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Abstract—We explore the on-line problem of coverage where
multiple agents have to find a target whose position is unknown,
and without a prior global information about the environment.
In this paper a novel algorithm for multi-target search is
described, it is inspired from water vortex dynamics and based
on the principle of pheromone-based communication. According
to this algorithm, called Stigmergic MASA (for ”"Multi Ant
Search Area”), the agents search nearby their base incrementally
using turns around their center and around each other, until
the target is found, with only a group of simple distributed
cooperative Ant like agents, which communicate indirectly via
depositing/detecting markers. This work improves the search
performance in comparison with pure random walks, we show
the obtained results using computer simulations.

I. INTRODUCTION

The problem of finding multiple targets whose positions
are unknown without a prior information about the envi-
ronment is very important in many real world applications
[1]. Those applications vary from mine detecting [2] [3l,
search in damaged buildings [4] [5], fire fighting [6], and
exploration of spaces [7] [8], where neither a map, nor
a Global Positioning System (GPS) are available [9]. The
random walk is the best option when there is some degree
of uncertainty in the environment and a reduced perceptual
capabilities [10] because it is simple, needs no memory and
self-stabilizes. However, it is inefficient in a two-dimensional
infinite grid, where it results in an infinite searching time,
even if the target is nearby [11], it results also in energy
consumption and malfunction risks. To deal with these limits,
some effective ways to coordinate the multi agent system need
to take place. Recently many researchers have investigated
bio-inspired coordination methods [[12] [13]], in which agents
coordinate on the basis of indirect communication principle
known as stigmergy.

Approaches that treat multi-target search are of a degree
of computational complexity and with idealized assumptions,
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such as: perfect sensors [14], stationary environments [15]],
unlimited direct communication [16]]. These assumptions make
them unrealistic in real world applications. The algorithm
presented in this paper avoids such type of assumptions.
It makes the following contributions: (1) it is of very low
computational complexity, in which agents have a very low-
range of sensors; (2) it executes a search in nearby locations
first by adopting spiral turns around the starting cell and
between agents; (3) agents use stigmergic communication via
digital pheromone; (4) turns on known or unknown static
obstacle-free environments or obstacle environments.

The rest of this paper is organized as follows. Section 2
discusses some related work. Section 3 describes the problem
statement and formulation. Stigmergic MASA algorithm is
described in detail in Section 4. Simulation results are shown
in Section 5. A comparison with the random walk is given in
Section 6 and Section 7 concludes the paper.

II. RELATED WORK

The problem of searching a target may be considered as a
partial area coverage problem that constitutes a key element
of the general exploration problem [17] where coverage can
be done by a single or multiple robots, with on-line or off-line
algorithms. In the on-line coverage algorithms, the area and
target positions are unknown, and are discovered step by step
while the robot explores the environment, whereas, in the off-
line algorithms, the robot has a prior information about the
environment, target and obstacles positions, so it can plan the
path to go through. Different approaches have been developed
in the literature to solve area coverage using single or multiple
robots. In this section, a brief overview of techniques that
are used to solve the coverage problem using both single
and multiple robots is presented. The single robot covering
problem was explored by Gabriely and Rimon [[18]]. One of the
most popular algorithms is the Spanning Tree Coverage one



(STC). In an STC algorithm, the robot operates in a 2D grid of
large square cells. It aims to find a spanning tree for the graph
described above, and allow the robot to circumnavigate it. This
algorithm covers every cell that is accessible from the starting
point s, and it is optimal because the robot passes through
each cell at least once [19]. Spiral STC is an online sensor
based algorithm for covering planar areas by a square shaped
tool attached to a mobile robot. The algorithm incrementally
subdivides the planar work into disjoint D size cells, while
following a spanning tree of the resulting grid. The spiral STC
covers every subcell accessible from the starting point, and
covers these subcells in O(n) time using O(n) memory [20].
In this new version of STC, the spanning tree is stored in the
onboard memory, which results in a dependency of the search
area on memory size. With the aim of resolving the memory
problem, Gabriely and Rimon propose in [21] the ant-like STC
which forms the third version of the basic STC algorithm, that
uses markers on visited cells. D-STC is introduced in [21]]
to solve the problem of uncovered partially occupied 2D-size
cells, by visiting the previously uncovered cells, which results
in worst-case scenarios, a twice coverage of the environment
area. A generalization of STC to multi-robots is given in
[22], the MSTC, in which a spanning tree is computed, and
then it is circumnavigated by each robot. Another spanning
tree construction using multiple robots based on approximate
cellular decomposition is proposed in [23]]. Another approach
developed in [1]], where the environment is subdivided into
n concentric discs, each disc is covered by one robot, when
the entire disc is completely covered, the robot moves to
the next disc not yet covered; an extension of this algorithm
that uses heterogenous robots is given in [17]. Instead of
concentring on the robot’s on-board resources, some part of
robotics literature use a single ant or a group of ants robots to
cover an area robustly, even if they do not have any memory,
do not know the terrain, can’t maintain maps of the terrain, nor
plan complete paths. They use environmental markers such as
pebbles [24], [25]], [26] or pheromone like traces [27] or use
greedy navigation strategies [28]].

