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ABSTRACT
We use mock galaxy data from the VIMOS Public Extragalactic Redshift Survey (VIPERS)
to test the performance of the Multi-Tracer Optimal Estimator (MTOE) of Abramo et al.
as a tool to measure the monopoles of the power spectra of multiple tracers of the large-
scale structure, P (0)

α (k). We show that MTOE provides more accurate measurements than the
standard technique of Feldman, Kaiser & Peacock (FKP), independently of the tracer-selection
strategy adopted, on both small and large scales. The largest improvements on individual
P (0)

α (k) are obtained on small scales, using a colour–magnitude selection, due to MTOE being
naturally better equipped to deal with shot noise: we report an average error reduction with
respect to FKP of ∼ 30 per cent at 0.3 < k [h Mpc−1] < 0.5, with improvements exceeding
40–50 per cent for some tracers. On large scales (k[h Mpc−1] � 0.1), the gain in accuracy
resulting from cosmic-variance cancellation is ∼10 per cent for the ratios of P (0)

α (k). We have
carried out a Markov chain Monte Carlo analysis to determine the impact of these gains
on several quantities derived from P (0)

α (k). If we pushthat the estimated power spectra are
themselves the measurement to scales 0.3 < k [h Mpc−1] < 0.5, the average improvements
are ∼ 30 per cent for the amplitudes of the monopoles, ∼ 75 per cent for the monopole ratios,
and ∼ 20 per cent for the linear galaxy biases. Our results highlight the potential of MTOE
to shed light upon the physics that operate both on large and small cosmological scales. The
effect of MTOE on cosmological constraints using VIPERS data will be addressed in a separate
paper.

Key words: methods: data analysis – surveys – galaxies: haloes – cosmological parameters –
large-scale structure of Universe – cosmology: observations.

1 IN T RO D U C T I O N

Upcoming dark-energy surveys such as Euclid,1 the Dark Energy
Spectroscopic Instrument (DESI2), the Dark Energy Survey (DES3),
the Javalambre Physics of the Accelerated Universe Astrophysical
Survey (J-PAS4), the Prime Focus Spectroscopy survey (PFS5), the
Large Synoptic Spectroscopic Telescope (LSST6), or SPHEREx7

will collect data from tens to hundreds of millions of galaxies

� E-mail: amonterodorta@gmail.com
1https://www.euclid-ec.org
2https://www.desi.lbl.gov
3https://www.darkenergysurvey.org
4http://www.j-pas.org
5https://pfs.ipmu.jp
6https://www.lsst.org
7http://spherex.caltech.edu

and quasars over enormous cosmological volumes. These data sets
will map the large-scale structure of the Universe (LSS) over vast
distances and time-scales, allowing highly accurate measurements
of the accelerated expansion, the growth rate of structure, and many
other cosmological parameters. In addition to their statistical power,
some of these upcoming dark-energy surveys such as J-PAS are also
advantageous, as compared to previous experiments, in that they
employ wider galaxy selections that are not based on a few specific
LSS tracers – such as the luminous red galaxies and quasars selected
for the Baryon Acoustic Oscillation Spectroscopic Survey (BOSS;
Eisenstein et al. 2011; Dawson et al. 2013). Other data sets will
partially overlap in some cosmological volumes (e.g. J-PAS, DESI,
and Euclid).

This upcoming wealth of cosmological-survey data naturally
poses the question of how clustering information from different
galaxy populations or data sets can be combined in an optimal
way. Importantly, different LSS maps are not independent, since
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different species of galaxies trace the same underlying dark matter
density field, albeit in slightly different ways (Benoist et al. 1996;
Guzzo et al. 1997). This imposes a constraint between different
tracers that can be exploited in order to realize the full potential
of overlapping data sets. However, the inclusion of this additional
information brings with it the correlations that exist between the
distributions of those different tracers, which arise primarily as a
consequence of cosmic variance – i.e. the fact that local patterns
of matter overdensities and underdensities propagate to the number
counts of all tracers.

Despite this limitation, the strict bounds imposed by cosmic vari-
ance do not apply to many key cosmological quantities (McDonald
2008; Seljak 2009). By comparing the clustering of different tracers
we can beat cosmic variance, i.e. we can measure some quantities
with an accuracy that is basically unconstrained by cosmic variance.
One of the quantities of interest is bias, which broadly describes
the relation between the spatial distribution of galaxies (or haloes)
and that of the underlying matter density field. The cancellation
of cosmic variance can serve not only to measure bias, but also
to improve our constraints on the matter growth rate, reflected in
the redshift-space distortions (RSDs; see Kaiser 1987; Hamilton
1998), as well as the non-gaussianity parameters fNL and gNL,
and in general any parameters that affect the relative clustering
of different tracers (see e.g. Slosar 2009; Gil-Marı́n et al. 2010;
Hamaus, Seljak & Desjacques 2011; Smith, Desjacques & Marian
2011; Cai & Bernstein 2012; Hamaus, Seljak & Desjacques 2012;
Abramo & Leonard 2013; Blake et al. 2013; Ferramacho et al.
2014; Bull et al. 2015; Fonseca et al. 2015; Abramo & Bertacca
2017; Alarcon, Eriksen & Gaztañaga 2018; Witzemann et al. 2019,
for more information)

In this paper, we apply the Multi-Tracer Optimal Estimator
(hereafter, MTOE) to mock data that mimic the VIMOS Public Ex-
tragalactic Redshift Survey (Guzzo et al. 2014) in the redshift range
0.55 < z < 1.1. The MTOE for the redshift-space power spectra of
an arbitrary number of LSS tracers was derived in Abramo, Secco &
Loureiro (2016). The technique, which is a generalization of the
standard weighting scheme of Feldman, Kaiser & Peacock (1994;
henceforth FKP), is based on the Fisher matrix for multiple tracers
(Abramo 2012; Abramo & Leonard 2013), which encapsulates the
information contained in multi-tracer cosmological surveys.

The goal of this paper is to evaluate the performance of MTOE
as compared to the traditional FKP approach in the context of
the measurement of galaxy power spectra and galaxy biases. Note
that FKP does not necessarily imply a single-tracer approach: we
will compare MTOE with FKP in a multi-tracer fashion, i.e. in
both cases splitting our sample in multiple galaxy populations. The
latter approach was employed by Blake et al. (2013), who analysed
multiple tracers in the Galaxy And Mass Assembly (GAMA) survey.
The authors employed FKP weighting in a multi-tracer context,
reporting improvements of 10–20 per cent in measurements of the
gravitational growth rate compared to a single-tracer analysis. The
added value of MTOE is that it employs a multi-tracer weighting
scheme, which is optimal for measuring the power spectra of the
individual tracers. It is important to stress that, in the context of our
analysis, ‘optimal’ always refers to this ‘optimal weighting scheme’
for the determination of the density field of each tracer. Although,
we will discuss different strategies for tracer selection, it is outside
the scope of this work to provide an optimal tracer selection scheme,
which largely depends on the galaxy information available.

The first multi-tracer weighting scheme was proposed by Perci-
val, Verde & Peacock (2004). The PVP method provides optimal
weights for a minimum-variance estimator of the combined matter

power spectrum Pm(k) in situations where several different biased
tracers are considered – see also Cai, Bernstein & Sheth (2011) and
Granett et al. (2015). As compared to PVP, the advantage of MTOE
resides in the fact that it is optimal both in terms of the estimation of
the matter power spectrum, as well as the redshift-space auto-power
spectra of each individual tracer. In fact, as shown in Abramo et al.
(2016), when the individual power spectra of the tracers estimated
with the MTOE method are combined to obtain the matter power
spectrum, the result is identical to that obtained using the PVP
method.

We have successfully applied MTOE to the determination of
the power spectra and the ratios of biases for different subsets
of haloes in the context of the study of halo assembly bias (or
more generally, secondary bias). In Sato-Polito et al. (2019), we
show that MTOE provides a significant improvement in the signal-
to-noise of the secondary-bias measurement. In Sato-Polito et al.
(2019), each subset of haloes is regarded as a different tracer, and
a total of 32 tracers per simulation box are considered. Applying
the method to a real galaxy data set is, however, beset by two
difficulties which can potentially reduce the ‘gain signal’. First, the
natural stochasticity in the way galaxies populate haloes – i.e. how
a particular subset of galaxies might typically occupy certain types
of haloes, but only in a statistical sense. Secondly, the observational
limitations associated with real data, such as incompleteness or a
tracer-dependent selection function.

VIPERS is an excellent data set to test the performance of MTOE,
due to a combination of large volume, broad galaxy selection, and
high completeness (see e.g. Granett et al. 2015; de la Torre et al.
2017; Pezzotta et al. 2017; Rota et al. 2017; Mohammad et al.
2018 for other cosmological analyses using VIPERS). In order to
partially circumvent the second obstacle mentioned above, i.e. the
fact that unaccounted observational effects can reduce the potential
gain provided by MTOE, in this first paper we concentrate on mock
galaxy data. This allows us to build the machinery and to identify
the particular cases where MTOE is more advantageous than the
standard FKP analysis.

