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Abstract

In this paper, a new family of continuous distributions, called the modified odd Weibull-G
(MOW-G) family, is studied. The MOW-G family has the feature to use the Weibull distribu-
tion as main generator and a new modification of the odd transformation, opening new horizon
in terms of statistical modelling. Its main theoretical and practical aspects are explored. In
particular, for the mathematical properties, we investigate some results in distribution, quantile
function, skewness, kurtosis, moments, moment generating function, order statistics and en-
tropy. For the statistical aspect, the maximum likelihood estimation method is used to estimate
the model parameters. The performance of this method is evaluated by a Monte Carlo simula-
tion study. Applications to three practical data sets are given to demonstrate the usefulness of
the MOW-G model.

Keywords: Weibull distribution, quantile function, moments, order statistics, entropy, maximum
likelihood estimation, simulation.

AMS Subject Classification: 60E05, 62E15, 62F10.

1 Introduction

The (probability) distributions have a great importance for data modelling in several areas such
as finance, engineering, biology, industry and medical sciences. In particular, for a given data set,
a reliable statistical model can be developed from an appropriate standard distribution (normal,
exponential, Weibull, Cauchy, Lindley. . . ). However, such a model often lacks of goodness of fit
to satisfy the very exigent demand of some modern studies. Indeed, a top degree of precision in
the fitting of the data is often required to capture phenomena of interest. For this reason, many
statisticians are trying to modify existing classical distributions by adding one or more parameters,
with the aim to improve their flexibility. Some recent families of continuous distributions include
the Marshall-Olkin-G family by [16], the odd power Cauchy family by [2], the beta-G family by
[11], the McDonald-G family by [1], the Kumaraswamy-G family by [3], the Weibull-X family by [4],
the gamma-X family by [5], the gamma-G (type 3) family by [21], the logistic-G family by [22], the
exponentiated generalized-G family by [9], the Weibull-G family by [8], the transformed-transformer
family by [4] and the extended Weibull-G family by [15].

In this paper, we study a new family of distributions based on the Weibull distribution and
a new modification of the odd transformation. In order to explain the interest of this family, let
us briefly present our main source of inspiration: the general Weibull family derived to [4]. This
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general family is characterized by the cumulative distribution function (cdf) given by

F (x;λ, θ, ξ) = 1− e−λ{W [G(x;ξ)]}θ , x ∈ R,

where λ, θ > 0,W (y) is a function satisfying the following conditions: (i)W (y) > 0 for y ∈ (0, 1), (ii)
W (y) is differentiable and monotonically non-decreasing for y ∈ (0, 1), (iii) W (y)→ 0 when y → 0
and (iv)W (y)→ +∞ when u→ 1, and G(x; ξ) is the cdf of a continuous distribution, generally well-
established, depending on a parameter vector denoting by ξ. Of course, there are as many functions
W (y) as there are general families, but few of them demonstrated both mathematical and practical
interests. In the literature, the function W1(y) = − log(1 − y), y ∈ (0, 1), has been considered to
define the Weibull-X family by [4] and the odd function defined byW2(y) = y/(1−y), y ∈ (0, 1) has
been used to define the Weibull-G family by [8]. The related models are complementary in terms of
fitting data due to the inequality: W1(y) < W2(y), y ∈ (0, 1). The advantages of these two Weibull
families are numerous, including: (a) the simplicity of the involved functions, (b) the analytical
expression for the quantile function is available, (c) it takes benefit of the Weibull distribution to
provide a high degree of flexibility to the involved functions and (d) the generated statistical models
have strong fitting properties for a wide variety of data sets.

In this paper, we investigate a new choice for W (y): a slight modification of the odd function
given by

W3(y) =
y

1− y(1 + y)/2
, y ∈ (0, 1).

One can also express W3(y) as a weighted version of W2(y); after some algebra, we can show that
W3(y) = W2(y)w(y), with w(y) = 2/(2+y). In addition to the fact thatW3(y) satisfies (i), (ii), (iii)
and (iv), it has the following merits: it is simple, its inverse has a tractable analytical expression
and it offers an intermediary choice between the standard W1(y) and W2(y). Indeed, one can show
the following hierarchy:

W1(y) < W3(y) < W2(y), y ∈ (0, 1). (1)

Hence, we introduce the modified odd Weibull-G (MOW-G) family characterized by the cdf given
by

F (x;λ, θ, ξ) = 1− e−λ
{

G(x;ξ)
1−G(x;ξ)[1+G(x;ξ)]/2

}θ
, x ∈ R. (2)

In view of (1), the MOW-G family is thus complementary to the Weibull-X and Weibull-G families,
and deserves all the attentions. The two other crucial functions of the MOW-G family are presented
below. By differentiation of (2), the probability density function (pdf) of the MOW-G family is
given by

f(x;λ, θ, ξ) = λθ
g(x; ξ)

[
1 +G(x; ξ)2/2

]
G(x; ξ)θ−1{

1−G(x; ξ)
[
1 +G(x; ξ)

]
/2
}θ+1

e
−λ

{
G(x;ξ)

1−G(x;ξ)[1+G(x;ξ)]/2

}θ
, x ∈ R, (3)

where g(x; ξ) is the pdf corresponding to G(x; ξ).
The corresponding hazard rate function (hrf) is given by

h(x;λ, θ, ξ) =
f(x; ξ)

1− F (x; ξ)
= λθ

g(x; ξ)
[
1 +G(x; ξ)2/2

]
G(x; ξ)θ−1

{1−G(x; ξ)[1 +G(x; ξ)]/2}θ+1
, x ∈ R. (4)

