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Abstract In the field of mobile robotics, the study of 
multi-robot systems (MRSs) has grown significantly in 
size and importance in recent years. Having made great 
progress in the development of the basic problems 
concerning single-robot control, many researchers shifted 
their focus to the study of multi-robot coordination. This 
paper presents a systematic survey and analysis of the 
existing literature on coordination, especially in multiple 
mobile robot systems (MMRSs). A series of related 
problems have been reviewed, which include a 
communication mechanism, a planning strategy and a 
decision-making structure. A brief conclusion and further 
research perspectives are given at the end of the paper. 
 
Keywords Multi-Robot System, Coordination, Task 
Planning, Motion Planning 

 
1. Introduction 
 
Multi-robot systems (MRSs) are an important part of 
robotics research. In the late 1980s, a group of scientists 
began investigating this direction of research. A series of 
projects have been realized successfully, such as 
ACTRESS [1], GOFER [2], CEBOT [3], ALLIANCE [4], M+ 
[5], MURDOCH [6] and ASyMTRe [7]. One of the major 

challenges for MRSs is to design appropriate coordination 
strategies between the robots that enable them to perform 
operations efficiently in terms of time and working space.  
 
Most of today’s robots fall into one of three primary 
categories, namely manipulators, mobile robots and 
humanoid robots. This paper focuses on multiple mobile 
robot systems (MMRSs), in which robots should work 
together to accomplish a given task by moving around in 
the environment. We should be careful not to confuse 
MRSs with multi-agent system (MASs) and distributed 
artificial intelligence (DAIs), because MAS usually refers 
to the traditional distributed computer system in which 
individual nodes are stationary, and the DAI field is 
primarily concerned with problems involving software 
agents. In contrast, the area of MRS involves mobile 
robots that can move in the physical world and must 
interact with each other physically [9]. 
 
So far, a number of papers have been published 
regarding the research review, taxonomy and survey 
analysis for MRS. Dudek et al. [8] presented a taxonomy 
that classifies MASs according to communication, 
computational capacity and certain other capabilities. 
They also presented additional results concerning the 
MAS to illustrate the usefulness of the taxonomy and 
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demonstrate that a collective can be more powerful than a 
single unit of the collective. Cao et al. [9] gave a critical 
survey of the cooperative mobile robotics literature up to 
the mid-1990s. They synthesized five research axes that 
were: group architecture, resource conflict, origin of 
cooperation, learning and geometric problems. They also 
discussed the constraints arising from technological 
limitations and possible lacunae in existing works. Stone 
and Veloso [10] presented four multi-agent scenarios: 
homogeneous non-communicating agents, heterogeneous 
non-communicating agents, homogeneous communicating 
agents and heterogeneous communicating agents. They 
illustrated the scenarios by using the pursuit domain and 
described existing works in the field. The techniques 
presented are biased towards machine learning 
approaches. Arai et al. [11] identified seven primary 
research topics within the MRS: biological inspirations, 
communication, architectures, localization / mapping / 
exploration, object transport and manipulation, motion 
coordination, and reconfigurable robots. They also 
discussed a number of special issue articles and 
suggested several additional research issues. Farinelli et 
al. [12] presented a survey of works up to the early 2000s 
in the area of cooperation and coordination in MRS. 
Moreover, they proposed a taxonomy for classification 
focused on coordination that is characterized by two 
groups of dimensions: coordination dimensions and 
system dimensions. Other works on the review of the 
MRS include [13] [14] [15] [16] [17]. 
 
The main contributions of this paper are threefold: 1) a 
systematic review about the problems of multi-robot 
coordination is conducted and the relationship between 
them is clearly indicated; 2) a detailed classification and 
comparison is conducted for each related problem; 3) an 
analysis of the coordination problems, especially from the 
perspective of multi-robot task planning and motion 
planning, is conducted. 
 
The remainder of the paper is organized as follows: 
Section 2 describes MRSs as compared with single-robot 
systems; Section 3 describes two multi-robot 
environments: cooperative and competitive; Section 4 
discusses the inherent problem of MRSs: resource conflict; 
Section 5 discusses the key to gaining the benefits of 
MRSs: coordination; Section 6 presents two types of 
communication mechanism: explicit and implicit; Section 
7 discusses the problem of planning based on 
coordination, which includes task planning and motion 
planning; Section 8 presents two decision-making 
mechanisms: centralized and decentralized; the paper is 
concluded with a discussion in 9. 
 
2. Robotic Systems: Single-robot Versus Multi-robot 
 
A single-robot system contains only one individual robot 
that is able to model itself, the environment and their 

interaction [10]. Several individual robots are well known, 
such as RHINO [18], ASIMO [19], MER-A [20], BigDog 
[21], NAO [22] and PR2 [147]. The robot in a single-robot 
system is often designed to deal with a task on its own 
account. Such robots are usually integrated with multiple 
sensors, which themselves need a complex mechanism 
and an advanced intelligent control system. Although a 
single-robot system give have a relatively strong 
performance, some tasks may be inherently too complex 
or even impossible for it to perform, such as spatially 
separate tasks. For example, Dudek et al. [8] gave an 
example of a missile launch task that requires some sort 
of synchronization: there are two keys separated by a 
large distance in space that need to be activated 
simultaneously. Hence, an inherent restriction to the 
single-robot system is that it is spatially limited. 
 
A MRS contains more than one individual robot, whether 
group homogeneous or heterogeneous. Using a MRS can 
have several potential advantages over a single-robot 
system: 
 A MRS has a better spatial distribution. 
 A MRS can achieve better overall system 

performance. The performance metrics could be the 
total time required to complete a task [23] or the 
energy consumption of the robots [24]. 

 A MRS introduces robustness that can benefit from 
data fusion and information sharing among the 
robots, and fault-tolerance that can benefit from 
information redundancy. For example, multiple 
robots can localize themselves more efficiently if 
they exchange information about their position 
whenever they sense each other [25] [26] [27]. 

 A MRS can have a lower cost. Using a number of 
simple robots can be simpler (to program), cheaper 
(to build) than using a single powerful robot (that is 
complex and expensive) to accomplish a task. 

