.16 6 0 9
60 20 20 20 4 747.7008* 747.7008 0.00 84.32 9 0 10
60 20 20 20 5 768.5189* 768.5189 0.00 72.62 4 0 10

R101 20 0.6 37 15 11 11 1 457.8598* 457.8598 0.00 38.69 7 0 6
39 13 10 16 2 667.0131* 667.0131 0.00 38.14 2 0 7
38 13 13 12 3 455.0534* 455.0534 0.00 34.87 3 1 7
40 9 14 17 4 589.9082* 589.9082 0.00 37.92 6 0 8
33 9 10 14 5 663.2159* 663.2159 0.00 24.73 2 0 8

1 60 20 20 20 1 599.8380* 599.8380 0.00 70.50 7 0 9
60 20 20 20 2 863.8829* 864.1552 0.03 94.33 15 0 9
60 20 20 20 3 617.9120 617.9662 0.01 78.97 10 0 9
60 20 20 20 4 712.0175* 712.0175 0.00 83.18 7 1 10
60 20 20 20 5 794.4068* 794.4068 0.00 81.62 10 0 10

C101 40 0.6 72 19 24 29 1 844.5669 841.0159 -0.42 70.98 4 0 9
77 29 23 25 2 1005.8069 1002.4435 -0.33 80.82 17 0 12
78 24 26 28 3 879.2568* 879.2568 0.00 83.96 8 0 11
81 28 28 25 4 921.0554 922.4288 0.15 74.44 5 0 12
73 25 19 29 5 868.7426* 868.7426 0.00 80.50 6 1 11

1 120 40 40 40 1 1330.0617 1304.7180 -1.91 155.89 16 2 18
120 40 40 40 2 1357.7864 1357.7890 0.00 163.58 18 3 19
120 40 40 40 3 1309.3540 1299.4327 -0.76 149.76 12 0 16
120 40 40 40 4 1238.8599 1238.3923 -0.04 158.73 17 1 17
120 40 40 40 5 1287.4121 1273.2181 -1.10 178.96 19 4 16

R101 40 0.6 72 19 24 29 1 761.7828 764.0135 0.29 94.07 17 0 9
77 29 23 25 2 896.0147 896.8111 0.09 57.28 8 0 12
78 24 26 28 3 851.0276* 851.0276 0.00 98.89 20 0 11
81 28 28 25 4 973.9919 976.5911 0.27 78.62 6 0 12
73 25 19 29 5 854.3462* 855.1124 0.09 74.66 11 0 11

1 120 40 40 40 1 1246.4958 1242.8772 -0.29 157.76 21 2 18
120 40 40 40 2 1244.9154 1238.4378 -0.52 148.03 19 2 19
120 40 40 40 3 1056.1320* 1056.1320 0.00 131.46 15 2 16
120 40 40 40 4 1255.4495 1245.6884 -0.78 160.65 24 1 17
120 40 40 40 5 1101.1214 1101.1214 0.00 143.75 14 2 16
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Table 13 (continued).

instances ALNS results

n p ncc CC1 CC2 CC3 id OPT/BKS Cost ∆O/B t(s) nbMPO nbMPOimp nbR

C101 60 0.6 107 34 36 37 1 1241.1029 1228.7010 -1.00 182.54 20 0 15
112 40 33 39 2 1331.7718 1331.7718 0.00 204.25 33 1 17
110 39 34 37 3 1184.7776 1180.6147 -0.35 189.09 14 0 14
113 41 34 38 4 1303.1604 1284.9398 -1.40 195.14 19 0 16
108 32 30 46 5 1303.7277 1303.3246 -0.03 194.56 18 0 16

1 180 60 60 60 1 2003.0431 1996.6060 -0.32 332.53 26 0 27
180 60 60 60 2 1667.6461 1671.8163 0.25 402.08 19 0 24
180 60 60 60 3 1816.1236 1795.5325 -1.13 445.02 43 3 23
180 60 60 60 4 1906.5617 1909.0054 0.13 361.95 22 2 26
180 60 60 60 5 1650.5799 1637.1273 -0.82 477.33 44 3 22

R101 60 0.6 107 34 36 37 1 1293.2293 1286.0364 -0.56 181.69 19 1 15
112 40 33 39 2 1326.5733 1317.7203 -0.67 136.28 13 1 17
110 39 34 37 3 1028.5158 1028.5158 0.00 180.90 18 1 14
113 41 34 38 4 1235.5766 1225.3226 -0.83 218.23 29 1 17
108 32 30 46 5 1149.5550 1149.5673 0.00 168.89 11 0 16

1 180 60 60 60 1 2086.6870 2068.5355 -0.87 346.07 24 3 27
180 60 60 60 2 1662.5753 1660.3220 -0.14 328.54 33 0 23
180 60 60 60 3 1581.5715 1562.5867 -1.20 400.14 31 1 23
180 60 60 60 4 1732.8742 1723.4548 -0.54 328.65 17 1 26
180 60 60 60 5 1507.7615 1503.2634 -0.30 362.81 18 3 22

