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Abstract. Alloy is both a formal language and a tool for software mod-
eling. The language is basically first order relational logic. The analyzer
is based on instance finding: it tries to refute assertions and if it succeeds
it reports a counterexample. It works by translating Alloy models and
instance finding into SAT problems. If no instance is found it does not
mean the assertion is satisfied. Alloy relies on the small scope hypothesis:
examining all small cases is likely to produce interesting counterexam-
ples. This is very valuable when developing a system. However, Alloy
cannot show their absence. In this paper, we propose an approach where
Alloy can be used as a first step, and then using a tool we develop, Alloy
models can be translated to Coq code to be proved correct interactively.

Keywords: first order relational logic, calculus of inductive construc-
tion, translation.

1 Introduction

There are many different formal methods, ranging from completely automated
tools, for e.g. static analyzers and sanitizers [24], to interactive theorem proving
that requires a lot of human work.

Often, the users of such tools need to provide a specification of the analyzed
system. Analyzing this specification can then be automatic or interactive. Alloy
and the Alloy analyzer [10] fall into the first category. Alloy was and is used in
many different domains. For example software engineering [7], and security [20].
More specific applications of it, as presented by Torlak et al. in [28], are model-
ing and analysis of software systems, bounded program verification and test-case
generation. Multiple systems have been studied using Alloy: the flash file sys-
tem [12,13], the Mondex electronics purse [21], a proton therapy machine [22],
an information system library [6], etc.

When it comes to bounded program verification two related works were pre-
sented in detail in [28]. The Jalloy tool [11] checks a Java method against a
specification of its behavior. It starts by translating the method to Alloy then
invoking an early prototype of the Alloy Analyzer on the resulting constraints.
The second work was built on the previous work and is called Forge [4]. It em-
ployed a new translation from procedural code to relational logic involving sym-
bolic execution, using the KodKod API [27]. Alloy have also been exploited in



many tools for test-case generation, to mention: TestEra [16] and Whispec [23].
While TestEra [16] employs Alloy in a specification-based black-box framework
for testing of Java programs, Whispec [23] is an approach for specification-based
white-box testing using Kodkod. KodKod [5], that is at the heart of Alloy’s en-
gine is also used in Niptick [2] a counter-example finder for the proof assistant
Isabelle.

Alloy is a lightweight formal method as it relies on the small scope hypoth-
esis: examining all small cases is likely to produce interesting counterexamples.
However, the Alloy analyzer cannot show the absence of errors. Other formal
tools such as the interactive theorem provers Coq [26] and Isabelle [18] have
been used to provide very strong guarantees on verified software, including a C
compiler [15] and the kernel of an operating system [14].

We think it is very valuable to use lightweight formal methods. In practice,
if one is to use a tool such as Alloy as a first step, then wants to use a more
heavyweight tools such as Coq as a second step, the formalization done first is
lost. To support the transition from Alloy to Coq, we propose a translator from
Alloy models to Coq code.

The paper is organized as follows. In Section 2 we briefly present Alloy and
Coq. The principles of the tool we propose are described in Section 3, including
examples of translation. We compare our approach to related work in Section 4,
discuss the current limitations of our tool in Section 5, and conclude in Section 6.

2 An Overview of Alloy and Coq

2.1 Alloy and the Alloy Analyzer

Alloy [9] is both a language and an analyzer for writing and checking formal
models. This section provides the details of the properties and main components
of this language.

Alloy Properties Alloy have been widely used for modeling systems in order
to simulate them and verify their properties. It allows a simplified view of the
systems by abstracting implementation details and focusing on their properties
and constraints. The language has a simple syntax based on the Z language. It
is a structural language: it allows to model complex structures with hierarchies
and relations. Although it offers the possibility to define entities with properties
and constraints to describe systems, it does not conduct treatments. Alloy is
an analyzable language. The properties of an Alloy model can be checked and
simulated using the Alloy Analyzer.

Atoms & Relations In Alloy, atoms are the basic elementary entities. It is an
abstract concept that is used to model aspects of the real world. Alloy data
types are universally based on relations. They represent a concept that serves to
define correlations between atoms. Relations and atoms cooperate to represent
different aspects of a system. Relations can have an n arity and can be declared
as f : A1 → . . .→ An.



Signatures represent the entities of a system. A signature is the only element to
represent the types and atoms in an Alloy model. Although it is a non-object-
oriented language, Alloy allows inheritance between signatures. A signature can
have attributes as explained below.