The paper is organized as follows. In Section 2, we summarize
the MTOE and FKP techniques by describing their weighting
schemes and the treatment of the window functions. Section 3
describes the VIPERS mock data, and Section 4 presents our tracer
selection schemes. Section 5 provides practical information on the
implementation of the MTOE method. In Section 6, we present
the main results of this analysis: the improvements provided by
MTOE as compared to FKP on the estimation of the power spectra
of multiple tracers and derived quantities such as galaxy biases.
Finally, we discuss the implications of our results and summarize
our main conclusions in Section 7. Throughout this work, we assume
the standard lambda cold dark matter (�CDM) cosmology (Planck
Collaboration I 2014), with parameters h = 0.677, �m = 0.307,
�� = 0.693, ns = 0.96, and σ 8 = 0.823.

2 O PTI MAL ESTI MATORS O F THE POWER
SPECTRUM

2.1 The optimal weights

Galaxy surveys are not only limited to finite regions of space, both
in the angular and radial direction, but also they typically have
modulations in the mean number densities of galaxies across the
survey volume. These variations in the mean density of galaxies
(the selection functions, n̄μ) can be due to an intrinsic redshift-
dependent abundance of these objects, but they can also arise as
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a consequence of the depth of the survey, or because of varying
observing conditions across different patches of the sky.

Given that selection functions are in general inhomogeneous,
some regions of the survey are expected to carry more weight
than others: typically, regions with higher densities of galaxies
have better clustering signal compared with regions of low number
densities. Since this is ultimately a matter of signal versus noise,
not only the weights applied to each region in the survey volume
must know about the mean density of galaxies in that region, but
also about the signal that we are trying to measure – i.e. the strength
of the clustering of the tracers.

The problem of optimizing the signal with respect to noise
appeared with the first galaxy surveys (Davis & Huchra 1982;
Hamilton 1993), but it was first solved in a formal sense by
Feldman, Kaiser & Peacock (Feldman et al. 1994). Under the
assumption that the galaxy population constitutes a single-biased
tracer of the underlying density field, FKP showed that there is
a unique weighting scheme that leads to an optimal (minimum-
variance) estimator of the power spectrum. In order to construct
this estimator, one starts by weighting the density contrast of galaxy
counts, δg(x) = ng(x)/n̄g(x) − 1:

fFKP(x) = wFKP(x)δg(x) . (1)

The FKP weights are given by

wFKP(x) = n̄g(x) bg

1 + n̄g(x) Pg(kc)
, (2)

where bg is the fiducial value of the galaxy bias and Pg(kc) =
b2

g Pm(kc) is the fiducial value of the galaxy power spectrum at
some characteristic scale kc, with Pm(k) being the matter power
spectrum. The weighted field is then used to construct the power
spectrum estimator:

P̂ FKP(k) = N〈f̃FKPf̃
∗
FKP〉k − P shot

g , (3)

where N is a normalization, 〈. . .〉k = 1/Ṽk
∫

Ṽk
d3k/(2π)3(. . .) is an

average over the bandpower (bin) k, and P shot
g ∼ 1/n̄ is the bias of

the estimator (i.e. shot noise). It can be shown (Feldman et al. 1994;
Tegmark et al. 1998) that, under some reasonable assumptions, the
covariance of the estimator in equation (3) is equal to the inverse of
the Fisher matrix of the power spectrum. This means that the FKP
power spectrum estimator saturates the Cramér-Rao bound and is
therefore the best possible estimator for that observable.

However, if there are two or more distinct biased tracers occu-
pying the same survey volume, the signal and the noise for all
possible auto- and cross-correlations should now be taken into
account, leading to a generalization of the FKP weights. If the goal
is to compute the matter power spectrum Pm(k), the generalized
weights that lead to a minimum-variance estimator of Pm(k) were
first found by Percival et al. (2004) – see also Cai et al. (2011) for
a minimum-variance estimator of the mass density field. However,
if the goal is to compute the redshift-space power spectra of all the
individual tracers (which can then be combined to find the matter
power spectrum), then the optimal weights are those derived in
Abramo et al. (2016). In what follows, we employ both this latter
method, which we call the MTOE, and the standard method (FKP).

Below, we summarize the main results and the method presented
in Abramo et al. (2016). The MTOE weighted fields are given by

fμ(x) =
∑

ν

wμν(x) δν(x) (4)

where δμ = nμ/n̄μ − 1 are the density contrasts of the tracers. The
multi-tracer weights are expressed in terms of a fiducial model as

wμν(x) =
[
δμν − n̄μ(x) Pμ(kc)

1 + P(x, kc)

]
n̄ν(x)bν , (5)

where δμν is the Kronecker delta, and we defined P(x, kc) =∑
μ n̄μ(x) Pμ(kc). In this section, whenever we write Pμ(k) or just

bμ, it is understood that these are the fiducial power spectra and
biases (in real or redshift space), whereas the estimated (measured)
power spectra are indicated by P̂μ. The weights of equation (5) are
a generalization of the FKP weights for the case of multiple tracers
of the LSS: in fact, it is easy to see that the multi-tracer weights
reduces to equation (2) in the case of a single tracer.

With the weighted fields of equation (4), we can construct optimal
estimators for the individual power spectra in a way similar to
equation (3):

P̂ MTOE
μ (k) =

∑
ν

Nμν

〈
f̃ν f̃

∗ + c.c.
〉

k − P shot
μ , (6)

where we defined f = ∑
μfμ. The ‘normalizations’ are given by

Nμν = Ṽk

4 b2
ν

Fμν , (7)

where Fμν is the Fisher matrix for the power spectra, which can be
expressed as

Fμν(k) = 1

4

∫
V

d3x

∫
Ṽk

d3q

(2π )3

[
δμν

n̄μ

Pμ

P
1 + P

+n̄μn̄ν

1 − P
(1 + P)2

]
, (8)

and the integrand above n̄μ = n̄μ(x), Pμ = Pμ(q), and P =
P(x, q). The Fisher matrix in equation (8) is in fact the inverse of the
covariance matrix for the power spectra of the tracers, F−1

μν = Cμν ,
where the covariance of the power spectra in two Fourier bins ki

and kj is given by Cov[Pμ(ki), Pν(kj )] = δij Cμν .8

The shot noise (or estimator bias) in equation (6) is given by

P shot
μ = 1

2

∑
ν

F−1
μν

∫
V

d3x

∫
Ṽk

d3k

(2π )3

n̄μ

1 + P − Pμ . (9)

It can be easily checked that in the case of a single tracer we obtain

Fμν → V Ṽk

2

〈(
n̄g

1 + n̄Pg

)2
〉

x,k

, (10)

where 〈. . .〉x,k means average over the survey volume and over
the bandpower. This expression can then be used in equation (9),
leading to

P shot
g →

〈
n̄g

1+n̄Pg

〉
x,k〈(

n̄g

1+n̄Pg

)2
〉

x,k

− Pg . (11)

This is in fact the expression for the FKP estimator bias – i.e.
shot noise. If the selection function is sufficiently homogeneous
inside the survey volume V, and the power spectrum does not vary
appreciably inside the Fourier bin k, one can get rid of the averages
in the ratio and write P shot

g → (1 + n̄gPg)/n̄g − Pg = 1/n̄g, which
is the familiar expression for (Poissonian) shot noise.

8This holds if the bandpowers ki and kj are sufficiently wide – see e.g.
Abramo (2012) for a more detailed discussion.
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2.2 Estimators versus theory: the window functions

The power spectra estimated either by equation (3) or equation (6)
are based on the Fourier transforms of the weighted fields, not on
the density contrasts. Since the weighting is applied in configuration
space, the Fourier transforms of the weighted fields are convolutions
of the Fourier transforms of the weights and of the density con-
trasts. This means that the estimated power spectra are themselves
convolutions of the putative power spectrum – i.e. there is mode
coupling.

However, with multiple tracers the window functions couple not
only the different modes, but also the different tracers, so that the
estimator is related to the true power spectra by

〈
P̂ MTOE

μ (k)
〉 =

∫
d3q

(2π )3

∑
ν

Wμν(k, q) Pν(q) , (12)

where the expectation value on the left-hand side is an ensemble
average. We will show below that these window functions pos-
sess two key features: (1) they are normalized; and (2) in the
continuum limit, and assuming constant selection functions, the
window functions ∼ δD(k − q), meaning that there is no mode
coupling.

Although expressions for the window functions were derived in
Abramo et al. (2016), below we expand and clarify those results. It
is convenient to write them as

Wμν(k, q) =
∑

α

[
Fμα(k)

]−1
Mαν(k, q) . (13)

where the matrix M above can be written in terms of the Fourier
transforms of the weights, w̃μα(q′ − q), as

Mμα(k, q) = 1

4 b2
μ b2

α

∫
Vk

d3q ′

(2π )3

×
∑
βσ

[
w̃μαbα w̃∗

σβbβ + w̃μβbβ w̃∗
σαbα

]
. (14)

In Fig. 1, we show, as an example, the window functions for the
VIPERS W1 area within the redshift range 0.6 < z < 0.75 (see
Section 3 on the VIPERS data below), assuming a reference k =
0.1 h Mpc−1. Each row μ describes how a tracer species μ inherits
clustering information from the other tracer species (the columns
ν). As can be seen from these plots, the geometry of the survey
determines the amount of information in each direction, how that
information is mixed, as well as the sampling that can be achieved.
The largest direction, which yields the cleanest information, is
z (which is aligned with redshift), which also gives us the best
sampling of frequencies due to the total length of our box in that
direction (Lz 	 304 h−1 Mpc in our fiducial �CDM cosmology).
The y direction (aligned with RA, with Ly ∼ 252 h−1 Mpc) also
provides good sampling as well as a small mixing with other
modes. The x direction (aligned with dec, with Lx ∼ 58 h−1 Mpc)
provides a rather poor sampling (�k = π /Lx 	 0.11 h Mpc−1),
and is a significant source of mode mixing. This figure can be
compared with fig. 3 of the VIPERS Rota et al. (2017) paper,
which shows a similar behaviour regarding the three different
directions.