III. PROBLEM STATEMENT AND FORMULATION

In a collective multi-target search task, there are a lot of
targets randomly distributed in an area. The agents (robots)
should find as fast as possible the targets and, after that,
remove them, if we deal with a cleanup task, or transport them
to a nest, if we deal with a foraging task. In this paper, a new
search algorithm is proposed that enables a group of agents,
each with limited perception capabilities to search quickly
the targets. The algorithm presented here uses the principle
of pheromone-based coordination where each agent deposits
pheromone on its environment to inform the others about
already visited areas. The finish time of the collective search
is when all targets have been found. This section defines and
clarifies some key terms which will be used in this paper.

o Environment: we assume that agents move in an N X M
grid-based environment. It is divided into N X M cell.

Each cell can be an obstacle, target or the base station,
and can also contain an agent.

o Agent: simple reactive agents, with limited range sensor
(can only perceive the four neighboring cells), have no
memory and use the environment as their shared memory.
Each agent has an initial position and heading (0, 90, 180
or 270).

e Pheromone: has a numerical meaning. It is represented by
a color. The intensity of the pheromone at time t is set
to arbitrarily chosen value ¢ which is a small positive
constant. It evaporates with time with a coefficient p
fixed to 0.075 using equation [Tfo avoid accumulation of
pheromone.

e Motion policy: each agent chooses the next cell to visit
using a motion policy that is function of the presence
of pheromone trail and obstacles. This policy helps the
agent to decide where to go next.

IV. DESIGN OF THE STIGMERGIC MASA ALGORITHM

The idea behind proposing this algorithm is to reproduce
the behavior observed in water vortex dynamics. The vortex
is a region in which a fluid flow is mainly a rotary movement
about an axis, rectilinear or curved. So each agent tries to turn
around the base station and around the other agents. Doing
this with agents only is difficult and needs a great number of
agents, but using pheromone to repulse agents from visited
cells was very helpful to reproduce the structure of a vortex.

A. Basic Stigmergic MASA

In Stigmergic MASA, each agent started from an initial
given position and oriented toward a given heading. To turn
around the base station and around each other, each agent
checks on his right cell if it is visited or not. If it detects a
pheromone (Figure [T)), it indicates to the agent that it is about
to enter to a visited cell and therefore the agent keeps going
forward its current heading, else the agent changes its heading
and moves toward a new heading.

Fig. 1. Stigmergic MASA coordination principle: (a) Changing heading from
180 to 270 (b) Changing heading from 270 to O (c) Changing heading from
0 to 90 (d) Changing heading from 90 to 180

Stigmergic MASA is further detailed in Algorithm [I]



Algorithm 1 Stigmergic MASA
Input: position and heading for each agent,
Output: iteration number,

1: while number of targets and boundaries are not reached
do

2 Move

3 Lay pheromone

4:  Update Pheromone

5: end while

Move function is the motion policy. Each agent has initially
a given heading (0, 90, 180 or 270) that allows it to move up,
right, down or left in the four neighboring cells. The agent
checks always its right cell which is the up cell if the heading
is 270, the down cell if the heading is 90, if no pheromone
is there it can change his heading to the new one using the
move function and goes forward in that new heading. The
move function is detailed in Algorithm [2]

Algorithm 2 Function Move

1: if (pheromone is detected in right cell) then
2:  go forward
3: else if (heading = 270) then
4:  set heading to 0
5
6
7

. else
set heading to heading + 90
: end if

Update pheromone function is used for pheromone evapo-
ration, using the equation

Li(t+1) =Ty(t) —p = Li(t) (1

Where: p is a coefficient which represents the evaporation of
trail between time t and (t+1) is set to 0.075 to avoid unlimited
accumulation of pheromone. Stigmergic MASA can be applied
to environment with or without obstacles, the agent executes
the function avoid obstacle to avoid obstacles, where the agent
follows in this case the obstacle boundary until a not visited
cell is encountered, which means that agents are going around
the obstacle in the direction of visited cells to guarantee the
completeness of the algorithm.