C101 80 0.6 142 44 51 47 1 1648.0955 1647.8619 -0.01 329.97 22 2 20
157 50 55 52 2 1616.9601 1603.4580 -0.84 355.95 24 1 21
148 50 47 51 3 1750.6889 1742.9882 -0.44 366.80 27 2 22
158 47 51 60 4 1468.4500 1446.7739 -1.48 413.62 33 2 19
147 45 42 60 5 1702.9460 1684.7620 -1.07 400.47 39 1 21

1 240 80 80 80 1 2277.9557 2255.8933 -0.97 668.31 23 6 30
240 80 80 80 2 2133.9879 2118.7056 -0.72 684.15 31 4 29
240 80 80 80 3 2623.9684 2588.2988 -1.36 720.92 35 5 35
240 80 80 80 4 2389.1831 2377.7662 -0.48 758.18 31 10 32
240 80 80 80 5 2410.9786 2405.0859 -0.24 689.43 40 7 33

R101 80 0.6 142 44 51 47 1 1467.6251 1449.3824 -1.24 319.10 26 1 20
157 50 55 52 2 1482.3639 1481.5891 -0.05 349.74 28 0 21
148 50 47 51 3 1618.6780 1606.2737 -0.77 278.83 21 1 22
158 47 51 60 4 1432.0982 1416.8707 -1.06 331.53 22 1 19
147 45 42 60 5 1482.7288 1466.4647 -1.10 319.93 22 2 20

1 240 80 80 80 1 2137.3158 2107.6678 -1.39 697.74 29 6 31
240 80 80 80 2 1955.9811 1938.9429 -0.87 710.27 40 2 29
240 80 80 80 3 2302.7431 2291.3231 -0.50 618.40 30 0 35
240 80 80 80 4 2123.9847 2113.1821 -0.51 685.71 30 3 32
240 80 80 80 5 2155.4925 2138.8196 -0.77 520.92 19 1 33
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Table 14: Detailed computational results for the large sized instances (n = 100).

instances ALNS results

M p ncc CC1 CC2 CC3 ∆ α BKS Cost ∆B t(s) nbMPO nbMPOimp nbR

C101 2 0.6 134 56 78 [1,100] 1.1 2035.3013 2016.5051 -0.92 260.68 18 0 30
140 60 80 2180.0203 2170.9690 -0.42 270.33 22 1 35
135 62 73 2082.1981 2076.9958 -0.25 236.59 21 1 32
140 68 72 2148.4188 2133.8412 -0.68 268.38 29 0 32
133 55 78 2041.9553 2016.1057 -1.27 270.64 31 2 31

C101 2 0.6 134 56 78 [1,100] 1.5 1573.6610 1571.8390 -0.12 325.56 22 9 23
140 60 80 1713.4453 1690.1594 -1.36 322.81 34 2 25
135 62 73 1594.5043 1579.4423 -0.94 326.38 42 3 23
140 68 72 1620.3658 1593.0295 -1.69 295.26 26 1 23
133 55 78 1544.2592 1542.7069 -0.10 327.96 32 0 23

C101 2 0.6 134 56 78 [1,100] 2 1484.4280 1484.8897 0.03 443.90 35 0 17
140 60 80 1601.5050 1594.3828 -0.44 390.17 25 3 19
135 62 73 1571.8295 1551.0808 -1.32 358.75 25 1 17
140 68 72 1539.4321 1532.8325 -0.43 409.17 32 1 18
133 55 78 1545.9487 1537.2621 -0.56 345.92 25 1 17

C101 2 0.6 134 56 78 [1,100] 2.5 1293.4366 1290.4392 -0.23 509.62 34 3 14
140 60 80 1386.2707 1378.6220 -0.55 407.99 25 1 15
135 62 73 1323.7604 1318.8051 -0.37 429.45 20 0 14
140 68 72 1337.2558 1319.5941 -1.32 475.72 36 0 14
133 55 78 1316.6055 1307.1230 -0.72 408.30 26 3 14

C101 2 0.6 134 56 78 [40,60] 1.1 3717.5992 3686.3063 -0.84 212.18 18 1 60
140 60 80 3943.6197 3923.7703 -0.50 211.63 13 0 65
135 62 73 3755.8823 3720.0138 -0.95 247.43 17 0 60
140 68 72 3840.6868 3815.5816 -0.65 271.71 37 0 63
133 55 78 3673.3203 3645.8466 -0.75 230.77 34 0 60

C101 2 0.6 134 56 78 [40,60] 1.5 2685.9916 2670.5453 -0.58 259.21 22 0 42
140 60 80 2824.0916 2780.6093 -1.54 269.90 31 0 44
135 62 73 2633.8403 2606.9999 -1.02 278.21 35 0 41
140 68 72 2738.3272 2703.7315 -1.26 306.65 35 0 43
133 55 78 2628.9645 2606.6952 -0.85 249.35 23 0 42

C101 2 0.6 134 56 78 [40,60] 2 2371.4171 2364.7218 -0.28 331.61 32 0 30
140 60 80 2509.9521 2489.1959 -0.83 358.79 26 0 32
135 62 73 2408.7012 2401.3033 -0.31 343.90 24 0 30
140 68 72 2443.4540 2437.5545 -0.24 353.23 30 0 31
133 55 78 2464.7661 2440.5193 -0.98 339.58 30 0 31