Although equation (14) is in a form that is convenient to evaluate
numerically, in order to check the normalization of the window
functions it is useful to Fourier-transform the weights back to

configuration space. After some algebra we obtain:

Mαν(k, q) =
∫

Vk

d3q ′

(2π )3

∫
d3x d3x ′ ei(q′−q)(x−x′)

×1

4

[(
δμα

n̄μ

Pμ

− n̄μn̄α

1 + P

)
x

( P
1 + P

)
x′

+
(

n̄μ

1 + P

)
x

(
n̄α

1 + P

)
x′

]
, (15)

where the spectra in the integrand are evaluated at the mean value
of the bandpower k.

Now, we proceed to demonstrate point (1) above, namely, that the
window functions are normalized. Integrating equation (15) over q
leads to a Dirac delta-function δD(x − x′), which removes one of the
space integrals (say, that on x) and makes the terms inside brackets
to coincide at the same point (say, x′). In that case, inspection of
equation (8) immediately reveals that:∫

d3q

(2π )3
Mαν(k, q) = Fαν(k) , (16)

which then implies that∫
d3q

(2π )3
Wμν(k, q) = δμν . (17)

Equation (17) means that the window functions are not only
normalized to unity in terms of the modes, but also that the mean
mixing between the different tracers vanishes when averaged over
all the modes.

Now we turn to the second property of the window function: that
in the limit of a large, homogeneous survey, they become delta-
functions. The starting point is again equation (15), where we now
assume that all quantities in the integrand are constant over the
survey volume. Since that constant matrix can be taken outside of
the spatial integrals, we can perform the x integral, which leads to
(2π )3δD(q − q′). We also take the bin k to be arbitrarily small, and
the remaining space integral will give the survey volume. Clearly,
in that limit we can write that:

Mαν(k, q) → Fαν(k) × (2π )3δD(k − q) , (18)

which implies that:

Wμν(k, q) → δμν(2π )3δD(k − q) . (19)

This shows that the window functions defined in equation (14) obey
the proper normalization conditions and continuum limit.

In addition to the survey window function, the mass assignment
(MA) method, whereby an object (a galaxy, in our case) is associated
to a given cell in the grid, may also distort the original power
spectrum. In order to deconvolve the effects of the MA on the
estimated power spectra we employ the procedure outlined in Jing
(2005). For all modes of interest, which lie well below the Nyquist
frequency of the grid, the MA convolution is well approximated by
a normalization factor, P (k) 	 P (k) × W 2

MA(k). We compute the
window function following the standard prescription (Jing 2005),
using a theoretical matter power spectrum from CAMB9 (Lewis &
Bridle 2002) to account for the shape of the power spectrum.

Finally, we allow for anisotropies in the power spectra through
redshift-space distortions. Even though in this first paper we only
employ the angle-averaged spectra (i.e. the monopoles), we have
also computed the higher order multipoles. We follow the method

9https://camb.info
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Figure 1. Survey window functions Wμν (k − k′) for each tracer, as a function of kx (black), ky (blue), and kz (red), normalized at the value of Wμμ(0). Rows
correspond to μ, columns to ν.

proposed by Bianchi et al. (2015) and Scoccimarro (2015), which
makes use of the physical (configuration space) multipoles of the
galaxy maps and avoids having to fix a single direction to the survey
in order to define the angles of the Fourier modes (μ → k̂ · r̂).

3 TH E MO C K DATA

In order to test the performance of MTOE, we use mock data from
the VIMOS Public Extragalactic Redshift Survey (VIPERS; Guzzo
et al. 2014; Scodeggio et al. 2018), which provides high-fidelity
galaxy maps at high redshift. The survey measured 90 000 galaxies
with moderate-resolution spectroscopy within the nominal redshift
range 0.5 � z � 1.1, using the Visible Multi-Object Spectrograph
(VIMOS) at VLT. Targets were selected to a limiting magnitude
of iAB = 22.5 in 24 square degrees of the CFHTLS Wide imaging
survey. This area is divided in two fields, W1 and W4, with 16 and 8
square degrees, respectively. The low-redshift limit was imposed
by a pre-selection based upon colour that effectively removed
foreground galaxies while ensuring a robust flux-limited selection at
z> 0.5. For more information on the Public Data Release 2 (PDR-2),
the one used in this paper, refer to Scodeggio et al. (2018). Detailed
descriptions of the data reduction and management infrastructure
are presented in Garilli et al. (2014). For information on the survey
design and target selection, see Guzzo et al. (2014).

We employ a set of 153 independent VIPERS-like mock cata-
logues (de la Torre et al. 2013, 2017; Mohammad et al. 2018) that
mimic the VIPERS survey geometry and the application of the slit-
assignment algorithm and redshift measurement error. As discussed
in Mohammad et al. (2018), these mocks represent very well the
global properties of the galaxy population targeted by VIPERS.
However, they were not built to simultaneously and precisely
reproduce the measured bias and number density of multiple
subpopulations defined in colour–magnitude space.10 In order to

10Ideally, constructing mocks of such multi-tracer accuracy could be done
via an iterative process in which the measured biases/number densities

avoid inconsistencies in the computation of errors, we restrict our
analysis to the mocks themselves. In this way, we can better isolate
the improvements provided by MTOE and build the machinery for
the application of the method to the actual VIPERS data.

The VIPERS mocks were built from the Big MultiDark Planck
(Klypin et al. 2016) N-body cosmological simulation, which as-
sumes the standard �CDM cosmology (Planck Collaboration et al.
2014), with parameters h = 0.677, �m = 0.307, �� = 0.693,
ns = 0.96, and σ 8 = 0.823. Dark matter haloes were populated
with galaxies using the technique of halo occupation distributions
(HOD). The parameters of the HOD were calibrated using clustering
measurements as a function of luminosity from the preliminary data
release of VIPERS (see de la Torre et al. 2013, 2017 for a detailed
description of the procedure). Importantly, since the resolution of
the box is not good enough to match the typical halo masses probed
by VIPERS, a population of low-mass haloes were subsequently
added following the method presented in de la Torre & Peacock
(2013). In essence, central galaxies were placed at the centre of
haloes assuming no peculiar velocities with respect to the hosting-
halo rest frame, whereas satellite galaxies were disposed around
haloes following an NFW profile (Navarro, Frenk & White 1997).
For satellite galaxies, a random velocity component was added to
the hosting-halo peculiar velocity.

Luminosities in the B band and colours were assigned to galaxies
following the methodology presented in Skibba et al. (2006)
and Skibba (2009). First, an analytical luminosity- and redshift-
dependent HOD parametrization was derived by fitting the observed
projected correlation functions in several samples defined using
luminosity thresholds (de la Torre et al. 2013). Secondly, galaxies
were placed in haloes following the observed conditional colour

for any chosen set of galaxy tracers are reinforced back into the mock
generator until the estimation and mock generation procedures converge.
This is computationally very costly, but it is conceivable that next-generation
mocks are specifically built to reproduce multiple clustering dependencies
simultaneously, such as those on colour and stellar mass/luminosity.
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Figure 2. Redshift distribution of the 153 VIPERS mocks used in this
work in bins of �z = 0.025. The mean of all mocks is represented by a thick
dashed line.

distribution (<U − V|MB >) of VIPERS, which was fit with a double
Gaussian model. A detailed description on how these assignments
were performed can be found in Skibba et al. (2006) and Skibba
(2009). A summary of the procedure can be found in Mohammad
et al. (2018). The redshift distribution of the mocks is shown in
Fig. 2.

4 TR AC E R SE L E C T I O N

The selection of the LSS tracers is a key part of the multi-tracer
analysis, since the performance of the method ultimately depends
on our ability to discriminate between different galaxy populations
with different biases and number densities (i.e. shot noise).

Here, we define several selection schemes in order to test the
performance of MTOE in different plausible configurations where
the number densities and biases of the tracers differ. Our fiducial
selection scheme is based on colour and luminosity, which, in
principle, should allow for a good separation of tracers in terms
of their clustering properties. A total of four tracers in this scheme,
which we call LC (luminosity–colour), are defined, as follows, in
each redshift:

Redshift slice 0.55 < z < 0.7:

T1: blue colour and MI > −20.3
T2: red colour and MI > −20.3
T3: blue colour and MI < −20.3
T4: red colour and MI < −20.3

Redshift slice 0.7 < z < 0.9:

T1: blue colour and MI > −21
T2: red colour and MI > −21
T3: blue colour and MI < −21
T4: red colour and MI < −21

Redshift slice 0.9 < z < 1.1:

T1: blue colour and MI > −21.5
T2: red colour and MI > −21.5
T3: blue colour and MI < −21.5
T4: red colour and MI < −21.5

In the VIPERS mocks, a colour type (0:‘red’, 1:‘blue’) is defined
from the (U–B) colour, which is in turn computed by matching the
colour bimodality of the data (see de la Torre et al. 2013). In Fig. 3,

Figure 3. The I-band absolute magnitude as a function of redshift for a
randomly selected mock. The red and blue mock galaxy distributions are
represented by red and blue contours, respectively.

