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Enhancing Humanoids' Walking Skills through Morphogenesis Evolution Method

This paper presents an evolution method used to modify the morphology of humanoids to make them more efficient in a specific direction of walking. Starting from the NAO's model used in the 3D Simulation Soccer League, the walking specializations are based on 5 to 8 parameters that are being evolved. A black-box optimization process is run and guided by a decision-making function that defines the outcome of the humanoid evolution process. The simulation results lead to four optimized morphological profiles, each of them specialized for either forward, or lateral, or diagonal walk, or in-place turn respectively. These results could be used to build heterogeneous humanoids inside a team of soccer players.

Introduction

The tuning of gait parameters thanks to automatic procedure has been widely studied. Mimicking humans and using machine learning algorithms are the most common ways to tune walking parameters. Starting from a set of parameters, short modifications are applied iteratively to improve the set of parameters, according to a fitness function. Hebbel et al. [START_REF] Hebbel | Modeling and Learning Walking Gaits of Biped Robots[END_REF] successfully used different Evolution Strategies to design a fast forward walker. Following the process of mutation/selection, they proposed solutions to avoid local optima by only selecting children that differ from their parents and to explore more evolution branches over developing multiple parents. Niehaus et al. [START_REF] Niehaus | Gait Optimization on a Humanoid Robot using Particle Swarm Optimization[END_REF] used Particle Swarm Optimization to design an omni-directional walk. The omni-directional property is synthesized into five walking direction sets. As the gait is modelled with a 14 parameter set, the robot uses parameter values that are defined for the synthesized walking direction. Different speeds result from this approach. Moving left, backward and diagonally forward are equivalent. Compared to these first three directions, moving diagonally backward is slower and moving straight forward is faster. MacAlpine and Stone [START_REF] Macalpine | Using Dynamic Rewards to Learn a Fully Holonomic Bipedal Walk[END_REF] proposed the use of a uniform-velocity omnidirectional walk. The optimization process is achieved with Covariance Matrix Adaptation Evolution Strategy [START_REF] Hansen | The CMA Evolution Strategy: A Tutorial[END_REF] that is able to adapt the next generation according to previous generations' results. The evaluation of walking parameter sets is guided by goToTarget trials, that consist of a sequence of moves to different targets along different directions. Travelled distance, spent time and number of falls are taken into account to define a reward of the tested 14 parameters. To keep the advantage provided by fast forward walking and accurate positioning in the field, they added a Sprint parameter set and a Positioning parameter set. Results are developed over 5 reward policies that produce different forward/backward/sideways walking speeds. Farchy et al. [START_REF] Farchy | Humanoid Robots Learning to Walk Faster: From the Real World to Simulation and Back[END_REF] introduced Grounded Simulation Learning to reduce the gap between simulation and real application in humanoid walking optimization. The simulation process includes simulation server modification to fit simulation and application results, although models are slightly different. Simulation tests use the original NAO version and application tests use the last NAO version with longer legs.

The different techniques in the related work listed above lead to significant results on skill design optimization. However most of the optimization techniques depend on the optimization problem itself. As we look for a single uniform optimization technique without any preliminary step of parameters definition, particle swarm optimization techniques were discarded due to the definition of population size and selection operator that clearly influence the optimization effectiveness and thus require more optimization iterations. Previous work on learning methods also proposed to change reward weights over time to reduce the number of optimization iterations. As we study multiple skill optimization with different metrics, learning methods were also discarded. Therefore the main contribution of this paper is to present a unified humanoid enhancement process through an evolution method that is defined as generic, so that it allows enhancing different skills for different moves using different morphological models.

Jouandeau and Hugel [START_REF] Jouandeau | Simultaneous evolution of leg morphology and walking skills to build the best humanoid walker[END_REF] introduced an optimization process that is applied to both morphological characteristics and walking parameters [START_REF] Hugel | Walking Patterns for Real Time Path Planning Simulation of Humanoids[END_REF][START_REF] Hugel | Automatic generation of humanoid s geometric model parameters[END_REF]. They improved the forward walking speed by tuning 2 morphological and 3 functional parameters using the Confident Local OPtimization [START_REF] Coulom | CLOP: Confident Local Optimization for Noisy Black-Box Parameter Tuning[END_REF] (CLOP) process. Two policies were finally proposed to define a best-first agent and a best-average agent. Results showed improvements of the morphological model as the optimization process produced faster humanoid walkers, with more realistic, safe and precise walk. The authors also used the same optimization framework to increase kicking skills of humanoids [START_REF] Jouandeau | Optimization of Parametrised Kicking Motion for Humanoid Soccer Player[END_REF]. For a kick move, they applied a skill optimization process to different subsets of parameters of kicking parameters. Results shows that sequential sub-process optimization can lead to better results.