C101 2 0.6 134 56 78 [40,60] 2.5 1968.1149 1963.9711 -0.21 368.04 12 0 24
140 60 80 2031.8053 2027.4671 -0.21 367.94 22 0 25
135 62 73 1954.6604 1950.7756 -0.20 406.74 31 0 23
140 68 72 2002.5383 1987.3101 -0.76 343.06 30 1 24
133 55 78 1973.9611 1978.6316 0.24 367.40 20 0 24

29



Table 14 (continued).

instances ALNS results

M p ncc CC1 CC2 CC3 ∆ α BKS Cost ∆B t(s) nbMPO nbMPOimp nbR

C101 2 1 200 100 100 [1,100] 1.1 3146.6597 3096.0220 -1.61 493.02 34 3 48
200 100 100 3081.7941 3047.0941 -1.13 459.72 24 2 50
200 100 100 3376.5593 3341.0044 -1.05 530.95 39 6 53
200 100 100 3336.4515 3293.8945 -1.28 508.36 35 8 52
200 100 100 3063.1397 3025.7796 -1.22 459.09 28 1 49

C101 2 1 200 100 100 [1,100] 1.5 2356.8893 2334.4763 -0.95 526.05 30 2 35
200 100 100 2326.5291 2301.5070 -1.08 566.56 41 2 36
200 100 100 2526.2982 2518.5285 -0.31 554.75 34 6 39
200 100 100 2500.0207 2479.4547 -0.82 534.61 34 0 38
200 100 100 2303.9564 2297.1414 -0.30 527.30 25 3 36

C101 2 1 200 100 100 [1,100] 2 2129.0342 2124.8932 -0.19 603.94 25 2 27
200 100 100 2169.8922 2170.6119 0.03 629.32 35 4 27
200 100 100 2256.4305 2245.4843 -0.49 617.32 31 2 29
200 100 100 2269.9257 2262.6622 -0.32 554.71 19 1 29
200 100 100 2160.1093 2156.8393 -0.15 523.47 19 0 27

C101 2 1 200 100 100 [1,100] 2.5 1760.6323 1753.7203 -0.39 693.48 36 3 21
200 100 100 1836.8031 1811.6854 -1.37 756.15 33 6 22
200 100 100 1882.7674 1871.8435 -0.58 637.95 29 4 23
200 100 100 1910.0314 1895.2543 -0.77 716.49 32 3 23
200 100 100 1810.3104 1808.1843 -0.12 738.02 48 5 21

C101 2 1 200 100 100 [40,60] 1.1 5603.0836 5536.0546 -1.20 433.77 19 0 93
200 100 100 5547.3519 5504.4821 -0.77 454.40 26 1 95
200 100 100 5749.2419 5679.6959 -1.21 424.29 17 0 96
200 100 100 5711.3460 5645.4455 -1.15 463.91 18 0 95
200 100 100 5535.6135 5479.9888 -1.00 469.36 23 0 92

C101 2 1 200 100 100 [40,60] 1.5 3913.4546 3849.0963 -1.64 507.87 29 1 62
200 100 100 3909.5761 3867.0017 -1.09 482.07 28 2 63
200 100 100 3976.2127 3959.2347 -0.43 502.91 27 1 64
200 100 100 3942.3417 3898.8312 -1.10 583.69 47 0 63
200 100 100 3867.9698 3839.8436 -0.73 598.34 44 1 62

C101 2 1 200 100 100 [40,60] 2 3343.1458 3328.8877 -0.43 613.39 30 0 45
200 100 100 3446.6946 3391.5541 -1.60 609.40 27 2 45
200 100 100 3402.9488 3402.1518 -0.02 593.52 25 1 47
200 100 100 3459.2005 3446.1003 -0.38 604.41 29 1 47
200 100 100 3400.1668 3384.4928 -0.46 628.07 30 1 45

C101 2 1 200 100 100 [40,60] 2.5 2734.4477 2717.2918 -0.63 680.71 33 2 35
200 100 100 2788.0824 2776.1339 -0.43 596.97 22 0 36
200 100 100 2780.4184 2761.2009 -0.69 616.17 23 3 36
200 100 100 2815.0422 2786.8485 -1.00 589.10 25 1 36
200 100 100 2767.8571 2751.4713 -0.59 680.74 33 0 35
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Table 14 (continued).

instances ALNS results

M p ncc CC1 CC2 CC3 ∆ α BKS Cost ∆B t(s) nbMPO nbMPOimp nbR

C101 3 0.6 179 65 50 64 [1,100] 1.1 2233.2625 2199.3967 -1.52 447.71 38 2 34
194 67 63 64 2406.5116 2357.4534 -2.04 509.65 32 3 36
186 62 58 66 2499.3959 2487.8220 -0.46 505.21 45 1 37
193 69 57 67 2266.5132 2283.0043 0.73 448.84 27 0 36
190 61 56 73 2529.7072 2509.7369 -0.79 471.85 39 4 37