The rest of the paper is devoted to the complete study of the MOW-G family, exploring the mathe-
matical, inferential and practical aspects. In Section 2, two special members of the MOW-G family
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are presented, with plots of the corresponding pdf and hrf. In Section 3, useful linear representations
for the cdf and pdf and some derivations are determined, with complete proofs. In Section 4, we
derive its main mathematical properties such as quantile function, moments, moments generating
function, order statistics and general expressions for the Rényi and Shannon entropies. In Section
5, we estimate the model parameters of the MOW-G family by the maximum likelihood method.
Then, a simulation study is performed on a special member of the family to illustrate the conver-
gence properties of the estimators. Three applications to real data illustrate the usefulness of the
MOW-G family in Section 6. The paper is concluded in Section 7.

2 Special distributions

In this section, we will give two special distributions belonging to the MOW-G family.

2.1 The MOW-gamma distribution

Here, we consider the gamma distribution with shape parameter α > 0 and rate parameter β > 0
as baseline distribution. The corresponding cdf is given by

G(x;α, β) =
γ(α, βx)

Γ(α)
, x > 0,

where γ(α, βx) =
∫ βx
0 tα−1e−tdt and Γ(α) =

∫ +∞
0 tα−1e−tdt. The corresponding pdf is given by

g(x;α, β) =
βα

Γ(α)
xα−1e−βx, x > 0.

Then, based on (2), the MOW-gamma (MOW-Ga) distribution is characterized by the cdf given
by

F (x;λ, θ, α, β) = 1− e−λ
{

2γ(α,βx)
2Γ(α)−γ(α,βx)[1+γ(α,βx)/Γ(α)]

}θ
, x > 0.

The corresponding pdf is given by

f(x;λ, θ, α, β) = λθ
βαxα−1

Γ(α)

(
1 +

γ(α, βx)2

2Γ(α)2

){
1− γ(α, βx)

2Γ(α)

[
1 +

γ(α, βx)

Γ(α)

]}−θ−1
× γ(α, βx)θ−1

Γ(α)θ−1
e
−βx−λ

{
2γ(α,βx)

2Γ(α)−γ(α,βx)[1+γ(α,βx)/Γ(α)]

}θ
, x > 0.

The corresponding hrf is given by

h(x;λ, θ, α, β) = λθ
βαxα−1

Γ(α)

(
1 +

γ(α, βx)2

2Γ(α)2

){
1− γ(α, βx)

2Γ(α)

[
1 +

γ(α, βx)

Γ(α)

]}−θ−1 γ(α, βx)θ−1

Γ(α)θ−1
e−βx,

x > 0.

Figure 1 displays some plots of the MOW-gamma pdf for some specific parameter values. We
observe that the MOW-gamma pdf has a wide variety of shapes.
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Figure 1: Plots of MOW-gamma pdfs.

2.2 The MOW-normal distribution

For the second special member, we consider the normal distribution with parameters µ ∈ R and
σ > 0 as baseline distribution. Hence, the corresponding cdf is given by

Φ(x;µ, σ) =

∫ x

−∞
φ(t;µ, σ)dt, x ∈ R,

where
φ(t;µ, σ) =

1√
2πσ2

e−
(t−µ)2

2σ2 , t ∈ R.

Then, based on (2), the MOW-normal (MOW-N) distribution is characterized by the cdf given
by

F (x;λ, θ, µ, σ) = 1− e−λ
{

Φ(x;µ,σ)
1−Φ(x;µ,σ)[1+Φ(x;µ,σ)]/2

}θ
, x ∈ R.

The corresponding pdf is given by

f(x;λ, θ, µ, σ) = λθ
φ(x;µ, σ)

[
1 + Φ(x;µ, σ)2/2

]
Φ(x;µ, σ)θ−1

{1− Φ(x;µ, σ)[1 + Φ(x;µ, σ)]/2}θ+1
e
−λ

{
Φ(x;µ,σ)

1−Φ(x;µ,σ)[1+Φ(x;µ,σ)]/2

}θ
, x ∈ R.

The corresponding hrf is given by

h(x;λ, θ, µ, σ) = λθ
φ(x;µ, σ)

[
1 + Φ(x;µ, σ)2/2

]
Φ(x;µ, σ)θ−1

{1− Φ(x;µ, σ)[1 + Φ(x;µ, σ)]/2}θ+1
, x ∈ R.

Figure 2 displays some plots of the MOW-normal pdf for some selected values for the parameters.
We see that MOW-normal pdf can be unimodal or bimodal, various shapes can be seen.
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Figure 2: Plots of MOW-normal pdfs.

Remark 1 Naturally, other special members of the MOW-G family can be expressed. In Section 6,
the following ones will be considered:

• the MOW-Weibull (MOW-W) distribution with cdf defined by (2) with the baseline cdf of the
Weibull distribution with parameters α > 0 and β > 0, i.e.,

G(x;α, β) = 1− e−(
x
β
)α
, x > 0.

• the MOW Lindley (MOW-L) distribution with cdf defined by (2) with the baseline cdf of the
Lindley distribution with parameter θ > 0, i.e.,

G(x; θ) = 1− 1 + θ + θx

1 + θ
e−θx, x > 0.

3 Linear representations

In this section, we present useful linear representations for the cdf and pdf of the MOW-G family,
as well as some derivations, in terms of cdfs of the exp-G family. These results are of importance
since several mathematical properties of the MOW-G family can be simply deduced from those of
the exp-G family.

