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Abstract—PySke is a library of parallel algorithmic skeletons
in Python designed for list and tree data structures. Such
algorithmic skeletons are high-order functions implemented in
parallel. An application developed with PySke is a composition
of skeletons. To ease the write of parallel programs, PySke does
not follow the Single Program Multiple Data (SPMD) paradigm
but offers a global view of parallel programs to users. This
approach aims at writing scalable programs easily. In addition
to the library, we present experiments performed on a high-
performance computing cluster (distributed memory) on a set of
example applications developed with PySke.

Keywords—High-level parallel programming, algorithmic
skeletons, distributed lists, distributed trees, Python

I. INTRODUCTION

a) Context and Motivation: The size of data manipu-
lated by applications increases. Therefore, considering parallel
programming is a necessity. Most devices are now using
parallel architectures. However, parallel programming used to
be only handled by high-performance computer scientists and
data analysts and was a niche area. Nowadays, it is entirely
mainstream. Through language libraries, developers can take
advantage of the full resources of parallel machines.

There are two main approaches: shared-memory computing
and distributed-memory computing. Some hybrid architectures
use both. Shared-memory computing is usually used for small
parallel computations because the processing units are ma-
nipulating the same data and then it does not necessitate
inter-processors communications. With a distributed memory
architecture, each processor has its private memory, and the
exchange of information must be operated by concrete com-
munications.

Parallel programming with distributed memory has been
shown very efficient to treat large size data but remains
challenging for developers. Indeed, several aspects must be
considered such as communications, synchronization, and load
balancing. The consequence of these difficulties is a lack of
parallel programmers.

There exist compilers that can automatically parallelize
sequential programs. But because compilers must be designed
for a vast spectrum of cases, the resulting parallel programs
can lose efficiency compared to hand-made parallel programs.
In this paper, we aim at enabling the writing of efficient paral-
lel programs using techniques that do not hinder programming
productivity.

b) Approach and Goals: To ease the development of
parallel programming, Murray Cole has introduced the skeletal
parallelism approach [1]. A skeleton is a parallel implementa-
tion of a computation pattern. Using this approach, a developer
does not have to think about parallelization anymore but
only about how to write a program using these specific pat-
terns. There exist skeleton libraries in high-level programming
languages. For example, in C++, we have libraries such as
SkeTo [2], SkePu [3], Muesli [4] or OSL [5].

The advantage of Python is its flexibility, and the multiple
paradigms it provides that ease the development of applica-
tions. For instance, next to the object-oriented programming
style, we can use lambda expressions. Lambda expressions and
then higher-order functions are part of the language. Since
skeletons are based on computation patterns that generally
take functions as parameters, these functional notions are very
convenient in the development of a skeleton library. The goal
of PySke is to provide a straightforward way to write parallel
programs using skeletons and without taking care explicitly of
the parallel aspects of a program.

c) Contributions: Most of the already defined skeleton
libraries does not provide skeletons for more than one data
structure. Besides, they are mostly implemented in C++,
Java or less mainstream functional languages. Fortunately, the
Message Passing Interface (MPI) standard library has been
ported to Python through the mpi4py [6]–[8] library. Using
this package, we have developed Python skeletons for two
data-structures, lists and trees, following an object-oriented
programming (OOP) style. These structures are often involved
in solving data analysis problems. Combining the OOP style,
and the expressivity of Python, it is very comfortable to write
parallel programs with PySke. To illustrate the scalability of
the skeletons implementation, we conducted tests with exam-
ples based on problems solvable with these two data structures:
the variance of a random variable, and the numbering of the
elements of a tree based on a prefix traversal.

d) Outline: The organization of the paper is as follows.
We first present related work Section II. Section III and IV
present the implementation of skeletons on lists and arbitrary-
shaped trees respectively. Section V is devoted to experiments
on applications developed using these skeletons. We finally
conclude and discuss future work in Section VI.