Facts in Alloy are used to describe different constraints about the system being
modeled that remain always true. In Alloy, all facts are defined using the keyword
fact.

Predicates are an abstraction of logical formulas for reuse purposes. A predicate
can be defined with parameters used in the logical formula of its body. Predicates
are often used in assertions that we want to verify on the model.

Functions return typed values for reuse and model clarity sake.

Assertions are used to specify properties about the model that we expect to
hold or that we want to check if they hold. Once an assertion is stated we can
check if it holds in a specific scope, using the keyword check and feeding the
model to the Alloy Analyzer. The analyzer looks for a counterexample to the
assertion within the specified scope.

The scope is the cardinality, specified by the user, of the top level signatures
in a model. Although working within limited scopes ensures that the model-
finding problem is decidable, it limits the generality of the results produced by
the Alloy Analyzer. Jackson explains this design decision through the small scope
hypothesis: most bugs can be found by testing programs for all test inputs within
a small scope. For more details refer to [10, section 5].

We discuss more specific Alloy syntax and semantics on the example of Fig-
ure 1 that is basically the example of [10, page 16]. We will use this example as
running example throughout the paper. The interested reader can refer to [10]
for a longer discussion of this example.

Name and Addr are two signatures in Alloy terminology. They are sets. Book

is also a signature containing an attribute, addr. While addr is given type Name

→Addr, the fact that it is an attribute of Book means it is actually a ternary
relation between Book, Name and Addr. In lines 3 and 4 of Figure 1 we can see
the definition of the predicates add and del both defining two different states of
book, the first by adding a new entry (i.e. addr) and the second by deleting an
existing one. In this code, + means union, − set difference, and . is the relational
join of Alloy. One specificity of the join operation in Alloy is that in an expression
r1 . r2, the right-most column of relation r1 and the left-most column of relation
r2 are not in the join result. The function lookup returns the Addr associated to
the Name n in the book b, n and b given as arguments of the function.

We can see how assertions are defined for this example in lines 11–21. The
assertion delUndoesAdd is stating that by adding an entry to a book then deleting
it we go back to the initial state of the book (taking into consideration that these
are the only two operations done on the book). In order to check if this assertion
holds, we execute the check stated in line 22 using the Alloy Analyzer (the scope
in this case is 5 atoms, if the scope is not specified it is set to 3).



1 sig Name, Addr { }
2 sig Book { addr: Name → Addr }
3 pred add [b, b ’: Book, n: Name, a: Addr] { b ’. addr = b.addr + n→a }
4 pred del [b, b ’: Book, n: Name] { b’.addr = b.addr − n→Addr }
5 fun lookup [b: Book, n: Name] : set Addr { n.(b.addr) }
6 assert delUndoesAdd {
7 all b, b ’, b ’’: Book, n: Name, a: Addr |
8 no n.(b.addr) and add [b, b ’, n, a] and del [b ’, b ’’, n]
9 implies b.addr = b ’’.addr

10 }
11 assert addIdempotent {
12 all b, b ’, b ’’: Book, n: Name, a: Addr |
13 add [b, b ’, n, a] and add [b, b ’’, n, a]
14 implies b ’. addr = b ’’.addr
15 }
16 assert addLocal {
17 all b, b ’: Book, n, n ’: Name, a: Addr |
18 add [b, b ’, n] and n != n’
19 implies
20 lookup [b, n ’] = lookup [b ’, n ’]
21 }
22 check delUndoesAdd for 5

Fig. 1. Alloy Example

2.2 The Coq Proof Assistant

The Coq proof assistant is based on the calculus of inductive constructions [19],
a higher-order typed λ-calculus. Coq and the calculus of inductive construc-
tions are based on the Curry-Howard correspondence: a type corresponds to the
statement of a theorem, and a program to the proof of a theorem.

The core of Coq is very small. For example there is no pre-defined data type.
All definitions are typed in Coq. Therefore a user-defined type has a type, named
a sort. There are three sorts in Coq: Set is the sort of types that correspond to
types found is usual programming language. It is the sort of the “computational”
types. Prop is the sort of “logical” types. Both Set and Prop are typed: their type
is Type. Most of the time when using Coq, the type of Type will be displayed as
Type. Actually there is a countable infinity of sorts Type.