 A MRS can exhibit better system reliability, 
flexibility, scalability [161] and versatility. Robots 
with diverse abilities can be combined together to 
deal with complex task, and one or several robots 
may fail without affecting the task completion. 

 
A MRS can be homogeneous or heterogeneous. In 
homogeneous robot teams, the capabilities of the 
individual robots are identical (physical structures do not 
need to be the same). Some works considering the use of 
homogeneous robot teams include [28] [29] [30] [31] [24]. 
In heterogeneous robot teams, the capabilities of robots 
are different, whereby robots can be specialized for 
specific tasks. Some works considering the use of 
heterogeneous robot teams include [1] [4] [6] [27] [32] [159] 
[167]. In general, heterogeneous systems are more 
complex than homogeneous systems because the task 
planning becomes more difficult (see Section 7.1 below 
for more details). 
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3. Multi-robot Environment: Cooperative  
Versus Competitive 
 
Like human society, there is collective behaviour in 
multi-robot environments. Popenoe [33] defined 
collective behaviour as follows: collective behaviour is 
behaviour that occurs in response to a common 
influence or stimulus in relatively spontaneous, 
unpredictable, unstructured and unstable situations. 
The collective behaviour includes cooperative behaviour 
and competitive behaviour. In other words, multi-robot 
environments can be cooperative or competitive [34]. 
Cooperation refers to a situation whereby multiple 
robots need to interact together in order to complete a 
task while increasing the total utility of the system. 
Alternatively, cooperation is the interaction between the 
robots, which work towards a common interest or 
reward [35]. The cooperative robots have a joint goal, 
which gives rise to various sub-goals. This subject 
involves the multi-robot planning problem, which we 
will discuss in more detail in Section 7. There are several 
representative examples of multi-robot cooperation, 
such as multi-robot localization [25] [26] [27] [36] [149] 
[161], multi-robot exploration [23] [37] [29] [38] [39] [40] 
[41] [42] [43] [44] [159] [164], multi-robot search and 
rescue [45] [46] [47] [30], and multi-robot transportation 
[48] [28] [24] [49] [59]. 
 
Competition refers to a situation whereby robots compete 
against each other to best fulfil their own self-interest. 
Alternatively, robots with conflicting utility functions are 
in competition with each other [34]. The competitive 
behaviour is the opposite of cooperative behaviour. 
Typical examples of multi-robot competition are two-
player zero-sum games such as chess [50] and robot 
soccer leagues, such as RoboCup [51]. A multi-robot 
environment, cooperative or competitive, will need some 
sort of consensus (a communication mechanism, see 
Section 6) and a decision-making mechanism (see Section 
8). This paper only discusses the problem of cooperation. 
The problem of competition is beyond the scope of this 
paper. 
 
Robots might be selfish from the sociological point of 
view, because a single robot tends to make decisions 
motivated by self-preservation. For instance, consider 
two robots moving in opposite directions and wanting to 
cross a narrow passage, but where only one may cross at 
a time. If the two robots move simultaneously, a 
congestion or collision will occur. The cooperation can 
overcome groupthink and individual cognitive bias, and 
this requires some form of coordination. Such coordination 
can be achieved by communication, which is often used as 
a rational behaviour in multi-robot environments. The 
paper will discuss the coordination in detail in Section 5, 
and the communication in Section 6. 

4. Inherent Problem: Resource Conflict 
 
Generally, if multiple requests targeting the same 
resource arrive simultaneously, resource conflict will occur. 
This issue has been studied in many forms. A well-known 
case of a general resource conflict problem is the mutual 
exclusion problem [52] in distributed computing systems 
or multi-access networks, where only a single resource is 
available. In MMRS, resource conflict arises when 
multiple robots need to share space, manipulable object 
or communication media. To deal with this problem, we 
need to coordinate the robots. This coordination can be 
reflected in a plan (i.e., task planning and motion 
planning). 
 
As previously mentioned, communication is important 
for a MRS because it can help robots to be cooperative by 
learning information that is observed or inferred by 
others. Explicit communication (another means is implicit 
communication) must use communication media. 
However, the communication media cannot always be 
shared, therefore it is necessary for the robots to obtain 
exclusive access to them. The problem of communication 
media sharing is often associated with bandwidth 
limitation. Ye et al. [53] presented a method to evaluate 
control and communication strategies for a group of 
wireless-networked robots. In this method, they used a 
network simulator [148] to handle the bandwidth 
limitation problem, which took into account protocol 
characteristics and propagation conditions. Rybski et al. 
[54] described a distributed software control architecture 
designed for the control of multiple robots over a low-
bandwidth communications channel. In this architecture, 
robots share communication bandwidth by using the time 
slot (time-division multiplexing). They also showed how 
sharing bandwidth affects the performance of the robots 
when they are used in a surveillance task. Nerurkar et al. 
[149] presented a hybrid estimation framework for the 
problem of multi-robot cooperative localization under a 
very low bandwidth. Their framework allows each robot 
to communicate only a single bit per real-valued 
(analogue) measurement. Other works include [55] [56] 
[57] [150].  
 
Another resource conflict arises when multiple robots 
need to manipulate the same object. A well-studied topic 
for object sharing is the multi-robot box-pushing 
problem, in which robots should work together to 
transport a box to a destination. Matarić et al. [58] 
addressed the problem of cooperative box-pushing with 
two autonomous six-legged robots. They presented a 
strategy whereby the robots need to communicate with 
each other to take turns controlling the actions at each 
time step in order to coordinate the delivery of the box to 
the goal. Kube and Bonabeau [59] presented empirical 
observations of cooperative transport in ants and robots, 
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and described a case study of pushing a box with a 
swarm of robots that are controlled by using a finite-state 
machine (FSM). Coordination is achieved without any 
direct inter-robot communication. Gerkey and Matarić [60] 
presented a box-pushing experiment with a 
heterogeneous robot team by using an auction-based 
task-allocation system called MURDOCH. This system is 
able to allocate and coordinate manipulation tasks in a 
fault-tolerant manner, showing a tightly coupled 
cooperation among the robots. Miyata et al. [61] proposed 
a task assignment method for cooperative transport by 
multiple mobile robots in an unknown static 
environment. This method divides a robot's actions into 
small units of work to perform and assign tasks by 
considering whether an adequate number of robots is 
available for cooperation, and whether the time-space 
distributions of the task instances and the robots are 
adequate. Wang and Silva [151] employed two types of 
multi-agent reinforcement learning algorithms, single-
agent Q-learning and team Q-learning, for a multi-robot 
box-pushing task. They showed that single-agent Q-
learning does a better job than team Q-learning in a 
complicated and unknown environment with many 
obstacles. Other works include [62] [63] [64] [65] [66]. 
 