Hereafter, we suppose that all the conditions are satisfied to differentiate under the sign (infinite)
sum and to interchange sum and integral signs. This assumption can be investigated for a given
G(x; ξ), but not in full generality as in our study. It is also assumed that G(x; ξ) < 1; the limit case
is excluded. As a last remark, for a practical purpose, the limit bound +∞ in the coming sums can
be replaced by any large positive integer, say 40.
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Proposition 1 Let F (x;λ, θ, ξ) be the cdf given by (2). Then, we have the following linear repre-
sentation:

F (x;λ, θ, ξ) =
+∞∑
k=1

+∞∑
l=0

l∑
m=0

ak,l,mG(x; ξ)θk+l+m, (5)

where

ak,l,m =
(−1)k+l+1λk

2lk!

(
−θk
l

)(
l

m

)
.

Proof. By using the power series of the exponential function, we have

F (x;λ, θ, ξ) = 1−
+∞∑
k=0

(−1)kλk

k!

{
G(x; ξ)

1−G(x; ξ)[1 +G(x; ξ)]/2

}θk
=

+∞∑
k=1

(−1)k+1λk

k!

{
G(x; ξ)

1−G(x; ξ)[1 +G(x; ξ)]/2

}θk
.

On the other side, by applying the binomial theorem, we have{
G(x; ξ)

1−G(x; ξ)[1 +G(x; ξ)]/2

}θk
= G(x; ξ)θk

+∞∑
l=0

(−1)l

2l

(
−θk
l

)
G(x; ξ)l[1 +G(x; ξ)]l

=
+∞∑
l=0

l∑
m=0

(−1)l

2l

(
−θk
l

)(
l

m

)
G(x; ξ)θk+l+m. (6)

By putting the above equalities together, we obtain the desired linear representation. �

Corollary 1 By differentiation of (5), the pdf f(x;λ, θ, ξ) given by (3) can be expressed as

f(x;λ, θ, ξ) =

+∞∑
k=1

+∞∑
l=0

l∑
m=0

bk,l,mg(x; ξ)G(x; ξ)θk+l+m−1,

where bk,l,m = (θk + l +m)ak,l,m.

The result below provides a generalization of Proposition 1.

Proposition 2 Let υ be a positive integer, F (x;λ, θ, ξ) be the cdf given by (2) and f(x;λ, θ, ξ) be
the pdf given by (3). Then, we have the following linear representation:

f(x;λ, θ, ξ)F (x;λ, θ, ξ)υ =
υ+1∑
q=0

+∞∑
k,l=0

l∑
m=0

ck,l,m,q[υ]g(x; ξ)G(x; ξ)θk+l+m−1,

where

ck,l,m,q[υ] =
(−1)q+k+lqkλk(θk + l +m)

(υ + 1)2lk!

(
υ + 1

q

)(
−θk
l

)(
l

m

)
. (7)
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Proof. It follows from the binomial theorem that

F (x;λ, θ, ξ)υ+1 =
υ+1∑
q=0

(
υ + 1

q

)
(−1)qe

−qλ
{

G(x;ξ)
1−G(x;ξ)[1+G(x;ξ)]/2

}θ
.

The power series of the exponential function gives

e
−qλ

{
G(x;ξ)

1−G(x;ξ)[1+G(x;ξ)]/2

}θ
=

+∞∑
k=0

(−1)kqkλk

k!

{
G(x; ξ)

1−G(x; ξ)[1 +G(x; ξ)]/2

}θk
.

Now, by using (6) and combining the equalities above, we obtain the following linear representation:

F (x;λ, θ, ξ)υ+1 =
υ+1∑
q=0

+∞∑
k,l=0

l∑
m=0

dk,l,m,q[υ]G(x; ξ)θk+l+m, (8)

where

dk,l,m,q[υ] =
(−1)q+k+lqkλk

2lk!

(
υ + 1

q

)(
−θk
l

)(
l

m

)
.

We obtain the desired linear representation for f(x;λ, θ, ξ)F (x;λ, θ, ξ)υ by differentiation of (8) and
noticing that ck,l,m,q[υ] = (θk + l +m)dk,l,m,q[υ]/(υ + 1). �

Naturally, by taking υ = 0, Proposition 2 is reduced to Corollary 1. We end this section by the
linear representation for f(x;λ, θ, ξ)α.

Proposition 3 Let α > 0 and f(x;λ, θ, ξ) be the pdf given by (3). Then, the following linear
representation holds:

f(x;λ, θ, ξ)α =

+∞∑
k,m,s,t=0

k∑
l=0

s∑
q=0

uk,l,m,s,t[α]g(x; ξ)αG(x; ξ)k+l+2m+θt+s+q+α(θ−1),

where

uk,l,m,s,t[α] =
(−1)k+t+sλα+tαtθα

2m+l+st!

(
α

m

)(
−α(θ + 1)

k

)(
k

l

)(
−θt
s

)(
s

q

)
.

Proof. We have

f(x;λ, θ, ξ)α = λαθα
g(x; ξ)α[1 +G(x; ξ)2/2]αG(x; ξ)α(θ−1)

{1−G(x; ξ)[1 +G(x; ξ)]/2}α(θ+1)
e
−αλ

{
G(x;ξ)

1−G(x;ξ)[1+G(x;ξ)]/2

}θ
.