II. RELATED WORK

Algorithmic skeletons were originally inspired by functional
programming. It is not a surprise that several functional
programming languages have algorithmic skeleton libraries.
For OCaml, OCamlP3L [9], and its successor Sklml, offer
a set of a few data and task parallel skeletons. Both rely
on imperative features of OCaml. parmap [10], a lightweight
skeleton library, provides only parallel map and reduce on
shared memory machines. BSML [11], a bulk synchronous
functional parallel programming library, is also used to im-
plementation algorithmic skeleton libraries for OCaml [12].
All these libraries only operate on arrays and lists, not trees.
While PySke does not provide task parallelism skeletons, its
set of skeletons on lists is richer than the set of data parallel
skeletons of the other libraries.

Eden is a non-pure extension to the Haskell language [13]
that is also used to implement higher-level skeletons [14].
Accelerate is a skeleton library for Haskell that targets GPUs
only. The initial proposal [15] featured classical data parallel
skeletons (map and variants, reduce, scan and permutation
skeletons) on multi-dimensional arrays. Besides, following
an algorithmic skeleton approach, Accelerate optimizes the
composition of skeletons at run-time rather than compile-
time, and kernels are also compiled at run-time. For Scala,
the Delite [16] framework can be considered as a skeletal
parallelism approach. The goal of this framework is to ease
the development of very high-level domain specific languages.
All these languages target the Delite framework that is a set
of data structures and mostly classical skeletons on them:
map and variants, reduce and variants, filter, sort; and one
less usual skeleton: group-by, as Delite has dictionaries as
one of its supported data structures. Delite provides compile-
time optimization through staged programming. Delite targets
heterogeneous architectures CPU/GPU but only shared mem-
ory architectures. PySke does not target GPUs yet. But it can
run on both shared and distributed memory architectures and
its set of skeletons is larger than the mentioned approached.
Moreover it supports parallel trees.

Several skeleton libraries exist also for mainstream host
sequential programming languages, for example for C++ [17],
[18], C [19] or Java [20]–[22]. Compared to these libraries,
PySke provides the same set of core classical skeletons
and some original skeletons such as get_partition and
flatten. PySke provides only data-parallel skeletons. The
set of skeletons we provide in PySke is a super-set of a sub-
set of the OSL [5] library for C++. Compared to OSL, PySke
lacks a skeleton [23] to manage exceptions in parallel. OSL
also provides bh a parallel parallel skeleton well-suited for
bulk synchronous parallelism [24]. PySke does not provide
this skeleton yet. OSL is close of the SkeTo library for C++,
but SkeTo [2] also provides skeletons for multi-dimensional
arrays. The current version of SkeTo does not provide tree
skeletons but a previous one did [25]. Recent work considers a
new implementation [26] that is not yet included in the current
version of SkeTo.

III. ALGORITHMIC SKELETONS ON LISTS

The PySke algorithmic skeletons on lists are provided as
methods of a class PList (for parallel list). PySke provides a
global view of programs, i.e. a PySke program on parallel lists
is written as a sequential program on sequential lists (PySke
also offers a class SList with additional sequential functions
on lists), but operates on parallel lists. This is very different
from the programming style of MPI and mpi4py. Both follow
the Single Program Multiple Data paradigm (SPMD) where
the overall program must be thought as a parallel composition
of sequential communicating programs.

Figure 2 illustrates the difficulty to read SPMD programs.
The overall parallel program is the parallel composition of this
program where the variable pid is giving the process identi-
fier. While in sequential, the two branches of the conditional
cannot be both executed, in SPMD they are both executed (if
the number of processors is more than one). In this program
processor 0 sends its pid to all other processors that in turn
receive a value from processor 0 and then print their pids and
the received value. The explanation of this program shows that
it would be better to have the code performed by 0 before
the code performed by the other processors. In this case the
code could be changed to satisfy this constraint, but it is not
always the case. When a program is complex it is also difficult
to know if the value of a variable depends on the pid or not.
Finally it is also difficult to determine if a variable is supposed
to be used as a local sequential variable (like the loop counter
i), or if the variable could be understood as a kind of array
of size the number of processors.