The developments described in this paper extend the above concept of simultaneous tuning of leg morphology and walking parameters to build humanoids with enhanced walking skills in a specific direction. 5 to 8 parameters are being evolved to optimize 4 different walking specializations, that are forward walk, lateral walk, diagonal walk, and in-place turns.

This paper is organized as follows. Section 2 describes the walking gaits that were used for the proposed approach. Section 3 describes the proposed optimization process according to four desired walking specializations. The process produces simultaneous evolution of morphological parameters and walking pa-rameters to enhance walking skills. Section 4 describes and discusses the obtained results. Section 5 concludes.

Walking gaits

In this study walking gaits were based on the Zero Moment Point (ZMP) technique [START_REF] Vukobratovic | Zero-moment point -thirty five years of its life[END_REF] applied to the 3D-LIP model [START_REF] Kajita | Humanoid Robot, Ohmsha Ltd, 3-1 Kanda Nishikicho[END_REF] that is represented by a single inverted pendulum with a massless telescopic leg that connects the supporting foot and the Center Of Mass (COM) of the entire robot. The height of the COM is kept constant, and there is no torque between the ground and the supporting foot. The robot is assumed to walk on a horizontal plane, with alternating single support phases. The double support phase is thus instantaneous.

The equations that govern the relationship between the position (x G , y G , z G ) of the COM and the ZMP -named P * -are given by [START_REF] Kajita | Humanoid Robot, Ohmsha Ltd, 3-1 Kanda Nishikicho[END_REF]:

ẍG = g z G (x G -x P * ) (1) ÿG = g z G (y G -y P * ) ( 2 
)
where g is the gravity.

In our approach the ZMP is kept fixed for each single support phase. This leads to a hyperbolic shape of the COM trajectory for each step, also called walking primitive:

x G (t) = (x i(n) G -x P * ) cosh(t/T C ) +T C ẋi(n) G sinh(t/T C ) + x P * (3) ẋG (t) = (x i(n) G -x P * ) sinh(t/T C )/T C + ẋi(n) G cosh(t/T C ) ( 4 
)
where n is the step number,

x i(n) G and ẋi(n) G
are respectively the COM initial x-position and the COM initial x-velocity of step n, and T C = z G g . The same holds for y G (t) and ẏG (t).

Gait and morphological optimizations

This section presents the evolution process proposed to improve displacement capabilities of humanoids. The optimization process modifies the morphological characteristics and the walking parameters. It is applied to 4 typical moves: forward translation, lateral translation, diagonal translation, and rotation, to create players with self-adapted morphologies. This section also details different scoring functions for these moves.

Evolution process

Using the black box optimizer CLOP, the evolution process is run with a list of input parameters, minimum and maximum values for each parameter and a pick-out function to qualify results. The set L defines input parameters with their minimum and maximum values. During the evolution process, results are collected in the history set H. For each evolution iteration, a new set of parameter values are chosen from L according to H. Each evolution iteration is processed over 10 trials, to produce average evaluation values. At the end of each evolution iteration, the fitness function pickOut states if the result is better, equivalent or worse than the best known result. Then parameters converge to best evolution values. This evolution process is presented in Alg. 1. It can be applied to different types T that defines the content of all sets.

Algorithm 1 evolution < T >(n, L, pickOut) 1: (ν , H) ← (∅, ∅) 2: for i = 0 to n do 3: p ← newParams < T >(H, L) 4: (ν) ← multipleTrials < T >(p) 5: (ν , h) ← pickOut < T >(ν, ν ) 6: insert < T >((p , h), H) 7: end for 8: return paramsFrom < T >(ν )
The pickOut function returns three possible values that correspond to better, equivalent and worse results. At each iteration, a new set of parameters p is chosen. ν stands for best acceptable results. Each CLOP iteration implies that a new tuple (p,h) is inserted in H. If n is too small, ν could remain empty, which means that no solution is found over n iterations. As presented in Alg. 1 line 1, the process is started from scratch. At the end, the best parameters that correspond to the results ν are returned.