C101 3 0.6 179 65 50 64 [1,100] 1.5 1724.7339 1698.9351 -1.50 449.14 32 7 25
194 67 63 64 1812.1988 1807.9754 -0.23 579.95 28 3 27
186 62 58 66 1908.2163 1893.4346 -0.77 521.23 38 2 27
193 69 57 67 1763.0602 1745.0116 -1.02 568.39 47 1 26
190 61 56 73 1938.0044 1930.7389 -0.37 576.69 26 4 28

C101 3 0.6 179 65 50 64 [1,100] 2 1651.6968 1626.3891 -1.53 633.94 38 1 19
194 67 63 64 1654.5853 1652.1369 -0.15 677.73 30 2 20
186 62 58 66 1712.4417 1684.7036 -1.62 648.54 40 2 20
193 69 57 67 1702.0681 1677.4419 -1.45 584.07 22 0 20
190 61 56 73 1719.8367 1714.1925 -0.33 600.65 25 1 21

C101 3 0.6 179 65 50 64 [1,100] 2.5 1413.2271 1411.6091 -0.11 681.11 34 0 15
194 67 63 64 1442.7602 1424.9209 -1.24 810.87 45 0 16
186 62 58 66 1452.9146 1428.4270 -1.69 712.86 42 2 16
193 69 57 67 1458.4966 1442.4131 -1.10 780.48 36 0 16
190 61 56 73 1446.4444 1444.4045 -0.14 756.13 31 1 17

C101 3 0.6 179 65 50 64 [40,60] 1.1 3318.3873 3257.0030 -1.85 401.09 32 0 53
194 67 63 64 3509.4788 3489.2080 -0.58 435.08 26 1 56
186 62 58 66 3603.3698 3582.1768 -0.59 399.24 25 0 55
193 69 57 67 3518.1872 3484.3878 -0.96 446.43 32 0 56
190 61 56 73 3649.5231 3615.4109 -0.93 496.11 48 0 57

C101 3 0.6 179 65 50 64 [40,60] 1.5 2424.2712 2407.4264 -0.69 419.67 21 0 37
194 67 63 64 2525.9423 2523.9967 -0.08 558.51 28 0 40
186 62 58 66 2610.6052 2600.9273 -0.37 452.04 26 2 39
193 69 57 67 2535.7810 2525.7262 -0.40 468.16 32 0 39
190 61 56 73 2673.1778 2640.8231 -1.21 479.02 25 0 40

C101 3 0.6 179 65 50 64 [40,60] 2 2270.3526 2265.3978 -0.22 482.40 25 1 28
194 67 63 64 2346.2918 2326.5017 -0.84 643.35 26 1 30
186 62 58 66 2316.4770 2313.2239 -0.14 540.93 21 0 29
193 69 57 67 2367.4327 2352.4767 -0.63 574.32 27 4 30
190 61 56 73 2339.7488 2321.6905 -0.77 560.01 38 3 30

C101 3 0.6 179 65 50 64 [40,60] 2.5 1875.4922 1857.8147 -0.94 501.48 23 1 22
194 67 63 64 1971.8409 1948.0161 -1.21 643.45 28 2 24
186 62 58 66 1927.4449 1917.8823 -0.50 606.26 40 1 23
193 69 57 67 1974.0424 1972.7209 -0.07 618.31 30 0 24
190 61 56 73 1929.9052 1918.9720 -0.57 607.40 16 1 24
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Table 14 (continued).

instances ALNS results

M p ncc CC1 CC2 CC3 ∆ α BKS Cost ∆B t(s) nbMPO nbMPOimp nbR

C101 3 1 300 100 100 100 [1,100] 1.1 3458.3101 3378.7279 -2.30 952.16 50 5 53
300 100 100 100 3314.9537 3245.1446 -2.11 914.82 43 6 51
300 100 100 100 3294.7994 3265.0504 -0.90 865.51 33 8 52
300 100 100 100 3430.0465 3370.6534 -1.73 825.87 34 0 55
300 100 100 100 3214.8478 3162.0426 -1.64 900.59 39 7 51

C101 3 1 300 100 100 100 [1,100] 1.5 2610.2355 2561.2706 -1.88 972.71 30 6 39
300 100 100 100 2514.8470 2459.3592 -2.21 1024.42 35 3 38
300 100 100 100 2532.1347 2476.9681 -2.18 1083.84 38 6 38
300 100 100 100 2641.7530 2565.6834 -2.88 923.07 37 2 40
300 100 100 100 2455.7585 2404.8723 -2.07 968.00 28 5 37

C101 3 1 300 100 100 100 [1,100] 2 2300.4077 2280.2733 -0.88 1211.44 42 5 29
300 100 100 100 2192.9203 2193.6158 0.03 1153.59 43 3 28
300 100 100 100 2260.6841 2253.2807 -0.33 1142.33 28 3 28
300 100 100 100 2410.0967 2390.4263 -0.82 1099.96 28 5 30
300 100 100 100 2247.5337 2231.8800 -0.70 1240.23 26 4 28

C101 3 1 300 100 100 100 [1,100] 2.5 1929.7279 1914.9262 -0.77 1348.23 17 4 23
300 100 100 100 1871.0897 1856.8834 -0.76 1606.09 20 0 23
300 100 100 100 1867.4470 1873.4338 0.32 1519.55 26 3 23
300 100 100 100 2013.6222 1985.1207 -1.42 1396.51 41 0 24
300 100 100 100 1910.9060 1875.5780 -1.85 1625.37 56 8 22