By using the binomial theorem, it comes

[1 +G(x; ξ)2/2]αG(x; ξ)α(θ−1) =
+∞∑
m=0

1

2m

(
α

m

)
G(x; ξ)2m+α(θ−1)

and

{1−G(x; ξ)[1 +G(x; ξ)]/2}−α(θ+1) =

+∞∑
k=0

(−1)k

2k

(
−α(θ + 1)

k

)
G(x; ξ)k[1 +G(x; ξ)]k

=

+∞∑
k=0

k∑
l=0

(−1)k

2k

(
−α(θ + 1)

k

)(
k

l

)
G(x; ξ)k+l.
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On the other side, proceeding as in (6), we get

e
−αλ

{
G(x;ξ)

1−G(x;ξ)[1+G(x;ξ)]/2

}θ
=

+∞∑
t=0

(−1)tαtλt

t!

{
G(x; ξ)

1−G(x; ξ)[1 +G(x; ξ)]/2

}θt
=

+∞∑
t=0

+∞∑
s=0

s∑
q=0

(−1)t+sαtλt

2st!

(
−θt
s

)(
s

q

)
G(x; ξ)θt+s+q.

By putting the above equality together, we obtain the desired linear representation. �
Naturally, by taking α = 1, Proposition 3 is reduced to Corollary 1.

4 Mathematical properties

In this section, we give some mathematical properties of the MOW-G family such as some results in
distribution, quantile function, moments, incomplete moments, moment generating function, order
statistics and entropy.

4.1 Some results in distribution

The following results in distribution provide some immediate characterization of the MOW-G family.
Let X be a random variable having the cdf given by (2). Then,

• the random variable Y = G(X; ξ) has the cdf given by FY (y) = 1−e−λ
{

y
1−y(1+y)/2

}θ
, y ∈ (0, 1).

• the random variable Y = G(X;ξ)
1−G(X;ξ)[1+G(X;ξ)]/2 follows the Weibull distribution with parameters

θ and 1/λ1/θ, i.e., with the cdf given by FY (y) = 1− e−λyθ , y > 0.

• the random variable Y =
{

G(X;ξ)
1−G(X;ξ)[1+G(X;ξ)]/2

}θ
follows the exponential distribution with

parameter λ, i.e., with the cdf given by FY (y) = 1− e−λy, y > 0.

4.2 Quantile function

One advantage of the MOW-G family is that the corresponding quantile function has a simple
analytical expression. Indeed, by denoting QG(x; ξ) the quantile function corresponding to G(x; ξ),
the quantile function of the MOW-G family is given by

Q(y;λ, θ, ξ) = QG

−1

2
−
[
− log(1− y)

λ

]− 1
θ

+
1

2

√√√√(1 + 2

[
− log(1− y)

λ

]− 1
θ

)2

+ 8; ξ

 ,

y ∈ (0, 1). (9)

The median is obtained as

M = Q(0.5;λ, θ, ξ) ≈ QG

−1

2
−
(

0.693

λ

)− 1
θ

+
1

2

√√√√(1 + 2

(
0.693

λ

)− 1
θ

)2

+ 8; ξ

 .

The other quartiles can be expressed in a similar manner.
One can also use Q(y;λ, θ, ξ) for simulating values for a particular MOW-G distribution: if U

is a random variable following the uniform distribution U(0, 1), then X = Q(U ;λ, θ, ξ) has the cdf
given by (2).
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4.3 Skewness and kurtosis

We can obtain skewness and kurtosis measures by using the quantile function given by (9). For
instance, the Bowley skewness is given by

S =
Q(1/4;λ, θ, ξ) +Q(3/4;λ, θ, ξ)− 2Q(1/2;λ, θ, ξ)

Q(3/4;λ, θ, ξ)−Q(1/4;λ, θ, ξ)

and the Moors kurtosis is given by

K =
Q(7/8;λ, θ, ξ)−Q(5/8;λ, θ, ξ) +Q(3/8;λ, θ, ξ)−Q(1/8;λ, θ, ξ)

Q(6/8;λ, θ, ξ)−Q(2/8;λ, θ, ξ)

Contrary to the skewness and kurtosis measures based on moments, S and K have the merit to
always exist and have a clear expression thanks to (9). See [18] and [12] for further details.

By considering the MOW-gamma distribution with fixed parameters λ = 1 and β = 1, and
varying parameters θ and α, Figures 3 and 4 show the Bowley skewness and Moors kurtosis, re-
spectively. In particular, in Figure 3, we can see that the MOW-gamma distribution can be left or
right skewed.

Figure 3: Plot of MOW-gamma skewness. Figure 4: Plot of MOW-gamma kurtosis.

4.4 Moments

Hereafter, let X be a random variable having the cdf of the MOW-G family given by (2).
By using Corollary 1, the r-th moment of X can be obtained as

µ′r = E(Xr) =

∫ +∞

−∞
xrf(x;λ, θ, ξ)dx =

+∞∑
k=1

+∞∑
l=0

l∑
m=0

bk,l,m

∫ +∞

−∞
xrg(x; ξ)G(x; ξ)θk+l+m−1dx.
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The last integral can be computed for most of the baseline cdfs G(x; ξ). In the next, this will be
the case for any integral involving exponentiated G(x; ξ).

The mean of X is given by µ = µ′1 and the variance of X is given by σ2 = µ′2 − µ2. The r-th
central moment is given by

µr = E [(X − µ)r] =

∫ +∞

−∞
(x− µ)rf(x;λ, θ, ξ)dx =

r∑
k=0

(
r

k

)
(−1)kµkµ′r−k.