The third type of resource conflict is the space sharing 
problem, which has been studied mainly in relation to 
multi-robot motion planning, collision, congestion and 
deadlock avoidance problems (a detailed discussion is 
given in Section 7.2). Jäger and Nebel [67] described a 
decentralized method for coordinating the independently 
planned trajectories of multiple mobile robots to avoid 
collisions and deadlocks among them. Their idea is: for 
the collision, when the distance between two robots drops 
below a certain value, they will exchange information 
about their planned trajectories and determine whether 
they are in danger of a collision or not. If a potential 
collision is detected, they will monitor their movements 
and, if necessary, insert time gaps between certain 
segments of their trajectories to avoid collision. For the 
deadlock, when a deadlock is detected, the trajectory 
planners of each robot involved are successively asked to 
plan an alternative trajectory until the deadlock is 
resolved. Marcolino and Chaimowicz [69] proposed a 
decentralized coordination algorithm to control the traffic 
of a swarm of robots while avoiding congestion situations 
when large groups of robots move in opposite directions. 
The proposed algorithm allows the robots to perceive the 
possibility of collision and warn their teammates through 
local sensing and communication, following which the 
group’s members change their trajectories to avoid 
congestion. They also proposed another coordination 
algorithm for the control of traffic when robots try to 
reach the same target, where the robots control their 
actions by using a probabilistic finite state machine and 
continuously rely on local sensing and communication to 

coordinate themselves [70]. Luna and Bekris [71] 
proposed a graph-based algorithm for multi-robot path 
planning problems in which there are at most n-2 robots 
in a connected graph of n vertices. The proposed 
algorithm uses two primitives: “push”, where a robot 
moves toward its goal until no progress can be made, and 
“swap”, which allows two robots to swap positions 
without altering the position of any other robot. Other 
works include [68] [72] [73] [74] [75] [76] [77] [78] [152] 
[153] [154] [157]. 
 
Our latest investigations focus on the space sharing 
problem. A very common situation in motion planning 
for a group of mobile robots is when multiple robots 
move to the same waypoint, leading to collision, 
congestion and deadlock. We have defined this kind of 
dynamic standstill of a system caused by waypoint 
conflict as a waiting situation problem. This is because, in 
solving this problem, a robot should wait until the others 
pass the waypoint first or else all the robots should wait 
for the planner to re-plan their trajectories. However, 
these solutions may compromise the MRS system’s 
performance. 
 
In our previous work, we focused on how to alleviate the 
waiting situation problems by planning separate 
kinematic paths for mobile robots. We presented a 
method involving the iterative sampling of an occupancy 
grid map to construct a separate topological graph for 
robots [43]. We also presented another method by using a 
probabilistic roadmap (PRM) based on adaptive cross-
sampling (ACS) [79]. This method, which we called ACS-
PRM, includes three steps: C-space sampling, roadmap 
building and motion planning. Firstly, an adequate 
number of points should be generated in the C-space on 
an occupancy grid map by using an ACS method. 
Secondly, a separated roadmap should be built while the 
milestones are extracted by post-processing the result of 
sampling. Finally, robots plan their motion by querying 
the constructed roadmap. 
 
5. Coordination: Static Versus Dynamic 
 
Multi-robot coordination is the core task of MRSs. The 
overall system performance can be directly affected by 
the quality of coordination and control. Coordination can 
be static or dynamic. Static coordination (also known as 
deliberative coordination [14] or offline coordination [13]) 
generally refers to the adoption of a convention prior to 
engaging in the task. For example, some rules in traffic 
control problems include “keep right”, “stop at 
intersection” and “keep sufficient space between yourself 
and the robot in front of you” [80]. Dynamic coordination 
(also known as reactive coordination [14] or online 
coordination [13]) occurs during the execution of a task, 
and is generally based on the analysis and synthesis of 
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information. The information can be obtained through the 
means of communication. 
 
Dynamic coordination can also be divided into two 
categories: explicit coordination and implicit coordination. 
Gerkey and Matarić [81] defined explicit coordination as 
techniques employing intentional communication and 
collaboration methods, much like those employed in 
MAS (which is often used to deal with comparatively 
more sophisticated robots), and implicit coordination as 
those techniques employing the dynamics of interaction 
among the robots and the environment in order to 
achieve the desired collective performance, which is often 
in the form of designed emergent behaviour. Explicit 
coordination is usually associated with explicit 
communication, which is produced by a robot’s active 
behaviour. Implicit coordination is usually associated 
with implicit communication, which requires the robot to 
perceive, model and reason others’ behaviour. Fusing 
explicit and implicit information appropriately could 
improve the coordination performance of the whole 
robotic system. Both explicit and implicit communications 
will be discussed in detail in Section 6. 
 
The static method can handle complex tasks, but its real-
time controlling might be poor. The dynamic method can 
well meet the capability of real-time, but it has difficulty 
in dealing with more complex tasks. For MMRS, the 
external environment where the robots are placed may be 
too complex. It would be difficult to use only one method 
coping with all tasks. In our opinion, it would be best to 
use it by combining both the static and dynamic methods 
appropriately, based on the specific characteristics of the 
task at hand.  
 
Current research on the theoretical aspects of the multi-
robot coordination is not numerous. Agmon et al. [155] 
discussed three coordination mechanisms in the problem 
of a multi-robot patrol, including no coordination, loose 
coordination and tight coordination. They showed that an 
uncoordinated patrol performed better than a loosely 
coordinated patrol in terms of the average waypoint 
visitation frequency, and that tight coordination is 
theoretically optimal but it is not practical in practice. 
Kaminka et al. [166] presented a reinforcement learning 
approach to multi-robot coordination algorithm selection. 
They defined a reward function in the approach - called 
an effectiveness index - which can reduce the time and 
resources spent coordinating, and maximize the time 
between conflicts that require coordination. 
 