C101 3 1 300 100 100 100 [40,60] 1.1 5239.6555 5196.4247 -0.83 906.42 34 1 86
300 100 100 100 5143.4560 5059.3108 -1.64 1016.59 51 4 84
300 100 100 100 5200.9560 5103.2213 -1.88 1054.92 36 3 83
300 100 100 100 5291.7632 5243.8349 -0.91 987.19 50 1 89
300 100 100 100 5174.4761 5114.0431 -1.17 978.28 41 0 85

C101 3 1 300 100 100 100 [40,60] 1.5 3789.0183 3755.7431 -0.88 829.41 32 1 60
300 100 100 100 3789.1122 3733.9771 -1.46 944.05 48 3 60
300 100 100 100 3752.1660 3732.6484 -0.52 971.90 53 2 60
300 100 100 100 3839.3184 3770.5935 -1.79 897.98 35 6 61
300 100 100 100 3825.3398 3740.0157 -2.23 1020.43 52 4 60

C101 3 1 300 100 100 100 [40,60] 2 3343.5307 3331.3655 -0.36 1145.10 38 1 45
300 100 100 100 3322.9033 3307.6401 -0.46 1081.25 25 1 44
300 100 100 100 3318.3125 3297.9859 -0.61 1044.56 27 2 44
300 100 100 100 3424.6490 3382.5992 -1.23 1254.62 39 0 45
300 100 100 100 3379.4211 3330.9490 -1.43 1240.97 50 4 45

C101 3 1 300 100 100 100 [40,60] 2.5 2807.4471 2785.0606 -0.80 1190.80 39 3 36
300 100 100 100 2746.6361 2735.8088 -0.39 1259.03 43 4 35
300 100 100 100 2754.3082 2760.9908 0.24 1255.07 24 7 35
300 100 100 100 2803.2445 2789.5742 -0.49 1251.01 56 3 36
300 100 100 100 2767.2392 2746.4348 -0.75 1145.49 24 0 36
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Table 14 (continued).

instances ALNS results

M p ncc CC1 CC2 CC3 ∆ α BKS Cost ∆B t(s) nbMPO nbMPOimp nbR

R101 2 0.6 134 56 78 [1,100] 1.1 1916.2385 1887.4950 -1.50 279.09 27 1 31
140 60 80 2153.6485 2152.5710 -0.05 300.47 31 1 35
135 62 73 1927.2419 1920.3454 -0.36 265.37 21 0 33
140 68 72 1971.0569 1956.0302 -0.76 302.81 31 3 32
133 55 78 1833.7028 1828.4456 -0.29 306.71 25 0 32

R101 2 0.6 134 56 78 [1,100] 1.5 1496.8719 1482.2547 -0.98 319.35 29 0 22
140 60 80 1685.8891 1670.7013 -0.90 307.37 39 1 25
135 62 73 1530.9401 1517.8384 -0.86 296.24 34 0 23
140 68 72 1549.2746 1541.2523 -0.52 307.34 17 0 24
133 55 78 1476.0508 1464.6001 -0.78 312.00 23 0 23

R101 2 0.6 134 56 78 [1,100] 2 1226.8612 1213.6448 -1.08 355.57 37 0 17
140 60 80 1363.4234 1351.5177 -0.87 378.88 35 0 19
135 62 73 1254.4877 1249.8766 -0.37 370.13 31 0 18
140 68 72 1268.1761 1260.8517 -0.58 418.11 33 2 17
133 55 78 1203.2001 1200.0221 -0.26 325.71 31 2 17

R101 2 0.6 134 56 78 [1,100] 2.5 1067.2709 1059.0853 -0.77 385.07 28 2 13
140 60 80 1178.0644 1169.7717 -0.70 453.09 43 0 15
135 62 73 1087.0068 1084.9342 -0.19 414.91 33 0 14
140 68 72 1102.6288 1104.8424 0.20 409.88 28 4 14
133 55 78 1050.7626 1061.7723 1.05 430.69 30 0 14

R101 2 0.6 134 56 78 [40,60] 1.1 3358.5111 3333.0578 -0.76 263.31 25 0 60
140 60 80 3575.0576 3553.3423 -0.61 250.22 19 0 65
135 62 73 3344.4207 3327.4991 -0.51 223.60 20 0 61
140 68 72 3406.2463 3386.6904 -0.57 275.68 25 0 63
133 55 78 3269.4765 3244.8496 -0.75 236.62 30 0 60

R101 2 0.6 134 56 78 [40,60] 1.5 2438.2268 2420.4671 -0.73 261.82 22 0 41
140 60 80 2610.9667 2598.2538 -0.49 293.50 24 0 44
135 62 73 2427.5931 2414.9036 -0.52 274.40 29 0 41
140 68 72 2503.2952 2481.8594 -0.86 274.12 17 1 43
133 55 78 2440.5711 2414.1367 -1.08 313.44 36 0 42