The global view of PySke avoids these difficulties and
makes the overall structure of parallel programs clearer.

from mpi4py import MPI
pid, nprocs = MPI.COMM_WORLD.Get_rank(),

MPI.COMM_WORLD.Get_size()
if pid!=0:

x = MPI.COMM_WORLD.recv(source=0);
print("pid=", pid, "\nx=", x)

else:
for i in range(1,nprocs):
MPI.COMM_WORLD.send(pid, dest = i)

Fig. 2: A mpi4py SPMD Program

In addition to the default constructor that returns an empty
parallel list, our API provides several ways to create a PList:
• the init(f, size) factory builds a parallel list of

global size size that contains value f(i) at index i.
Internally each processor contains a list of size size
/ nprocs where nprocs is the number of processors
running the PySke program. If size is not dividable by
nprocs, the first size % nprocs processors contain
one more element than the other processors.

• the from_seq(l) factory builds a parallel list that
contains only l at processor 0. The distribution of this list
is not even. l does not need to be defined on processors



Global View SPMD View

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

processor 0 1 2 3
content [0, 1, 2] [3, 4, 5] [6, 7] [8, 9]
global size 10 10 10 10
local size 3 3 2 2
start index 0 3 6 8
distribution [3, 3, 2, 2] [3, 3, 2, 2] [3, 3, 2, 2] [3, 3, 2, 2]

Fig. 1: Global and SPMD view of PList.init(lambda x:x,10)

other than 0. This kind of factory can be useful when
data can only be read from processor 0.

Internally, the implementation follows the SPMD style. A
parallel list contains the following fields on each processor:
• __distribution is a list of numbers: it contains

the local sizes for all the local contents. Therefore
__distribution has length nprocs,

• __content contains the local piece, at a given proces-
sor, of the global list; the content of this field may be
different on different processors,

• __local_size contains the size of __content,
and for a processor with processor identifier pid,
__distribution[pid] equals __local_size,

• __global_size contains the global size of the parallel
list, i.e. the sum of all __local_size; the value is the
same on all the processors,

• __start_index is the index in the global list of the
first element of the local list.

Figure 1 shows a global view and its correspond-
ing SPMD implementation of a parallel list build using
PList.init(lambda x:x,10) on a machine with 4
processors.

The API then provides methods to apply a given sequential
function to all the elements of one or two parallel lists, yielding
a new parallel list. There are several variants of this map
skeleton:
• For a parallel list pl and a unary function f,
pl.map(f) is the parallel list obtained by applying f
to each element of pl. This skeleton does not require any
communication to be executed and the distribution of the
output parallel list is the same as pl.

• For a parallel list pl and binary function f taking an
index and a value, pl.mapi(f) is the parallel list
obtained by applying f to each (global) index and the
element at this index.

• For two parallel lists pl1 and pl2, and a binary function
f, pl1.map2(f,pl2) is the parallel list obtained by
applying f at every possible index to the element of pl1
and the element of pl2. A pre-condition for this skeleton
to execute correctly is that pl1 and pl2 have the same
distribution (and hence the same size).

• The zip skeleton is just a call to map2 where f builds
a pair from two values.

The first skeleton that needs communications for its
execution is the reduce skeleton. Using a binary

operation op, which forms a monoid with value e (i.e.
op is associative and for all value x, op(x,e) equals
op(e,x) equals x), pl.reduce(op, e) returns the value
op(pl[__global_size-1,op(...,op(pl[0],e)).
If pl is non empty, then e can be omitted. For example the
sum of all the elements of a parallel list pl can be written
pl.reduce(lambda x,y:x+y). The result of reduce
is a sequential value.

Since the computation patterns are both defined for SList
and PList instances, the following program computes the
variance of a discrete random variable X representing either a
sequential list, or a parallel list:

n = X.length()
avg = X.reduce(add) / n
def f(x): return (x-avg) ** 2
var = X.map(f).reduce(add) / n

There is no difference between the sequential program and its
parallel version. This transparency aims at keeping the same
productivity for programmers.