I-band absolute magnitudes are shown as a function of redshift
for a randomly chosen mock, in order to illustrate the LC cuts
adopted. The abundances of red and blue galaxies are represented
by contours; blue mock galaxies are typically less luminous than red
galaxies, at fixed redshift. The LC selection employs an absolute-
magnitude cut at the peak of the absolute magnitude distribution
at the corresponding redshift. This demarcation is, to some extent,
arbitrary, since we are not interested in measuring the evolution
of clustering for the same population of galaxies as a function of
redshift. Instead, our goal is to compare MTOE and FKP in different
redshift slices.

It is interesting to analyse how the performance of MTOE
depends on the complexity of the selection scheme. To this end,
we define a simple 4-tracer scheme where selection is performed
by splitting the sample only by luminosity (the L selection). For the
sake of simplicity, only the first redshift slice is used for this test.
In this case the four tracers are defined as

Redshift slice 0.55 < z < 0.7:

T1 : MI > −20.3
T2 : −20.3 < MI < −20.8
T3 : −20.8 < MI < −21.4
T4 : MI < −21.4

Finally, we will also consider the most basic selection criterion,
i.e. only two tracers defined by luminosity:

Redshift slice 0.55 < z < 0.7:

T1 : MI > −20.5

T2 : MI < −20.5

We call this scheme L0 selection. The resulting number density
for different tracers in each redshift slice after applying the above
selection schemes are listed in Table 1.

5 IM P L E M E N TAT I O N O F T H E M E T H O D

In this section, we provide some practical information regarding the
main steps in the implementation of the power spectrum estimation
methods.
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Table 1. Number densities n̄ in units of [ h−1Mpc] −3 for the three tracer selection schemes considered in this analysis. As a reference, the
shot-noise level for each subset is typically ∼ 1/n̄.

Selection scheme Criteria Redshift range n̄T 1(×10−4) n̄T 2(×10−4) n̄T 3(×10−4) n̄T 4(×10−4)

L0 MI 0.55 < z < 0.7 36.6 46.6 – –
L MI 0.55 < z < 0.7 24.3 27.7 19.9 11.4
LC MI and (U–B) colour 0.55 < z < 0.7 31 5.6 36.8 9.8

0.7 < z < 0.9 17 3.5 20.4 7.6
0.9 < z < 1.1 5.2 1.7 6.7 4

5.1 Formatting the data

The practical computation of the power spectrum estimators of
equation (3) (FKP) and (6) (MTOE) involves binning the galaxy
coordinates on a Cartesian grid and using a Fast Fourier Transform
(FFT) algorithm. To implement the Fourier-transform approach,
galaxies in each of the three redshift slices considered are placed
on to three separate grids, of 63 × 14 × 76, 73 × 16 × 70, and
84 × 18 × 84 cells, respectively, with grid cells of H = 4 h−1 Mpc
on a side. The total volumes of the cuboids are 4.29, 5.23, and
8.13 × 10−3 [ h−1Gpc] −3, respectively. These dimensions have
been chosen so that the maximum fraction of the VIPERS volume
is taken under consideration. We will consider wavenumbers up to
k = 0.5 h Mpc−1 – well below the Nyquist frequency of the system,
which is π /H ∼ 0.8 h Mpc−1.

A cell size of 4 h−1 Mpc captures the main small-scale features of
galaxy clustering and avoids potential issues resulting from very low
tracer counts per cell. We have checked that the main conclusions of
the analysis remain unaltered when 8 h−1 Mpc cells are employed.
We note that a smaller 2 h−1 Mpc cell was used before in the context
of the VIPERS power spectrum measurement (Rota et al. 2017), but
only for the combined sample.

5.2 Selection function

The matter power spectrum is defined through the expectation value
(or, in this context, the ensemble average) 〈δm(k, z)δ∗

m(k′, z)〉 =
(2π )3Pm(k, z)δD(k − k′), where δm(k) is the matter density contrast,
and δD is the Dirac delta function. For a given tracer with counts per
unit volume nα(x), the density contrast is δα(x) = nα(x)/n̄α(x) − 1.
Here, the mean number densities n̄α should reflect the spatial
modulations in the observed numbers of galaxies which are due
to the instrument, the strategy and schedule of observations, as well
as any other factors unrelated to the redshift-space cosmological
fluctuations. For simplicity, instead of using random maps or
a selection function defined on subgrid scales, we compute the
selection function of each tracer, n̄α , by taking the mean of all
mocks. The approximation implied by this procedure can affect the
small-scale clustering of sparse samples when the number of mocks
is not large enough (i.e. the selection function can be 0 in cells that
belong to unmasked survey regions). We have checked that this is
not an issue given the size of our cells and the number of mocks
available.

5.3 Normalization of the power spectrum

As described in Section 2, the ‘bare’ estimated power spectra are
related to the true power spectra by the convolution expressed in
equation (12). Although for VIPERS this convolution does not
significantly distort the shape or the amplitude of the original
power spectra, in order to present the data we have normalized

the estimated power spectra by the convolved theoretical spectra,
i.e.:

P̄μ(k) = 1

Nc
μ(k)

P̂μ(k) , (20)

where the normalization is given by the convolution of equation (12)
with a theory (CAMB) power spectrum:

Nc
μ(k) = 1

P T h
μ (k)

∑
ν

∫
d3k′

(2π )3
WμνP

th
ν (k′). (21)

In practice, this normalization is computed independently of the
data/mocks using lognormal multi-tracer maps, which are produced
using a generalization of the procedure of Coles & Jones (1991) (see
also Abramo et al. 2016). These sets of maps are created for each
tracer using the same selection functions and formatting that were
described in Sections 5.1 and 5.2 .

5.4 Fiducial model

Throughout this paper, we use a theoretical model for the matter
power spectrum Pm(k) obtained from the Boltzmann code CAMB11

(Lewis & Bridle 2002), at the corresponding median redshift of
the particular redshift slice considered, and assuming the Planck
cosmology.

For the galaxy power spectrum of a tracer, the CAMB model is
combined with HALOFIT (Smith et al. 2003), which implements non-
linear corrections in the clustering. We have checked that our results,
in terms of the FKP versus MTOE comparison, remain unaltered
when a linear power spectrum is employed.

Fiducial values for the galaxy biases of the subpopulations are
obtained iteratively. To initiate the process, we use values that
roughly follow the magnitude and colour dependence of bias that
was previously measured from VIPERS (see fig. 8 from Granett
et al. 2015). These biases are used to generate the MTOE weights
that are subsequently applied to the density field in order to compute
P (k). This computation is performed for all mocks, which allows
us to obtain the covariance matrix. From the covariance matrix, we
determine best-fitting biases by means of a likelihood maximization
technique (such as χ2 minimization or MCMC). These updated
biases are injected back into equation (5) in order to compute the
MTOE weights, and the procedure is iterated until convergence. See
Fig. 4 for a simple diagram describing the process.

We have checked that the convergence is rather fast (a few
iterations suffice), and that the procedure is robust, even in cases
where the initial fiducial values (the ones that we used to initialize
the process) are completely off (e.g. all biases set to 1). As a
reference, for the first redshift slice and the W1 field (LC selection),
if we initialize the process with all bias values equal to unity, the

11http://CAMB.info
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(initial) w P(k) Cov
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Figure 4. A simple diagram describing the iterative procedure for the
estimation of the power spectra. In the first step, the MTOE weights are
computed given an initial set of parameters θ

(initial)
α (i.e. the galaxy biases,

matter power spectrum, and matter growth rate). We then use these weights
to compute the monopoles of the power spectra of each tracer for each mock.
The monopoles of the mocks are then used to determine their covariance
matrix. With that covariance matrix we are able, by means of maximum
likelihood techniques (i.e. MCMC or χ2 minimization), to find updated
best-fitting values for the parameters, which can then be used to re-compute
the weights and start the process over again. The process is iterated until it
converges.

procedure takes three iterations to converge at a 2 per cent level.
Note that this convergence level is significantly below the final
errors that we obtain for the biases.

6 R ESULTS

In this section, we evaluate the performance of MTOE as compared
to FKP in the context of the determination of the power spectra
(the basic measurement) and the galaxy biases of multiple tracers.
The posterior probability density function of the linear galaxy biases
and related quantities is obtained using a Markov chain Monte Carlo
(MCMC) procedure.