R101 2 0.6 134 56 78 [40,60] 2 1895.5429 1895.7308 0.01 326.88 26 0 30
140 60 80 1995.3201 1992.3865 -0.15 330.00 22 0 32
135 62 73 1896.6321 1881.4183 -0.80 326.29 22 0 30
140 68 72 1915.4443 1906.1707 -0.48 353.72 34 0 31
133 55 78 1852.4127 1861.0882 0.47 324.98 20 0 31

R101 2 0.6 134 56 78 [40,60] 2.5 1587.2595 1577.0403 -0.64 344.39 31 0 24
140 60 80 1668.3025 1659.9154 -0.50 330.66 21 1 25
135 62 73 1578.8911 1570.4920 -0.53 343.04 21 0 24
140 68 72 1608.9971 1591.3215 -1.10 348.60 24 2 24
133 55 78 1561.0713 1558.7095 -0.15 305.21 12 1 24
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Table 14 (continued).

instances ALNS results

M p ncc CC1 CC2 CC3 ∆ α BKS Cost ∆B t(s) nbMPO nbMPOimp nbR

R101 2 1 200 100 100 [1,100] 1.1 2771.6431 2756.7887 -0.54 531.18 38 6 49
200 100 100 2834.4928 2827.3512 -0.25 426.29 19 2 49
200 100 100 3016.8985 2985.2441 -1.05 507.52 35 3 53
200 100 100 3048.9983 3031.0145 -0.59 533.16 35 3 53
200 100 100 2800.6961 2784.0475 -0.59 496.69 29 4 49

R101 2 1 200 100 100 [1,100] 1.5 2128.3373 2122.9233 -0.25 530.35 29 2 35
200 100 100 2194.4059 2183.9167 -0.48 578.51 42 3 36
200 100 100 2299.5101 2295.0886 -0.19 501.07 25 3 39
200 100 100 2307.0220 2297.4593 -0.41 582.93 39 3 38
200 100 100 2149.6086 2137.8987 -0.54 507.42 24 1 36

R101 2 1 200 100 100 [1,100] 2 1715.9710 1698.3738 -1.03 551.73 25 1 27
200 100 100 1730.2647 1722.1094 -0.47 589.96 33 3 27
200 100 100 1813.5162 1816.3983 0.16 547.78 31 4 29
200 100 100 1827.3575 1832.7354 0.29 582.61 32 7 29
200 100 100 1717.4555 1704.9316 -0.73 512.40 16 1 27

R101 2 1 200 100 100 [1,100] 2.5 1461.4911 1452.8434 -0.59 682.70 32 2 21
200 100 100 1466.1825 1460.9983 -0.35 705.62 43 9 22
200 100 100 1533.0524 1534.9745 0.13 633.60 33 4 23
200 100 100 1545.9473 1541.2999 -0.30 702.58 34 4 23
200 100 100 1431.3942 1432.8548 0.10 631.85 38 0 21

R101 2 1 200 100 100 [40,60] 1.1 4878.3554 4815.8420 -1.28 477.78 28 1 93
200 100 100 4885.1949 4854.3103 -0.63 533.46 46 0 95
200 100 100 4954.1386 4928.0506 -0.53 396.24 18 0 97
200 100 100 4906.3430 4886.1829 -0.41 357.43 15 0 95
200 100 100 4812.6715 4778.5328 -0.71 390.36 16 0 93

R101 2 1 200 100 100 [40,60] 1.5 3515.9354 3489.7450 -0.74 602.15 39 3 62
200 100 100 3584.7753 3544.2844 -1.13 554.11 32 0 64
200 100 100 3592.7577 3551.5178 -1.15 609.51 45 0 64
200 100 100 3583.5791 3546.3662 -1.04 512.74 25 3 63
200 100 100 3495.4743 3472.3544 -0.66 586.66 41 3 62

R101 2 1 200 100 100 [40,60] 2 2640.2882 2622.6570 -0.67 636.79 37 2 45
200 100 100 2669.1453 2657.6846 -0.43 485.80 15 1 46
200 100 100 2690.6244 2665.3118 -0.94 578.84 29 1 46
200 100 100 2704.5457 2695.0898 -0.35 620.18 28 0 47
200 100 100 2655.6363 2641.4628 -0.53 550.42 24 1 46

R101 2 1 200 100 100 [40,60] 2.5 2153.4354 2141.4426 -0.56 644.84 25 0 35
200 100 100 2213.9592 2189.4736 -1.11 571.24 23 0 36
200 100 100 2222.5353 2202.7464 -0.89 675.78 38 1 36
200 100 100 2204.7443 2203.0546 -0.08 650.99 34 3 36
200 100 100 2159.9779 2149.3260 -0.49 538.39 16 0 35
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Table 14 (continued).

instances ALNS results

M p ncc CC1 CC2 CC3 ∆ α BKS Cost ∆B t(s) nbMPO nbMPOimp nbR

R101 3 0.6 179 65 50 64 [1,100] 1.1 2091.9773 2082.4706 -0.45 448.50 37 2 34
194 67 63 64 2248.9343 2221.3245 -1.23 534.88 43 2 36
186 62 58 66 2137.6592 2134.4081 -0.15 447.11 27 2 37
193 69 57 67 2131.7891 2131.5677 -0.01 458.80 24 1 36
190 61 56 73 2205.0653 2183.8628 -0.96 478.30 31 0 38