B. Stigmergic MASA Extensions

The proposed algorithm allow to cover gradually the envi-
ronment starting from the base station and reproducing by the
way principle of central place foraging theory [29]. Although,
this algorithm generates very efficient search results based on
relatively simple motion rules, it can be extended to deal with
dynamically changing environments, and to deal with coverage
problem in known or unknown environments.

V. PERFORMANCE EVALUATION

We used Netlogo framework [30] to evaluate the perfor-
mance of our algorithm in two scenarios. In the first scenario

(e)

Fig. 2. The evolution of search achieved by Stigmergic MASA: (a), (b)
Initial and final position of the 5-agents group in an obstacle-free environment.
(c), (d) Initial and final position of the 30-agents group in an obstacle-free
environment. (e), (f) Initial and final position of the 30-agents group in an
obstacle environment

we evaluate the algorithm by varying the number of agents
from 5 agents to 30 agent in two environment configurations:
obstacle-free environment and obstacle environment. In the
second scenario, we evaluate the algorithm by varying the
size of the environment from 20 X 20 cell to 100 X 100 cell,
in two environment configurations: obstacle-free environment
and obstacle environment. Obstacles in the two scenarios were
defined in two ways: (i) given a desired percentage, cells
were randomly designated as obstacles (ii) obstacles were
specifically designed by hand. Then, one possible extension
on Stigmergic MASA is discussed and related simulation
results are illustrated. To evaluate average performance, each
simulation is repeated 20 times, where time is defined as the
number of iterations required by the agents to discover all the
targets.

A. Scenario 1: Influence of Number of Agents on Performance

Agents start all from the base station which is situated at
the center of the environment and each agent has a heading,
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Fig. 3.  Effect of number of agent on performance in obstacle-free and
obstacle environment

we vary the number of agents from 5 to 30. The environment
consists of a square of size 40 X 40 cell shown in Figure 2,
free or with obstacles, with four targets distributed randomly.
An example of execution of Stigmergic MASA on a group of
5 agents, 30 agent on obstacle-free environment and a group
of 30 agent on obstacle environment are illustrated in Figure

Table [T shows the performance of the algorithm in scenario
1 while the number of agents is varying from 5 to 30. It is
represented graphically in Figure [3] The search time becomes
dramatically faster with an increase in the number of agents.
Note that there is no direct communication between agents,
the one communication tool is the pheromone deposited in
the environment. The standard deviation of the number of
iterations reflects the impact of the random distribution of the
targets between simulations. There is a linear decrease in the
iterations number.

TABLE I
EFFECT OF AGENT’S NUMBER ON PERFORMANCE

5 10 15 20 25 30

Iterations in free env 242.85122,2 78,85 63,5 54,8 43,9
STD Deviation 46,62 24,84 17,87 14,1511,3510,15
Iterations in obstacle env 289,85 143,35 114,1593,5571,8 69,55
STD Deviation 56,76 36,93 18,29 18,5822,9722,24

B. Scenario 2: Influence of Environment Size on Performance

We now show how the size of the environment affects the
performance of the algorithm when the number of agents is
set to 20. Also here we used an obstacle-free environment
and an obstacle environment, just varying the size of the
environment from 20 X 20 cells to 100 X 100 cells. Table [I]
shows the performance of the algorithm in scenario 2. It is
represented graphically in Figure ] The search time increases
by increasing the size of the environment which is evident
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Fig. 4.  Effect of environment size on performance in obstacle-free and
obstacle environment

because the number of cells increases. The results show a
difference in iterations number, Stigmergic MASA is robust
to obstacles but this increase in number of iterations is due
principally to the avoidance of obstacles that takes at least
four iterations more, to go around a simple obstacle.