The map skeleton and variants cannot change the dis-
tribution of their input parallel lists. However it may
be necessary to do so, for example to filter out some
of the elements of the distributed list. In order to ob-
tain a flexible mechanism, we provide a skeleton named
get_partition that is more general than a filter
skeleton. get_partition basically changes the view that
the users have of the parallel list. Instead of being a list
of elements, pl.get_partition() is a parallel list of
nprocs lists. The distribution of pl.get_partition()
is the list of size nprocs containing only 1. On 4 pro-
cessors, if the global view of pl was the one of Fig-
ure 1, then the global view of pl.get_partition()
is [[0,1,2],[3,4,5],[6,7],[8,9]]. Now a simple
application of map is enough to filter out some values, for
examples all the values below 5:

pl2 = pl.get_partition().map(lambda
l:l.filter(lambda x: x>5))

The global view of the resulting list is:
[[],[],[6,7],[8,9]].

The skeleton flatten allows to obtain a list of elements
from a parallel list of lists. pl3 = pl2.flatten() has
the global view [6,7,8,9], but it is not evenly distributed.
Note that to have a consistent distribution information on all
processors, the local sizes should be broadcast. The distribu-



Global View SPMD View

[[a], [b, d, e], [c, f, g], [h, j, k], [i, l,m]]

processor 0 1 2 3
content [a, b, d, e] [c, f, g] [h, j, k] [i, l,m]
distribution [2,1,1,1] [2,1,1,1] [2,1,1,1] [2,1,1,1]
global index [(0,1),(1,3),(0,3),(0,3),(0,3)]
start index 0 2 3 4
nb segs 2 1 1 1

Fig. 3: Global and SPMD view of PTree(lt) (lt from Figure 4)

tion is this case is [0,0,2,2].
The skeleton balance returns a parallel list that is globally

equivalent to the input object, but that is evenly distributed.
Thus the distribution of pl3.balance() is [1,1,1,1].

IV. ALGORITHMIC SKELETONS ON TREES

Trees are a particular kind of graphs, often used to rep-
resent structured data such as organizational charts or XML
documents. However, their ill-balanced and irregular structures
make efficient parallel computations challenging. Contrary to
lists, the structure of trees is not linear. Computations therefore
proceed from top to bottom (or from bottom to top), instead
of from left to right (or right to left).

A. Binary Trees

A binary tree, BTree, is a tree in which a node has
two children. Two constructors are defined by inheritance.
Leaf(a), to instantiate a binary tree with only one element
containing the value a, and Node(b,lb,rb) where b is
the value contained into the node, with lb and rb two binary
trees corresponding to the children nodes.

B. Serialization and Distribution

A list can be easily cut into contiguous pieces and these
pieces distributed. The structure of a binary tree does not allow
the same distribution strategy. However, a tree can be divided
as follows: Given an integer m, a node v is called m-critical if,
for each v’ child of v, the following inequality is respected:
dsize(v)/me > dsize(v′)/me with

size = lambda v: 1 + (0 if v.is_leaf()
else v.left.size() + v.right.size())

The critical nodes are the cut points of the tree. Each subtree
is translated into a list of TaggedValue called Segment
and encapsulated into an LTree instance. A TaggedValue
is a couple of a value and a tag corresponding to the type of
element in the original tree. Figure 4 gives an example of a
serialized tree with m = 5. Tags are L for leaf, C for critical
node, and N for regular node.

The PySke algorithmic skeletons on linearized trees are
provided as methods of a class PTree (for parallel tree). They
are built with the same approach as parallel lists. The two ways
to create a parallel tree are the following:
• The default constructor of PTree distributes a linearized

tree, and can be called by PTree(lt). The distribution

is not based on the number of Segment but on the av-
erage number of TaggedValue in a global repartition.
Obviously, depending on the serialization parameters, all
the Segment won’t have the same number of elements.
The distribution is built to have a number of values close
to total_size / nprocs. If used without any input,
the constructor will return an empty parallel tree.