6. Communication: Explicit Versus Implicit 
 
Communication, as a means of coordination, often 
emerges as a rational behaviour in multi-robot 
environments. In fact, the communication is a mode of 

interaction between robots. By this interaction, on the one 
hand, robots can share position information, the state of 
the environment and sensor data with others in the 
system; on the other hand, an individual robot can get 
information as to the intentions, goals and actions of 
other robots. 
 
Cao et al. [9] classified the communication structure into 
three types according to the mode of interaction, which 
includes: interaction via the environment, interaction via 
sensing and interaction via explicit communications. 
Farinelli et al. [12] distinguished two different types of 
communication depending on the way in which the 
robots exchange information, which includes direct and 
indirect communication. In this paper, we follow the 
taxonomy based on the information transfer modes, 
namely explicit and implicit communication. 
 
Explicit communication refers to the means for the direct 
exchange of information between the robots, which can 
be made in the form of unicast or broadcast intentional 
messages. This often requires a dedicated on-board 
communication module. Existing coordination methods 
are mainly based on the use of explicit communication. 
Balch and Arkin [82] presented a behaviour-based 
formation control strategy for multi-robot teams. In order 
to communicate with the formation‘s unit-centre, each 
robot communicates its position to the other over a 
wireless network. Gerkey and Matarić [83] presented a 
general framework of inter-robot communication for 
dynamic task allocation for teams of cooperative mobile 
robots. Klavins [84] introduced a notion of 
communication complexity as a means to investigate the 
scalability of multi-robot algorithms in terms of how 
much coordination they require. Madhavan et al. [27] 
described an extended Kalman filter-based algorithm for 
the localization of a team of robots through a wireless 
local area network. Nett and Schemmer [85] presented an 
architecture based on wireless communication to 
schedule the intersection of two paths in real-time so that 
mobile robots could cross the intersection efficiently 
without collisions. Wang et al. [86] presented an ad hoc 
robot wireless communication scheme for a large system 
with many mobile robots to exchange information. 
Pimentel and Campos [87] developed an algorithm that 
enables a group of cooperating mobile robots to establish 
and maintain a wireless ad hoc network to exchange task-
related data. Rekleitis et al. [88] examined the problem of 
multi-robot coverage path planning for a team of robots 
with limited communication, where the robots operate 
under the restriction that communication between two 
robots is only available when they are within the line of 
sight of each other. Berna-Koes et al. [89] focused on an 
agent communication language (ACL) and described a 
two-tiered communication architecture. Rooker and Birk 
[90] presented an approach for multi-robot exploration 
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that took the constraints of wireless networking into 
account. Bicchi et al. [32] proposed a platform for 
decentralized multi-robot traffic control with secure 
communication among vehicles by using cryptographic 
keys and rekeying policies. Bayram and Bozma [91] 
presented an approach for the navigation of dynamically 
communicating robots via a bidirectional interaction 
model between the robot network and the continuous 
states. Other works based on explicit communication 
include [92] [93] [94] [95] [96] [97] [98] [158] [161]. 
 
Implicit communication refers to the way in which the 
robot gets information about other robots in the system 
through the environment. This should be achieved by 
embedding different kinds of sensors in the robot. 
Implicit communication can also be divided into two 
categories: active implicit communication (e.g., 
interaction via the environment) and passive implicit 
communication (e.g., interaction via sensing). Active 
implicit communication refers to the fact that the robots 
communicate by collecting the remaining information of 
others in the environment. The use of this form is 
generally related to the field of biomimetics, and is 
usually inspired by the collective behaviour of bees and 
ants. Passive implicit communication refers to the fact 
that the robots communicate by perceiving a change of 
environment through the use of sensors. For example, a 
robot needs to compute the context information (e.g., 
position and attitude) of others by modelling and 
reasoning based on the perceived data in order to 
cooperate with them. Pagello et al. [99] presented an 
approach for coordinating a team of soccer playing robots 
through implicit communication where the cooperation 
between the robots was based on the form of the 
observed behaviour of other robots. Stulp et al. [100] 
presented a computational model for implicit 
coordination and applied it to a typical coordination task 
of robotic soccer: regaining ball possession. Yamada and 
Saito [63] described an adaptive action selection method 
without explicit communication for dynamic multi-robot 
box-pushing. Pereira et al. [65] addressed the problem of 
coordinating multiple mobile robots for a box-carrying 
task by using only local sensor information.  Hollinger et 
al. [101] presented an approximation algorithm using 
implicit coordination to solve the multi-robot efficient 
search path-planning problem in indoor environments 
with a known floor plan. Other works based on implicit 
communication include [58] [102]. 
 
The use of explicit communication can ensure the 
accuracy of the exchange of information between robots. 
However, the communication load of a system will 
increase as the number of robots increases. This may 
cause a decrease in system performance or else lead to an 
overall system failure in extreme cases. In using implicit 
communication, and although the information obtained 

by a robot is not completely reliable, the stability, 
reliability and fault tolerance of the whole MRS are better 
than in using an explicit pattern. Therefore, applying both 
explicit and implicit methods in practice can make the 
two methods complement each other. 
 
7. Planning: Task Planning and Motion Planning 
 
The task of coming up with a sequence of actions that will 
achieve a goal is called ‘planning’ [34]. In MRS, planning 
can be used to coordinate robots in accomplishing the 
team mission. Unfortunately, the optimal planning for a 
MRS is typically an NP-hard problem. Therefore, the 
current challenge is to ensure tractable planning that 
produces good solutions [103]. Multi-robot planning is 
usually divided into two aspects: task planning and 
motion planning. Task planning is primarily designed to 
solve the problem of which robot should execute which 
task. This involves task decomposition and task 
allocation. Motion planning is primarily designed to 
generate the path of each robot. In addition, a robot 
should take into account the paths of others in order to 
avoid any collision, congestion or deadlock that may 
come along. 
 