In Gallina, the language of Coq, a definition contains three components: a
name, a type, and a term. For example the polymorphic identity function can
be defined as shown in lines 1–2 of Figure 2.

As the core does not contain predefined types (but the sorts Set, Prop and
Type), Coq provides a mechanism to define new inductive types. This is done by
giving a list of constructors for values of the defined type. For example, Peano
natural numbers are defined in lines 4–6 of Figure 2. There are two constructors
for values of type nat: O and S the latter taking a nat as argument.



1 Definition id: ∀ (A:Type), A → A :=
2 fun A x ⇒ x.
3
4 Inductive nat : Set :=
5 | O : nat
6 | S : nat → nat.
7
8 Fixpoint add (n1 n2:nat) : nat :=
9 match n1 with

10 | O ⇒ n2

11 | S n1 ⇒ S(add n1 n2)
12 end.
13
14 Lemma add n O: ∀ n,
15 add n O = n.
16 Proof.
17 induction n as [ | n IH ].
18 − trivial.
19 − simpl. rewrite IH. trivial.
20 Qed.

Fig. 2. Coq Example

Functions are most often written using pattern matching as in lines 8–12
of Figure 2. For each possible way of constructing a value of the type of the
matched expression (in this case n1 of type nat), the pattern matching construct
returns (after⇒) a specific result. The patterns (on the left-hand side of⇒) may
contain variables: in case the matching succeeds, the free variables are bound
to the matched values in the right-hand side of ⇒. Note that add is a recursive
function (Fixpoint keyword). Only terminating functions are allowed in Coq: in
this case the system checks the termination by checking that the recursive call
is done on a strict syntactic subterm of n1.

Coq is a proof assistant: it is possible to define theorems and prove them.
As mentioned at the beginning of this section, a Coq definition contains three
elements: a name, a type and a term. In the case of a theorem (or lemma,
proposition, etc.), the term (i.e. the proof) is usually not written as a program
(even though the Curry-Howard correspondence states a program and a proof
are the same thing): the proof script language of Coq is used instead. In the
code of Figure 2, add n O is the name of the lemma, ∀ n, add n O = n is its type,
and the proof script between Proof and Qed builds a term that is the proof of
the lemma.

One important feature of Coq is that computational terms can be embedded
into types. For example the library Vector of Coq standard library contains the
following inductive type definition:

1 Inductive t (A : Type) : nat → Type :=
2 | nil : t A 0 | cons : ∀ (h:A) (n:nat), t A n → t A (S n).

The size of a value of this type contains the length of the vector. For example, a
value of type Vector.t nat 10 is a vector containing ten nat values. Vector.t is called
a dependent type.

This feature can also be used to define predicates as inductive types. For ex-
ample the < predicates on Peano natural numbers is defined in the Coq standard
library as:

1 Inductive le (n : nat) : nat → Prop :=
2 | le n : le n n | le S : ∀ m : nat, le n m → le n (S m).



More generally, Coq functions can take both computational values and types
as arguments, and also return them as results. As values of some types (like
add n O) are proofs, Coq functions can also take proofs as arguments and return
proofs as results. We use these features in the Coq code generated from Alloy
models.

It is also possible to declare values in Coq: in this case we have only a name
and a type. In the case of a value that needs a proof, it means an axiom is
introduced in Coq’s logic. Note that when such declarations can be written
inside a section, in such a way that at the closing of the section, all the elements
that depend on these hypotheses are added additional arguments corresponding
to these hypotheses.

3 The Transformation

3.1 Basic Principles

Logical Quantifiers and Connectors Logical elements present in the Alloy lan-
guage, are also present in Gallina, either as primitives (universal quantification)
or defined in the standard library (existential quantification, negation, conjuc-
tion, disjunction). The design choices thus appear when translating the relational
parts of Alloy.

Sets, Relations and Elements In the Coq standard library, sets and binary rela-
tions are formalized using predicates. Given a type A, a subset of A is formalized
as a predicate on A, i.e. a value of type A→Prop, and a binary relation on types A

and B as a value of type A→B→Prop. We could use directly such a formalization,
and consider higher arities: the simple example of Figure 1 indeed contains a
relation of arity 3. Some other translation tools from Alloy to provers (discussed
in Section 4) have explicit different translations for sets, binary relations, ternary
translations, etc. Some of them are limited to a given arity.

