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Abstract— This paper addresses the problem of foraging by a 

coordinated team of robots. This coordination is achieved by 

markers deposited by robots. In this paper, we present a novel 

decentralized behavioral model for multi robot foraging named 

cooperative c-marking agent model. In such model, each robot 

makes a decision according to the affluence of resource locations, 

either to spread information on a large scale in order to attract 

more agents or the opposite. Simulation results show that the 

proposed model outperforms the well-known c-marking agent 

model.  

Keywords— Collaborative foraging; reactive coordination; 

digital pheromone; agent behavioral model; stigmergy.  

I.  INTRODUCTION  

Foraging is a benchmark problem for robotics, especially 
for multi-robot systems [1]. It is a “two-step repetitive process 
in which (1) robots search a designated region of space for 
certain objects, and (2) once found, these objects are brought to 
a goal region using some form of navigation” [2]. Distributed 
cooperative multi-robot systems are specifically adopted to 
achieve foraging missions when there is no a priori information 
about the environment, but communication mechanisms are 
needed for coordination. Pheromone deposits [3] is one of the 
approaches inspired from the study of the stigmergy process 
conducted in the early 90's on insect self-organized societies 
[4]. The foraging behavior of ants is an example of stigmergy 
where ants drop pheromones as they move in the environment. 
Most of studies in both artificial life and robotics carried out on 
synthetic pheromones use a large vocabularies linked to 
pheromone, coming from propagation and evaporation 
properties [5] [6]. These properties allow a group of agents to 
adapt to dynamic situations. 

In this paper, we consider the problem of collective 
foraging in an unknown outdoor environment, with a 
homogeneous team of reactive agents that have no prior 
information about the environment. The objective is to retrieve 
and achieve all resource locations, while minimizing the time 
needed to complete the whole foraging. To this purpose, agents 
are based on a new behavioral model, where they can choose to 

deposit or not deposit diffusible pheromones regarding the 
quantity of resources in locations. Through simulation tests, the 
proposed system, that is an extension of that presented in [7], is 
compared with such previous system in terms of the number of 
iterations that are required to achieve the foraging task. 

The rest of the paper is organized as follows. In Section II, 
we discuss related work. The pheromone, agent and 
environment models are given in Section III. A finite state 
machine based agent behavior for collective foraging and the 
corresponding algorithm are given in Section IV. Section V 
describes the simulation results, and a comparison between the 
original c-marking agents model [7] and our new model is also 
provided. Finally, in Section VI, conclusions are drawn. 

II. RELATED WORK  

A wide range of approaches has been adopted to suggest 
solutions to the foraging problem in unknown environments. 
Most of them focus on examples of multi-robot foraging from 
within the field of swarm robotics. The three main strategies 
for cooperation in this field are: information sharing [8], 
physical cooperation [9] [10] [11] [12] [13], and division of 
labor [14] [15] [16] [17] [18] [19] [20] [21]. Pheromone based 
techniques inspired from ants are useful for foraging with 
multiple robots [22] [23]. This approach has some drawbacks 
such as the computation of propagation and evaporation 
dynamics, and agents need specific mechanisms or materials 
that allow them to get back home. Authors is [24] and [6] 
propose the use of second pheromone diffusion from the base 
in order to avoid this last problem. At the same time, this 
solution can create new local minima. 

An interesting approach named c-marking agents has been 
proposed in [7] that allow reactive agents to build optimal 
paths for foraging, which have limited information about their 
environment. To keep track of found resource locations and to 
build trails between them and the base, agents drop a quantity 
of pheromones inside their environment. A first extension of 
the c-marking agents model was proposed in [25], which gives 
interesting results regarding the number of agents and less 
interesting ones regarding the environment size. In this paper, 
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we present a second extension of the c-marking agents model 
based on resources affluence and designed to change the 
behavior of robots to enhance results.  Apart from 
enhancements related to environment adaptation, this new 
extension provides a more realistic model for the foraging 
problem. 