Assuming that they exist, some skewness and kurtosis measures can be defined from the moments.
The most standard ones are the skewness coefficient given by

S∗(X) =
µ3

µ
3/2
2

=
µ′3 − 3µ′2µ+ 2µ3

σ3

and the kurtosis coefficient given by

K∗(X) =
µ4
µ22

=
µ′4 − 4µ′3µ+ 6µ′2µ

2 − 3µ′4
σ4

.

For a given cdf G(x; ξ), they can be calculated.

4.5 Incomplete moments

As for the moments, by using Corollary 1, the r-th incomplete moment of X is obtained as

mr(y) =

∫ y

−∞
xrf(x;λ, θ, ξ)dx =

+∞∑
k=1

+∞∑
l=0

l∑
m=0

bk,l,m

∫ y

−∞
xrg(x; ξ)G(x; ξ)θk+l+m−1dx. (10)

It is a crucial ingredient to define important measures, as the mean deviation of X about µ given
by

δ1 = E(|X − µ|) = 2 [µF (µ)−m1(µ)]

or the mean deviation of X about M given by

δ2 = E(|X −M |) = µ− 2m1(M).

One can also express equations of very useful curves as the Bonferroni and Lorenz curves.

4.6 Moment generating function

The moment generating function of X can be determined from Corollary 1 as

M(t) = E(etX) =

∫ +∞

−∞
etxf(x;λ, θ, ξ)dx

=

+∞∑
k=1

+∞∑
l=0

l∑
m=0

bk,l,m

∫ +∞

0
etxg(x; ξ)G(x; ξ)θk+l+m−1dx.

It is defined for t such that M(t) exists. We also can define it from moments as

M(t) =

+∞∑
k=0

tk

k!
µ′k.
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4.7 Order statistics

Order statistics naturally appear in many applied situations. We refer to [10] for the general theory.
Some basics on the order statistics for the MOW-G family are given below. Let X1, · · · , Xn be a
random sample of size n with common cdf F (x;λ, θ, ξ) given by (2). Let Xi:n be the i-th order
statistic. Then, the pdf of Xi:n can be expressed as

fi:n(x;λ, θ, ξ) =
n!

(i− 1)!(n− i)!
f(x;λ, θ, ξ)F (x;λ, θ, ξ)i−1 [1− F (x;λ, θ, ξ)]n−i

=
n!

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i
j

)
f(x;λ, θ, ξ)F (x;λ, θ, ξ)j+i−1.

It follows from Proposition 2 with υ = j + i− 1 that f(x;λ, θ, ξ)F (x;λ, θ, ξ)j+i−1 can be expressed
as

f(x;λ, θ, ξ)F (x;λ, θ, ξ)j+i−1 =
υ+1∑
q=0

+∞∑
k,l=0

l∑
m=0

ck,l,m,q[j + i− 1]g(x; ξ)G(x; ξ)θk+l+m−1,

where ck,l,m,q[j + i− 1] is defined by (7) with υ = j + i− 1.
So, we have a linear representation of fi:n(x;λ, θ, ξ) in terms of cdfs of the exp-G family as

fi:n(x;λ, θ, ξ) =
n−i∑
j=0

υ+1∑
q=0

+∞∑
k,l=0

l∑
m=0

ei,j,k,l,m,qg(x; ξ)G(x; ξ)θk+l+m−1,

where
ei,j,k,l,m,q =

n!

(i− 1)!(n− i)!
(−1)j

(
n− i
j

)
ck,l,m,q[j + i− 1].

As in the previous subsections, this linear representation is useful to determine properties of the
distribution of Xi:n. In particular, the r-th moment of Xi:n is given by

µ′i:n =

∫ +∞

−∞
xrfi:n(x;λ, θ, ξ)dx

=

n−i∑
j=0

υ+1∑
q=0

+∞∑
k,l=0

l∑
m=0 (k+l+m>0)

ei,j,k,l,m,q

∫ +∞

−∞
xrg(x; ξ)G(x; ξ)θk+l+m−1dx.

4.8 Entropy

The entropy is a measure of uncertainty (or ignorance) of a given probability distribution. Here, we
investigate two popular entropy measures, the Rényi entropy and Shannon entropy, for the MOW-G
family. See [19] and [20] for the former theory and applications.

First of all, the Rényi entropy is defined by

Iα(λ, θ, ξ) =
1

1− α
log

{∫ +∞

−∞
f(x;λ, θ, ξ)αdx

}
,

where α > 0 and α 6= 1. By using Proposition 3, we immediately obtain

Iα(λ, θ, ξ) =

1

1− α
log


+∞∑

k,m,s,t=0

k∑
l=0

s∑
q=0

uk,l,m,s,t[α]

∫ +∞

−∞
g(x; ξ)αG(x; ξ)k+l+2m+θt+s+q+α(θ−1)dx

 .

11



Also, the Shannon entropy of a random variable X is defined by

η(λ, θ, ξ) = E {− log[f(X;λ, θ, ξ)]} .

One can determine it by using the relation: η(λ, θ, ξ) = limα→1 Iα(λ, θ, ξ). An alternative approach
is is presented below. It follows from the expression of f(x;λ, θ, ξ) that

η(λ, θ, ξ) =− log(λ)− log(θ)− E {log [g(X; ξ)]} − E
{

log
[
1 +G(X; ξ)2/2

]}
− (θ − 1)E {log [G(X; ξ)]}+ (θ + 1)E {log [1−G(X; ξ)(1 +G(X; ξ))/2]}

+ λE

[{
G(X; ξ)

1−G(X; ξ)(1 +G(X; ξ))/2

}θ]
.