However, in addition to a “raw” translation from Alloy to Coq, we wanted
our tool to provide some support to ease the proof in Coq of the assertions of
an Alloy model. Such a support includes general lemmas about the properties
of the set and relational operations of Alloy. While of course possible in Coq, we
chose to avoid such a solution as it would mean we would have to generate as
many versions of the operations as there are combination of the arities, and as
many supporting lemmas as there are combinations of these operations. Also in
Alloy, relational operations can be applied to elements that are seen as singleton
sets.

Therefore we chose to generalize the approach present in the Coq standard
library: considering a type U (the universe of Alloy), a relation of arity n (with
0 < n) is formalized as a value of type U→...→U→Prop that contains n U.

To be able to define operations on arbitrary relations, we first need to express
the arity of a relation. This is done by the following definition:



1 Fixpoint arity (n : nat): Type :=
2 match n with
3 | 0 ⇒ Prop
4 | S n’ ⇒ U → arity n’
5 end.

Therefore arity 1 simplifies to U→Prop, arity 2 to U→U→Prop, etc. With this def-
inition we are able to translate any Alloy signature into a set of declarations of
Coq values whose types are declared using arity.

To model an element as a singleton set, we define a Singleton predicate:

1 Fixpoint Singleton n (R: arity (S n)) : Prop :=
2 match n with
3 | 0 ⇒ ∃! (x:U), R x
4 | S n’ ⇒ ∃! (x:U), Singleton n’ (R x)
5 end.

Basically what this predicate does is that for a relation R of arity n greater
than 1, it indicates there exists a unique element x of U such that the partial
application R x is also a singleton relation. For a relation of arity 1, it just states
that there exists a unique x such that R x.

Unfortunately the code above is not accepted by Coq. The problem is that
Coq cannot determine without additional information that R x can be considered
as a value of type arity n. To help the system we need “cast” functions (Figure 3).
Note that both these functions are defined using the proof script language of Coq.
However, these cast functions are not enough: we need to provide them a proof as
their last argument. This proof is simple, that is actually a proof by reflexivity,
and we can use what Chlipala calls the “convoy pattern” [3, page 172] to get
these proofs in the right hand sides of the pattern matching construction.

1 Definition cast n1 (R1 : arity n1) (H: n1 = 0) : Prop.
2 subst. simpl in ∗. trivial.
3 Defined.
4 Definition cast’ n1 n1’ (R1 : arity n1) (H: n1 = S n1’) : arity (S n1’).
5 subst. simpl in ∗. trivial.
6 Defined.
7 Fixpoint Singleton n (R: arity (S n)) : Prop:=
8 match n as m return n = m → Prop with
9 | 0 ⇒ fun H ⇒ ∃! x, cast (R x) H

10 | S n’ ⇒ fun H ⇒ ∃! y, Singleton n’ (cast’ (R y) H)
11 end eq refl.

Fig. 3. Actual Definition of Singleton

This small example shows that while having generic arity relations is indeed
very generic, it makes the formalization more technically challenging. However,
by providing general theorems on the Coq formalization of Alloy operations, we



think the user of our tool will not have to deal with such technicalities most of
the time.

Operations All the basic relational operations have the same shape as Singleton.
For example the inclusion operator in of Alloy is translated as (the cast and
convoy pattern are omitted):

1 Fixpoint IN n (R1: arity n)(R2: arity n): Prop :=
2 match n with
3 | 0 ⇒ R1 → R2
4 | S n’ ⇒ ∀ (x:U), IN n’ (R1 x) (R2 x)
5 end.

Basically it means that for all n-tuple t, if R1 t then R2 t. The Alloy equality is
not translated as the default syntactic equality (up to reduction) of Coq, but as:

1 Definition EQUAL n (R1: arity n)(R2: arity n): Prop :=
2 (IN R1 R2) ∧ (IN R2 R1).

Note that all the first nat arguments of these definitions are made implicit. It is
therefore not necessary to give them explicitly when using these definitions: Coq
infers them. Also instead of writing EQUAL a b, we use Coq’s notations a == b.

Slightly more challenging operations are the join and the product. Again
omitting the casts and the convoy pattern, the Alloy join operation is defined as
shown in Figure 4.