There is a key characteristic of robotics problems: 
uncertainty, which arises from the partial observability of 
the environment and from the stochastic (or unmoulded) 
effects of the robot's actions [34]. This is why the 
benchmarking of robotics research is inherently difficult 
(especially for MRSs). 

7.1 Task Planning  

Multi-robot task planning (MRTP) includes two aspects: 
task decomposition and task allocation. So far, the 
research on task planning for MRSs has been mainly 
concentrated on the task allocation problem, with 
relatively little on the task decomposition problem. In fact, 
task decomposition is an important research topic 
because the effect of task allocation could be directly 
influenced by it. 
 
Multi-robot task decomposition (MRTD) mainly refers to 
how the team mission to be completed is decomposed 
into several single subtasks that can be completed by a 
robot independently, according to the characteristics, 
requirements and resource allocation of the team mission 
itself [104]. Stone and Veloso [105] achieved collaboration 
between agents through the introduction of formations, 
which decompose the task space defining a set of roles 
with associated behaviours. Botelho and Alami [5] 
presented a decentralized system to describe and perform 
task planning, decomposition and allocation in multi-
robot environments called the M+ protocol. This work 
was developed from an early European project called 
MARTHA [48]. Zlot and Stentz [46] focused on complex 
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tasks that can be decomposed into multiple inter-related 
subtasks. They addressed the task decomposition 
problem by generalizing tasks to task trees within a peer-
to-peer trading market. Tang and Parker [7] considered 
that, in typical approaches to multi-robot team working, 
the decomposition of the team’s task into subtasks is 
defined by the human designer in advance of the robot 
team’s performance, and that this pattern also outlines 
the available multi-robot task solutions in advance of the 
mission. As such, they described a methodology for 
automatically synthesizing task solutions for 
heterogeneous multi-robot teams. Other relevant works 
on MRTD include [106]. 
 
In our previous work, we considered task allocation and 
also took task decomposition into account. In [43] [44], we 
first decomposed the whole multi-robot exploration 
mission into several subtasks (i.e., the exploration of 
several unknown regions), which can be identified by 
topologizing the grid map of the environment. Next, we 
discussed how to assign the subtasks to each individual 
robot in a reasonable manner. 
 
Multi-robot task allocation (MRTA) can be considered as 
an instance of the well-known optimal assignment 
problem, whereby the general form of this problem can 
be expressed as follows: 
 

There are a number of agents and a number of tasks. 
Any agent can be assigned to perform any task, 
incurring some cost that may vary depending on the 
agent-task assignment. It is required to perform all 
tasks by assigning exactly one agent to each task in 
such a way that the total cost of the assignment is 
minimized. 

 
In those domains where group dynamics have a 
significant effect on group performance, MRTA is known 
to be NP-hard [15] [31]. The task allocation in a MRS 
generally undertakes assigning robots to tasks (or tasks to 
robots) so as to maximize the expected overall system 
performance. However, because MRTA becomes a 
dynamic decision problem - which varies in time with 
environmental changes - the static assignment method is 
no longer applicable. Thus, an alternative solution is to 
iteratively solve the static assignment problem over time. 
 
Gerkey and Matarić [107] [15] gave a formal analysis and 
domain-independent taxonomy of MRTA problems, in 
which the MRTA problems have been classified into 
seven categories according to the ability of the robot to 
perform tasks, the number of robots required for a task, 
and the manner of the task assignment. They also 
analysed and compared some iterated assignment 
architectures: ALLIANCE [4], BLE [108], and M+ [5] and 
some online assignment architectures: MURDOCH 

(auction-based MRTA) [60], first-price auctions (market-
based MRTA) [109] and dynamic role assignment [110], 
for MRTA, respectively. 
 
The contract net protocol (CNP) [111] has been developed 
to achieve task assignment with distributed control by a 
negotiation process in multi-agent systems. So far, most 
methods for MRTA are based on the CNP model. Botelho 
and Alami [5] presented the M+ system, which used a 
scheme for multi-robot cooperation through negotiated 
task allocation and achievement. This system is the first 
CNP-based approach to MRTA. Stentz and Dias [109] 
presented the ideas of a free market architecture for 
coordinating a group of robots to achieve a given 
objective (the market-based approach). This architecture 
defines revenue and cost functions across a range of 
possible plans for executing a specified task. The task is 
accomplished by dividing it into sub-tasks and allowing 
the robots to bid and negotiate to carry out these sub-
tasks. The objective is achieved by individual robots 
cooperating and competing with each other to further 
their own self-interest. Zlot et al. [29] applied these ideas 
to the multi-robot mapping and exploration problem. 
Their work borrows a market architecture, which seeks to 
maximize the benefit while minimizing the cost, thus 
aiming to maximize the utility. The benefit is the 
information gained by visiting a goal point, the cost is the 
estimated distance travelled to reach the goal (by using 
the D* algorithm), and then the utility is the difference 
between the benefit and the cost. It is worth pointing out 
that the market-based coordination architecture has been 
applied to a Mars exploration scenario (combined with 
the D* algorithm for robot motion planning). Gerkey and 
Matarić [60] presented the first online assignment 
architecture called MURDOCH, which uses a first-price 
auction to assign each task (an auction-based approach). 
The auction proceeds in five steps: task announcement, 
metric evaluation, bid submission, close of auction and 
progress monitoring / contract renewal. The MURDOCH 
system has been tested in two different domains: a tightly 
coupled multi-robot physical manipulation task, and a 
loosely coupled multi-robot experiment involving long-
term autonomy. The major differences between an 
auction-based approach and a market-based approach are 
that: 1) an auction-based approach uses bids based on 
estimated costs, but a market-based approach takes into 
account both costs and benefits; 2) an auction-based 
approach does not allow task reassignment, but a market-
based approach allows for later reassignments. 
 
We developed a lightweight and robust MRTA approach 
based on trade rules in a market economy (a trade-based 
approach) [44]. This approach is designed to simulate the 
relationship between buyers and sellers in a business 
system and to achieve dynamic task allocation by using a 
mechanism of unsolicited bids. A comparison between 
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market-based, auction-based and trade-based approaches 
is given in Table 1. 
 