6.1 The power spectrum

Fig. 5 presents the monopole of the normalized power spectra (see
equation 20) of the four tracers of the LC selection, in each of the
three redshift bins considered, i.e. 0.6 < z < 0.75, 0.75 < z <

0.9, and 0.9 < z < 1.1, respectively, for both the W1 and the W4
fields. The symbols correspond to the means of the mocks, and the
error bars are obtained from the diagonal of the (sample) covariance
matrix. In each panel, both the FKP and the MTOE estimates are
shown for comparison, along with the fiducial theoretical model
(assuming the best-fitting bias values obtained through the MCMC
procedure, see Section 6.2 below). One of our nuisance parameters
is a constant additional shot noise term, which only makes a (small)
difference in the case of very sparse tracers, and on small scales.

Importantly, the mean values of P (0)(k) measured using the two
estimates are almost identical within the entire range of scales
considered, which confirms that MTOE is statistically unbiased
with respect to the standard approach (see Abramo et al. 2016),
even when the method is applied to a realistic mock catalogue.
Note that differences are only barely noticeable in the highest
redshift slice, and on very small scales (where uncertainties are
very large). In addition, results from the two VIPERS fields are
totally consistent with each other, with only small discrepancies
that are also subdominant with respect to the estimated errors. Note
that the volume covered by the W4 field is significantly smaller than
that of the W1 field, which explains the larger errors associated with
the W4 measurements.

MTOE provides a significantly more precise measurement of
the monopoles P (0)(k), especially on smaller scales. This effect
can be glimpsed from Fig. 5, but is more clearly illustrated by
Fig. 6, which displays the complete correlation matrix for the
four tracers considered as part of the LC selection in the first

redshift slice (0.6 < z < 0.75) in the W1 field. The upper-
diagonal terms correspond to the FKP correlation matrix, whereas
the lower diagonal ones show the MTOE measurement. Visually, it
becomes obvious that the correlation between Fourier modes (the
off-diagonal terms) is significantly higher in the FKP case compared
with MTOE. The diagonal of the matrix, which allow us to compare
the autocorrelations for each tracer as computed from MTOE and
FKP, reveals that the MTOE measurement is also significantly more
precise on scales k � 0.25 h Mpc−1. Although the strength of the
effect depends on the particular tracer, redshift slice, and field, the
same qualitative behaviour is found for all cases considered.

The fact that FKP is noisier than the MTOE approach on small
scales is due to the influence of shot noise. The FKP estimator for
the power spectrum of any given tracer only takes into account those
tracers. The MTOE method, on the other hand, not only employs the
autocorrelation of that tracer with itself, but also takes into account
the cross-correlations of that tracer with all the other tracers in the
estimation of the spectrum. Since shot noise affects more the small
scales (where the amplitude of the spectrum is lower), the upshot
is that MTOE is less noisy on small scales, effectively lowering
the threshold imposed by shot noise. We have found qualitatively
similar behaviours for the other redshift slices, and also when the
simple L and L0 selections are imposed. We proceed now to quantify
the magnitude of the effect.

Of course, on very small scales the galaxy distribution is
dominated by intrahalo effects such as those arising from the halo
density profile and stochasticity (McDonald & Seljak 2009), hence
there is no cosmic variance to cancel anymore. However, the fact
that, as we approach that regime, the FKP and MTOE estimators
remain unbiased with respect to each other but MTOE still has
lower uncertainties shows the advantage of combining the tracers
to measure clustering not only on large, but also on smaller scales –
even if the MTOE may not be ‘optimal’ as we go deeper into the non-
linear regime. Although, it is difficult to exploit the information on
those smaller scales in order to constrain cosmological parameters,
these improvements are useful in terms of exploring how galaxies
are connected to their environments.

In Fig. 7, we show the ratios of the fractional errors (i.e. the
standard deviations divided by the mean of all mocks) obtained
from FKP and MTOE, as a function of k, for the first redshift
slice in the W1 field. This quantity reflects the relative gain in
accuracy and is computed for both the individual power spectra
(left-hand column) and the ratios of individual spectra (right-
hand column). Each row in this figure represents a different tracer
selection, in increasing order of complexity from top to bottom, i.e.
L0, L, and LC, respectively. Several conclusions can be extracted
from this figure, which are consistent with results from Abramo
et al. (2016). First, increasing the number of tracers (at least
within some reasonable limits) tends to improve the performance
of MTOE, as compared to FKP. Secondly, the advantages are
observed both in terms of the individual power spectra, and on the
ratios of individual spectra. Thirdly, considering additional ways of
discriminating between different populations is beneficial. This can
be seen in the last row of Fig. 7, where colour is used as a second
discriminator. Note that it is not the number of parameters what ulti-
mately matters, but the combined discriminating capabilities of the
parameter set.

In the W1 field, the average relative error reduction at 0.3 <

k[h Mpc−1] < 0.5 for the spectra of LC tracers is around 30 per
cent in the three redshift slices considered, whereas for the ratios
of individual spectra the improvements raise to ∼35 per cent. A
similar gain is achieved for individual spectra in the W4 field. The
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Figure 5. The normalized monopoles of the power spectrum, P (0)(k), for each of the four tracers of the LC (luminosity and colour) selection in the three
redshift slices considered (for both the W1 and the smaller W4 field). In each panel, the MTOE measurement is shown in circles, whereas the FKP estimate is
represented by crosses. For each tracer, a theoretical (HALOFIT + CAMB) model assuming the estimated bias value is shown in solid lines (see text).

relative error reduction for the ratios of spectra in this field can,
however, reach 40–50 per cent on average at 0.3 < k[h Mpc−1] <

0.5. Note that these are averaged and integrated gains; as shown
in Fig. 7, the improvement for a particular tracer can significantly
exceed these values as we move towards smaller scales.

It is important to note that the gains reported in Fig. 7 show up
in scales that are, typically, still larger than the characteristic ‘shot
noise scale’ for each tracer, i.e. k < kSN, where P (kSN) ∼ 1/n̄i . In
fact, only for the second tracer in the LC selection (i.e. ‘red-faint’)
does kSN lie within the k-range considered (kSN ∼ 0.4 h Mpc−1).

Fig. 7 also reflects the most salient advantage of using multi-tracer
techniques: the cancellation of cosmic variance on large scales. This
effect can be seen most clearly in the ratios of spectra – which MTOE
has been shown to measure with higher accuracy (Abramo et al.
2016). The right-hand panels of Fig. 7 show an average increase
in the precision of this measurement of around 10 per cent at k �
0.1 h Mpc−1 when MTOE is employed. The improvement is a little
higher (∼ 15 per cent) for the smaller W4 field.

The improvement that MTOE provides depends strongly on the
number density of the particular tracer considered: the scarcer
the tracer, the larger the improvement on individual spectra, and
the smaller the scale at which the effect becomes significant. To
demonstrate this, we draw attention to the left-bottom panel of
Fig. 7, which displays the gain on individual spectra for the LC
scheme. The number densities of the tracers are, respectively, 31
(T1), 5.6 (T2), 36.8 (T3), and 9.8 (T4) 10−4 [ h -1 Mpc] −3, as listed
in Table 1. The scale at which the improvement reaches 20 per cent
is, respectively, k 	 0.35 (T1), 	 0.2 (T2), > 0.5 (T3), 	 0.35 (T4).
Qualitatively, this general trend applies for any given selection and
redshift slice – even though the particular gain will also depend on

other factors, including the distribution of biases for a particular
population.

In summary, the large increase in the signal-to-noise provided by
MTOE on small scales for individual power spectra (and for the
ratios of spectra) is a reflection of the method being better equipped
to deal with shot noise, since MTOE combines information from all
tracers. This feature is especially beneficial for sparse samples and
on small scales, where the lack of signal becomes more severe. On
the other hand, the improvement in the measurement of the ratios of
spectra on large scales is due to the cancellation of cosmic variance,
a feature that the MTOE is naturally designed to enhance.

6.2 Derived quantities: Markov chain Monte Carlo

The multipoles of the redshift-space power spectra constitute the
basic measurements from which constraints on the galaxy biases
and cosmological parameters can be obtained. Here, we employ
an MCMC algorithm to fit the normalized monopole P (0)(k), and
derive posterior probability distributions for the amplitudes of the
monopoles, the ratios of the amplitudes of the monopoles and
the linear biases of tracers, at fixed cosmology. Since the main
motivation for this analysis is to evaluate the performance of MTOE
in a variety of configurations, we opt to present results from the W1
and W4 fields, separately.

The monopole of the redshift-space power spectrum for a given
tracer α is given by

P (0)
α (k) = MαPm(k) ,

where Mα is the first basic quantity that we fit from the power
spectra of Fig. 5, along with the ratios Mαβ = Mα/Mβ . From the
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Figure 6. The complete correlation matrix for the entire set of tracers of the LC selection in the first redshift slice, i.e. 0.6 < z < 0.75 (W1 field). The MTOE
method consistently provides a less-correlated measurement than FKP, especially on small scales.

amplitudes Mα , in linear order and in the flat-sky approximation (or,
equivalently, plane-parallel approximation, see e.g. Hamilton 1998;
Bertacca et al. 2012), the bias of each tracer (bα) can be obtained
assuming the following model (Kaiser 1987)

Mα = b2
α + 2

3
f bα + 2

5
f 2 , (22)

with f being the matter growth function.
In this section, we show how the improvement on P (0)(k)

translates into Mα , Mαβ , and bα , for all redshift slices and selections.
In order to provide a more complete view of the problem, we
have opted to treat the W1 and W4 fields, separately. We have
checked, however, that our gains are similar, on average, when
the measurements of the monopoles of P (k) from W1 and W4 are
combined in the MCMC.