R101 3 0.6 179 65 50 64 [1,100] 1.5 1638.1808 1628.8003 -0.57 507.92 39 8 25
194 67 63 64 1735.8727 1726.5884 -0.53 564.75 38 5 26
186 62 58 66 1688.8930 1678.2108 -0.63 563.18 48 7 27
193 69 57 67 1695.4234 1683.4501 -0.71 502.74 27 3 26
190 61 56 73 1708.9017 1698.7518 -0.59 508.70 24 0 27

R101 3 0.6 179 65 50 64 [1,100] 2 1344.1715 1333.3018 -0.81 579.85 38 4 19
194 67 63 64 1417.4800 1409.0886 -0.59 638.09 33 4 20
186 62 58 66 1382.2839 1366.0804 -1.17 554.83 24 2 20
193 69 57 67 1385.4181 1380.4631 -0.36 628.49 23 3 20
190 61 56 73 1377.7779 1372.9908 -0.35 612.43 32 3 21

R101 3 0.6 179 65 50 64 [1,100] 2.5 1146.9121 1144.9686 -0.17 703.87 39 4 15
194 67 63 64 1214.4350 1211.4598 -0.24 739.74 37 7 16
186 62 58 66 1188.0089 1183.2168 -0.40 707.54 47 2 16
193 69 57 67 1190.1513 1188.4567 -0.14 750.52 30 0 16
190 61 56 73 1203.4458 1199.0058 -0.37 676.18 27 1 17

R101 3 0.6 179 65 50 64 [40,60] 1.1 3048.1305 3027.5465 -0.68 455.96 37 2 54
194 67 63 64 3278.5334 3244.0645 -1.05 444.34 25 2 57
186 62 58 66 3035.4818 3030.9153 -0.15 451.00 25 0 55
193 69 57 67 3126.1265 3115.1466 -0.35 432.35 24 1 56
190 61 56 73 3144.6563 3112.9713 -1.01 469.27 37 1 57

R101 3 0.6 179 65 50 64 [40,60] 1.5 2234.7360 2224.7829 -0.45 447.71 29 2 37
194 67 63 64 2376.7317 2368.8940 -0.33 531.41 31 1 39
186 62 58 66 2255.2386 2254.6679 -0.03 528.31 38 3 39
193 69 57 67 2315.3242 2313.7430 -0.07 459.05 18 1 39
190 61 56 73 2371.8751 2356.9995 -0.63 463.99 19 0 40

R101 3 0.6 179 65 50 64 [40,60] 2 1806.0300 1787.6283 -1.02 468.94 27 1 28
194 67 63 64 1915.8784 1898.5402 -0.90 573.18 25 1 30
186 62 58 66 1780.7996 1776.2130 -0.26 560.20 34 0 29
193 69 57 67 1844.3127 1832.6458 -0.63 615.95 33 2 30
190 61 56 73 1857.0664 1850.7579 -0.34 539.93 42 1 30

R101 3 0.6 179 65 50 64 [40,60] 2.5 1507.1235 1489.3193 -1.18 475.82 37 2 22
194 67 63 64 1603.4522 1587.9639 -0.97 639.35 39 0 24
186 62 58 66 1505.6898 1505.9298 0.02 489.36 26 3 23
193 69 57 67 1559.1172 1555.8633 -0.21 651.61 35 2 24
190 61 56 73 1563.5929 1554.1869 -0.60 616.64 47 4 24
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Table 14 (continued).

instances ALNS results

M p ncc CC1 CC2 CC3 ∆ α BKS Cost ∆B t(s) nbMPO nbMPOimp nbR

R101 3 1 300 100 100 100 [1,100] 1.1 3071.7439 3041.7396 -0.98 893.51 45 4 53
300 100 100 100 2946.0070 2934.6564 -0.39 837.63 29 6 52
300 100 100 100 2985.6872 2964.3072 -0.72 934.43 41 7 52
300 100 100 100 3105.7428 3079.8490 -0.83 813.04 31 5 55
300 100 100 100 2852.7976 2858.3302 0.19 944.08 32 4 51

R101 3 1 300 100 100 100 [1,100] 1.5 2345.1176 2325.9298 -0.82 930.92 31 7 39
300 100 100 100 2265.2202 2250.6250 -0.64 945.72 35 4 38
300 100 100 100 2296.8218 2300.1563 0.15 1068.96 37 5 38
300 100 100 100 2371.0709 2365.1241 -0.25 1020.65 37 3 40
300 100 100 100 2190.7829 2185.2957 -0.25 956.33 20 5 37

R101 3 1 300 100 100 100 [1,100] 2 1859.7774 1847.8667 -0.64 1070.10 31 3 29
300 100 100 100 1816.4798 1800.5916 -0.87 1023.86 34 1 28
300 100 100 100 1825.7908 1813.6036 -0.67 1117.82 40 5 28
300 100 100 100 1876.5282 1871.2735 -0.28 1052.49 26 3 30
300 100 100 100 1765.6787 1763.3915 -0.13 1277.70 27 7 28