In addition to the above CNP-based approaches, there 
are many other interesting strategies. Dahl et al. [31] 
presented an algorithm for task allocation in groups of 
homogeneous robots that is based on vacancy chains, a 
resource distribution strategy common in human and 
animal societies. This algorithm uses local task 
selection, reinforcement learning for the estimation of 
task utility, and reward structures based on the 
vacancy chain framework. Hanna [112] proposed an 
approach that allows robots to take into account the 
uncertainty of task execution. They decomposed the 
MRTA problem into two stages. In the first stage, each 
robot selects its own tasks based on the expected 
benefit by using a Markov decision process (MDP). In 
the second stage, an auction-based mechanism is 
applied to assign tasks to the robots. Michael et al. [113] 
proposed a distributed market-based coordination 
algorithm in which agents are able to bid for task 
assignment with the assumption that the agents have 
knowledge of all the tasks and the maximum number 
of agents that can be assigned to every individual task. 
Each auction is performed among neighbouring 
groups of agents and requires only local 
communication. They verified their algorithm in a 
multi-robot formation control problem. Shiroma and 
Campos [114] proposed a framework called CoMutaR, 
which is designed to tackle both task allocation and 
task coordination problems in MRS. This framework 
enables a single robot to perform multiple tasks 
concurrently by periodically checking and updating 
task-related information during implementation. It 
was tested and evaluated in the simulation of object 
transportation, area surveillance and multi-robot box-
pushing problems. Wawerla and Vaughan [24] 
presented two task allocation strategies for a multi-
robot transportation system. One is based on a 
centralized planner that uses domain knowledge to 
solve the assignment problem in linear time. The other 

enables individual robots to make individual task 
allocation decisions by only using locally-obtainable 
information and single value communication. Other 
relevant works on MRTA include [48] [115] [116] [46] 
[117] [156] [160] [164] [167]. 
 
Moreover, the task allocation for heterogeneous and 
homogeneous systems may be different. In 
heterogeneous systems, task allocation may be 
determined by each robot’s individual capabilities. 
However, in homogeneous systems robots have no 
preference for roles, and they may then need to 
differentiate into different roles at design-time, or 
dynamically at run-time [44]. Parker [118] introduced the 
concept of task coverage, which measures the ability of a 
given team member to achieve a given task. This 
parameter can be used as an index to organize a robot 
team from the available pool of heterogeneous robots in 
order to perform a mission. The task coverage reaches the 
maximum value in homogeneous teams and decreases as 
teams become more heterogeneous. 

7.2 Motion Planning 

In robotics, the motion planning problem involves 
producing a continuous robot motion from one 
configuration to another in a configuration space while 
avoiding collision with obstacles. Motion planning is 
eminently necessary for mobile robots since, by definition, 
a robot accomplishes tasks by moving in the real world 
[119]. 
 
Multi-robot motion planning (MRMP) should consider 
not only any obstacles (whether static or dynamic) in the 
environment, but also any possible interference between 
robots. This is because, when robots in a team are used to 
perform independent tasks in a shared workspace, each 
one will become a mobile obstacle for the others. 
Therefore, the motion planning of each individual robot 
in the team should take into account the movement of 
others. One well-studied example of MRMP is the multi-
robot space sharing problem (see Section 4). 

 
Market-based

approach 
Auction-based

approach 
Trade-based

approach 
Negotiation (communication) model publish / subscribe publish / subscribe apply / allocate 

Task allocation algorithm greedy algorithm 
(first-price auction) 

greedy algorithm 
(first-price auction) 

greedy algorithm 
(first-price auction) 

Task allocation ability per iteration 
(trading round) single task single task multiple tasks 

Role determination of the robots voluntary voluntary negotiation 
Utility consideration cost and benefit cost cost 
Task reassignment allowed not  allowed allowed 

Communication complexity O(1) / bidder, 
O(n) / auctioneer 

O(1) / bidder, 
O(n) / auctioneer 

O(1) / buyer, 
O(n) / seller 

Computation complexity O(n) O(n) O(n) 

Table 1. A Comparison of Three CNP-based Online Multi-robot Task Allocation Approaches 
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A multi-robot environment must definitely be dynamic, 
in which robot motion planning is inherently difficult. 
Even for a simple case in two dimensions, the problem is 
NP-hard and not solvable in polynomial time [120]. 
Among existing MRMP methods, the environment for an 
autonomous mobile robot is usually represented by an 
occupancy grid map, and the robot is reduced to a point 
in a two-dimensional plane (i.e., the workspace). Next, 
the motion is represented as a path in the workspace 
space. 
 
Most of the existing approaches to MRMP are expanded 
from the results of a single-robot system. Three major 
families of approaches are the cell decomposition, 
potential field and roadmap approaches. They all reduce 
the continuous motion planning problem to a discrete 
graph search problem by identifying some canonical 
states and paths within the free space. 
 
The cell decomposition approach decomposes the free 
space into a finite number of contiguous regions, called 
cells. This approach is often applied for the multi-robot 
area coverage problem. Bennewitz et al. [121] presented a 
strategy based on the A* path planning algorithm [122] to 
optimize the priorities of the decoupled and prioritized 
path planning methods for groups of mobile robots. The 
proposed approach is a randomized method, which 
repeatedly reorders the robots to find a sequence for 
which a plan can be computed and to minimize the 
overall path lengths. Guo and Parker [120] proposed a 
strategy based on the D* path planning algorithm [123], 
which contains two modules: path planning and velocity 
planning. The detailed process can be described as 
follows: initially, each robot plans its own path 
independently and then a coordination diagram is 
constructed based on collision checks among all the 
robots' paths. Hazon et al. [128] presented an online 
robust multi-robot spanning tree coverage (ORMSTC) 
algorithm based on an approximate cellular 
decomposition for covering an unknown environment. 
The algorithm is online because the robots do not have 
prior knowledge of the work area, and it is robust and 
complete because so long as a single robot is able to move, 
the coverage will be completed. Other works based on the 
cell decomposition approach include [129] [88] [130] [131]. 
 