Evaluation of evolution

A list of constant values are required for the evaluation of the evolution. The SU CCESS RAT E (that is equal to 0.75) defines the rate of trials achieved without falling. The XY RAT IO (that is equal to 0.1) represents the maximal lateral drift allowed, and Y X RAT IO (that is equal to 0.1) the maximal longitudinal drift allowed. The DIAG RAT IO (that is equal to 1.1) qualifies the maximal drift allowed in a diagonal move between longitudinal and lateral distances travelled. α and β (that are equal to 3 and 1) are introduced to compare averages related to the normal distributions used in the process. γ (that is equal to 0.7) is a ratio to compare standard deviations and to quantify stability.

Our evolution process for humanoids is based on the optimization of 4 types T that correspond to 4 different basic moves : 3 translations and 1 rotation. For Algorithm 2 pickOut < T >((s, m, σ), (s , m , σ )) each move, < T > defines type value (used in Alg. 2 lines 4, 10, 16 and 24) and eventually a target value (used in Alg. 2 line 29 specially in an accuracy test). The 3 translations are selected among the 8 discrete walking directions : moving along the longitudinal axis (forward and backward), moving sideways (right or left) and moving diagonally (forward or backward, left or right). Since backward walking patterns are not frequently used, only the 5 forward translational moves, namely left, diagonal left, forward, diagonal right and right, were selected for the process. The rotation move is a self-rotating move on the spot. Each translation-move optimization is based on a single policy. Because the default rotation that was tuned manually is already effective -fast, large steps and no fall -, it appears to be close to its optimum parameter values. This is the reason why the optimization process for rotation moves is associated with two possible policies, the first policy fosters better accuracy, and the second policy fosters reduced execution time.

The main core of the evaluation function is presented in Alg. 2. Inside each set ν from Alg. 1 :

the subset m defines average values of longitudinal step length, lateral step length, turning step angle and execution time.

the subset σ defines standard deviations values related to the average values.

the subset s defines the success rate of the experiments. Therefore, ν (respect. ν ) set in Alg. 1 is replaced with its subsets (s,m,σ) (respect. (s ,m ,σ ) in Alg .2).

The evaluation function is used for all moves, calling a more specialized subfunction if preliminary tests are passed successfully. First of all, as tested in Alg. 2 line 1, a miminum success rate s is needed. Therefore, depending on the type of move, the function checks :

-The lateral drift while translating forward, in Alg. 2 line 3.

-The longitudinal drift while translating sideways, in Alg. 2 line 7.

-The shift between translation axes while translating in diagonal, in Alg. 2 line 11. -The drift while self rotating on the spot, in Alg. 2 line 19.

For the evaluation of translations the same translationPickOut function is called with the same average results -named m and m -but with different criteria:

-Translating forward uses σ x and σ x that define the standard deviations of forward translation on the x-axis, in Alg. 2 line 4. -Translating sideways uses σ y and σ y that define the standard deviations of sideways translation on the y-axis, in Alg. 2 line 8. -Translating in diagonal uses distances -named e and e -that define the standard deviations of the achieved distance, in Alg. 2 line 16.

As rotation is already very effective, the optimization of rotation moves in Alg. 2 is associated with two possible policies, the one fostering accuracy (line 20) or the other one reduced execution time (line 21). Accuracy optimization is achieved according to a specific target that defines the desired rotation angle.

Details of the respective evaluation functions are explained in the next section.

Specialized evaluations

Specialized evaluations regroup: The translation evaluation function, detailed in Alg. 3 ; The rotation evaluation function that checks the resulting accuracy, detailed in Alg. 4 ; The rotation evaluation function that checks the resulting speed, detailed in Alg. 5.

Algorithm 3 translationPickOut (m, e, m , e ) All these evaluation functions make use of the three constant values α, β and γ: α is the nearness factor: if the new result is not close enough to the best known result, parameters are considered to lead to a worst instead of a best known result ; β is the equivalence factor: the test is similar to the nearness factor test with a different threshold. The result is now EQU IV ALEN T with this factor whereas it is REJECT with α. Because we compare averages and standard deviations resulting from two experiments, it is logical to ensure that β < α ; γ is the width factor: if the new result is more stable, then it is better.