A critical aspect in the MCMC is the integration range. As seen in
Fig. 7, MTOE is especially advantageous on small scales. However,
these are also the k-ranges where uncertainties, mode couplings and
non-linearities are larger, independently of the estimation method.
Hence, we start by choosing a conservative range 0.1 < k[h Mpc−1]
< 0.3.

Fig. 8 shows the posterior probability distributions for the
amplitudes of the monopoles of the LC-selected tracers in the
redshift range 0.75 <z < 0.9 (second redshift slice), W1 field. In this
case, an additional (constant) shot-noise term was used as a nuisance

parameter, but the cosmology was fixed. Results for the monopole
ratios and for the biases are displayed in Figs 9 and 10, respectively.
Although, the extent of the effect depends on the particular tracer,
the improvement in the accuracy of the measurements, in terms of
narrower posterior probability distributions, is observed, on average,
for all parameters.

The question that arises is how much we can further gain by
pushing the measurements to higher values of k – a question that
depends on the scientific purpose of the analysis. The answer to
this question is illustrated in Fig. 11, which displays the posterior
probability distributions for the monopoles of the same tracers of
Fig. 8, but now measured at the wavenumber range 0.3 < k[h Mpc−1]
< 0.5. The difference between MTOE and FKP becomes apparent
here, as expected from the improvements in the accuracy of the
P (k) measurement shown in Fig. 7.

In order to quantify the improvements, we define the ‘relative
gain’ provided by MTOE as the percentage difference between the
relative confidence intervals derived from both methods, i.e. 100 ×
(σ (r)

FKP − σ
(r)
MTOE)/σ (r)

MTOE (where relative indicates that the confidence
intervals are divided by the best-fitting values12). In Fig. 12, we show

12Note that, in practice, since MTOE is statistically unbiased with respect to
FKP, our results only marginally change when the comparison is performed
on the basis of the absolute, not fractional, confidence intervals.
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Figure 7. The relative gain in accuracy provided by MTOE as compared to the standard FKP weighting for different tracer selections in the redshift range
0.55 < z < 0.7. From top to bottom, increasingly more complicated selections are shown: L0 selection (two tracers selected in luminosity), L-selection (four
tracers selected in luminosity), and LC-selection (four tracers selected in colour and luminosity). In each row, the left-hand plot displays the gain for each
individual P (0)(k) as a function of k, whereas the right-hand plot shows this effect on the ratios of individual spectra. Here, the relative gain is defined as the
ratio between the corresponding fractional errors, obtained dividing the standard deviations (taken from the diagonal of the sample covariance matrix) by the
mean values of the spectra or ratios of spectra.

these gains in a colour-coded diagram for all tracers and redshift
slices, and for the two different integration ranges: 0.1 < k[h Mpc−1]
< 0.3 and 0.3 < k[h Mpc−1] < 0.5. Redder colours indicate a
positive gain (improvement), whereas bluer colours show a decrease
in the accuracy of the measurement. The first thing to notice is that
MTOE provides a more accurate measurement than FKP in the
great majority of cases, i.e. ∼80 per cent, with significant loss of
precision (gain < −5 per cent) in less than 10 per cent of cases.
Also, the gains are notably larger for the much smaller W4 field.
This is again a consequence of MTOE being more equipped to deal
with small-number statistics and noisier samples.

In the wavenumber range 0.1 < k[h Mpc−1] < 0.3, the gain is,
on average, ∼ 12.5 per cent for the amplitudes of the monopoles, ∼
18 per cent for the monopole ratios, and ∼ 5 per cent for the linear
biases (combining both fields). Individual cases, however, can reach
much larger improvements. If we opt for a more aggressive take on
small scales, the difference is boosted significantly. The average
gain increases to ∼ 27 per cent for the amplitudes, ∼ 75 per cent
for the monopole ratios, and ∼ 19 per cent for the linear biases. In
the Appendix, we list the mean values, confidence intervals, and
gains for all cases considered.

Since MTOE is mostly advantageous on small scales, for tracers
with low number density, we must ensure that the method is robust
for this configuration. As mentioned before, we have checked

that the improvement shown in Figs 7–11 persists (qualitatively)
when cells of 8 h−1 Mpc are employed (instead of 4 h−1 Mpc). In
addition, we also computed the power spectra using a selection
function smoothed with a Gaussian kernel, to check whether small-
scale variations in the selection function could change the power
– and we verified that this had no effect whatsoever on our
measurements.

7 D I SCUSSI ON AND C ONCLUSI ONS

When multiple biased tracers occupy the same survey volume, the
signal and the noise for all possible auto- and cross-correlations
should be taken into account. The standard weighting scheme of
FKP (Feldman et al. 1994) was designed to be used in the context
of the Fourier analysis of surveys based on a single population of
LSS tracers. The PVP scheme (Percival et al. 2004), on the other
hand, provides optimal weights that lead to a minimum-variance
estimator of the matter power spectrum Pm(k) in situations where
several different biased tracers are considered – see also Cai et al.
(2011). The MTOE (Abramo et al. 2016), which we describe and
apply in this paper, is optimal both to estimate the matter power
spectrum, as well as the redshift-space auto-power spectra of each
individual tracer.
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Figure 8. Posterior probability distributions for the amplitudes of the
monopoles (see equation 22) estimated using both MTOE and FKP for
the four tracers considered as part of the LC selection in the redshift range
0.75 < z < 0.9 (W1 field). The MCMC is performed within the wavenumber
range 0.1 < k[h Mpc−1] < 0.3.

Figure 9. Posterior probability distributions for the ratios of the monopoles
for the four tracers considered as part of the LC selection in the redshift
range 0.75 < z < 0.9 (W1 field), estimated using both MTOE and FKP. The
MCMC is performed within the wavenumber range 0.1 < k[h Mpc−1] <

0.3.

The purpose of this work is threefold. First, to provide a compact,
simplified and self-contained description of MTOE that can be
easily implemented. Secondly, to evaluate the performance of the
method on simulated but realistic galaxy data, and quantify the
improvement with respect to the standard FKP approach. Thirdly,
to lay the foundations for the implementation of the method on

Figure 10. Posterior probability distributions for the linear galaxy biases
of the four tracers considered as part of the LC selection in the redshift
range 0.75 < z < 0.9 (W1 field), estimated using both FKP and MTOE. The
MCMC is performed within the wavenumber range 0.1 < k[h Mpc−1] <

0.3.

Figure 11. The same as Fig. 8 but assuming an integration range 0.3 < k[h
Mpc−1] < 0.5.

the VIPERS data set, in order to improve constraints not only on
the power spectra and galaxy biases, but also on the cosmological
parameters.

On the theoretical side, the description of the method that we
provide incorporates an analytic derivation of the window functions
of the auto-power spectra – a result that was not known previously.
We show that the MTOE window functions conserve the total power
of the measurement: they are normalized to unity in terms of the
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The MTOE applied to VIPERS 5269

Figure 12. The improvement provided by MTOE with respect to FKP for the amplitude of the monopoles, monopole ratios, and biases of the four tracers of
the fiducial LC selection over the three redshift slices considered, in the W1 and W4 fields. The colour code corresponds to the percentage difference in the
relative confidence intervals of the estimated parameters, i.e. 100 × (σ (r)

FKP − σ
(r)
MTOE)/σ (r)

MTOE (where relative indicates that the confidence intervals are divided
by the best-fitting values). Redder colours indicate an increase in the accuracy, whereas bluer colours represent a decrease. The actual values of the percentage
difference are provided inside each cell.

modes, and the mean mixing between the different tracers vanishes
when averaged over all the modes.

We have shown that MTOE provides significant advantages when
applied to a data set split in multiple galaxy populations. It is
unbiased with respect to the standard FKP approach, and improves
upon its performance. In the case of VIPERS, this gain is more
pronounced on small scales. We report an average increase in
the signal-to-noise of the monopoles of the auto-power spectra of
∼ 30 per cent at 0.3 < k[h Mpc−1] < 0.5, with improvements
increasing towards smaller scales – the specific values depending
on the particular tracer and on the characteristics of the survey.
The improvements on small scales are also large for the ratios of
power spectra. We have also implemented an MCMC procedure
in order to explore the probability density space of derived fitting

quantities such as the amplitudes of the monopoles, the monopole
ratios, and the linear galaxy biases. If we can push the measurement
to a wavenumber range 0.3 < k[h Mpc−1] < 0.5, the gain on these
quantities reaches, on average, 30, 75, and 20 per cent, respectively.

The particular extent of the improvement for a given tracer
subsample is determined, to a large degree, by the survey volume,
the number density, and the bias of the tracer. We illustrate this with a
summary plot in Fig. 13. Here, tracers from different selections and
redshifts are shown together, and the corresponding gains plotted as
a function of number density and number of objects. For abundant
tracers, the advantage of using MTOE is very mild. For scarcer
tracer, the gain is very significant, depending strongly on the type
of tracer: redder tracers, which are more strongly bias, benefit more
from the MTOE weighting.
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5270 A. D. Montero-Dorta et al.