III. MODELING SYSTEM COMPONENTS  

The different components of our reactive multi-agent 
system are: Environment, Pheromone and Agent (or Robot) 
models. 

A. Environment Model 

The environment is modeled as a squared grid with variable 
size that has resources in multiple locations. These locations 
are scattered randomly and are unknown by the agents. Each 
location has a given quantity of resources. Cells in the 
environment can: 

 Be an obstacle (grey color); 

 Contain a resource (green color) of a limited quantity; 

 Be the base station (red color), always positioned in 

the environment center, forming the starting point of 

all agents; 

 Contain an agent (blue color). 

B. Pheromone Model 

The pheromone is modeled as a piece that can be spread to 
the four neighboring cells, if the quantity of resources in a 
location is more or equal to a maximum reference quantity 
QRmax; or it is modeled as a static piece that takes effect just in 
the current cell, if the quantity of resources in a location is less 
than a minimum reference quantity QRmin. Pheromones are 

directly managed by agents. 

C. Agent Model 

Agents have limited information about their environment. 
Due to the pheromone model, agents directly manipulate real 
pieces and are then close to real robots. At each time step (or 
iteration), each agent can: 

 Move from a cell to another, which is not an obstacle 

in the four cardinal directions, like real robots. 

 Perceive and read the values of the four neighboring 

cells. So agents can detect and load resources 

according to a maximum capacity Qmax. 

Agents can read or write integer values that represent the 

Artificial Potential Field (APF) values [7], which represent the 

minimum distance between any cell and the base station cell. 

They are distributed to all agents, and can be modified to get 

the optimal values.  

IV. FINITE STATE MACHINE-BASED AGENT BEHAVIOR FOR 

COLLECTIVE FORAGING 

Figure 1 shows the finite state machine (FSM) diagram 
representing the behavior of an autonomous foraging robot (or 
agent). Such agent in its lifecycle goes through the following 
main states: 1) CLIMB; 2) LOAD; 3) DROP; 4) PICK_UP; 5) 
UNLOAD; and the following additional states: COLOR_MAX, 
COLOR_MIN, REMOVE_MAX, HOMING, and 
REMOVE_MIN. In all cases when the base station cell is 
reached, the agent executes the state UNLOAD and changes 
automatically to the CLIMB state when finished. The state 
details of the FSM, representing the proposed cooperative c-
marking agents V2 model, are given below along with 
Algorithm 1 that provides further details. 

Transitions: RF: Resource Found; RNE: Resource Not Exhausted; RE: Resource Exhausted; NT:  No Trail exists; T: Trail exists;  NRF : 
NoResource Found; Qres: Quantity of resources; QRmax: Maximum amount of resources; QRmin: Minimum amount of resources; BR: Base 

Reached. 

Fig. 1. Finite State Machine of the agent-based model of autonomous foraging robot
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1) CLIMB: it is the initial state for all agents, in which the 
highest priority task for an agent is to exploit a resource 
when it is detected or to climb a trail, by choosing a 
colored cell with max value of APF or finally to execute 
an exploration & APF construction [7]. 

2) LOAD: the agent in this state picks up a Qmax of 
resource. If the resource is exhausted, the agent goes to 
PICK_UP; otherwise it goes to DROP. 

3) DROP: it is a transitory state towards one of the 
following four states (transitions are labeled by guards 
detailed in Figure 1):  

 COLOR_MAX: when the amount of resources is more 
than QRmax, agents drop diffusible pheromones; by 
such means, they create a max trail, within which 
colored cells with min values are not chosen in order 
to avoid common trails problem; 

 COLOR_MIN: When the amount of resources is less 
than QRmin, agents drop non diffusible pheromones, so 
creating min trails. Colored cells with min values are 
not chosen in order to avoid common trails problem; 

 REMOVE_MAX: if the amount of resources is equal to 
QRmin and there exists a max trail, agents remove such 
an amount; 

 HOMING: if no trail exists and the resource is 
exhausted, agents just follow min values until the base 
is reached. 