• A PTree can be imported from a text file, using
the factory PTree.init_from_file(filename,
parse) with parse a parser from string to the type of
value contained in the tree (int by default).

The SPMD style is also followed for the implementation of
parallel trees (but the users’ API does follow the global view
approach). The fields of a PTree are:
• __content contains a single list of TaggedValue

representing all the Segment contained in the current
instance.

• __distribution is similar than for parallel lists. It
is a list of number representing the number of Segment
per processor.

• __global_index contains all the index of the distri-
bution of the segments. The index is a list of a couple of
integers representing the start point of a segment and its
size. The start points are calculated for each processor,
i.e. the start point of the first segment of a processor is
always 0.

• __start_index index of first index for the current
pid in global index

• __nb_segs contains the number of Segment in
the local content. This value can be got using
__distribution[pid].

Figure 3 shows the global view and the corresponding SPMD
implementation of a parallel tree build using PTree(lt)
with lt the linearized tree presented in Figure 4, on a machine
with 4 processors. To simplify the notation, we just represent
the TaggedValue instances by their values.

C. Skeletons

The tree skeletons described by Skillicorn in [27] represent
the basis of the tree skeletons implemented in the library. The
patterns on trees follow the ones on lists.

The first one, the map skeleton, applies two functions to
every element of a tree. One of the function is applied to
leaf values, while the second one is applied to node values.
For a parallel tree pt, pt.map(kL, kN) is the parallel tree
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s1 = Segment([TaggedValue(a,’C’)])
s2 = Segment([TaggedValue(b,’N’), TaggedValue(d,’L’), TaggedValue(e,’L’)])
s3 = Segment([TaggedValue(c,’N’), TaggedValue(f,’C’), TaggedValue(g,’L’)])
s4 = Segment([TaggedValue(h,’N’), TaggedValue(j,’L’), TaggedValue(k,’L’)])
s5 = Segment([TaggedValue(i,’N’), TaggedValue(l,’L’), TaggedValue(m,’L’)])
lt = LTree([s1,s2,s3,s4,s5])

Fig. 4: An example of a list representation of a binary tree (with m = 5).

obtained by applying kL to each leaf value and kN to each
node value of pt. This skeleton is pretty simple because it
does not require any communication and then can be executed
on a single step. The skeletons zip and map2 are defined
with the same approach. For two parallel tree pt1, and pt2
with the exact same shape (same distribution, and same tags
on values), pt1.map2(pt2, f) constructs a new PTree
where the values are obtained by applying f at every possible
index to the element of pt1 and the element of pt2. The
zip skeleton is defined as a particular case of map2 where
f = lambda x, y: (x,y), and can be called by
pt1.zip(pt2).

The reduce skeleton is based on its sequential definition
defined by:

Leaf(a).reduce(k) == a
Node(b,lb,rb).reduce(k) == k(reduce(k,lb), b,

reduce(k,rb))

However, because of the computation dependencies, k must
allow partial calculation on subparts of a tree. The calculation
of k can be partially defined if there exists φ, ψN , ψL, and
ψR such that: k(l, b, r) = ψN (l, φ(b), r)

ψN (ψN (x, l, y), b, r) = ψN (x, ψL(l, b, r), y)
ψN (l, b, ψN (x, r, y)) = ψN (x, ψR(l, b, r), y)

This closure property is written k =< φ,ψN , ψL, ψR >u.
The reduce skeleton can be then used on a parallel tree
pt by pt.reduce(k, phi, psiN, psiL, psiR). Its
execution necessitates communications and is composed of
several steps: First, each Segment is locally reduced into
a single value with k, phi, psiL and psiR. After all the

local results are gathered at processor 0, a global reduction is
computed using k and psiN. The reduce skeleton returns
either a single value in the first processor and None otherwise.

The Upward Accumulation function, uacc, is defined sim-
ilarly but it has the particularity of keeping the tree structure
for its result:

Leaf(a).uacc(k) == Leaf(a)
Node(b,lb,rb).uacc(k) == Node(k(lb.reduce(k),

b, rb.reduce(k)), lb.uacc(k), rb.uacc(k))

In the same way, to allow parallelization, the closure property
k =< φ,ψN , ψL, ψR >u must be respected.