Figure 13. The percentage relative gain in precision (see text) provided by
MTOE with respect to FKP on the amplitude of the monopoles and biases
as a function of the number density and total number of objects of the
particular tracer subpopulation. Here, tracers in different redshift slices and
fields are shown in order to illustrate the dependence of the improvement on
the abundance and type of tracer.

The improvement provided by MTOE is not restricted to small
scales. As expected from the very foundation of the method, which
is based on combining different measurements in order minimize
cosmic variance, we find an average gain of ∼10 per cent on
scales k[h Mpc−1] � 0.1 for the ratios of spectra. Importantly,
the application of the method to larger cosmological volumes in
the future will allow us to test whether we can achieve larger
improvements on even larger scales.

The second paper of this series will focus on the application of the
method to the VIPERS data set, as well as the inclusion of all cross-
spectra of the tracers. In particular, it is still to be determined how
much of the reported gains can be recovered when other sources
of uncertainties, associated with a real data set, are present. The
most relevant issue that we can anticipate is the fidelity of the
mocks with respect to the data, in the context of a multi-tracer
analysis. It is important to stress that MTOE can be applied on
data only without mocks. However, mocks are needed to estimate
errors. Mocks (including the VIPERS mocks) are typically built
to reproduce the clustering of a combined data set, or, in some
cases, the dependence of clustering on stellar mass or luminosity.
As we have shown, the ideal situation for a multi-tracer approach
involves having multiple ways of selecting galaxy populations (e.g.
luminosity and colour). If mocks do not reproduce the bias and
number density of these subpopulations, the derived errors can be
inaccurate. Accurate ‘multi-tracer mocks’ are thus needed.

This paper shows that MTOE is also a powerful tool to explore
the physics that takes place on small cosmological scales from the
perspective of the power spectrum measurement. On scales �10
h−1 Mpc, the effect of the 1-halo term (Cooray & Sheth 2002),
which describes the clustering of galaxies inside haloes, starts to
become dominant and can become degenerate with shot noise.
MTOE provides a route into the astrophysics of multiple galaxy
populations, since it can be used to place tighter constraints on
HOD models on small scales.

From the perspective of the halo-galaxy connection, improving on
our ability to measure galaxy biases is advantageous in the context of
assembly bias studies (see e.g. Lin et al. 2016; Miyatake et al. 2016;
Montero-Dorta et al. 2017; Niemiec et al. 2018; Montero-Dorta
et al. 2020). In Sato-Polito et al. (2019), we show how applying the

MTOE to multiple subsets of haloes increases the signal-to-noise
ratio of the secondary bias (i.e. ‘halo assembly bias’) measurement
to a level that can only be achieved if the underlying dark matter
density field of the simulation is known. This convenient ‘trick’ is
not attainable with real data, therefore the usefulness of MTOE.

The unprecedented wealth of cosmological survey data that
will soon be available to the community motivates us to continue
developing MTOE. Experiments such as J-PAS, DESI, Euclid, or
the LSST will map huge volumes of the high-redshift universe with
broad galaxy selections, seeking accurate cosmological measure-
ments over unexplored redshift ranges. MTOE and other multi-
tracer approaches, applied to a single data set or a combination
of multiple surveys, can help us push the limits of the clustering
measurement to scales that were not accessible before.
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de São Paulo (FAPESP) for financial support. LRA thanks both
FAPESP and the Conselho Nacional de Desenvolvimento Cientı́fico
e Tecnológico (CNPq) for financial support. BRG and LG acknowl-
edge support of the Agenzia Spaziale Italiana (ASI), through con-
tract no. 2018-23-HH.0 ‘Euclid’. SdlT acknowledges the support of
the Origins, Constituents and EVolution of the Universe Laboratory
of Excellence (OCEVU Labex, ANR-11-LABX-0060) and the Aix-
Marseille Initiative of Excellence (A∗MIDEX) project (ANR-11-
IDEX-0001-02) funded by the ‘Investissements d’Avenir’ French
government program managed by the Agence Nationale de la
Recherche (ANR).

We also thank S. Vitenti, M. Penna-Lima, and C. Doux for the
use of their Numerical Cosmology package, NumCosmo.13

REFERENCES

Abramo L. R., 2012, MNRAS, 420, 2042
Abramo L. R., Bertacca D., 2017, Phys. Rev. D, 96, 123535
Abramo L. R., Leonard K. E., 2013, MNRAS, 432, 318
Abramo L. R., Secco L. F., Loureiro A., 2016, MNRAS, 455, 3871
Alarcon A., Eriksen M., Gaztañaga E., 2018, MNRAS, 473, 1444
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APPENDIX A : BEST-FITTING VALUES

We provide here best-fitting values for the amplitudes of the
monopoles, monopole ratios, and linear biases of the LC tracers
estimated using both the FKP and MTOE methods, in the three
redshift slices considered. Tables A1 and A2 display results for
integration ranges of 0.1 < k[h Mpc−1] < 0.3 and 0.3 < k[h Mpc−1]
< 0.5, respectively, in the W1 field. Results for the W4 field are
listed in Tables A3 and A4.

Table A1. The best-fitting FKP and MTOE estimates of the amplitudes of the monopoles, monopole ratios, and biases of the LC tracers along with the
percentage relative reduction of the uncertainty provided by MTOE (100 × σ

(r)
FKP − σ

(r)
MTOE/σ

(r)
MTOE), for an integration range 0.1 < k[h Mpc−1] < 0.3, in the

W1 field.

0.6 < z < 0.75 0.75 < z < 0.9 0.9 < z < 1.1

Param. MTOE FKP
Gain (per

cent) MTOE FKP
Gain (per

cent) MTOE FKP
Gain (per

cent)

M1 1.671 ± 0.145 1.629 ± 0.136 − 4.4 1.948 ± 0.151 2.010 ± 0.153 − 1.8 2.367 ± 0.251 2.345 ± 0.259 +4.1
M2 4.838 ± 0.569 4.947 ± 0.667 +14.7 5.920 ± 0.708 5.754 ± 0.799 +16.2 5.739 ± 0.564 5.603 ± 0.686 +24.7
M3 1.990 ± 0.098 1.961 ± 0.100 +3.9 2.572 ± 0.126 2.564 ± 0.142 +12.8 3.265 ± 0.192 3.273 ± 0.210 +9.6
M4 4.404 ± 0.330 4.293 ± 0.367 +14.1 4.722 ± 0.342 4.854 ± 0.421 +19.9 5.352 ± 0.351 5.386 ± 0.411 +16.4

M1, 2 0.332 ± 0.031 0.330 ± 0.035 +12.9 0.332 ± 0.028 0.322 ± 0.034 +24.9 0.412 ± 0.040 0.401 ± 0.046 +17.4
M1, 3 0.851 ± 0.078 0.822 ± 0.059 − 21.8 0.767 ± 0.054 0.759 ± 0.051 − 3.5 0.722 ± 0.070 0.716 ± 0.068 − 2.4
M1, 4 0.366 ± 0.044 0.367 ± 0.036 − 17.5 0.406 ± 0.028 0.405 ± 0.029 +2.1 0.431 ± 0.048 0.446 ± 0.050 − 1.3
M2, 3 2.451 ± 0.292 2.366 ± 0.287 +1.7 2.314 ± 0.245 2.339 ± 0.257 +3.8 1.764 ± 0.158 1.749 ± 0.189 +20.1
M2, 4 1.105 ± 0.139 1.128 ± 0.134 − 5.8 1.192 ± 0.115 1.220 ± 0.124 +5.1 1.061 ± 0.102 1.049 ± 0.111 +9.9
M3, 4 0.443 ± 0.024 0.453 ± 0.027 +7.9 0.528 ± 0.026 0.526 ± 0.032 +20.2 0.599 ± 0.037 0.603 ± 0.040 +8.0

b1 0.952 ± 0.116 0.941 ± 0.114 − 1.0 1.059 ± 0.119 1.155 ± 0.116 − 10.8 1.197 ± 0.137 1.217 ± 0.134 − 3.8
b2 1.911 ± 0.164 1.877 ± 0.171 +5.9 2.111 ± 0.177 2.147 ± 0.190 +5.4 2.048 ± 0.153 2.089 ± 0.180 +14.8
b3 1.126 ± 0.105 1.134 ± 0.104 − 1.2 1.202 ± 0.0 1.364 ± 0.112 – 1.408 ± 0.118 1.524 ± 0.119 − 6.6
b4 1.782 ± 0.117 1.790 ± 0.122 +3.9 1.891 ± 0.123 1.912 ± 0.136 +9.1 2.008 ± 0.123 1.992 ± 0.138 +13.3
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Table A2. Same as Table A1 for an integration range 0.3 < k[h Mpc−1] < 0.5 (W1 field).