4) PICK_UP: it is a transitory state towards one of the 
following four states (transitions are labeled by guards 
detailed in Figure 1): DROP, COLOR_MAX, HOMING, 
and 

 REMOVE_MIN: it consists in removing the min trail 
in order to avoid attraction of agents to an exhausted 
resource. 

5) UNLOAD: when the agent reaches the base station cell, 
it drops all resources and changes immediately its state 
to CLIMB. 

Algorithm 1: Cooperative c-marking agents V2 

CLIMB 
IF (Resource Found) goto LOAD 
ELSEIF (Trail Exists) Move to cell with highest value 
ELSE do exploration  

LOAD 
      Pick up Qmax 
      IF (Resource Not Exhausted) goto DROP 
      ELSE goto PICK_UP 

DROP 
      IF (Qres> = QRmax & No Trail exists) goto COLOR_MAX  
      ELSIF (Qres= QRmin & Trail exists) goto REMOVE_MAX  
      ELSIF (Qres< QRmin & No Trail exists) goto COLOR_MIN  
      ELSE goto HOMING 

PICK_UP 
      IF (Resource Found & No Trail exists) goto DROP 
      ELSIF (No Resource Found & Trail exists) 
  goto REMOVE_MIN  
      ELSE goto HOMING 

COLOR_MAX  
       IF (Base Reached) goto UNLOAD  
       ELSE  

 Move to a new neighboring, not colored cell with the 
least value; 

 Color the current cell with dark gray color and the 4 
neighboring cells with light gray color. 

COLOR_MIN  
       IF (Base Reached) goto UNLOAD  
       ELSE 

 Move to a new neighboring, not colored cell with the 
least value; 

 Color the current cell with dark gray color 

REMOVE_MAX  
       IF (Base Reached) goto UNLOAD  
       ELSE  

 Move to a new neighboring colored cell with the least 
value;  

 Reset the color of the 4 neighboring cells to the default 
color (white color); 

REMOVE_MIN  
       IF (Base Reached) goto UNLOAD  
       ELSE IF (one colored cell exists in neighboring) 

 Move to min colored cell in neighboring 
 Reset the color to the default color (white color). 

 

HOMING 
IF (Base Reached) goto UNLOAD 

ELSEIF (Trail Exists)  
 Move to min colored cell in neighboring 
 do update-value 

ELSE  
 Move to min valued cell in neighboring 
 do update-value 

UNLOAD 
Depose resources 
goto CLIMB 

exploration: 
IF (There exists a neighboring cell without value) 

 Move randomly to such cell 
 do update-value 

ELSE 

 Move randomly to a free cell 
 do update-value 

update-value: 
Write val = min (val, 1+ min (4 neighbor values)) in current cell 

 

It is worth noting that the states CLIMB, HOMING and 
UNLOAD are the same as in [7]. Finally, the ELSE clause in 
the states COLOR_MAX, COLOR_MIN, REMOVE_MAX and 
REMOVE_MIN implies the return into the same state. 

V. SIMULATION RESULTS AND COMPARISON 

Two simulation scenarios have been defined by using the 
JADE framework [26] to evaluate the proposed model. In the 
first one, we test the influence of the agents' number on the 
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system performance by varying the number from 5 to 160; 
whereas in the second one, we test the influence of the 
environment size on the system performance by changing the 
size from 12X12 to 100X100. The foraging time is defined as 
the number of iterations required for discovering and 
exhausting all the resources in the environment. 

Scenario 1: The environment is composed of 40X40 cells with 
30% obstacles; 20 cells are resources locations; each resource 
contains 1000 units of resources and each robot can load a 
maximum of 100 units. The number of robots is varying 
between 5-160 agents.   