The uacc function is used as follows:

pt.uacc(k, phi, psiN, psiL, psiR).

Three computation steps are necessary for the parallel exe-
cution of uacc. We first make a local accumulation pro-
cessed with k, phi, psiL and psiR to get both local,
but incomplete, accumulated segments, and the top values of
accumulations (later used to process complete accumulation).
The calculated top values are gathered to the processor such
that pid == 0, and with psiN, the actual top values are
calculated. The actual top values are redistributed and each
Segment is finally updated if necessary during one last step,
using k.

The definition of the Downward Accumulation function,
dacc, is the following:

Leaf(a).dacc(gL, gR, c) == Leaf(c)
Node(b, lb, rb).dacc(gL, gR, c) ==
Node(c,lb.dacc(gL, gR, gL(c,b)),

rb.dacc(gL, gR, gR(c,b)))



Here again, the used functions must respect a closure
property. The dacc function can be parallelized if there exists
phiL, phiR, psiU and psiD such that: gL(c, b) = ψD(c, φL(b))

gR(c, b) = ψD(c, φR(b))
ψD(ψD(c, b), b′) = ψD(c, ψU (b, b

′))

The closure property on (gL, gR) is denoted by:

(gL, gR) =< φL, φR, ψU , ψD >d .

pt.dacc(gL, gR, c, phiL, phiR, psiU, psiD)
is therefore a call to the dacc skeleton.

This skeleton is also processed using several computation
steps. First, each processor computes a local intermediate value
with psiU, phiL and phiR. Theses values are gathered at
processor 0. Using psiD and the initial value of c, it computes
values to pass to children of critical nodes. After having
being redistributed, these values are used by each processor to
perform a global downward accumulation.

Numbering the nodes following a prefix traversal order of
a tree T, implemented as a parallel tree, can be computed by:

def k((ll,ls), b, (rl,rs)):
return (ls, ls + 1 + rs)

initial = T.map(lambda a: (0,1),lambda x: x)
processed = initial.uacc(k, phi, psiN, psiL,

psiR)
prefixed = processed.dacc(gL, gR, 0, phiL,

phiR, psiU, psiD)

All the source code is available at https://pypi.org/project/
pyske/, or can be installed by the following command:

# pip install pyske

Auxiliary functions used for closure properties are obtained
using the derivation technique described in [28]. The skeletons
described above have their sequential implementations for
LTree. For an instance of distributed tree pt, if there exists
a skeleton F, then there exists the same function that can be
called by lt.F(params) with lt an instance of LTree.
The functions can also be called on BTree instances, but
all the input parameters relative to closure properties must
be removed. The sum of nodes can then be processed as
following, with lt an instance of LTree and bt an instance
of BTree.

def add(x,y,z): return x + y + z
def one(x): return 1
sum_lt = lt.reduce(add, one, add, add, add)
sum_bt = bt.reduce(add)

V. EXAMPLES AND EXPERIMENTS

We present here two experiments we processed using PySke.
Each example ran 30 times. The execution time reported is the
average over the 30 experiments of the maximum value of the
execution times of all the MPI processes. Note that unlike
the default of the timeit Python library, we do not exclude
garbage collection of our timings.
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Fig. 5: Example: Variance (List)

The experiments have been processed on Monsoon, the
HPC cluster of Northern Arizona University. The nodes of
the cluster have 16 Intel Xeon cores, with a total of 24TB
of memory. Individual systems are interconnected via FDR
Infiniband at a rate of 56Gbps. The used software is the
following: Ubuntu Linux 18.04, Python 3.6.7, mpi4py version
3.0.0, OpenMPI version 2.1.1. The choice of using a cluster
has been taken to mainly test the scalabilty of PySke programs.
The same executions on a single shared memory machine, that
has two Intel Xeon E5-2683 v4 processors with 16 cores at
2.10 GHz, and 256Gb of memory, took half the time. Since
this second option has a limited number of cores (i.e., 32), we
preferred show our results on Monsoon.