TABLE I
EFFECT OF ENVIRONMENT SIZE ON PERFORMANCE

20X20 40X40 80X80 100X100

Iterations on Free env 16,2 63,4 2548 366,15
STD Deviation 3,28 13,48 5047 101,03
Iterations on Obstacle env 24,5 922 3153 449

STD Deviation 8,06 23,37 71,49 131,06

C. Extension 1: Stigmergic MASA for Coverage Problem

Simulations presented in this section show that by changing
the finish condition of the algorithm, the agents can achieve
coverage mission as well as search one. The Stigmergic
MASA algorithm can be applied for instance to known or
unknown static environments, free or obstacle environments.
Each simulation is repeated for 20 times in obstacle environ-
ments, because the obstacles are disseminated randomly in
the environment and according to their position the agent take
more or less iterations to go around the obstacle. Figure [3]
represents the two simulations in obstacle-free and obstacle
environment. As in scenario 1 and scenario 2, we test the per-
formance of the algorithm on coverage problem by varying the
number of agents and by varying the size of the environment
in the two types of environments. Table [[TI| and Figure [6] show
the obtained results when varying the number of agents. There
is a linear decrease in number of iterations when increasing the
number of agents, and there is a difference between iterations
in obstacle-free environment and obstacle environment. If we
compare these results to those of scenario 1, we can say they
are close. A possible reason is the random distribution of
targets, so if there is one target close to boundaries, the search



(b)

(d)

Fig. 5. The evolution of coverage achieved by Stigmergic MASA: (a), (b)
20-agents group in an obstacle-free environment in iterations 78 and 101. (c),
(d) 20-agent group in an obstacle environment in iterations 44 and 108.

will be very close to coverage task and in the two tasks the
number of iterations will be very close. Table[[V]and Figure

TABLE III
EFFECT OF NUMBER OF AGENT ON PERFORMANCE

5 10 15 20 25 30

Iterations in free env 320 171 120 89 80 68
Iterations in obstacle env 354,25 206,7 164,3138,6 126,25 111,55

show the obtained results when varying the environment size,
because here there is no random distribution of targets or there
are no targets, the coverage time in obstacle environment is
greater than the coverage time in obstacle-free environment,
but there is always an increase in the number of iterations in
the two cases of simulations.

TABLE IV
EFFECT OF ENVIRONMENT SIZE ON PERFORMANCE

20X20 40X40 80X80 100X100

Iterations on Free env 23 89 341 527
Iterations on Obstacle env 554  135,7 4359 625,1

D. Comparison results

In Figure [8) we compare our algorithm with the random
walk one when varying the number of agents from 5 to 30.
This last method lets agents revisit visited cells which causes
too much repeated search so global finish time increases. There
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Fig. 6. Finish time of coverage in free-obstacle and obstacle environment
with varying the number of agents

Free eny  ====Qbstacle env

700
— 600 A

350 ~

E

v 400

£ 300

-—

8 200
100

\{

20X20 40X40 80X 80 100X 100

Environment Size

Fig. 7. Finish time of coverage in free-obstacle and obstacle environment
varying the environment size

is a difference in iteration number between results given by our
algorithm and those given by random walk one. Our algorithm
performs much better in obstacle-free environments than the
random walk one that takes a huge number of iterations at
least 1000 iterations when number of agents is less than 15.
In obstacle environment our algorithm performs better than
the random one too, when number of agents is less than 15; if
the number of agents is equal or greater than 15 the random
walk gives a very close results to our algorithm and the reason
for that is the random walk of agents. Figure [0 presents a
comparison when varying the environment size. Results are
very different. Our algorithm gives the best results and random
walk operates in a very slow manner when the environment
size increases, even if targets are very close to the base station.

VI. CONCLUSION

A multi-target search algorithm called Stigmergic MASA
is presented in this paper. This algorithm reduces overall
finish time without any direct communication between agents.
Simulation results demonstrate the higher performance of our
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Fig. 8. Comparison of Stigmergic MASA with Random Walk when varying
the number of agents
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Fig. 9. Comparison of Stigmergic MASA with Random Walk when varying
the environment size

algorithm in comparison to random walk strategy. Future
work include improvements to accelerate searching time, ap-
plying the algorithm to dynamically changing environments,
unknown ones and foraging problem [31].
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