By using Corollary 1, we have

E {log [g(X; ξ)]} =
+∞∑
k=1

+∞∑
l=0

l∑
m=0

bk,l,m

∫ +∞

−∞
log [g(x; ξ)] g(x; ξ)G(x; ξ)θk+l+m−1dx.

The last integral can be calculated for most of the baseline cdfs G(x; ξ). For the other terms, by
using the power series of the logarithmic function and the binomial theorem when necessary, we get

E
{

log
[
1 +G(X; ξ)2/2

]}
=

+∞∑
i=1

(−1)i+1

i2i
E
[
G(X; ξ)2i

]
,

E {log [G(X; ξ)]} = −
+∞∑
i=1

i∑
j=0

(−1)j

i

(
i

j

)
E
[
G(X; ξ)j

]
and

E {log [1−G(X; ξ)(1 +G(X; ξ))/2]} = −
+∞∑
i=1

i∑
j=0

1

i2i

(
i

j

)
E
[
G(X; ξ)i+j

]
.

Also, by proceeding as in (6), we obtain

E

[{
G(x; ξ)

1−G(x; ξ)[1 +G(x; ξ)]/2

}θ]
=

+∞∑
i=0

i∑
j=0

(−1)i

2i

(
−θ
i

)(
i

j

)
E
[
G(X; ξ)i+j+θ

]
.

Any expectation of exponentiated G(X; ξ) can be expressed by using Corollary 1. Indeed, for any
κ ≥ 0,

E [G(X; ξ)κ] =

+∞∑
k=1

+∞∑
l=0

l∑
m=0

bk,l,m

∫ +∞

−∞
g(x; ξ)G(x; ξ)κ+θk+l+m−1dx

=
+∞∑
k=1

+∞∑
l=0

l∑
m=0

bk,l,m
1

κ+ θk + l +m
.

Hence, by combining the equalities above, we obtain a linear representation of η(λ, θ, ξ).

5 Inferential considerations

This section is devoted to some inferential considerations of the MOW-G model.
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5.1 Estimation

In this section, we explore the estimation of the unknown parameters of the MOW-G model by the
maximum likelihood method. Let x1, . . . , xn be an observed sample of size n of a random variable
with pdf f(x;λ, θ, ξ) given by (3). Here, λ, θ and ξ are the unknown parameters of interest. Then,
the corresponding log-likelihood function is given by

ln(λ, θ, ξ) =
n∑
i=1

log[f(xi;λ, θ, ξ)]

= n log(λ) + n log(θ) +
n∑
i=1

log[g(xi; ξ)] +
n∑
i=1

log[1 +G(xi; ξ)
2/2] + (θ − 1)

n∑
i=1

log[G(xi; ξ)]

− (θ + 1)
n∑
i=1

log{1−G(xi; ξ)[1 +G(xi; ξ)]/2} − λ
n∑
i=1

{
G(xi; ξ)

1−G(xi; ξ)[1 +G(xi; ξ)]/2

}θ
. (11)

The maximum likelihood estimators (MLEs) of λ, θ and ξ are obtained as the maximum of ln(λ, θ, ξ)
according to λ, θ and ξ. Assuming that the first partial derivative of ln(λ, θ, ξ) exist, the MLEs of λ,
θ and ξ can be obtained by solving the following equations: ∂`n/∂λ = 0, ∂`n/∂θ = 0, ∂`n/∂ξ = 0,
simultaneously, according to λ, θ and ξ. Then, derivatives of (11) with respect to λ, θ and ξ are
given by

∂ln(λ, θ, ξ)

∂λ
=
n

λ
−

n∑
i=1

{
G(xi; ξ)

1−G(xi; ξ)[1 +G(xi; ξ)]/2

}θ
,

∂ln(λ, θ, ξ)

∂θ
=
n

θ
+

n∑
i=1

log[G(xi; ξ)]−
n∑
i=1

log{1−G(xi; ξ)[1 +G(xi; ξ)]/2}

− λ
n∑
i=1

log

[
G(xi; ξ)

1−G(xi; ξ)[1 +G(xi; ξ)]/2

]{
G(xi; ξ)

1−G(xi; ξ)[1 +G(xi; ξ)]/2

}θ
and

∂ln(λ, θ, ξ)

∂ξ
=

n∑
i=1

g(ξ)(xi; ξ)

g(xi; ξ)
+

n∑
i=1

G(ξ)(xi; ξ)G(xi; ξ)

1 +G(xi; ξ)2/2
+ (θ − 1)

n∑
i=1

G(ξ)(xi; ξ)

G(xi; ξ)

+ (θ + 1)

n∑
i=1

G(ξ)(xi; ξ)[1 + 2G(xi; ξ)]

2−G(xi; ξ)[1 +G(xi; ξ)]

+ λθ

n∑
i=1

G(ξ)(xi; ξ)G(xi; ξ)
θ−1[1 +G(xi; ξ)

2/2]

{1−G(xi; ξ)[1 +G(xi; ξ)]/2}θ+1
,

where g(ξ)(xi; ξ) = ∂g(xi; ξ)/∂ξ and G(ξ)(xi; ξ) = ∂G(xi; ξ)/∂ξ. The interest of the maximum
likelihood method is that, under some conditions of regularity, we have theoretical guaranties on
the convergence of the resulting estimators when n is large (consistence, asymptotic normality. . . ).
This aspect is illustrated in the next subsection with the MOW-gamma model.