The first one is the application of the variance calculation on
a distributed list of 5∗107 integer elements. Figure 5 presents
the calculation time and the relative speed-up depending on
the number of processors. The dashed line in the first plot
represents the computation time using just plain Python for the
same problem, while the one in the second graph represents a
perfect speed-up.

Figure 6 presents results of experiments on the node num-
bering application on trees. We have performed the tests on
two types of binary tree of size 224−1 = 16777215: a balanced
tree, and a tree with a random shape. All the trees have been
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Fig. 6: Example: Node Numbering (Tree)

linearized using m = 53600. The dashed lines represent the
computation times using LTree instead of PTree instances.
Compared to BTree, linearized trees are much more efficient.
The recursive functions on binary trees are not tail recursive:
that makes their computations inefficient. In average, it took
697s (resp. 745s) to compute prefix on a balanced binary
tree (resp. random shaped binary tree) with BTree primitives.

The results of the parallel implementation using PySke
skeletons show a good scalability until 128 processors. The
results are better for balanced tree because of the more
predictable distribution of the tree. However, even with 256
processing units, the performances are increasing. Python im-
plies an evident performance penalty. For example, compared
to SkeTo, the same program is slower but the relative speed-
up increases similarly. Figure 7 shows a comparison of the
relative speed-up on same executions of the node numbering
program. We do not have a comparison of the execution time
because the values for SkeTo come from a paper that was
reporting performances for a very different machine.

The value of m has a real importance in the distribution of
the data. If m has a small value, the linearized Segment
of tree will be small too. It is convenient to balance the
distribution within the processors but it implies to do more
partial calculation. A large value makes less Segment but the
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distribution may be more unbalanced. Matsuzaki et. al. discuss
more precisely about this value in [25]. The map skeleton
by itself would show a better relative speed-up because of
the absence of communications. With a perfect distribution
(m = 1), the scalability would be perfect. The choice of how
splitting the trees by considering the number of processors, the
machine characteristics, and the size of each subtree with more
relativity would be better. The technique of distribution can be
improved by detecting the type of a tree. For a given node,
by calculating the size of the left and the right subtrees, the
type of the binary tree can be decided, and then the decision
of splitting.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented PySke, a Python library of skele-
tons for lists and binary trees. Skeletal parallelism eases writ-
ing parallel programs compared to more explicit approachs.
We proposed different applications based on PySke skeletons,
and showed the scalability of our solution.

The API can be completed with other skeletons. First, the
already defined structures can provide more parallel patterns
especially on lists [2]–[5]. Also, other structures with their
skeletons such as matrices [29], graphs [30], or more general
trees [31] will be implemented in future versions of PySke.

Providing more structures and more skeletons will increase
productivity but it can also decrease the performances if
the skeleton combinations are not optimized. Program op-
timizations can be automatically performed using program
transformations [32]–[35]. The program process can be guided
by a cost model [36]. Preliminary results show that it is indeed
a promising direction for PySke [37].

On the implementation side, the mpi4py library has been
particularly designed and optimized for numeric arrays of the
NumPy [38] library. We plan to provide a distributed array data
structure based on contiguous NumPy arrays, and to provide
the same skeletons than for lists.

The mpi4py library is not the only one that allows parallel
programming in Python. We plan to comparatively study



the different Python programming libraries, both from the
runtime performance perspective but also from the productivity
perspective. Halstead metrics [39] and similar metrics are
well-designed to evaluate the effort needed to write the same
program in different ways. It already have been used by
Légaux et al. [40], and we plan to use such metrics to provide
a comparison of PySke with other parallel programming
libraries.

REFERENCES

[1] M. Cole, Algorithmic Skeletons: Structured Management of Parallel
Computation. MIT Press, 1989.

[2] K. Emoto and K. Matsuzaki, “An Automatic Fusion Mechanism for
Variable-Length List Skeletons in SkeTo,” Int J Parallel Prog, 2013.