TABLE I.  EFFECT OF AGENT’S NUMBER ON PERFORMANCE 

 

 
5 10 20 40 80 

C-marking agents 19200 8697 4114 2263 1070 
Cooperative c-marking agents V1 10476 6917 3403 1125 609 
Cooperative c-marking agents V2 10255 6500 3200 950 510 

 

Table I shows the simulation results of scenario 1; where 
the increase in the number of agents provides a decrease in the 
foraging time. Even if cooperative c-marking agents V1 gave 
interesting results than c-marking agents one [25], cooperative 
c-marking agents V2 gives interesting results than the two 
previous models, where the number of iterations is reduced but 
with a less degree regarding cooperative c-marking agents V1. 
Foraging time still considerable when number of agents is 5 to 
20; it is fast when number of agents is 40 to 80. Avoiding the 
creation of common trails has contributed to the reduction of 
the foraging time. 

Scenario 2:  The environment contains 5% obstacles; 20 cells 
are resource locations; each resource contains 2000 units of 
resources and the number of robots is 50. Each robot can carry 
a maximum of 100 units. The environment size varied from 
12X12 to 100X100. 

Table II show the simulation results of scenario 2; where 
the foraging time increases less by increasing the size of the 
environment, until 100X100, the foraging time increases 
dramatically.  

TABLE II.  EFFECT OF ENVIRONMENT SIZE ON PERFORMANCE 

 

 
12X12 25X25 50X50 100X100 

Cooperative c-marking agents V1 192 652 1395 10777 
C-marking agents 155.5 345 805 2290 
Cooperative c-marking agents V2 150 315 630 1250 

 

We compared the proposed behavioral model (cooperative 
c-marking agent model V2) to the original c-marking agent 
model As one can see in Figure 2, increasing the level of 
cooperation between agents by the spread of a diffusible 
pheromones, allows agents to spend more time in exploitation 
rather than exploration, which means that resources will be 
exhausted rapidly and agents can spread out to exploration. 
When the quantity is less important, agents spread a non-
diffusible pheromone that means that they did not need 
cooperation. 

The preliminary results of scenario 2 in our previous work 
(cooperative c-marking agents V1 model) [25] are less 
important than the c-marking model [7] because of the 
common trails problem. When agents return home and color 
min or max trails, there is a possibility that they meet existing 
trails and they use them as part of their trail. As a result, they 
got a common part for the two trails to different resources. If 
one of the two resources is exhausted, agents proceed to the 
REMOVE_MIN state that will remove the common part, even 
if the second resource is not exhausted yet. When agents 
included in the second trail execute the HOMING state, they 
will look for the rest of the trail, which is removed, and they 
will get stuck in that common part. When agents execute 
COLOR_MAX or COLOR_MIN states, they must avoid the 
colored cells, which mean that they avoid creating common 
parts with existing trails. Such two states enhanced in this 
paper, have contributed to improve results of scenario 2 (shown 
by table II). Figure 3 shows a comparison with the original c-
marking agents model and the previous cooperative c-marking 
agents model, regarding scenario 2. 

Fig. 2. Results comparison with c-marking agent model and cooperative c-

marking model V1, regarding scenario 1 

 

 

Fig. 3. Results comparison with c-marking agent model and cooperative c-

marking model V1, regarding scenario 2 

Iterations 
Environment size 

Iterations 
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VI. CONCLUSION AND FUTURE WORK 

In this paper, we proposed a new behavioral model for the 
foraging problem that aims to decrease the foraging time 
regarding the quantity of resources in locations. The new 
behavioral model based on resource affluence gives interesting 
results with respect to the original model (c-marking agent 
model). Agents in our system can perceive the environment, 
pick up resources, transport them to a storage point and 
manage the pheromone as a real piece, thus they are close to 
real robots. In perspective, we think that robot's behavior can 
be enhanced by introducing both new exploration approaches 
and solutions to problems such as the fast convergence of the 
Artificial Potential Field. 
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