0.6 < z < 0.75 0.75 < z < 0.9 0.9 < z < 1.1

Param. MTOE FKP
Gain (per

cent) MTOE FKP
Gain (per

cent) MTOE FKP
Gain (per

cent)

M1 1.675 ± 0.154 1.600 ± 0.170 +15.4 1.981 ± 0.198 1.932 ± 0.225 +16.4 2.297 ± 0.387 2.269 ± 0.374 − 2.2
M2 4.828 ± 0.561 4.633 ± 1.029 +91.2 5.639 ± 0.829 5.913 ± 1.125 +29.4 5.765 ± 0.944 5.726 ± 1.250 +33.3
M3 1.997 ± 0.098 1.974 ± 0.098 +1.3 2.558 ± 0.156 2.515 ± 0.169 +9.9 3.274 ± 0.307 3.239 ± 0.307 +1.4
M4 4.480 ± 0.318 4.387 ± 0.439 +40.9 4.746 ± 0.373 4.829 ± 0.520 +37.0 5.483 ± 0.474 5.444 ± 0.592 +25.7

M1, 2 0.335 ± 0.034 0.293 ± 0.119 +297.9 0.319 ± 0.036 0.336 ± 0.123 +219.2 0.396 ± 0.082 0.404 ± 0.246 +192.8
M1, 3 0.840 ± 0.089 0.834 ± 0.091 +3.4 0.774 ± 0.079 0.759 ± 0.082 +5.9 0.708 ± 0.197 0.724 ± 0.277 +37.1
M1, 4 0.362 ± 0.048 0.367 ± 0.052 +7.8 0.399 ± 0.041 0.393 ± 0.049 +20.4 0.415 ± 0.081 0.436 ± 0.084 − 0.8
M2, 3 2.438 ± 0.292 2.472 ± 0.518 +74.7 2.218 ± 0.309 2.359 ± 0.410 +24.9 1.784 ± 0.366 1.710 ± 0.410 +16.8
M2, 4 1.070 ± 0.138 1.102 ± 0.236 +64.6 1.220 ± 0.138 1.232 ± 0.200 +43.4 1.068 ± 0.165 1.050 ± 0.215 +32.0
M3, 4 0.447 ± 0.027 0.454 ± 0.037 +36.5 0.524 ± 0.034 0.518 ± 0.048 +44.2 0.608 ± 0.064 0.596 ± 0.071 +13.1

b1 0.946 ± 0.113 1.003 ± 0.114 − 4.1 1.046 ± 0.129 1.035 ± 0.129 +1.2 1.200 ± 0.162 1.240 ± 0.168 +0.5
b2 1.878 ± 0.148 1.946 ± 0.251 +63.7 2.119 ± 0.200 2.119 ± 0.252 +26.1 2.140 ± 0.220 2.078 ± 0.286 +33.9
b3 1.050 ± 0.103 1.194 ± 0.0 – 1.357 ± 0.117 1.357 ± 0.113 − 3.6 1.489 ± 0.135 1.508 ± 0.140 +2.2
b4 1.786 ± 0.112 1.818 ± 0.139 +22.0 1.868 ± 0.134 1.946 ± 0.146 +4.5 1.997 ± 0.140 2.002 ± 0.161 +14.8

Table A3. Same as Table A1 for an integration range 0.1 < k[h Mpc−1] < 0.3 in the W4 field.

0.6 < z < 0.75 0.75 < z < 0.9 0.9 < z < 1.1

Param. MTOE FKP
Gain (per

cent) MTOE FKP
Gain (per

cent) MTOE FKP
Gain (per

cent)

M1 1.538 ± 0.199 1.553 ± 0.172 − 14.7 1.946 ± 0.222 1.964 ± 0.220 − 1.6 2.386 ± 0.364 2.443 ± 0.334 − 10.3
M2 3.256 ± 0.590 2.870 ± 0.863 +65.9 5.377 ± 0.881 5.248 ± 1.065 +23.9 5.650 ± 0.983 5.402 ± 1.335 +42.0
M3 2.019 ± 0.184 1.958 ± 0.181 +1.3 2.454 ± 0.203 2.414 ± 0.201 0.4 5.650 ± 0.983 5.402 ± 1.335 +13.0
M4 3.134 ± 0.451 3.078 ± 0.490 +10.5 4.560 ± 0.534 4.783 ± 0.637 +13.7 5.319 ± 0.546 5.135 ± 0.663 +25.9

M1, 2 0.489 ± 0.083 0.474 ± 0.240 +195.8 0.363 ± 0.059 0.359 ± 0.074 +25.4 0.405 ± 0.062 0.416 ± 0.102 +60.7
M1, 3 0.769 ± 0.098 0.736 ± 0.085 − 9.6 0.800 ± 0.089 0.793 ± 0.087 − 2.3 0.693 ± 0.101 0.729 ± 0.098 − 7.8
M1, 4 0.476 ± 0.078 0.476 ± 0.077 +2.2 0.424 ± 0.055 0.425 ± 0.063 +13.5 0.443 ± 0.070 0.459 ± 0.072 − 1.1
M2, 3 1.629 ± 0.275 1.566 ± 0.417 +57.7 2.242 ± 0.336 2.224 ± 0.386 +15.8 1.661 ± 0.272 1.562 ± 0.355 +38.7
M2, 4 0.981 ± 0.160 0.951 ± 0.254 +63.9.9 1.156 ± 0.159 1.160 ± 0.203 +26.9 1.042 ± 0.159 1.102 ± 0.215 +27.5
M3, 4 0.636 ± 0.070 0.644 ± 0.091 +28.4 0.521 ± 0.049 0.515 ± 0.063 +31.6 0.611 ± 0.063 0.640 ± 0.069 +3.7

b1 0.977 ± 0.134 0.916 ± 0.119 − 5.2 1.086 ± 0.132 1.034 ± 0.132 4.8 1.251 ± 0.162 1.228 ± 0.147 − 7.5
b2 1.418 ± 0.197 1.490 ± 0.274 +32.7 1.984 ± 0.215 1.974 ± 0.255 +19.4 2.083 ± 0.227 2.099 ± 0.299 +30.8
b3 1.181 ± 0.119 1.116 ± 0.114 +1.0 1.194 ± 0.123 1.280 ± 0.124 − 6.2 1.490 ± 0.128 1.481 ± 0.126 − 0.8
b4 1.478 ± 0.158 1.497 ± 0.167 +4.2 1.769 ± 0.158 1.863 ± 0.175 +5.6 2.001 ± 0.152 2.005 ± 0.169 +10.9

Table A4. Same as Table A1 for an integration range 0.3 < k[h Mpc−1] < 0.5 in the W4 field.

0.6 < z < 0.75 0.75 < z < 0.9 0.9 < z < 1.1

Param. MTOE FKP
Gain (per

cent) MTOE FKP
Gain (per

cent) MTOE FKP
Gain (per

cent)

M1 1.500 ± 0.180 1.591 ± 0.240 +25.9 1.927 ± 0.235 1.877 ± 0.278 +21.0 2.379 ± 0.529 2.462 ± 0.641 +17.2
M2 3.096 ± 0.914 3.374 ± 1.456 +46.2 5.258 ± 1.096 5.537 ± 1.829 +58.5 5.599 ± 1.258 4.964 ± 2.137 +91.6
M3 1.956 ± 0.174 2.030 ± 0.154 − 14.4 2.386 ± 0.191 2.387 ± 0.230 +20.0 3.398 ± 0.367 3.357 ± 0.414 +14.3
M4 3.119 ± 0.601 3.081 ± 0.654 +10.0 4.510 ± 0.589 4.553 ± 0.745 +25.1 5.140 ± 0.682 5.151 ± 0.880 +28.8

M1, 2 0.491 ± 0.252 0.465 ± 0.368 +54.2 0.373 ± 0.144 0.211 ± 0.175 +114.4 0.412 ± 0.130 0.432 ± 0.350 +156.1
M1, 3 0.725 ± 0.108 0.720 ± 0.133 +24.3 0.813 ± 0.109 0.761 ± 0.119 +16.4 0.693 ± 0.155 0.697 ± 0.269 +71.9
M1, 4 0.464 ± 0.118 0.474 ± 0.352 +190.2 0.413 ± 0.067 0.409 ± 0.087 +31.3 0.436 ± 0.106 0.460 ± 0.141 +25.6
M2, 3 1.515 ± 0.426 1.467 ± 0.725 +75.8 2.153 ± 0.437 2.297 ± 0.714 +53.2 1.707 ± 0.529 1.476 ± 1.224 +167.5
M2, 4 0.990 ± 0.298 0.930 ± 0.750 +167.1 1.177 ± 0.203 1.108 ± 0.385 +101.5 1.079 ± 0.240 0.955 ± 0.407 +91.1
M3, 4 0.612 ± 0.130 0.431 ± 0.241 +163.0 0.513 ± 0.061 0.508 ± 0.080 +32.3 0.635 ± 0.084 0.645 ± 0.103 +20.8

b1 0.933 ± 0.124 0.940 ± 0.138 +10.0 1.070 ± 0.127 1.035 ± 0.144 +16.4 1.200 ± 0.207 1.219 ± 0.238 +13.1
b2 1.484 ± 0.269 1.628 ± 0.449 +51.8 2.019 ± 0.254 2.026 ± 0.420 +64.6 2.083 ± 0.287 1.973 ± 0.473 +73.7
b3 1.142 ± 0.110 1.162 ± 0.115 +2.8 1.319 ± 0.121 1.293 ± 0.128 +7.7 1.475 ± 0.149 1.466 ± 0.155 +4.3
b4 1.474 ± 0.188 1.496 ± 0.214 +12.2 1.823 ± 0.169 1.786 ± 0.202 +22.1 1.949 ± 0.179 1.850 ± 0.217 +27.4
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