5.2 Simulation study

Here, we present a simulation study to examine the performance of the MLEs of the parameters λ,
θ, α and β of the MOW-gamma model (see Subsection 2.1 for the mathematical details). Thus, by
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using the Monte Carlo simulation method, we generate N = 100 times samples of size n = 45 + 5k,
with k ∈ {1, . . . , 100} from the quantile function of the MOW-gamma distribution. We use the
statistical software R (through the package stats4). The performance of the estimators is evaluated
through their empirical biases and mean square errors (MSEs) given by, respectively,

B̂iasε(n) =
1

N

N∑
i=1

(ε̂i − ε), M̂SEε(n) =
1

N

N∑
i=1

(ε̂i − ε)2,

where ε ∈ {λ, θ, α, β} and ε̂i is the MLE of ε, obtained at the i-th repetition of the simulation. The
simulated results for the above measures are displayed in Figures 5 and 6, respectively. The plots
in Figure 5 indicate that the empirical biases of parameters stabilize to 0 when the sample size n
increases. This shows the accuracy of the MLEs. The plots in Figure 6 show that, as the sample
size n increases, the MSEs decrease and tend to 0. This shows the consistency of the MLEs.
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Figure 5: Plots of the empirical biases.
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Figure 6: Plots of the empirical MSEs.

6 Applications

In this section, we demonstrate the flexibility and the potentiality of the MOW-G model through
three applications on practical data sets having different natures. All the involved parameters are
estimated by the maximum likelihood method, as presented in Section 5 for the MOW-G model.
The statistical software R is used (through the package AdequacyModel). In each application, we
first compare the MOW-gamma model with other useful competitive models of the literature via
the Akaike Information Criterion (AIC). The best model to fit the data is the model with the
smallest value of the AIC. Then, we perform an intrinsic investigation of the MOW-G model by
comparing the MOW-gamma, MOW-Weibull and MOW-Lindley models (see Remark 1 for more
details about the MOW-Weibull and MOW-Lindley distributions). The Kolmogorov-Smirnov (K-S)
test is applied to show the pertinence of these models to fit the considered data sets. Then, we
compute the AIC, Corrected AIC (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn
Information Criterion (HQIC), Cramer-von Mises (W ∗) and Anderson Darling (A∗) statistics. The
best model to fit the data is the model with the smallest value of each these statistics.

6.1 First application

In the first application, we consider the data representing the survival times (in days) of 72 guinea
pigs infected with virulent tubercle bacilli, observed and reported by [7]. These data was also studied
by [13]. The data set is given by: 0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96,
1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22,
1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83,
1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78,
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2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55.
As strong competitors, we focus on the models presented in [13]. By comparing the AIC statistic,

Table 1 shows that the MOW-gamma model outperformed the competitors with AIC = 194.404.
Then, in order to provide a large view on the applicability of the MOW-G model, we focus our
attention on the MOW-gamma, MOW-Weibull and MOW-Lindley models. The MLEs of the pa-
rameters are given in Table 2, with the value the log-likelihood functions at this MLEs (`n) and
p-values of the K-S test. Since all the p-values satisfy p-value > 0.05, these models are suitable to
fit the considered data set. Table 3 shows a summary of the AIC, BIC, CAIC, HQIC, W ∗ and A∗

statistics for each model, with favorable results for the MOW-gamma model. The histogram of the
guinea pigs data and plots of the estimated pdfs are displayed in Figure 7. The cdfs for each model
are shown in Figure 8. It is clear that MOW-gamma model is the best to fit the data.

Model AIC
MOW-gamma 194.404

OGEPF 217.014
EKwPF 224.355
TPF 231.836

Table 1: AIC of the considered models.

Model MLE -ln K-S p-value

MOW-gamma λ̂=3.0951839, θ̂=0.2578448,
α̂= 12.3690828, β̂= 3.1644151

93.20229 0.080796 0.7351

MOW-Weibull λ̂=32.2341292, θ̂=0.6003577,
α̂= 3.0375828, β̂= 13.4027056

95.79146 0.10493 0.4061

MOW-Lindley λ̂=31.4349756, θ̂= 1.3388160,
α̂=0.1576801

97.09702 0.10997 0.3486

Table 2: MLEs of the considered MOW-G parameters, −`n and K-S test.

Model AIC BIC HQIC CAIC W ∗ A∗

MOW-gamma 194.4046 203.5112 198.03 195.0016 0.06383593 0.4168578
MOW-Weibull 199.5829 208.6896 203.2083 200.1799 0.164807 0.9707013
MOW-Lindley 200.194 207.024 202.9131 200.547 0.20699 1.21183

Table 3: Statistics of the considered MOW-G models.
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Figure 7: Plots of the estimated pdfs.
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Figure 8: Plots of the estimated cdfs.

6.2 Second application

In the second application, we consider the data set used by [6]. It contains the values of fatigue
time of 101 6061-T6 aluminum coupons cut parallel to the direction of rolling and oscillated at 18
cycles per second (cps). These data are also studied by [8]. This data set is given by: 70, 90, 96,
97, 99, 100, 103, 104, 104, 105, 107, 108, 108, 108, 109, 109, 112, 112, 113, 114, 114, 114,
116, 119, 120, 120, 120, 121, 121, 123, 124, 124, 124, 124, 124, 128, 128, 129, 129, 130,
130, 130, 131, 131, 131, 131, 131, 132, 132, 132, 133, 134, 134, 134, 134, 134, 136, 136,
137, 138, 138, 138, 139, 139, 141, 141, 142, 142, 142, 142, 142, 142, 144, 144, 145, 146,
148, 148, 149, 151, 151, 152, 155, 156, 157, 157, 157, 157, 158, 159, 162, 163, 163, 164,
166, 166, 168, 170, 174, 196, 212.