The potential field approach generates a path by 
combining repulsion from obstacles with attraction to a 
goal. This approach is extensively used in the multi-robot 
formation control problem. Tanner and Kumar [124] 
presented a strategy based on an artificial potential field, 
which can ensure the near-global asymptotic convergence 
of the robots on a particular oriented formation shape 
while guaranteeing collision avoidance in the process. 
Other works based on the potential field approach 
include [125] [126] [127]. 

The roadmap approach reduces the robot’s free space to a 
set of one-dimensional curves connecting a set of nodes, 
called a roadmap. A typical roadmap approach is a 
Voronoi diagram, which specifies the set of all points 
equidistant from two or more closest obstacles. Following 
the Voronoi diagram may not give the shortest path, but 
the resulting paths tend to maximize clearance [34]. The 
Voronoi diagram is often applied to the problem of 
robotic exploration. Wurm et al. [40] presented a strategy 
for coordinating a team of exploring robots by using the 
Voronoi diagram for the segmentation of the 
environmental map. The strategy extracts the critical 
points [132] as the targets to assign them to the robots for 
task allocation. The critical points are those nodes in the 
Voronoi diagram at which the distance to the closest 
obstacle in the map is a local minimum. Other works 
based on the Voronoi diagram include [39] [41] [42]. 
 
Another roadmap approach is the probabilistic roadmap 
(PRM) [133], which has been widely used for robot arms 
in engineering and manufacturing. This method 
randomly generates a large number of collision-free 
configurations and achieves motion planning by 
connecting some of them. Several studies address multi-
robot coordination based on PRM, but focus on 
manipulator arms [134] [135]. As for the application of 
MMRS, Švestka and Overmars [136] presented a PRM-
based approach for multiple non-holonomic car-like 
robots’ motion planning in the same static workspace in 
which the roadmaps for the composite robot are derived 
from roadmaps for the underlying simple robots, and the 
roadmaps for the simple robots are computed by a 
probabilistic single-robot learning method. Kumar and 
Chakravorty [165] proposed a multi-agent generalized 
PRM (MAGPRM) method to solve MRMP problems in 
stochastic maps with uncertainty in the motion model. 
This method can construct a roadmap between every pair 
of start and goal locations for each robot by using an 
adaptive sampling technique. Other works based on the 
PRM include [92] [137]. 
 
Another probabilistic method is the rapidly-exploring 
random tree (RRT) [138], which takes the motion 
planning as a tree search problem. The tree is constructed 
incrementally in such a way that any random 
configuration in the free space is added by connecting it 
to the closest configuration already in the tree. Bruce and 
Veloso [139] described a RRT-based method for MRMP, 
called extended RRT (ERRT), in which the mechanism of 
a waypoint cache was implemented to store the 
knowledge of where a plan might again be found in the 
near future, and another mechanism of an adaptive beta 
search was used as well, where the planner adaptively 
modified a parameter to help it find shorter paths. 
Wagner et al. [163] applied a technique called sub-
dimensional expansion in order to enhance the 
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performance of probabilistic planners (RRTs and PRMs) 
for multi-robot path planning. This technique can 
construct a search space while being explored by a 
planner, the partial results of which are used to guide the 
construction of the search space. They showed that the 
technique could decrease the time required to find a 
solution by more than an order of magnitude, especially 
for systems of four or more robots. 
 
It is worth pointing out that both PRM and RRT are 
sampling-based methods, both of which are currently 
considered state-of-the-art for motion planning in high-
dimensional configurations or geometrically complex 
spaces. This is because, unlike with the cell 
decomposition, potential field and Voronoi diagram 
approaches (these approaches are difficult to apply to 
high-dimensional problems), the running time of the 
sampling-based methods does not grow exponentially 
with the dimension of the configuration space; they are 
also easier to implement. In addition, the sampling-based 
methods are probabilistically complete, meaning that 
sometimes they fail to find a solution even if one exists. A 
comparison of three major families of MRMP approaches 
is given in Table 2. 
 
The existing motion planning methods have their own 
strengths and weaknesses. Using only one method may 
entail difficulties in dealing with complex environments, 
such as the MRS. Combining multiple methods together is 
more coincident with the MRS requirements of reliability, 
flexibility, scalability and versatility [43]. This notion of a 
hybrid approach has been mentioned several times in the 
previous text (see Section 5 and 6). Schwager et al. [140] 
introduced a unifying optimization framework for multi-
robot deployment that brings together several different 
existing strategies, including geometric, probabilistic and 
potential field approaches. Other relevant works on MRMP 
include [141] [66] [142] [143] [162]. 

In addition, and for the purpose of dealing with problems 
about limited communication, computational speed and 
complex environments in MMRS, various MRMP 
approaches have been proposed based on wireless sensor 
networks (WSNs). Clark et al. [92] presented a framework 
for multiple mobile robots’ motion planning by using 
dynamic networks that are capable of: 1) forming 
dynamically whenever communication and sensing 
capabilities permit; 2) sharing world models and robot 
goals within each network; and 3) constructing on-the-fly 
coordinated trajectories for all robots in each network 
using a fast, centralized motion planner. Other related 
works include [144] [137] [145]. 
 
8. Decision-making: Centralized Versus Decentralized 
 
Decision-making can be regarded as a cognitive process 
resulting in the selection of a course of action among 
several alternative scenarios. Every decision-making 
process produces a final choice. In MRS, the decision-
making guided by planning can be centralized or 
decentralized in accordance with the group architecture 
of the robots. 
 