1 Fixpoint JOIN R n2 (R1: arity 1)(R2: arity (S n2)) : arity n2 :=
2 match n2 with
3 | 0 ⇒ ∃ x:U, (R1 x) ∧ (R2 x)
4 | S n2’ ⇒ fun (y:U) ⇒ JOIN R n2’ R1 (fun (x:U) ⇒ R2 x y)
5 end.
6 Fixpoint JOIN n1 n2 (R1: arity (S n1)) (R2: arity(S n2)) : arity(n1+n2) :=
7 match n1 with
8 | 0 ⇒ JOIN R n2 R1 R2
9 | S n1’ ⇒ fun (y:U) ⇒ JOIN n1’ n2 (R1 y) R2

10 end.

Fig. 4. Definition of Join (Details Omitted)

Operation Properties As mentioned before, in addition to translate the defini-
tions, operations, formulas of Alloy, we also provide properties of Alloy opera-
tions. The first set of properties concerns the Alloy equality ==: we proved it
is an equivalence relation and also that it is compatible with the Alloy opera-
tions, i.e. for an operation f, if for all a, b such that a == b, then f a == f b. This
allows to use the rewriting tactics of Coq while writing proofs. These are very
important as most of the other properties are stated as equalities using ==.

The second set of properties are mostly algebraic properties. For example we
have:



1 Lemma UNION idem: ∀ n (R: arity n), UNION R R == R.

We developed a tactic that is able to prove most of these properties, the proof
script in this case is Proof. solve alloy. Qed.

Other properties are more specific to Alloy operations. For example we pro-
vide a lemma that states that if the join of a binary relation with itself contains
the relation, then this relation is transitive:

1 Lemma JOIN IN transitive : ∀ R: arity 2,
2 IN (JOIN R R) R ↔ (∀ x y z, R x y → R y z → R x z).

3.2 Alloy Models Translation

Now that we have translated the basic elements of the Alloy language, we use
them to translate Alloy models. Here we present how each of the Alloy mod-
els components is translated into Coq syntax and the reasoning behind it. We
continue using the example given in Figure 1.

Signatures As we presented so far, everything that is going to be in our Coq
translation of the Alloy models should be of type arity n. In order to follow
this reasoning and to be able to manipulate Alloy signatures, we have decided
to represent them in the format of Coq Variables (declarations) by specifying
first their arity. Top-level signatures like Name, Addr and Book are sets and thus
unary (i.e. arity 1) relations. Signature attributes are declared as relations (arity
greater than 1) then a Hypothesis is added to the Coq code for their types, lines
2 and 3 in the following Coq translation shows the example of attribute addr:

1 Variable Name Addr Book: arity 1.
2 Variable addr: arity 3.
3 Hypothesis addr sig: IN addr (PRODUCT Book (PRODUCT Name Addr)).

Facts A way to declaring facts about a system in Coq is by stating Hypothesis.
Thus, Alloy model facts are translated in our tool to Hypothesis and the syntax
is as follows:

1 Hypothesis Model fact: translated fact formula.

Functions and Predicates Both are transformed in the same way to Coq syntax.
For reasons of re-usability and ease of application we have decided to transform
them into Coq inductive type definitions. The following examples are transfor-
mation of the del predicate and lookup function presented in Figure 1. When
writing the constructor for the inductive type, we start by modeling the “types”
of the arguments as inclusions, possibly with additional expressions for model-
ing the cardinality. In the example of del, the argument b has type Book thus
In b Book, but also b is an element, thus ONE b. We formalize functions as pred-
icates, but with an additional argument that models the result returned by the
function. In the case of lookup, the result is the value r lookup:



1 Inductive del: arity 1 → arity 1 → arity 1 → Prop:=
2 | del def: ∀ (b: arity 1) (b’: arity 1) (n: arity 1),
3 IN b Book ∧ (ONE b) →
4 IN b’ Book ∧ (ONE b’) →
5 IN n Name ∧ (ONE n) →
6 JOIN b’ addr == DIFFERENCE (JOIN b addr) (PRODUCT n Addr) →
7 del b b’ n.
8
9 Inductive lookup: arity 1 → arity 1 → arity 1 → Prop:=

10 | lookup def: ∀ (r lookup: arity 1) (b: arity 1) (n: arity 1),
11 IN r lookup Addr →
12 IN b Book ∧ (ONE b) →
13 IN n Name ∧ (ONE n) →
14 r lookup == JOIN n (JOIN b addr) →
15 lookup b n r lookup .