1: if m == U N DEF IN ED then return ACCEP T ; 2: d ← sqrt ( m 2 x + m 2 y ); 3: d ← sqrt ( m 2 x + m 2 y ); 4: if d < d -
Algorithm 4 RPO accuracy (target, m, σ, m , σ )

1: if m == U N DEF IN ED then return ACCEP T ; 2: if | m θ -target | > | m θ -target | + ασ θ then return REJECT ; 3: if | m θ -target | < | m θ -target | -βσ θ then return EQU IV ALEN T ; 4: if σ θ < γσ θ then return ACCEP T ; 5: if | m θ -target | > | m θ -target | then return EQU IV ALEN T ; 6: return ACCEP T ;
As these functions are iteratively used, the constant values contribute to the convergence speed of the evolution. 

Parameters influence and trials

The optimization process can be seen as a nature-inspired growth since it makes morphological parameters of the legs and locomotion parameters evolve simultaneously. The first column of Tab. 1 and Tab.2 contains the morphological leg parameters and the walking parameters with upper/lower bounds.

The morphological leg parameters are listed first in these two tables. These parameters are related to the morphology of the leg:

-T highRelHip2 Z stands for the semi-length of the femur. The change of this parameter value changes the cural index of the leg, which is the ratio of the tibia length with the femur length. The cural index is one of the key parameters in human morphology since it is useful for the comparison of the different bipeds that colonized the Earth since the appearance of the first hominids. The tibia length is kept fixed. -Hip1RelT orso X is the half length between hips. This parameter can be tuned to build a larger or a narrower pelvis for the humanoid robot. A larger pelvis can increase the reachable space of the legs below the trunk and reduce collisions between legs. This parameter is expected to influence the quality of the walking patterns that involve sideways moves. ratio f lexion is the leg flexion ratio, which is defined as the ratio of the hip height from the ground over the total length of the leg when stretched. A change of the flexion ratio has an influence on the way the robot walks, i.e with knees more or less flexed.

The walking parameters are listed below the morphological parameters in Tab. 1 and Tab.2. The walking parameters can be varied to tune the walking skills of the robot in order to get a quick and well-balanced gait:

of f set M idAnkles 2 T orso I stands for the horizontal distance between the middle of the ankles and the torso center. This parameter allows to balance the weight of the torso with respect to the flexed legs. The COM is considered to be fixed with respect to the torso, and its coordinates inside the torso coordinate frame are calculated automatically in the standing position as a function of the morphological parameters. This is an usual approximation in the case of the LIP-3D model. height lif t is the maximal height of leg lift-off.

xlength step max is the maximal forward step length.

ylength step max is the maximal sideways step length.

theta step max is the maximal turning step angle.

dist between f eet p points is the distance between ankles in the rest position. This distance can be adjusted for the robot to walk with the feet more or less apart from each other. This walking parameter is expected to be influenced by the pelvis size.

Experiments and results

The simulation software is composed of 5 different parts, i.e. rcssserver3d [START_REF] Obst | Spark -A Generic Simulator for Physical Multi-Agent Simulations[END_REF][START_REF] Simspark | a generic physical multiagent simulator system for agents in threedimensional environments[END_REF], the client agent rcssagent3d-like, a coach (that is responsible for starting trial), the CLOP framework [START_REF] Coulom | CLOP: Confident Local Optimization for Noisy Black-Box Parameter Tuning[END_REF] and utilities that link everything. Table 1 indicates the parameters that were used for each walking gait optimization. Table 2 contains the optimized parameters resulting from each of the 5 experiments (that were run according to the 5 evaluation functions) :

-Moving straight ahead, called Fwd. Table 3 contains the evaluation values, namely s, m time , m x , m y , m θ and the related deviations σ x , σ y and σ θ for each experiment.

Tables 2 and3 recall the default values of the parameters before optimization. These default values are related to the walking gaits that were tuned manually using expert's knowledge. The default values are useful to be compared to the optimized values obtained.

All experiments change morphological parameters and technical skills simultaneously to fit morphology and walking parameters to maximize values while minimizing other shifting values. As we aim at building a best-first agent, we only use the Opt.1 policy [START_REF] Jouandeau | Simultaneous evolution of leg morphology and walking skills to build the best humanoid walker[END_REF], that defines the best last trial of the evaluation function. Each optimization is achieved with 500 CLOP iterations. Each CLOP iteration is performed over 10 trials. Final results are also calculated over 10 trials.