R101 3 1 300 100 100 100 [1,100] 2.5 1578.8174 1561.1608 -1.12 1208.35 36 4 23
300 100 100 100 1539.1188 1522.9296 -1.05 1498.51 37 8 23
300 100 100 100 1550.6387 1527.6379 -1.48 1474.97 33 3 23
300 100 100 100 1597.1673 1584.9913 -0.76 1285.72 28 1 24
300 100 100 100 1510.7153 1494.2903 -1.09 1395.11 27 6 22

R101 3 1 300 100 100 100 [40,60] 1.1 4607.7839 4605.8439 -0.04 887.44 25 1 87
300 100 100 100 4540.1249 4510.2998 -0.66 820.83 23 1 85
300 100 100 100 4560.4271 4509.0150 -1.13 848.02 25 0 85
300 100 100 100 4678.0437 4643.9582 -0.73 821.14 23 1 89
300 100 100 100 4541.4038 4518.3114 -0.51 900.92 29 1 85

R101 3 1 300 100 100 100 [40,60] 1.5 3411.5788 3379.7642 -0.93 1001.82 47 2 60
300 100 100 100 3373.6096 3362.6067 -0.33 1095.28 56 3 60
300 100 100 100 3409.7802 3385.7239 -0.71 1056.57 54 3 60
300 100 100 100 3432.4292 3408.6962 -0.69 1021.90 43 5 61
300 100 100 100 3433.4163 3374.5175 -1.72 1022.52 49 3 60

R101 3 1 300 100 100 100 [40,60] 2 2639.2852 2626.6402 -0.48 1149.13 35 3 45
300 100 100 100 2609.9934 2604.937 -0.19 1033.69 20 1 44
300 100 100 100 2600.4690 2582.7011 -0.68 1123.78 40 4 44
300 100 100 100 2656.4737 2636.4516 -0.75 1344.94 41 4 46
300 100 100 100 2620.8533 2627.2844 0.25 1138.19 25 2 45

R101 3 1 300 100 100 100 [40,60] 2.5 2195.1808 2196.4906 0.06 1226.16 41 2 36
300 100 100 100 2186.6508 2170.1547 -0.75 1264.51 34 6 35
300 100 100 100 2192.0684 2179.0868 -0.59 1255.90 46 5 35
300 100 100 100 2241.4465 2220.6163 -0.93 1227.96 32 0 36
300 100 100 100 2179.4536 2167.7968 -0.53 1157.51 34 5 35
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Masson, R., Lehuédé, F., and Péton, O. (2013). An adaptive large neighborhood search for the pickup

and delivery problem with transfers. Transportation Science, 47(3):344–355.

Nagy, G., Wassan, N. A., Speranza, M. G., and Archetti, C. (2015). The Vehicle Routing Problem

with Divisible Deliveries and Pickups. Transportation Science, 49(2):271–294.

Pisinger, D. and Ropke, S. (2010). Large neighborhood search. In Handbook of metaheuristics, pages

399–419. Springer.

Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle routing problem.

Computers & Operations Research, 31(12):1985–2002.

Prins, C. (2009). A GRASP × evolutionary local search hybrid for the vehicle routing problem.

Bio-inspired algorithms for the vehicle routing problem, pages 35–53.

Ropke, S. and Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the pickup

and delivery problem with time windows. Transportation science, 40(4):455–472.

Shaw, P. (1997). A new local search algorithm providing high quality solutions to vehicle routing

problems. APES Group, Dept of Computer Science, University of Strathclyde, Glasgow, Scotland,

UK.

37



Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle routing

problems. In International Conference on Principles and Practice of Constraint Programming,

pages 417–431. Springer.

Solomon, M. (1987). Algorithms for the vehicle routing and scheduling problems with time window

constraints. Operations Research, 35(2):254–265.

Sze, J. F., Salhi, S., and Wassan, N. (2016). A hybridisation of adaptive variable neighbourhood search

and large neighbourhood search: Application to the vehicle routing problem. Expert Systems with

Applications, 65:383–397.

Sze, J. F., Salhi, S., and Wassan, N. (2017). The cumulative capacitated vehicle routing problem with

min-sum and min-max objectives: An effective hybridisation of adaptive variable neighbourhood

search and large neighbourhood search. Transportation Research Part B: Methodological, 101:162–

184.

Toth, P. and Vigo, D. (2014). Vehicle Routing: Problems, Methods, and Applications. MOS-SIAM

Series on Optimization. Philadelphia: SIAM. 2nd ed.

38


	Introduction
	Problem definition
	Adaptive large neighborhood search
	General framework
	Initial solution
	Local search
	Removal heuristics
	Insertion heuristics
	Acceptance and stopping criterion
	Mathematical programming based operator to reassign commodities
	Adaptive weight adjustment
	Infeasibility penalization scheme

	Computational experiments
	Instances
	ALNS parameters
	Efficiency assessment for the removal and insertion heuristics
	Analysis with respect to the number of iterations
	Computational experiments on the whole testbed
	Effectiveness of MPO operator in the ALNS algorithm
	Evaluation of the LS in the ALNS algorithm
	Trend between instance size and computational time
	Characteristics of split customers

	Conclusions
	Appendix
	Detailed results on the benchmark instances
	References