Assertions are defined in Coq syntax and then stated as Lemmas when called in
an Alloy check block. Thus, the assertion delUndoesAdd is transformed as follows:

1 Definition delUndoesAdd:=
2 ∀ (b: arity 1) (b’: arity 1) (b’’: arity 1) (n: arity 1)(a: arity 1),
3 ( NO (JOIN n (JOIN b addr)) ∧ add b b’ n a ∧ del b’ b’’ n ) →
4 JOIN b addr == JOIN b’’ addr.
5
6 Lemma delUndoesAdd Lemma: delUndoesAdd.

3.3 The Address Book Example

1 Definition addIdempotent:=
2 ∀ (b b’ b’’ a n: arity 1),
3 (add b b’ n a ∧ add b’ b’’ n a ) →
4 JOIN b’ addr == JOIN b’’ addr.
5
6

7 Definition addLocal:=
8 ∀ (b b b’ a n n’: arity 1) r 1 r 2,
9 lookup b n’ r 1 →

10 lookup b’ n’ r 2 →
11 (add b b’ n a ∧ not(n == n’)) →
12 r 1 == r 2 .

Fig. 5. Translation of the Assertions addIdempotent and addLocal

In the previous subsections, we presented most of the translation of the Alloy
example of Figure 1. Figures 5–7 present the automatic translation using our tool
of the two other assertions addIdempotent and addLocal, as well as the proof scripts
we wrote to prove two of the corresponding lemmas.

A recommended style in Coq, is to avoid using explicitly automatically gen-
erated names by tactics. Our destruct and tactics, that basically systematically
replaces hypotheses of the form A∧ B by two hypotheses A and B, automatically
generates names for these new hypotheses. The inversion tactic also automati-
cally generates names. To explicitly give names to the hypotheses we want to



1 Lemma delUndoesAdd Lemma : delUndoesAdd.
2 Proof.
3 unfold delUndoesAdd.
4 intros b b’ b’’ n a H. destruct and.
5 assert(Hadd: add b b’ n a) by trivial.
6 assert(Hdel: del b’ b’’ n) by trivial.
7 inversion Hadd; inversion Hdel; subst.
8 destruct and.
9 (∗ We are ready to prove: JOIN b addr == JOIN b’’ addr ∗)

10 assert(Hr1: JOIN b’’ addr == DIFFERENCE (JOIN b’ addr) (PRODUCT n Addr)) by trivial.
11 assert(Hr2: JOIN b’ addr == UNION (JOIN b addr) (PRODUCT n a)) by trivial.
12 rewrite Hr1, Hr2.
13 rewrite UNION DIFFERENCE distr l with (R1:=JOIN b addr).
14 rewrite UNION NO l by
15 (apply DIFFERENCE IN NO;
16 apply PRODUCT IN compat with (R1:=n);
17 auto using IN refl).
18 rewrite DIFFERENCE NO INTERSECT by
19 (assert(HH: NO (JOIN n (JOIN b addr))) by trivial;
20 castsimpl; intros;
21 specialize(HH x);
22 contradict HH;
23 intuition eauto).
24 reflexivity.
25 Qed.

Fig. 6. Proof of Lemma delUndoesAdd

1 Lemma addIdempotent Lemma: addIdempotent.
2 Proof.
3 unfold addIdempotent.
4 intros b b’ b’’ n a H. destruct and.
5 assert(Hadd1: add b b’ n a) by trivial.
6 assert(Hadd2: add b’ b’’ n a) by trivial.
7 inversion Hadd1; inversion Hadd2; subst.
8 assert(Hr1: JOIN b’’ addr == UNION (JOIN b’ addr)(PRODUCT n a)) by trivial.
9 assert(Hr2: JOIN b’ addr == UNION (JOIN b addr)(PRODUCT n a)) by trivial.

10 rewrite Hr1, Hr2.
11 rewrite ← UNION assoc, UNION idem.
12 reflexivity.
13 Qed.

Fig. 7. Proof of Lemma addIdempotent



manipulate explicitly, we use the assert tactic of Coq that is used to prove an in-
termediate result. In our case, we just state and give an explicit name for already
existing hypotheses, hence the use of the trivial tactic to prove the assertion (for
e.g. lines 10–11 of Figure 6). To get the formulas corresponding to the definition
of an Alloy predicate, or an Alloy function, the inversion tactic of Coq is needed
(e.g. line 7 of Figure 6 and line 7 of Figure 7). Using the assert tactic, we give
explicit names to the hypotheses generated by inversion (for e.g., lines 8–9 of
Figure 7).