There is a central control agent in centralized architectures 
that has the global information about the environment as 
well as all information about the robots, and which can 
communicate with all the robots to share them. The central 
control agent could be a computer or a robot. The 
advantage of the centralized architecture is that the central 
control agent has a global view of the world, whereby the 
globally optimal plans can be produced. Nevertheless, this 
architecture: 1) is typical for a small number of robots and 
ineffectual for large teams with more robots; 2) is not 
robust in relation to dynamic environments or failures in 
communications and other uncertainties; 3) produces a 
highly vulnerable system, and if the central control agent 
malfunctions a new agent must be available or else the 

 
Cell decomposition 

approach 
Potential field 

approach 

Roadmap approach 

Voronoi diagram Sampling-based 
method

Strength optimal paths can be 
found 

efficient and easy to 
implement 

resulting paths tend 
to maximize 

clearance 

efficient for high-
dimensional 

problems 

Weakness
strongly depends on 
the grid resolution of 

the world 

easy to fall into local 
minima 

inefficient and 
complex to 
implement 

solutions often sub-
optimal 

Completeness complete 
probabilistically 

complete 

Performance computational complexity depends on the number of points 
rate of convergence  
depends on the use 

of  local planner 

Main applied field multi-robot area 
coverage 

multi-robot 
formation control 

multi-robot 
exploration 

industrial 
manipulators 

Table 2. A Comparison of Three Major Families of Multi-robot Motion Planning Approaches 
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entire team is disabled. A typical MRS using a centralized 
architecture is GOFER [2], in which there is a central task 
planning and scheduling system with a global view of the 
tasks to be performed in the environment and the 
availability of robots to perform the tasks. Certain studies 
outlined in the previous sections belonging to the 
centralized architecture approach include [66] [92] [7] [124] 
[40] [71] [43] [49]. 
 
Decentralized architectures can be further divided into 
two categories: distributed architectures and hierarchical 
architectures. There is no central control agent in 
distributed architectures, such that all the robots are 
equal with respect to control and are completely 
autonomous in the decision-making process. In 
hierarchical architectures, there exist one or more local 
central control agents which organize robots into clusters. 
The hierarchical architecture is a hybrid architecture, 
intermediate between a centralized architecture and a 
distributed architecture. In contrast to a centralized 
architecture, a decentralized architecture can better 
respond to unknown or changing environments, and 
usually has better reliability, flexibility, adaptability and 
robustness. Nevertheless, the solutions they reach are 
often suboptimal. Feddema et al. [146] have focused on 
input / output reachability, structural observability, 
system controllability and connection stability for 
decentralized control systems. They also show how these 
theories are applicable to multi-robot formation control, 
perimeter surveillance and  (surround and monitor an 
enemy facility). A typical MRS using a distributed 
architecture is M+ [5], in which each robot has its own 
local knowledge of the world and can decide its future 
actions by taking into account its current context and 
task, its own capacities and the capacities of the other 
robots, through a negotiation process. A typical MRS 
using a hierarchical architecture is CEBOT [3], in which 
cells (robots) can be physically coupled to others and 
some master cells are selected to coordinate tasks’ 
execution. Certain studies outlined in the previous 
sections belonging to the decentralized architecture 
approach include [4] [121] [67] [63] [125] [29] [60] [26] [28] 
[56] [32] [69] [44] [158] [161]. 
 
9. Conclusion 
 
In this paper, we systematically surveyed and analysed 
the key research problems in the field of MMRS, focusing 
on those approaches involving multi-robot coordination. 
We started by surveying the potential advantages of 
MRSs in contrast to single-robot systems. Afterwards, we 
discussed two multi-robot environments, namely 
cooperative and competitive environments. Next, we 
analysed three aspects of the problem of resource conflict 
in MMRS, including communication media sharing, 
object sharing and space sharing. Next, we discussed 

multi-robot coordination in two respects, including static 
and dynamic, and communication as a means of 
coordination. Following this, we made a special effort to 
investigate and study the multi-robot planning problem, 
including task planning and motion planning, which is 
inseparable from multi-robot coordination. Finally, we 
identified two decision-making architectures including 
centralized and decentralized approaches. 
 
The investigation of the related literature shows that 
considerable progress has been made in multi-robot 
localization / mapping / exploration and search and 
rescue, as well as intelligent transportation. However, 
these problems are still not fully resolved. In the previous 
sections, we identified several key open research 
challenges and presented a number of existing methods 
that are popular or interesting. There remain many other 
challenges, such as: 
 How to enable the MRS to handle more complex 

tasks like human beings? This means that we need 
more a powerful coordination scheme, especially in 
the process of MRTP. A simple two-layer task 
planning scheme (MRTD and MRTA) may no longer 
be suitable. A multi-layer scheme including task 
analysis, task negotiation, task execution and task 
supervision becomes important [167] [168]. 

 How to ensure the reliability of the motion of a 
physical MRS in the real world? As we know, there 
are still a lot of problems to be solved in MRMP, 
such as collision, congestion and deadlock. In 
complex and dynamic environments like MMRSs, 
rule-based and graph-based methods are difficult to 
deal with. A high-level coordination concept 
combined with reactive control for robots should be 
more efficient [169] [170]. 

 How to fuse and analyse the information acquired 
by each individual robot more rationally (and then 
make the decision more efficient)? A decision-
making architecture for a MRS - centralized or 
decentralized - has a requirement for information 
sharing because a robot in the team can only 
perceive local information. Effective data fusion 
may help us to produce an effective plan and then 
conduct multi-robot coordination [171] [172]. 

 How to make humans to easily intervene MRSs 
according to what is needed? Currently, many tasks 
are still too complex for robots, and coordination 
between humans and robots needs to be explored 
[173] [174] [175]. Human-machine interactions are 
ubiquitous in today's world, although this paper 
focuses on the use of autonomous mobile robots. 

 
Moreover, on the basis of our review some promising 
avenues for future research become apparent: 
 So far, much more attention has been paid to 

coordination for the same types of robot 
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(homogeneous and heterogeneous). Coordination 
between different types of robots, such as UUV, 
UGV and UAV, would present a very interesting 
challenge. MASs with rich diversity should be more 
efficient. 

 Energy must be the single most important problem 
that we confront today. Therefore, energy 
consumption as a system performance metric 
should be given more consideration. 

 The sampling-based algorithm is a very important 
and useful approach to robot motion planning. It is 
widely used in manufacturing environments with 
industrial robots, but there is greater development 
potential in MMRSs. 

 The centralized and distributed decision-making 
structures have their own strengths and weaknesses. 
For the near future, an effective way is to build a 
hybrid mechanism (i.e., a hierarchical architecture). 
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