According to the results listed in Tab. 3 :

-While moving forward straight ahead : Fwd. Opt. Table 3 shows that the new two rotation morphologies (Rot. Opt.1 on Accuracy and Rot. Opt.1 on Time) are not better than the Dflt one. This results is not surprising because the rotation gait was carefully designed in the original morphology as explained in section 2, and because the rotation gait is less sensitive to dynamical effects along the longitudinal direction that is more prone to falling. Therefore none of these new rotation morphologies were selected. the heterogeneous team. The three remaining morphologies (Fig. 1) present interesting properties because they enhance the displacement capabilities, either forward, sideways or diagonally (see m x and m y values in bold font in Tab. 3).

However it is necessary to check that each of the three selected morphologies is still compatible with the walking gaits in the other directions, i.e. other than the enhanced direction. Table 4 summarizes such results. It shows that the three optimized morphologies are compatible with the gaits in the other directions. In the checking experiments the angle in the rotation gait was limited to 2π/3. In addition since the lateral morphology increased the lateral step up to the maximal bound, it was necessary to limit the diagonal step to maintain the foot trajectory inside the working volume of the leg. Therefore the diagonal step was limited to 0.08m.

If we observe the values of the morphological parameters listed in Tab. 2, we can notice that the Lat. and Diag. morphologies have a wider pelvis compared to the Dflt morphology and the Fwd. Opt.1 morphology (see Hip1RelT orso X parameter). The pelvis is even wider in the Lat. morphology to enable a larger sideways step, i.e. 0.121m compared to 0.94m with the Diag. values. In addition we can notice that all three morphologies have longer thighs (see T highRelHip2 Z parameter), and that the flexion ratio is also larger, which means that all new robots will walk in a more high-legged way. This way of walking reminds the human walk where legs get stretched and flexed alternately. The third observation concerns the height of foot lift off. This height is reduced for the Lat. and the Diag. morphologies. Actually it was noticed that the lateral walk was more sensitive to lift-off height. This is due to ground impacts of the swinging leg that cause oscillations of the torso in the frontal plane, and these oscillations can be dangerous and make the robot fall if the amplitude increases too much. The reduction of the lift-off height is useful to prevent leg impacts from triggering undesired oscillations.

Thanks to this study it is possible to build a new team with heterogeneous players where:

-Strikers built on the Fwd. parameter set could be both faster sprinters and nicely reactive due to their fast rotation speed. -Midfields built on the Diag. parameter set could be good at breaking opponents attack. -Defenders and goalie built on the Lat. parameter set) could be good at intercepting the ball or the opponent trajectory.

The next developments will aim at testing teams of heterogeneous soccer players during soccer game plays.

Conclusion

We introduced an optimization process that is especially designed for the simultaneous evolution of humanoids' morphological characteristics and walking parameters. The optimization process is essentially guided by a fitness function that distinguishes among better, equivalent and worse results. Three morphological profiles have been produced to create three agents that appear to be more effective than the previous agents that were tuned manually by expert users. Actually the process leads to morphologies well suited for forward walk, lateral walk and diagonal walk. This process will be applied to the building of a heterogeneous humanoid team with new models designed according to specific skills.

Algorithm 5

 5 RPO time (m, σ, m , σ ) 1: if m == U N DEF IN ED then return ACCEP T ; 2: if mtime < m time -ασ time then return REJECT ; 3: if mtime < m time -βσ time then return EQU IV ALEN T ; 4: if σtime < γσ time then return ACCEP T ; 5: if mtime < m time then return EQU IV ALEN T ; 6: return ACCEP T ;

  trial. -Moving sideways , called Lat. trial. -Moving diagonally forward, called Diag. trial. -Rotating accurately, called Rot. trial with Opt.1 on Accuracy parameters. -Rotating fast, called Rot. trial with Opt.1 on Time parameters.

Fig. 1 .

 1 Fig. 1. Fwd., Diag. and Lateral morphologies.

  αe then return REJECT ; 5: if d < d -βe then return EQU IV ALEN T ; 6: if e < γe then return ACCEP T ; 7: if d < d then return EQU IV ALEN T ; 8: return ACCEP T ;

Table 1 .