The two other main characteristics of these proof scripts are:

– The use of the rewrite tactic, that relies on the proofs of == is an equiva-
lence relation, and the Alloy operations are compatible with this equivalence
relation (e.g. line 13 of Figure 6 and line 10 of Figure 7).

– The systematic use of properties proved on Alloy operations: for example
the distributivity of the union over the difference (line 15 of Figure 6) and
the associativity and idempotence of the union (line 11 of Figure 7).

Most of the proof scripts are based on the element described above. The
exception are lines 20–23 of Figure 6. The proof of the condition of the lemma
DIFFERENCE NO INTERSECT is in a way more “low-level” than the other parts
of the proof scripts as it directly makes use of the definitions of some Alloy
operations. One non standard Coq tactic is castsimpl: it is a tactic we provide,
and that simplifies the application of the Alloy operations and also removes all
the casts in the hypotheses and the goal. In the example the goal before calling
castsimpl is:

1 NO (INTERSECT (JOIN b addr) (PRODUCT n Addr))

meaning we have to prove that the intersection of JOIN b addr and PRODUCT n Addr

is empty, while after it is:

1 ∀ y x : U, ∼ ((∃ x0 : U, b x0 ∧ addr x0 y x) ∧ n y ∧ Addr x)

As castsimpl simplifies the hypothesis HH in a similar way, it is quite easy to finish
the proof.

These two proof scripts show that while most of the time the user can rely on
proofs by rewrite and application of operation properties, when it is not possible,
the proof writing remains accessible. With these two proofs, we guarantee that
the Alloy assertions hold for arbitrary sets and relations Book, Name, Addr and
addr.

The Tool The tool is written in Java and relies on ANTLR for parsing. There
are about 2 KLoC of non-generated Java code, and the Coq supporting library
Alloy is about 600 LoC. The tool and the complete examples are available at:

https://alloy2coq.github.io.

4 Related Work

Although theorem provers have proved their effectiveness in proving detailed
properties of multiple complex system specifications, they are still considered

https://alloy2coq.github.io


to be too expensive to use frequently during software development. Lightweight
formal methods, on the other hand, are frequently used for checking software
during design and implementation stages. Alloy, is a popular language and tool
used for checking software systems against their requirements. On one hand,
one of Alloy’s strong suits is the counterexample returned in case of unfulfilled
requirements. On the other hand, lack of counterexample, generally, does not
give a correctness proof. Thus, for critical systems, a second round of analysis
might be crucial. Several previous works have addressed the verification of Alloy
specifications.

In [1], Arkoudas et al. present a tool, Prioni, that integrates model check-
ing and theorem proving for relational reasoning. Prioni takes as input formulas
written in Alloy. It first uses the Alloy Analyzer to check their validity for a
given scope. Once no counterexample is found, Prioni translates these Alloy for-
mulas into Athena, a denotational proof language, proof obligations and uses the
Athena tool for proof discovery and checking. Unlike Prioni, that only analyzes
finite domains due to the fact that Athena cannot handle infinite sets, our pro-
posed solution handles infinite domains. Another solution that works on infinite
domains is presented in [29]. Kelloy [29] is a tool for verifying Alloy specifications
with respect to potentially infinite domains.

Kelloy is an engine for verifying Alloy specifications aiming to bridge the
gap between lightweight formal methods and theorem provers. It provides: a
fully automatic translation of Alloy language to KFOL (the first-order logic of
KeY, the deductive theorem prover used in Kelloy), an Alloy-specific extension
to KeY’s calculus and a reasoning strategy that improves KeY’s capability in
finding proofs and generates intermediate proof obligations that are easy to
understand.

Unlike Prioni and the transformation tool we are presenting, Kelloy was de-
veloped in a way that only takes into consideration translation of Alloy relations
up to ternary relations (i.e. arity 3). Such an approach requires to define the
Alloy operations for all the different combinations of the arities in KFOL.

Mariano et al. [17] followed an approach closer to ours. They present an
extension of PVS (Prototype Verification System), called Dynamite, that embeds
Alloy calculus. It automatically adds and analyzes new hypotheses with the aid
of the Alloy Analyzer. The generated PVS sequents get cluttered with some
unnecessary formulas, thus, Alloy unsat-core extraction feature is used in order
to refine proof sequents. Although both our work and that presented in [17]
relies on users conducting proof manually, we provide a library with predefined
lemmas to provide assistance in the proof process.