[3] J. Enmyren and C. Kessler, “SkePU: A Multi-Backend Skeleton Pro-
gramming Library for Multi-GPU Systems,” in 4th workshop on High-
Level Parallel Programming and Applications (HLPP). ACM, 2010.

[4] P. Ciechanowicz, M. Poldner, and H. Kuchen, “The Münster Skeleton
Library Muesli – A Comprenhensive Overview,” European Research
Center for Information Systems, University of Münster, Germany, Tech.
Rep. Working Paper No. 7, 2009.

[5] J. Légaux, F. Loulergue, and S. Jubertie, “Managing Arbitrary Distribu-
tions of Arrays in Orléans Skeleton Library,” in International Conference
on High Performance Computing and Simulation (HPCS). Helsinki,
Finland: IEEE, 2013, pp. 437–444.

[6] L. Dalcin, R. Paz, and M. Storti, “MPI for Python,” Journal of Parallel
and Distributed Computing, vol. 65, no. 9, pp. 1108 – 1115, 2005.

[7] L. Dalcin, R. Paz, M. Storti, and J. D’Elia, “MPI for Python: Perfor-
mance improvements and MPI-2 extensions,” Journal of Parallel and
Distributed Computing, vol. 68, no. 5, pp. 655 – 662, 2008.

[8] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo, “Parallel distributed
computing using Python,” Advances in Water Resources, vol. 34, no. 9,
pp. 1124 – 1139, 2011, new Computational Methods and Software Tools.

[9] R. D. Cosmo, Z. Li, S. Pelagatti, and P. Weis, “Skeletal Parallel
Programming with OcamlP3l 2.0,” Parallel Processing Letters, vol. 18,
no. 1, pp. 149–164, 2008.

[10] R. Di Cosmo and M. Danelutto, “A “minimal disruption” skeleton exper-
iment: seamless map & reduce embedding in OCaml,” in International
Conference on Computational Science (ICCS), vol. 9. Elsevier, 2012,
pp. 1837–1846.

[11] F. Loulergue, F. Gava, and D. Billiet, “Bulk Synchronous Parallel ML:
Modular Implementation and Performance Prediction,” in International
Conference on Computational Science (ICCS), ser. LNCS, vol. 3515.
Springer, 2005, pp. 1046–1054.

[12] F. Loulergue, “Implementing Algorithmic Skeletons with Bulk Syn-
chronous Parallel ML,” in Parallel and Distributed Computing, Appli-
cations and Technologies (PDCAT). IEEE, 2017, pp. 461–468.

[13] R. Loogen, Y. Ortega-Mallen, and R. Pena-Mari, “Parallel Functional
Programming in Eden,” J Funct Program, vol. 3, no. 15, pp. 431–475,
2005.

[14] R. Loogen, “Eden – Parallel Functional Programming with Haskell,” in
Central European Functional Programming School, ser. LNCS, V. Zsòk,
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mization techniques for skeletons on grids,” in Grid Computing The
New Frontier of High Performance Computing, ser. Advances in Parallel
Computing, L. Grandinetti, Ed. North-Holland, 2005, vol. 14, pp. 255
– 273.

[37] J. Philippe and F. Loulergue, “Towards automatically optimizing PySke
programs (poster),” in International Conference on High Performance
Computing and Simulation (HPCS). Dublin, Ireland: IEEE, 2019.

[38] Oliphant T., “NumPy: numerical Python,” http://numpy.scipy.org, 2010.
[39] T. Hariprasad, G. Vidhyagaran, K. Seenu, and C. Thirumalai, “Software

complexity analysis using halstead metrics,” in 2017 International
Conference on Trends in Electronics and Informatics (ICEI), May 2017,
pp. 1109–1113.

[40] J. Légaux, S. Jubertie, and F. Loulergue, “Development Effort and
Performance Trade-off in High-Level Parallel Programming,” in Inter-
national Conference on High Performance Computing and Simulation
(HPCS). Bologna, Italy: IEEE, 2014, pp. 162–169.