We consider the competitive models presented in [8]. The measures collected in Table 4 show that
the MOW-gamma model is the best by comparing the AIC statistic. Table 5 gives the estimations
of the MOW-G models parameters, log likelihood, K-S statistics and the p-value. According these
p-values, the MOW-gamma model is the more appropriate to fit these data. Then, Table 6 shows
the AIC, BIC, CAIC, HQIC, W ∗ and A∗ statistics for each model. The histogram of the data and
plots of the estimated pdfs are displayed in Figure 9. The estimated cdfs for each model are shown
in Figure 10. Again, we observe that the MOW-gamma model is the best to fit of the data.

Model AIC
MOW-gamma 918.1

WBXII 920.6
BBXII 933.2
WLL 924.0

Table 4: AIC of the considered models.
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Model MLE -ln K-S p-value

MOW-gamma λ̂=5.7131479, θ̂=0.1670157,
α̂= 117.7898653, β̂= 0.5657607

455.0856 0.12476 0.8456

MOW-Weibull λ̂=0.002772359, θ̂=0.264697465,
α̂= 0.954442502, β̂= 5.517385214

472.5828 0.324817 0.08621

MOW-Lindley λ̂= 46.790151334, θ̂= 3.467074486,
α̂=0.007087977

462.8913 0.10074 0.2569

Table 5: MLEs of the considered MOW-G parameters, −`n and K-S test.

Model AIC BIC HQIC CAIC W ∗ A∗

MOW-gamma 918.1713 928.6318 922.406 918.588 0.04273115 0.262331
MOW-Weibull 953.1657 963.6262 957.4004 953.5823 0.324817 2.065253
MOW-Lindley 931.7826 939.6279 934.9586 932.03 0.1479253 0.967373

Table 6: Statistics of the considered MOW-G models.
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Figure 9: Plots of the estimated pdfs.
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Figure 10: Plots of the estimated cdfs.

6.3 Third application

The third application considers the data set obtained from [17]. It gives the failure and running
times of a sample of 30 devices, and are studied by [14], among others. The data set is given by:
2, 10, 13, 23, 23, 28, 30, 65, 80, 88, 106, 143, 147, 173, 181, 212, 245, 247, 261, 266, 275,
293, 300, 300, 300, 300, 300, 300, 300, 300.

We also adopt the models studied in [14] as competitive models. In Table 7, we compare the
MOW-gamma model with these competitive models, by comparing their AIC statistics. Again, the
MOW-gamma model is the best with AIC = 346.9268. Table 8 gives the estimations of the MOW-G
models parameters, log likelihood, K-S statistics and the p-value. All the models satisfy p-value
> 0.05, showing that they are adequate to fit these data. Then, Table 9 shows the AIC, BIC, CAIC,
HQIC, W ∗ and A∗ statistics for each model. The histogram of the data and plots of the estimated
pdfs are displayed in Figure 11. The estimated cdfs for each model are shown in Figure 12.
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Model AIC
MOW-gamma 346.9268

W-g 368.5341
EG 370.9992
EE 374.2259

Table 7: AIC of the considered models.

Model MLE -ln K-S p-value

MOW-gamma λ̂=0.53253335, θ̂=0.03540592,
α̂= 55.17933057, β̂= 0.46402242

169.4634 0.14339 0.5681

MOW-Weibull λ̂=0.09557056, θ̂=0.21449528,
α̂=0.95108786, β̂= 17.60538523

179.372 0.16803 0.3653

MOW-Lindley λ̂=0.21711293, θ̂= 0.41644317,
α̂=0.02661373

175.9652 0.16658 0.3758

Table 8: MLEs of the considered MOW-G parameters, −`n and K-S test.

Model AIC BIC HQIC CAIC W ∗ A∗

MOW-gamma 346.9268 352.5315 348.7198 348.5268 0.1604515 1.084789
MOW-Weibull 366.744 372.3488 368.537 368.344 0.2185086 1.49234
MOW-Lindley 357.9303 362.1339 359.2751 358.8534 0.1794816 1.206463

Table 9: Statistics of the considered MOW-G models.
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Figure 11: Plots of the estimated pdfs.
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Figure 12: Plots of the estimated cdfs.

In view of these three applications, one can say that the MOW-gamma model is very flexible
and give nice fits for a wide variety of data sets with different characteristics (the first data set is
clearly right skewed, the second one is nearly symmetric and the third is bimodal).

19



7 Conclusion

In this paper, we introduce a new family of continuous distributions called the modified odd Weibull-
G (MOW-G) family. In particular, it is constructed from the T-X transformation of [4] defined with
the Weibull distribution and a promising new alternative of the odd transformation. We study some
its mathematical properties including the quantile function, skewness, kurtosis, moments, moment
generating function, order statistics and entropy. Then, the inferential aspect of the MOW-G family
is explored. The maximum likelihood method is applied to estimate the model parameters and the
performance of the MLEs is discussed by the biases and mean squared errors (MSE) using Monte
Carlo simulations. A suitable MOW-G model to fit the data is discussed by the use of three practical
data sets, the results show that the MOW-gamma model is the best in terms of fit as compared
to competitive models. Hence, it is hoped that the new family of distributions will attract wider
applications in different fields of study.
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