5 Discussion

The tool presented in this article shows the potential of translating and proving
the correctness of critical Alloy models, but it still has some limitations in its
current state.



The first limitation is the subset of the Alloy language that is supported.
There is one aspect that the current translation does not handle: the cardinality
of sets and relations. The design choice we made is not incompatible with dealing
with cardinalities. It however requires additional hypotheses. First the universe U

should be countable: this is actually in line with what is considered in Alloy, but
it is not set as an hypothesis in our current Coq modeling. Then to compute the
cardinality (the # operator in Alloy), the argument should be a finite relation:
we also plan to add this hypothesis each time the operator is used. Other Alloy
features that we have yet to integrate into our tool are: integer support, Coq can
handle integer definition and thus, adding this to our solution will only require
some formalization efforts. The other feature that we need to improve farther is
the arrow operation. For now, our arrow operation is by default a many to many
arrow operation, while Alloy’s arrow operation handles different multiplicities.

The second limitation is not related to the translation itself, but rather to
the support provided to the user in the translated Coq code. Although we do
provide a few Coq tactics to ease the work to prove what are assertions in Alloy,
currently the proofs are written mostly manually by the users. We plan to enrich
the Coq Alloy library with more powerful tactics.

In translating one formal language to another one, the question of the correct-
ness of the translation arises. One possibility would be to have a Coq represen-
tation of Alloy’s abstract syntax, and then give a Coq semantics to this syntax:
this would be a formalization of Alloy in Coq. Then we could implement in Coq
what is currently the back-end of our translation in Java: the generation of Coq
code from Alloy’s syntax. Proving the correctness of the translation would then
mean check that the semantics and the translation are equivalent. However, it
is very likely that the semantics could be given using the same basic constructs
we use for our translation: they would be essentially no difference between the
Coq semantics of Alloy, and the Coq translation of Alloy. Another possibility
would be to have a deep embedding of both Alloy and Coq in Coq, and check
that the translation (from syntax to syntax) preserves the semantics. However,
our current formalization of Alloy in Coq uses features that formalizations of
Coq in Coq (for e.g. [8]) do not currently handle.

6 Conclusion and Future Work

In this paper we presented a tool for translating Alloy models into Coq code.
Alloy main objects are relations: sets are unary relations, elements are considered
as singleton sets. We chose to keep this view in Coq and to consider, as in the
module Relation Definitions of Coq’s standard library, that a relation is a function
to Prop. This module however, only considers binary relations, therefore they
have type U→U→Prop where U is the type of the universe.

We decided to generalize this approach. This choice required us to use depen-
dent types everywhere in the Coq library that provides the primitive relational
operations of Alloy and supports the translation. We use our tool on examples



and prove with Coq the lemmas generated by the translation: this choice of Coq
formalization seems appropriate.

One of the motivations for this tool is our project around a broker for the
Cloud that takes into account user security requirements that can be expressed
as first order relational logic formulas and that we checked using Alloy/Kod-
kod [25]. In order to increase the trust in this broker, we aim at formalizing
all the hypothesis made on the system, and make sure that if the formal re-
quirement given by the user contains no error and are added to the system, then
conclusions about the security of the new state of the system can be drawn. This
case study will require a significantly larger translation and Coq proofs than the
examples we considered so far.
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25. Souaf, S., Berthomé, P., Loulergue, F.: A Cloud Brokerage Solution: Formal Meth-
ods Meet Security in Cloud Federations. In: International Conference on High
Performance Computing Simulation (HPCS). IEEE (2018)

26. The Coq Development Team: The Coq Proof Assistant. http://coq.inria.fr
27. Torlak, E.: A constraint solver for software engineering : finding models and cores of

large relational specifications. Ph.D. thesis, Massachusetts Institute of Technology
(2009)

28. Torlak, E., Taghdiri, M., Dennis, G., Near, J.: Applications and extensions of Alloy:
Past, present, and future. Mathematical Structures in Computer Science 23, 915–
933 (2013)

29. Ulbrich, M., Geilmann, U., El Ghazi, A.A., Taghdiri, M.: A proof assistant for
Alloy specifications. In: Flanagan, C., König, B. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems. pp. 422–436. Springer Berlin Heidelberg,
Berlin, Heidelberg (2012)

http://arxiv.org/abs/1806.04355
http://arxiv.org/abs/1806.04355
http://coq.inria.fr

	A First Step in the Translation of Alloy to Coq