 1 1 morphology is 1.62 times faster than the Dflt one (from ratio of m x values in Tab. 3). Fwd. Opt.1 morphology is 1.29 times more stable than the Dflt one (see parameter s in Tab. 3). -While rotating : Rot. Opt.1 on Accuracy morphology is 3.44 times slower than the Dflt one (from ratio of m time values in Tab. 3). Rot. Opt.1 on Time morphology is equivalent to the Dflt one (similar values for m time in Tab. 3). -While moving sideways : Lat. Opt.1 morphology is 1.78 times faster than the Dflt one (from ratio of m y values in Tab. 3). -While moving on diagonal : Diag. Opt.1 morphology is 1.51 times faster than the Dflt one (from ratio of m x and m y values in Tab. 3). All parameters bounds and trial policies

	Bounds and trials	Min	Max	Fwd. Rot. Lat. Diag.
	Morphological parameters :						
	T highRelHip2 Z	-0.09	-0.02	X	X	X	X
	Hip1RelT orso X	-0.01	-0.10	X	X	X	X
	ratio f lexion	0.60	0.95	X	X	X	X
	Walking skills parameters :						
	of f set M idAnkles 2 T orso I	0.001	0.030	X	X	X	X
	height lif t	0.025	0.080	X	X	X	X
	xlength step max	0.020	0.150	X			X
	ylength step max	0.020	0.150			X	X
	theta step max	0.020	0.785		X		
	dist between f eet p points	0.020	0.200		X	X	X

Table 2 .

 2 Resulting parameter values

	Trial		Fwd.	Rot.		Lat.	Diag.
	Parameters	Dflt	Opt.1	Opt.1	Opt.1	Opt.1	Opt.1
				on Accuracy on Time		
	Morphological parameters :						
	T highRelHip2 Z	-0.040	-0.079	-0.082	0.080	-0.061	-0.065
	Hip1RelT orso X	-0.055	-0.022	-0.096	-0.058	-0.083	-0.062
	ratio f lexion	0.728	0.902	0.657	0.775	0.809	0.857
	Walking skills parameters :						
	of f set M idAnkles 2 T orso I	0.011	0.020	0.006	0.024	0.013	0.009
	height lif t	0.030	0.063	0.066	0.069	0.044	0.036
	xlength step max	0.080	0.125				0.050
	ylength step max	0.060				0.121	0.094
	theta step max	1.047		0.205	0.757		
	dist between f eet p points	0.110		0.079	0.027	0.123	0.146

Table 3 .

 3 Results for each trial

	Trial		Fwd.		Rot.			Lat.	Diag.
	Param. Dflt	Opt.1 Dflt	Opt.1	Opt.1	Dflt	Opt.1 Dflt	Opt.1
					on Accuracy on Time				
	s	0.70	0.90	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	mtime			2.807	9.643	3.058				
	mx	4.422 7.168 0.018	0.023	0.012	0.084	0.078	1.840	2.843
	my	0.304 0.553	0.041	0.053	0.025	2.021	3.588 1.942	2.860
	m θ	0.123 0.187	5.973	6.161	6.030	0.062	0.060	0.083	0.248
	σx	0.046 0.075	0.010	0.023	0.015	0.031	0.048	0.064	0.250
	σy	0.234 0.534	0.032	0.036	0.015	0.053	0.046	0.106	0.287
	σ θ	0.066 0.173	0.068	0.125	0.159	0.021	0.048	0.047	0.131

Table 4 .

 4 Results of 3 parameter sets for each trial

	Trials		Fwd.			Lat.			Diag.
	Param. Fwd. Rot.* Lat.	Dgn.	Fwd. Rot.* Lat.	Dgn.	Fwd. Rot.* Lat.	Dgn.
	s	0.90	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00
	mtime		1.339				1.380				1.398	
	mx	7.168 0.035 0.428 1.091 4.737 0.045 0.078 2.423 2.918 0.026 0.418 2.843
	my	0.553 0.042 1.961 2.465 0.540 0.049 3.588 2.634 0.201 0.053 3.023 2.860
	m θ	0.187 2.232 0.397 0.747 0.270 1.789 0.060 0.119 0.112 2.182 0.237 0.248
	σtime		0.001				0.003				0.001	
	σx	0.075 0.020 0.071 0.046 0.094 0.014 0.048 0.155 0.033 0.015 0.144 0.250
	σy	0.534 0.033 0.067 0.053 0.407 0.029 0.046 0.158 0.074 0.039 0.054 0.287
	σ θ	0.173 0.003 0.052 0.028 0.236 0.010 0.048 0.072 0.064 0.004 0.009 0.131